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Abstract

In this thesis, a non-linear mathematical model is proposed and analyzed to study the effect of
irresponsible infectives in the spread of HIV/AIDS in a variable size population. In considering the
modeling dynamics, the population is divided into four subclasses, of susceptibles (HIV negatives
who can contract the disease), irresponsible infectives (people who are infected with the virus but
do not know or live irresponsible life styles) , responsible infectives (HIV positives who know
they are infected and are careful) and full-blown AIDS patients. Susceptibles are assumed to be
infected through sexual contact with infectives and all infectives develop AIDS at a constant rate.
The stability theory of differential equations and computer simulations are used to analyze the
model. The model analysis shows that the disease-free equilibrium is always locally asymptotically
stable and in such a case the basic reproductive number Ry < 1 and the endemic equilibrium does
not exist. The disease is thus eliminated from the system. If Ry > 1, the endemic equilibrium exists
and the disease remains in the system. It is shown that the endemicity of the disease is reduced
when irresponsible infectives become responsible infectives who are more likely not to take part
in sexual interactions.

A numerical simulation of the model is also used to investigate the influence of certain other

parameters on the transmission dynamics of HIV/AIDS.
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CHAPTER 1

Introduction

1.1 Introduction

Human Immunodeficiency Virus (HIV) is the agent that causes Acquired Immunodeficiency
Syndrome (AIDS). HIV is transmitted through sexual contact with an infected individual, through
exchange of infected blood or blood products, or to the newborn from an infected mother. HIV
infected persons may harbor the virus for many years with no clinical signs of the disease. Even-
tually, HIV destroys the body’s immune system, mainly by impairing a class of white blood cells
whose regulatory activities are essential for immune protection. As a result, people who have
AIDS are prone to lung infections, brain abscesses, and a variety of other infections caused by
microorganisms that usually do not produce disease in healthy people. Those who have AIDS also
are prone to cancers such as Kaposi’s sarcoma, a skin cancer rarely seen in non-HIV-infected pop-
ulations (Chin and Lwanga, 1991). HIV/AIDS is one of the most destructive diseases humankind
has ever faced, with profound social, economic and public health consequences. Since the begin-
ning of the pandemic over 25 years ago, more than 25 million people have died of AIDS-related
illnesses and an estimated 33 million people are now living with HIV (International Aids Society
[IAS], 2009). Sub-Saharan Africa remains the most severely affected of the pandemic with an
estimated 22.5 million people with HIV, or 68% of the global total, are in Sub-Saharan Africa
(World Health Organization Media Centre, 2007). The AIDS epidemic is estimated to be one of
the leading causes of death globally and the major cause of death in Africa.

In Ghana, the first HIV/AIDS case was reported in 1986 and as of the end of 2003, an estimated

350,000 people were living with the disease in the country with about 30,000 death cases recorded
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(The Henry J. Kaiser Family Foundation, 2005). Currently, heterosexual sex remains the predom-

inant mode of transmission of HIV in Ghana, accounting for 75-80 per cent of all infections, with

an estimate 240, 802 HIV positive cases as against 236, 151 recorded in 2003. The annual in-

fection rate has over the years reduced from 3.6% in 2003 to 1.7% in 2008 (Donkor, 2009). The

AIDS epidemic is estimated to be one of the leading causes of death in sub-Saharan Africa and

the fourth leading cause of death globally. The pandemic has cut life expectancy significantly in

many countries in sub-Saharan Africa. For example life expectancy in Botswana decreased from
65 years in 1985-1990 to 40 years in 2000-2005 (Sharomi, 2006). In addition to being a seri-

ous public health problem, HIV has far reaching consequences to all social and economic sectors
and society. It exacerbates poverty, reduces educational opportunities, devastates the work force,
creates large numbers of orphans and exerts tremendous pressure on the limited health and social
services (Sharomi, 2006). For example, HIV/AIDS has cut annual growth rates in Africa by 2-
4% per year, (Dixon et al., 2002). Mathematical models have been used extensively in research
into the epidemiology of HIV/AIDS, to help improve our understanding of the main contributing
factors in a given epidemic of the disease. According to Glenn Ledder, (2005) "A mathematical
model is a set of formulas or equations based on a quantitative description of a real life or physical
problem and created in the hope that the behavior it predicts will resemble the real behavior on
which it is based". Mathematical models of the transmission dynamics of HIV play an important
role in our better understanding of epidemiological patterns for disease control as they provide
short and long term predication of HIV/AIDS incidence. May and Anderson, (1986,1987,1988)
initial work on modeling saw various refinements being made into modeling frameworks and over
the years specific issues have been looked at by researchers. Makinde (2009) studied the transmis-
sion dynamics of infectious diseases with waning immunity using the non-purtubative approach.
Makinde (2007) again looked at the Adomian decomposition approach to a SIR epidemic model
with constant vaccination strategy. Alexander et al. (2006) also studied the effect of the booster
vaccination on disease epidemiology. Flessa (1999) developed a model on decision support for
malaria control programmes. Mogadas and Gumel (2003) proposed a mathematical model to study
childhood diseases with non-permanent immunity. Misra and Mishra (2009) considered the effect

of booster vaccination on the transmission dynamics of diseases that spread by droplet infection.
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Agraj et al (2006) studied the spread of AIDS epidemic with vertical transmission by considering
a non-linear mathematical model. Arazoza and Lounes (2002) considered a non-linear model on
sexually transmitted diseases with contact tracing. Busenburg et al (1995) considered a simple
model on HIV transmission in India. Coutsoudis et al (2002) studied on the free formula milk for
infants of HIV infected women. Dunn et al. (1998) looked at the variations in maternal infectivity
on mother-to-child transmission of HIV. Kribs-Zeleta (1999) considered a structured model for
heterosexual disease transmission. Newell (1998) studied the mechanism and timing of mother-
to-child transmission of HIV infection. Perelson and Nelson (1999) also studied a mathematical
analysis of HIV dynamics. Rajesh and Nafees (2006) derived a primary sequence and secondary
structures of responsive elements from HIV infective mothers and infants on vertical transmission.
Rouzious et al (1995) considered an estimated timing of mother-to-child HIV transmission by us-
ing markov model. Van de Perre (1999) studied the transmission of the human immune-deficiency
virus through breast-feeding. Busenberg and Cooke (1993) discussed a variety of diseases that
transmit both horizontally and vertically, and gave a comprehensive survey of the formulation and
the mathematical analysis of compartmental models that also incorporate vertical transmission.
Hyman et al. (1999) studied the impact of variations in infectiousness by taking into account
different levels of virus between individuals during the Chronic phase of infection. Greenhalgh
et al. (2001) studied the impact of condom use on sexual transmission of HIV/AIDS amongst a
homogeneously mixing male homosexual population. Li et al. (2001) proposed a model for an
infectious disease that spreads in the host population through both horizontal and vertical trans-
mission. Hsieh and Chen (2004) developed a mathematical model for a model community which
has the structure of two classes of commercial sex workers and two classes of sexually active male
customers with different levels of sexual activity. Agarwala (2002) developed a density dependent
HIV transmission model for a Canadian population by taking into account the vertical transmission
and by using simple mass action type interaction. Naresh and Tripathi (2005) studied the spread of
HIV infection in a population in the presence of tuberculosis. Research is still going on in the area
of modeling. The importance of this is to partner with health experts and policy makers to see how
best the spread of the disease can be reduced through medical intervention and behavioral change.

This research seeks to develop a mathematical model to study the impact of irresponsible infectives
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on the spread of HIV/AIDS infection and then offer possible intervention strategies. The research
will also develop a theoretical framework that would predict the possible intervention strategies to
prevent the spread of HIV/AIDS infection resulting from infective immigrants. It will provide a
numerical solution for non-linear systems of differential equations resulting from the modeling of
the impact of irresponsible infectives and infective immigrants on the spread of HIV/AIDS. The

aim is to offer both short and long term strategies to control the spread of HIV/AIDS.

1.2 Mathematical Modeling

Mathematical modeling has to do with using Mathematics to explore topics outside Mathemat-
ics. Thus, mathematical modeling is an activity of translating a real life problem into mathematical
form for subsequent analysis. Mathematical models arise in every field of study that is of human
interest, including Science, Engineering, Economics and sometimes the non-sciences such as His-
tory. By nature, a mathematical model could be as simple as a single equation relating two (2)
variables or as complicated as a set of n equations with n unknowns. Mathematical modeling
usually begins with a conceptual thinking of a real life problem which leads to an idealized char-
acterization of it. Thus, the mathematical model is a mathematical description of the conceptual

model and most often not the real situation (Ledder, 2005)
1.2.1 Mathematical Models in Science

Observation

Conceptual Mathematical Mathematical
~Model Model Results

Expc{imems

Predictions

Figure 1.1: Schematic mathematical model for science (Ledder, 2005)

Figure 1.1 shows a schematic mathematical model that illustrates a typical scientific model.
The process begins with a careful observation and scientific experimentation which leads to a
conceptual thinking about a physical problem. The conceptual model is then transformed into

the appropriate mathematical equation/model, which when further solved produces the required
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mathematical results. These results can be validated with existing results and experiments before

they can be used in making predictions about the physical problem (Ledder, 2005).

1.2.2 Components of Mathematical Models

Variables, constants, parameters and input functions are generally considered as components
of a mathematical model (Ledder, 2005).
Independent variables: An independent variable is a mathematical quantity that takes on a range
of values. Such quantities are measures of time.
Dependent variables: A dependent variable is a quantity that changes during a given problem,
depending on the values of the independent variable.
Constant: This is a quantity in modeling that has a single fixed value and does not change during
a given problem.
Domain of the model: This includes the set of all possible values of the dependent variable.
Parameters: A model parameter is a quantity whose value is fixed throughout the domain of the

model but can be varied to give a family of related problems.

1.2.3 Model Development Steps

Different problems may require specific steps in their model formulation and development.
Glenn Ledder (2005) considered the following outline as a guide for model formulation.

1. Determine the purpose of the mathematical model.

2. Outline a conceptual model to describe an idealized representation of the situation being
modeled.
Define symbols to represent the various mathematical quantities in the conceptual model.

Derive mathematical equations to represent the model.
Make simplifications of the original equations to conform with solvable equations.

. Analyze the model by using analytical, graphical, and/or numerical techniques.

S SRV

. Critique the model by agreeing or disagreeing with its predictions on experimental data,

common sense or everyday experience.
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1.3 Statement of the Problem

HIV/AIDS was first widely recognized in the early 1980s and has since not gotten any cure.
Researchers, Governments, Health professionals and individuals have gone on various campaign
messages to sensitize and educate the public on the dangers and transmission dynamics of the dis-
ease; but HIV/AIDS still remains the world number one health problem today. Mathematicians
have also joined to educate and offer control strategies of HIV/AIDS transmission dynamics us-
ing the knowledge of mathematical modeling and epidemiology. Several mathematical modeling
problems have been looked at in the literature. However, there are many more areas in which re-
search is continuing especially with respect to the non linear behavior of infectives.

The transmission dynamics of HIV/AIDS infection in the presence of irresponsible infectives ina

population is the research problem that this thesis seeks to address using mathematical modeling.

1.4 Aim of the Study

This study aims to investigate theoretically the impact of irresponsible infectives on the trans-

mission dynamics of HIV/AIDS within a given population.

1.4.1 Specific Objectives of the Study
1. To develop a mathematical model to study the impact of irresponsible infectives on the risk
of HIV/AIDS infection and then offer possible intervention strategies.
2. To develop a theoretical framework that would predict the possible intervention strategies to
prevent the spread of HIV/AIDS infection resulting from infective immigrants.
3. To provide a numerical solution for non-linear systems of differential equation modeling the

impact of irresponsible infectives and infective immigrants on the spread of HIV/AIDS.

1.5 Significance of the Study

Modeling the impact of irresponsible infectives on transmission dynamics of HIV/AIDS is
extremely important for the following reasons. It will help;

« Describe patterns of infection and HIV/AIDS occurrence in a population.

» Identify outbreaks or unusual rates of HIV/AIDS occurrence.

» Assist in the understanding and control of HIV/AIDS transmission dynamics.

6
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« Identify and characterize factors that contribute to the spread of HIV infection.
* Develop and evaluate mathematical models on HIV/AIDS transmission dynamics.
+ Develop and evaluate primary, secondary and tertiary prevention and control measures of

HIV/AIDS for individuals.

1.6 Theoretical Framework

The operational definitions of concepts relating to the transmission dynamics of infectious

diseases will be presented in this section.

1.6.1 Threshold Theorem (The Threshold theorem of Epidemiology):

This has to do with a situation where a small group of people having an infectious disease is in-
serted into a large population that is capable of catching the disease. The question is: What happens
as time evolves? Will the disease die out rapidly, or will an epidemic occur? How many people
will ultimately catch the disease? To answer these questions, a system of differential equations,
which govern the spread of infectious diseases within a population is derived, and the behavior of
its solution is analyzed. This approach will then lead to the Threshold Theorem of epidemiology,
which states that an epidemic will occur only if the number of people who are susceptible to the

disease exceeds a certain threshold value.

1.6.2 Some Definitions
Stability Condition: These are the conditions that has to do with long-term behavior of the
system which is disturbed, with regard to whether or not it will differ from the undisturbed behavior

by an acceptably small amount.

Autonomous System: Suppose x = (x1,x2, ,x,,)’ is a system of differential equations describing
the changes in the variables characterizing an epidemiological problem. The system is said to be

autonomous if (x1,x2,,X,) does not depend on t explicitly, where t is the time variable.

Equilibrium Point: An equilibrium point x( of an autonomous system is a point which simulta-

neously satisfies x =0.

A critical point (xp,yp) of a system of differential equations x = Ax is stable if given a number

g > 0, there exists a number & > 0 such that x = ¢(r),y = y(t) of the system at ¢ = 0, satisfies




UNIVEERESITY FOR DEVELOPMENT STUDIES

g

www.udsspace.uds.edu.gh

[(6(0) — x0)% + (W(0) — ¥0)*]"/? < 8 and [((0) — x0)* + (W(0) — y0)?]'/? < € for all # > 0. This

definition implies that all solutions that are sufficiently close to (xp,yp) stay close to (xp,yo)

A critical point (xg,yp) is asymptotically stable if it is stable and if there exists 8y, such that
0 < §p < & and such that if a solution x = ¢(r), y = y(r) satisfy
[(0(0) — x0)% + (W(0) — y0)?]/2 < &), then limy(t) = yg as t — oo, This definition means that the
solution curves that start close to (xp,yp) must not only stay close to (xp,yp) but must approach

(x0,y0) ast —> oo

Basic Reproduction Number: The average number of secondary infections produced when
one infected individual is introduced into the whole population where everyone is susceptible; or
threshold quantity that determines when an infection can invade and persist in a new host popula-

tion.

Endemic Disease: The habitual presence of a disease or infectious agent in a defined geographi-

cal area or population.

Epidemic: Rates of disease clearly in excess of normal or expected frequency in a defined geo-
graphic area.
Epidemiology: The study of the distribution and determinants of health-related conditions and

events in a population, and the application of this study to the control of health problems.

Horizontal Transmission: Transmission that typically occurs through direct or indirect physical
contact with infectious hosts or through disease vectors such as mosquitoes, ticks, or other biting

insects.

Incubation Period: A time beginning with invasion by an infectious agent and continuing until

the organism multiplies to a sufficient number to produce a host reaction and clinical symptoms.
Induction Period: The period of time from causal action of a factor (exposure) to initiation of a
disease.
Infection: The entry and establishment of an infectious agent in a host (synchronization).

Latency: The time between exposure to a disease-producing agent and manifestation of the dis-

€ase.
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Pandemic: Epidemics that involves population in widespread geographic areas of the world.

Prevalence: Measure of the number of cases of a given disease in a specified Population at a

designated time; usually a rate measured at a point in time.

Susceptibility: State or quality of lacking resistance to an agent and therefore being likely to

develop effects if exposed.

1.7 Thesis Outline

This thesis is organized into four chapters. Chapter one consists of an introduction and back-
ground study of the epidemiology of HIV/ AIDS transmission. Basic mathematical definitions
needed to qualitatively analyze the models in the thesis are also included in chapter one. In chapter
two, HIV/AIDS transmission model in the presence of irresponsible infectives is modeled and an-
alyzed. The effect of infective immigrants is considered in the modeling process in chapter three.

Chapter four discusses the findings, conclusions and contributions for future research work.




"
=
:
%
z
A
el
2
-
=
%

www.udsspace.uds.edu.gh

CHAPTER 2

Modeling HIV/AIDS transmission in the presence of irresponsible

infectives

2.1 Introduction

In this chapter, a non-linear mathematical model has been proposed and analyzed to study the
effect of the presence of irresponsible infectives in the spread of HIV/AIDS in a variable size
population N. Irresponsible infectives are HIV positives who may not know that they have the
disease. It also includes people who have the disease and are seriously involved in drug abuse and
alcoholism. Ignorance, drugs abuse and alcoholism impairs judgment and good decision making,
leaving people more prone to engage in HIV risk behavior such as unsafe sex, injection and non
adherence to HIV treatment. There can be linkages between ignorance, alcoholism, drug abuse
and HIV infections and therefore, the socio-behavioral intervention of society can help change

infectives behavior and minimize the risk of infections.

2.2 Model formulation and Assumptions

2.2.1 Assumptions
The following assumptions are made in order to construct the mathematical models for the
problem

1. The population N under study is heterogeneous and varying with time

2. The population N under study is subdivided into four classes

10
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3. The HIV can only be transmitted through sexual intercourse or through infection from an
infected needle and blood.

4. The full-blown AIDS group is sexually inactive

5. The rate at which irresponsible infectives infect people with the disease is higher than that

of responsible infectives

2.2.2 Description of model parameters
N(t) = Total population size at time t
S(t) = The size of the Susceptible population at time t
I1(t) = The size of the Irresponsible infective population at time t
L (t) = The size of the Responsible infective population at time t
A(t) =The size of the Full blown AIDS population at time t
¢ = The number of sexual partners an infective individual has
B1 = The contact rate of irresponsible infectives
B, = The contact rate of responsible infectives
u =The natural death rate (Natural mortality rate of an individual in the population)
8 = The conversion rate of irresponsible infectives to responsible infectives
& = The conversion rate of infectives to full-blown AIDS
o. =The AIDS-induced mortality rate
Qo = The rate of recruitment of Susceptibles into the population.

For clarity sake, we represent N (1), I;(t), I and A(t) by N, Iy, I> and A respectively.

2.3 Model Formulation

In this model we want to study the effect of irresponsible infectives on the spread of HIV/AIDS
in a variable-size population at time t in which there is recruitment of susceptibles into the popula-
tion at a rate Qy. The population N is subdivided into four classes of susceptibles S(#), irresponsible
infectives I (t), responsible infectives I;(r) and AIDS patients A(¢) with a natural mortality rate
of u. The AIDS patients class is assumed to have an AIDS induced mortality rate o. It is also
assumed that all infectives progress to develop AIDS at the rate & with time. The irresponsible

infectives can become responsible as time evolves at the rate 6. Susceptibles become HIV infected

11
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through sexual contact with infectives and are directly recruited into the irresponsible population at

the rate proportional to the susceptible population and to the ratio between the number of infected

: dn, 81 drI SI dl; SI
;;cl)pulatiog; and the total population. Thus, Etl o< -ﬁl and E] = B;Wl . Also, 6?2 o< Wz and
Ez — ﬁzﬁz. B and B are the effective contact rate of an infective individual. We also consider

the parameter c, that is the number of sexual partners an infective individual has to play an impor-

tant role in the spread of the disease. The above considerations and discussions can be summarized

I

and illustrated on the flowchart in figure 2.1 below.

A A
ol
OoN ol
{ cBi1S/N -
S cBahbS/N i I L
i wl, by

Figure 2.1: Proposed Flow chart for irresponsible infectives model

From figure 2.1, the susceptible population changes with time according to the differential equa-

tion

ds c(Bifi +B2l2)S

5 = QN N HS.

Similarly, the population of infective individuals change with time according to the differential
equations

dly (P11 +B212)S dr

El = &1—Nﬁi —(8+0+u)l and Titz =0l — (3+u)h.

Finally, the AIDS population changes with time according to the first order differential equation

% =8(I; +h) — (a+wA.

12
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Thus the proposed model is governed by the system of first order differential equations

as _ o c(Bih+Bah)S :
= = QoN = — S @.1)
dly  c(Bify +Baba)S B
S-SR TRRE_ (s+e+u) 22)
‘(‘T’f — 6l — (5+p)h 23)
dA
5= S(h+h)—(o+wA (24)

With initial conditions given by S(0) = So [1(0) = I19 2(0) = I0 A(0) = Ao, B1 > P2. Note that if
the total population size is given by N = S+ 1I; + I, + A then we have
dN dS d dh  dA

I AR R Il i

dN
= —u)N —0A
3 = (Qo—H)
The questions that we might want to address using this model include;
* What will be the effect of a small proportion of irresponsible HIV/AIDS infectives present in
a given population? Will the disease die out? or will there be an epidemic as time evolves?

* What is the effect of the model parameters o, Y8, B, B2, 6 and ¢ on the transmission dy-

namics of HIV/AIDS?

2.4 Solution of the Model

Since the model equations are nonlinear in nature, it is convenient to solve the system qualita-

tively and numerically (Simulation).

2.5 Qualitative Analysis
2.5.1 Normalization

The dimensions of the model variables S, I}, I; and A are people. The population size N also
has people as its dimension. Therefore, in order to solve the system of equations, we need to nor-
malize the model by defining new variables s, i, i; and a.

It must be noted that i} and i, are the fractions of the population that are infected. a is the fraction
of AIDS population and s is the fraction of the susceptible population. Since the fraction infected

can, in principle, range between 0 and 1, then s+i; +ip +a=1.

13
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b

. I . A
,11=~A%12= anda = 5

Z[en

Thus, to normalize the model, we set s =

2

Then we obtain

dh dh |aN 4
= P gt N ildN+Ni iy _pON 0 88 AN | e

o a Vaw a’ @ e e e T %a
Subtituting these identities into the model (2.1)-(2.4) we have:
N%;g—s%_Q oN — _@Q%_Bz_lzﬁ_ uS — s[(Qo — u)N — aA]
= N = QoN —c(Bii1 +Baiz)sN — usN — s[(Qo — )N — oaN]
= % = Qo — c(Bri1 + Baiz)s — ps — 5[(Qo — p) — o]
: ‘:lj (1=5)Q0 — c(B1i1 + Baiz)s + 0as
Also
N :l% _5.% - ".———(B"‘ L (3-8 401 ~4l(Co=iN e
= N =c(Brir + Bai)sN — (8+0+u)itN — i1 [(Qo — )N — aaN]
= dd_lrl = ¢(B1iy + Baiz)s — (8 + 0+ )iy — i1 [(Qo — 1) — 0]
% (1;1 = c(B1i1 +Baiz)s — (Qo +3+8)i1 + 0oaiy
Also
N% :2% - oS = ol - | © +-;1)12 — i2](Qo — )N — o]
No = 8i1N — (8+ p)iaN — i2[(Qo — u)N — aaN)|

= %2 = 0i — (84 )iz — i2[(Qo — p) — 0a]
- CZ: = 08i] — (Qo +8)iz + 0aiz
Finally

‘ci;’ % —a% = 8(I + 1) — (0 +w)A — a[(Qo — )N — 0]

= N%a = 8(iy + i2)N — (o4 p)aN — a[(Qo — u)N — ctaN|]

’, % = 8(iy +i2) — (Qo +0)a + aa?

Thus, a normalized form of the model (2.1)-(2.4) is given by

d
as = Qo — c(B1i1 + Paiz)s — Qos + aas 2.5)
di
5 = c(Bi1 + Baiz)s — (Qo -+ 8+ )i +aaiy 26)
(:iltz =0i; — (Q, + 8)iz + 0uiy 2.7

14
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%a = 8(iy +i2) — (Qo + Wa+0a’ (2.8)

With initial conditions s(0) = sq, i1(0) = i10; i2(0) = i20 and a(0) = ag where s + i1 +i1+a <1

2.5.2 Linearization

The Jacobian that appropriately linearizes the governing equations of the model is given by.

J(s,iy,i2,a) =
—Qo — c(B1i1 + Br2iz2) + 0a —cPis —cPas os
c(B1i1 + Baiz) cPis—Qp—06—-06+0a cPas 29)
0 0 —Qp—0+oaa s
0 o o —Qp—0o+20a

We study the system in the closed set I' = {(s, i1, i2, @) € Ril|s+iy+ir+a <1}
The system will have either of two long-term behaviour; disease-free equilibrium and the endemic
equilibrium.
2.5.2.1 Disease-free Equilibrium

The disease-free equilibrium is attained when there are no infectives and no full-blown AIDS
patients. That is, disease-free equilibrium is attained when iy =i =a = 0.Thus, the disease-free
equilibrium will be given by Eg = (1,0,0,0)
When the disease is completely eliminated from the system, the solutions approaches the disease
free equilibrium of the form of Ep.

The Jacobian evaluated at Eg is given by
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-Qo —cp —cP2 o
0 —Q0p—90-—96 0
J(Eo) = cPr—Qo P2 2.10)
0 (3] —Qo—9 0
0 ) ) —Qp—0a

2.5.3 Local stability analysis of disease-free equilibrium

To study the local stability of the disease-free equilibrium, we evaluate the solution of the
characteristic equation of the Jacobian of the normalised system at the disease-free equilibrium as

follows.

15
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—Qo—A —cPi —cB2 o
0 By—Qy~5~0—~%
FRy = cBr1— 0o cP2 0 _
0 0 —Qp—06—-A 0
0 ) ) —Q‘()—C!.-—).
cBi—Qo—8—-0—A B2 0
= f(A)=—(Qo+}) 0 iy =B 0 =0
& o —QOL(!—)\.
— DG —B =%
o FO)= @0+ )@ +arh)| P TP L I
) —Qp—08—A

= f(A) = (Qo+A)(Qo+0+A)[(—cP1+Qu+8+08+A)(Qo+8+2) —cP26]
= f(A) = (Qo+A)(Qo+a+A) (A2 +VA+p)
Where

v=—cBi+20Q0+28+8, andp = (—cP1 + Qo +5+6)(Qo+8) — P20

R = SP1(Qo+3)+cB,0
0= TQo+8+8](Qo+9)

The disease-free equilibrium is locally asymptotically stable if v > 0 and p > 0. However, p >0
is sufficient for Ep to be locally asymptotically stable.

Thus Ej is locally asymptotically stable if

(=P + Qo +8+6)(Qo + 8) — P20 > 0 or By (Qo +8) + P26 < (Qo+8+6)(Qo +9).

This condition corresponds with Rg < 1

o
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2.5.4 Endemic Equilibrium

dN
Recall that s (Qo — )N — 0A. Then the system 2.1-2.4 can be rewritten as
dN

N—IL —bh—
L (Pl +B212)(N h-h-4) _5io+un (2.12)
% =0l —(8+u)h (2.13)
dA
i S(h+5h)—(a+puA (2.14)

16
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Figure 2.3: Variation of population in different classes for ¢ = 25, 6 = 0.95

—+—Susceptibles
—#— Irresponsible Infectives

UNIVEERESITY FOR DEVELOPMENT STUDIES

07 — — —Reponsible Infectives
& —+— AIDs patients
= 0B 1
w
£-05F 7
2 04} i
Q
o

03t ]

Time (Years)

Figure 2.4: Variation of population in different classes for ¢ = 10, 8 = 0.75
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Let the endemic equilibrium be E* = (N*, I], I3, A)
dNv®  dIf  dI5 dA”

At equilibrium —— o > 0. Thus system (2.11)-(2.14) becomes
(Qo—p)N" —aa* =0 R15)
c(Budy +|3215)(2](: =l =R —-A") (3+0+mI; =0 (2.16)
ol — (3+u)l =0 2.17)
8(If +15) — (a+pA* =0 (2.18)
From equation 2.17 we have I = M

Substituting ; into 2.18 we have 8( 24 4 I5) — (a+p)A* = 0
= 8(&H 4 1) — (a+pA =0
= §(XEE I — (o +p)A* =0

= (a+pu)A® = 5Lt

8(8-+u+0)
0(o+u)

AT =

2

Finally, substituting A* into 2.15 we have (Qo — u)N* ooty 2

@ x __ 0d(B+u+6 *
N = St
Thus, the endemic equilibrium of the system 2.11-2.14 is given by

N* = od(d+u+8) 1«
~ B(otu)(Qo—p) 2

L
P= (5%’_315

. 8(64+pt8) u
AT = 8(a+u) L
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2.5.5 Analytical Results

It is found that, the system’s reproduction number, Ry, is given by

_ cB1(Qo+8)+cho®
Ro= <Q_53+ {:“_GHQ-O'FZS) :

The system is stable if Ry < 1 and the spread of the disease can even die out if B; = =c =0.

That is, when infectives present good characters and engage in safe sex, then the basic reproductive
number is significantly reduced and can even approach zero. If however, Ry > 1 then the system
becomes unstable and the infection of the disease persists in the population. In this case HIV/AIDS

infectives actively take part in the spread of the disease by sexual interaction in which B = 2 =

17
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¢ # 0. Thus, the endemicity of the disease can be reduced when infectives present positive attitude

towards preventive measures and do not spread the disease.

2.6 Numerical Simulation of the model

To observe the dynamics of the system, the model (2.5)-(2.8) is numerically integrated using
the fourth order Runge-Kutta method using the following parameters
B, =0.015, a=.5, u=0.02, Qy =0.40, 6=0.25, B; = .08, 8= .955and c = 10
With initial conditions s(0) = 0.65, i;(0) = 0.20, i2(0) = 0.10 and a(0) = 0.05
Here, it must be noted that s, iy, i» and a are fractions of which their sum should not exceed
unity. Therefore the choice of the values of the initial conditions and the parameter values are done
randomly just for the purpose of illustration of the model. It is however possible for the model to
be implemented on observed data. The results of the computer simulations are shown in tables A.1

to table A.4 in appendix A and graphically displayed in figure 2.2 to figure 2.15

)
*
R |
+ 4
s
3 4
§ 05¢ 1
K
204} .
o
03F 5
02% 7
&
0.1F 4
+T Tk
ARCNSEE
0 Iers fims
0 1 2 3 4 5 6 7 8 | 10

Time (Years)

Figure 2.2: Variation of population in different classes for ¢ = 10, 8 = 0.95

It is observed from figures 2.2 to 2.8 that increasing 0, the conversion rate of irresponsible
infectives to responsible infectives, reduces both the irresponsible infectives population and AIDS

patients population and increases the responsible infectives population. That is, increasing the rate
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Figure 2.5: Variation of population in different classes forc = 25,8 = 0.75
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Figure 2.6: Variation of Irresponsible Infective population for different values of 6
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at which irresponsible infectives convert to responsible infectives results in more of the infectives
becoming responsible and thus not spreading the disease. This goes to reduce the number of people
contracting the disease. Thus, to help check the spread of the disease, policies that can lead to an
increase in O such as mass education, mass screening and the development of strategies that could

lead to sexual inactivity of infectives, should be considered.

0.2

0.18

0.16

o
i
=

012

0.08

Iresponsible Infective Population Fraction
o

g 3

0.02

Time (Years)

Figure 2.9: Variation of Irresponsible Infective population for different values of d

Also, we observed from figures 2.9, 2.10 and 2.11 that increasing J, the rate at which infectives
convert to full-blown AIDS patients, reduces both the irresponsible and responsible infectives
populations but increases the full-blown AIDS population. Thus, if infectives could be made to
quickly develop AIDS, the spread of the disease could be checked and brought under control.

Again, it can be seen from figure 2.12 to figure 2.15 that increasing c, the number of sexual
partners, results in a decrease in the susceptible population and an accompanying increase in the
infective and AIDS populations. That is, if the number of sexual partners increases, there will be
the tendency for more people to get infected with the virus. This will lead to a reduction in the
susceptible population with a concomitant increase in the infective and AIDS populations.

Simulating Ro under the prevailing values of the other parameters by varying ¢ showed, as in table
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Figure 2.10: Variation of Responsible Infective population for different values of &
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Figure 2.11: Variation of AIDS population for different values of 6
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Figure 2.13: Variation of Irresponsible Infective population for different values of ¢
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A4, that the number of sexual partners should not exceed 14 if we need to keep the system stable.
Thus, measures should be kept in place to ensure that the number of sexual partners be kept to the

bearest practicable minimal.

"
=
:
%
z
A
el
2
-
=
%

26




UNIVEERESITY FOR DEVELOPMENT STUDIES

-

www.udsspace.uds.edu.gh

CHAPTER 3

Effects of infective immigrant on the transmission dynamics of

HIV/AIDS

3.1 Introduction

In the world today, immigration poses a significant risk for disease dissemination including
HIV/AIDS. The effect may be substantial in developing countries which normally do not check
the complete health status of immigrants. These immigrants place their sex partners in their home
countries and their destination countries at risk of the HIV/AIDS epidemic. This claim however
has not been established and evaluated adequately to see the effect and exact mechanism that
immigration contributes in the spread of HIV/AIDS. Coffee et al (2007) developed a model to
study the impact of migration on the spread of HIV/AIDS in South Africa using observed data.
This chapter looks at a nonlinear mathematical model that has been proposed and analyzed to

study the effect of infective immigrants in the spread of HIV/AIDS in a population.

3.2 Model formulation and Assumption

3.2.1 Assumptions
The following assumptions are made in order to construct the mathematical model for the
problem

1. The population under study is heterogeneous and varying with time

2. The population under study is subdivided into four groups
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3. The HIV can only be transmitted through sexual intercourse or through infection from in-
fected needle and blood.

4. The full-blown AIDS class is sexually inactive

5. The rate at which irresponsible infectives infect people with the disease is higher than that

of responsible infectives

3.2.2 Description of model parameters

Y = Rate of recruitment of infective immigrants into the population. All other parameters are

as defined in chapter two

3.3 Model Formulation

In modeling the effect of infective immigrants on the population, we consider a modification
of the model in chapter two by incorporating the recruitment of infective immigrants into the irre-
sponsible infective population. The assumption is that infectives coming into the population might
not know their HIV status and have the tendency of behaving irresponsibly. It is also assumed that
the recruitment of susceptible individuals is at a constant rate Qp. The modified flowchart from

figure 2.1 in chapter two is shown in figure 3.1 below.
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Figure 3.1: Proposed Flowchart for infective immigrants model

From figure 3.1, the proposed differential equations representing the model are given by:

as _ c(Bii+B2h)S
=@ 8 (3-1)
di=ws+yh—(9+8+p)h (3.2)
dt N
L o1~ (3+uh (3.3)
dA
= = i +h)—(a+p)A (3.4)

With initial conditions given by S(0) = So I;(0) = I1p 2(0) = I0 A(0) = Ag B1 > Pa.
dN
If the total population size is given by N = S+ + 1, + A, then we have F (Qo—u)N —aA+vL

and the model (3.3)-(3.4) can be re-writen as follows

dN

I N-L—-L—-A
% = C(Bl 1+6212)( I 2 )+'YI]—(9+8+,U)11 (3.6)
dr N
2 —ol - (8+4)b (3.7)
dA ;
= =8(h+h) - (a-+u)A (3.8)

With initial conditions given by N(0) = No 1, (0) = I1o 12(0) = Ig A(0) = Ag B1 > Pa.
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3.4 Qualitative Analysis

3.4.1 Equilibrium Analysis

The system exhibits two equilibria; the disease-free equilibrium and the endemic equilibrium.

3.4.1.1 Disease-free Equilibrium
At the disease-free equilibrium, there are no infectives and full-blown aids patients. Hence

I, =L =A=0and N = %2, Hence the disease-free equilibrium is Ep = (IQ ,0,0,0)

3.4.1.2 Endemic equilibrium

Let the endemic equilibrium be E* = (N*,I},[5,A").
dN dIl _dh  dA
dt  dr A dr
Hence system (3.5)-(3.8) becomes

Note that at equilibrium, — =1

Qo —uN™ —0A* +7I} =0 (3.9

c(Bulf + Bl ) (N =1 —; —A)

" +yIf —(0+8+uIf =0 (3.10)

oI — (3+u)l; =0 (3.11)

3L +5)—(a+uA*=0 (3.12)
From equation (3.11) we have

Substxtutlng I3 into equation (3.12) we have
(I + 5—11) (a+u)A* =0
= XL (04 p)AT =0

. At B3(8+8+u) I
(8+p)(o+p) "1

Putting 7 and A” into equation (3.10) we have:
Bl[l+l3212)(N [l lr. —-A" )

+yI; — (04+0+u)} =0

(mwzh)(NN_‘ HB2A) g1y — (0+8+p)[; =0

c(Bi+Bogl ) (N" -} -L-A") "
e Iyl — (0+8+m)I =0

l K _gE__pE_ A%
"(51+4328+a)(N“[ =4 A)+Y—(9+8+.u)=0
= c(B1+Bagey)(N* — I} —I; —A") + N*(y-8-8—p) =

= c(BBHES) (v [ —AT) + N (Y-8 -8 -p) =0

= c(Bi(8+p) +BO)(N* —I; I —A") + N*(Y-8 -3 —p)(8+4) =0
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= c(B1(8+4)+PB20)(—1; — 15 —A") + N*[cP1(8+p) + P20+ (Y- 0 -8 —p)(8+n)] =0

= N*[cB1(8+p) + B0+ (y—0—8—p)(8+u)] = c(B1(8+u) +B20) (I} + 15 +A%)

= N*[cB1(5+1) +cBaO+ (10 —8— ) (3+4)] = clB1 (8-+1) + BabllF} + 5515 + Bt

= N*[cB1(8+4) + cPa®+ (Y— 8~ 8 p)(8-+4)] = c[Br (8+ 1) +Bb][1 + 5%, + oot Iy

= N*[cB1(8-+4) +cBaB+ (Y= 0 — 5—p) (B+4)] = c[B1 (8-+1) + Ba6)[(FHULHAL S O

= N*[cBi(3-+4) + cBaB+ (Y— 8~ 8 — o) 3+ )] = c[B1 (3-+p) + 6] (L2 EBA0 1 7

= N*[cBi(8+1) +cBaB+ (Y—B8— 8 —pu) (8+1)] = c[B1 (8+p) + Bo6][Hig @ttty

= N*[cB1 (84 1) +cBa®+ (Y— 8~ 8 —u)(8+ )] = c[B (8+ ) + B20] [ Cgrpeatecdly;

. N* = Bt +B6[( 9+5+u)(0t+#+5)
d (8+u)(at+u)g I

Where & = cB (8 +u) +cPab®+ (Y—0—8—pu)(d+u)

From equation (3.9) we have
Qo —uN* —aA™ +I} =0
Substituting N* and A* we have:

[y (8-+12)+B20] (B+B+1) (0t +8) o OB(B+8Hi) e | e _
Qo — = et I = Grmtarati T =0

(8+u)+P20](0+8+u) (atutd) 3(0+8+ 25
= gy (2Bl R | ey — 1 =0

- cu[B1 (8-+1) +P28) (8+8+) (0tp+8)+0B(0+8+u)E— (+) (at+p) 8y I = Qo

(8+u)(a+u)g

o Qo(8+p)(atu)é
1 = CulBi(6+p)+P208](0+0+4) (atp+8)+0d(8-+8+u)E~ (5-+u) (at+u)Sy
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Thus, the model (3.5)-(3.8) has two equilibria namely the disease-free equilibrium Ep = (Qo/p,0,0,0)
and the endemic equilibrium E* = (N*,I},I;,A").

Where
N* = C[Bu(8:+u)+B20](8+8+u)(0tu+3) I
(&+u)(o+p)E

= Qo(B+) (0% _
1™ culBy (5+4u)+B20] (0-+0-+u) (atu+8) +ad(8+3-+1)5— (8-+u) (a+u)Ey

* 6 px
L =50
4= 26+y§(a+p511
Where & = cB1(8+p) + cP20+ (Y—0—8—u)(8+ 1)
We note here that E* is positive only when & >0 or Ry > 1, and 003(0+ 8+ ) — (8+u)(a+p)y>0
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— (rtcPr)(Bp)+cpr0
Where Ry = (9-|—15+y)(5+#)

3.4.2 Local stability analysis

To determine the local stability of the equilibria, we evaluate the jacobian matrix, M, of the

system (3.5)-(3.8)

ma1 My mz3 m4
M= (313

0 o ) - —pu

_ cBilitPals) _ cBilitBolo)(N=I;—=I2=4) _ c(BilitPole)li+12+4) |
- N 2 NZ

may N

moz = CB] (N_;\;"IZ_‘A} _— C(El !J';BZ!?) + (Y— e . 8 . I-I)
Where 2

my; = B2 (N‘;j—lz—ﬂ) _cB 11;!52 2)

—_— _C(BI]I;‘BZIZ)

Letq = C(le_ﬁgh) o ) (N‘;ll—lz—ﬁ) and p = cBi {N‘;J*IZ_A) +(y—8—8—p)

Then my; = Mﬂ_ >0, mp=—(p+q)<0.mu=r—q,my=—g<0

3.4.2.1 Local stability analysis of Ey
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The Jacobian matrix corresponding to Ep is given by

—u Y 0 —o
0 —(0+0+u— 0
_— cBr—( u=y)  cPa (3.14)
0 ] —(8+p) 0
| 0 ) ) —(o+u) |

The characteristic equation corresponding to M) is given by

—u—A Y 0 -0
0 cBfi—(0+0+u—7)—A B2 0
= =0
0 0 —(8+u)—A 0
0 ) 3 —(ot+p) — A
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cpr—(0+8+u—7v)—2A cPa 0
= fA)=~@+A) 0 —(8+p) -1 0 =0
8 5 —(ot4u) — A
(B4 54 u—) — ‘
s )= d)pay| BRSNS,
0 —(0+u)—A

= fA)=@E+A)(a+pu+A)[(d+u+A)(0+8+u—y—cB1+A)—cP26] =0

= f(A) = (u+A)(o+u+A) (A% +Vr+p)

Where

v=0+p)+(0+8+u—y—cPi)and p=(8+u)(0+8+u—y—cP1)— P20

We note that Ej is locally asymptotically stable when v > 0O and p > 0.

However, the condition (3.15) is sufficient to make Eg locally asymptotically stable.
(8+u)(0+8+u) > (8+pu)(y+cPi1) +cB20 (3.15)

It is clear that for Ry < 1 which corresponds to the condition (3.15), the disease-free equilibrium is

locally asymptotically stable so that infection fades out from the population and thus the endemic

equilibrium does not exist. However, for Ry > 1 Ej is unstable and then the infection is maintained

in the population.

3.4.3 Analytical Results

If we write equation 3.15 as Ry < %%%LB, then it is clear that B} = B2 =0=c=0
does not show the disappearance of the disease from the system as in the case of chapter two.
This is due to the presence of 7, the recruitment rate of infective immigrants in the expression.
This implies that even if infectives show responsible character by engaging in safe sex and do
not spread the disease, but the presence of infective immigrants will maintain the disease in the
population. Therefore as part of efforts to keep the spread of HIV/AIDS on check, the screening of
immigrants into the population should be encouraged by policy makers. Thus, a reduction in the

value of y can reduce the value of Ry thereby making the system more stable. That is, the spread

of the disease can be reduced. Hence the spread of the disease can die out of the population if

Bi=P2=0=c=7=0.
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3.5 Numerical Simulation of the model

To observe the dynamics of the system, the model (3.5)-(3.8) is numerically integrated using
the fourth order Runge-Kutta method using the parameters
Qo = 2000, u=0.02, B; =0.08, B2 =0.015, a=1,8=0.75,c =10, y=0.97 and 6 = 0.95
with initial values N(0) = 15000, /;(0) = 10000, 7;(0) = 2000 and A(0) = 500
The endemic equilibrium values are computed as
N* = 33896, IT = 1909, I; = 2355 and A* = 3135
It must be noted that the above parameter values and the initial conditions were chosen at random
for illustration purposes as in the case of most modeling problems. It is however possible for the
model to be implemented on observed data. The computer simulations are performed for different

initial values in the following four cases as shown in table 3.1.

Table 3.1: Different initial conditions used for simulation

Case | N(O) [1(0) [ L(0) | A(0)
L. 15000 | 10000 | 2000 | 500
2. 19000 | 16500 | 2000 | 100
3. 15000 | 3000 | 2500 | 1000
4 10000 | 8000 | 1800 | 300

The results of the computer simulations are graphically displayed in figures 3.2 to 3.16.
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Figure 3.3: Variation of Responsible infectives population against Susceptible population
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Figure 3.4: Variation of AIDS patients population against Susceptible population

In figures 3.2, 3.3 and 3.4 the irresponsible infectives population, responsible infectives popu-
lation and AIDS patients population are plotted against the susceptible population respectively for
various initial values. It is seen from these figures that irrespective of the initial conditions chosen,
the solutions curves all always tend towards the equilibrium point E*. This implies that the system

(3.5)-(3.8) is globally stable about the endemic equilibrium point E* .
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Figure 3.7: Variation of population classes with Infective immigrants (Y= 0.97, Qp = 0)
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Figure 3.9: Variation of Responsible Infective population for different values of y
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Figure 3.10: Variation of AIDS population for different values of y
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It is also seen from figure 3.5 to figure 3.10 that the presence of infective immigrants in the
system increases the total population initially. But as time goes on more susceptible individuals
get infected with the disease and then develop into AIDS. They eventually die thereby reducing the
total population in the long-run. In the case of figure 3.7 there are no recruitment of susceptibles
into the population. Therefore, the total population, the infected classes and the AIDS class all
initially increase but later reduce to zero. Therefore, in order to minimize the spread of the disease
and prevent the total population from being wiped away as in the case of figure 3.7, effective

immigration policies such as screening should be put in place.
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Figure 3.11: Variation of Irresponsible Infective population for different values of 6
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Figure 3.13: Variation of AIDS population for different values of 8

From figures 3.11 to figure 3.13 it can be observed that increasing 6, the conversion rate of
irresponsible infectives to responsible infectives, reduces both the irresponsible infectives and the
AIDS patients population. However, the responsible infectives population increases with increas-
ing @ in the short-term but decreases with increasing 6 in the long-term. That is, increasing 6 will
lead to more of the irresponsible infectives becoming responsible. This reduces the irresponsi-

ble infective population and consequently reduces the AIDS patients population. The responsible
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infectives population will at first increase,but as less people get infected due to the reduced irre-
sponsible infectives, the long term result will be a total reduction in the infectives (both irrespon-
sible and responsible). Thus, efforts should be made towards increasing the rate of conversion
of irresponsible infectives to responsible infectives. Such efforts could be mass education, mass

screening and some other "radical” ways like administration of anaphrodisiacs to infectives.
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Figure 3.14: Variation of Irresponsible Infective population for different values of &
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Figure 3.15: Variation of Responsible Infective population for different values of &
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Figure 3.16: Variation of AIDS population for different values of &

It is observed from figure 3.14 to figure 3.16 that increasing 8, the rate of conversion of infec-
tives to full-blown AIDS patients results in a reduction of the infectives population and an increase
in the AIDS patients population in the short term. However, in the long run, increasing d results
in a reduction of the AIDS population. That is if infectives become full-blown AIDS patients at
a higher rate there will be a reduction in the infectives class and a corresponding increase in the
AIDS class. However, as more infectives develop AIDS and pass out of the system(through AIDS-
induced death) there will be a reduction in the AIDS class in the long-term.

The MATLAB codes that were used for the integration can be found in the appendices.
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3.6 Summary of results

In summary,the analysis and simulations in chapters two and three show the following results:

i 8

Increase in contact rate of infectives, B; and B, increases Ry, thereby making the system
unstable. Thus, efforts should be made to discourage people from having so many sexual

partners in order to reduce the spread of HIV/AIDS.

. An increase in the number of sexual partners, ¢, of infectives increases both responsible and

irresponsible infectives populations which leads to an increase in the AIDS population.
Two equilibria, the disease-free equilibrium Eg = (1, 0, 0, 0) and the endemic equilibrium,
E* = (N*, I{, I}, A"), have been established.

The system is locally asymptotically stable about Ey and globally asymptotically stable about

B

. A critical quantity, Ry, the basic reproductive number has been established. It is found that,

if Ry < 1 then the disease dies out of the population and if Ry > 1 the disease persists in the

population.

. An increase in 8, the conversion rate of infectives to full-blown AIDS patients reduces both

responsible and irresponsible infectives population but increases the AIDS population. Thus,
HIV infection rate can be reduced if the rate at which infected classes move to full-blown

class increases.

. An increase in 0, the conversion rate of irresponsible infectives to responsible infectives re-

duces the irresponsible infectives population and subsequently reduces the AIDS population.
Thus, if there are effective policies such as mass education, mass screening, use of condoms

and abstinence put in place then the spread of HIV/AIDS could be reduced.

. The research has established that the numerical results agrees well with the qualitative re-

sults.




"
=
:
%
:
e
el
2
-
=
%

www.udsspace.uds.edu.gh

CHAPTER 4

Conclusion, Contribution and future work

4.1 Conclusion

In this thesis, a non-linear mathematical model is proposed to study the spread of HIV/AIDS
in the presence of irresponsible infectives in a variable size population with constant recruitment
of susceptibles and infectives. By analyzing the model analytically, a threshold quantity, Ry is
established. It is found that this threshold value determines the endemicity or otherwise of the
disease. The model has two (2) equilibria namely; the disease-free equilibrium and the endemic
equilibrium. It is found that the disease-free equilibrium is locally asymptotically stable if Ry < 1,
corresponding to the disappearance of the disease from the system. Also, Rg > 1 shows that the
system is unstable and the spread of the disease is maintained in the population.

The computer simulation of the model further shows that changes in the model parameters have
a greater influence at better understanding of the spread and control of HIV/AIDS. For instance,
an increase in the number of sexual partners reduces the entire population by way of spreading
the disease. That is, increase in the number of sexual partners increases the number of infectives
populations thereby reducing the susceptible population. Therefore, in order to reduce the spread
of HIV/AIDS, the number of sexual partners should be reduced. It is also found that the disease
becomes endemic due to immigration. Therefore, if the rate of immigration into the population is
restricted and strict screening policies are put in place by policy makers such as Governments and
immigration officials then the spread of the disease could be kept under control.

Further more, increase in the conversion rate of irresponsible infectives to responsible infec-

tives reduces the irresponsible infectives population thereby reducing the spread of the disease.
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Therefore, it is recommended that serious campaign messages be put in place to make people re-
sponsible by way of abstaining from unprotected sex, alcoholism, drugs and all other activities
which influence people to make impaired judgment thereby becoming irresponsible.

Also, an increase in the conversion rate of infectives to AIDS can reduce the spread of the
disease as the full-blown AIDS patients are sexually inactive. Therefore, if there could be a way
of making all infectives move to full-blown AIDS at a very fast rate then the disease could even be
eliminated from the system.

It is further found that the analytical method of analyzing the system under the prevailing con-
ditions agrees perfectly with the numerical simulations.

Finally, the analysis shows that the most effective way to lower the spread of HIV/AIDS is
to educate the population by making them aware of the various ways of contracting the disease.
Therefore, Governments, health professionals, policymakers and researchers should continue to in-
stitute educative programmes that will reach communities at desired levels in order to increase the
awareness of the population about the transmission dynamics of the disease so that the HIV/AIDS
pandemic can be controlled. Thus, the socio-behavioral change remains the most effective treat-

ment for HIV/AIDS.

4.2 Contribution of thesis

The research contributes in three main categories or ways. The first is in the design of the ap-
propriate mathematical models for the transmission of HIV/AIDS in the presence of irresponsible
infectives. The second contribution is the rigorous analysis of the nonlinear differential equations
that have been modeled. The third has to do with the use of the analyzed results to interpret real
life situations in the population. Thus, the main specific contributions made by this research are
listed below.

1. The design of a mathematical model to study the transmission dynamics of HIV/AIDS in the

presence of irresponsible infectives.

2. The design of a mathematical model to study the effect of infective immigrants on the trans-

mission of HIV/AIDS in a population.

3. The research has also established the existence of the local stability of the model.
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4. The research established a threshold parameter, Ry, the basic reproductive number which
determines the endemicity or otherwise of the disease.

5. Establishing that certain model parameters such as contact rate ( By, 2), number of sexual
partners (c) and the conversion rate of irresponsible infectives to responsible infectives(6)
influence the spread of the disease.

6. The research has established that, immigration increases the spread of the disease.

4.3 Future work

Although this research shows that there are prospects of the effective control of HIV/AIDS
through education, strict screening policies, reduction in number of sexual partners and the increase
in the conversion rate of irresponsible infectives to responsible infectives, more work need to be
done in the following areas.

1. A mathematical model study of HIV/AIDS transmission dynamics in the presence of irre-

sponsible susceptibles.

2. A mathematical model study of HIV/AIDS transmission in the presence of Shari’ah ( The

Islamic system of governance)
3. A mathematical model study of the endemicity or otherwise of the HIV/AIDS pandemic in

the presence of anti-retroviral admission.

47




m.
=
:
%
E
A
v
2
by
o
%

www.udsspace.uds.edu.gh

Bibliography

Agarwala, B. D. (2002). On two ODE models for HIV/AIDS development in Canada and a logistic
SEIR model. Far East J. Appl. Math., 6(1), 25-70.

Agraj Tripathi, Ram Naresh, and Sandip Omar. (2006). Modeling the spread of AIDS epidemic
with vertical transmission. Applied Mathematics and Computation, 178, 262-272.

Alexander, M. E., Mogadas, S. M., and Rohani, P. (2006). Modeling the effect of the booster vac-
cination on disease epidemiology. Journal of Mathematical Biology, 52(3), 290-306.

Anderson, R.M. (1988), The role of mathematical models in the study of HIV transmission and
the epidemiology of AIDS. J. AIDS., 1, 241-256.

Anderson, RM., Medley, G.F., May, R.M. and Johnson, A.M. (1986). A Preliminary study of the
transmission dynamics of the human immunodeficiency virus (HIV) the causative agent of AIDS.
IMA J. Math. Appl. med. Biol., 3, 229-263.

Arazoza, HD. and Lounes, R. (2002). A nonlinear model for sexually transmitted diseases with
contact tracing. IMA J. Math. Appl. Med. Biol.19, 221-234.

Busenberg, S., Cooke K., and Ying-Heng H. (1995). A model for HIV in Asia. Math Biosci., 128,
185-201.

Busenberg, S. and Cooke, K.L. (1993). Vertically transmitted diseases models and dynamics.
Springer velag, New York.

Chin, J. and Lwanga, S.K. (1991). Estimation and projection of adult AIDS cases: A simple epi-
demiological model. Bulletin of the World Health Organization, 69(4), 399-406.

Coffee Megan, Lurie Mark, N. and Garnett Geoff, P. (2007). Modeling the impact of migration on
the HIV epidemic in South Africa. AIDS, 21(3), 343-350.

Coutsoudis, A., Goga, A. E. and Rollins, N. et al. (2002). Free formula milk for infants of HIV

infected women: Blessing or curse? Health policy plan, 17, 154-160.

48




www.udsspace.uds.edu.gh

Dixon S, McDonald S. and J. Roberts J. (2002). The impact of HIV and AIDS on Africa economic
development. BMJ. 324, 232-234.

Donkor, S. (2009, December 2). Be part of the know your HIV status campaign: Daily Graphic,
issue 18089 p. 29, Accra.

Dunn, D. T., Tess, B. H., Rodrigues, L. C. and Ades, A. E. (1998). Mother-to-child transmission
of HIV: Implication of variation in maternal infectivity. AIDS, 12:2211-2216.

Flessa S. (1999). Decision supports for malaria-control programmes- a system dynamics model.
Health care management Science, 2(3), 181-191.

Glenn Ledder (2005). Differential Equations: A modeling approach. McGraw-Hill Companies.
Greenhalgh, D., Doyle, M. and Lewis, F. (2001). A mathematical treatment of AIDS and condom
use. IMA J. Math. Appl. Med. Biol,, 18, 225-262.

Hsieh, Y.H and Chen, C.F. (2004). Modeling the social dynamics of a sex industry: its implications
for spread of HIV/AIDS. Bull. Math. Biol., 66, 143-266.

Hyman, J. M., Lia, J. and Stanley, E.A. (1999). The differential infectivity and staged progression
models for the transmission of HIV. Math. Biosci., 55, 77-109.

International AIDS Society (IAS) Report. (2009). Retrieved December 5, 2009 from http//www.ias2009.rog/ad
08-07-09.pdf.

Kribs-Zaleta, C. M. (1999), Structured models for heterosexual disease transmission. Math. Bioci.,
160, 83-108.

Li, M.Y., Smith, H.L. and Wang, L. (2001). Global dynamics of an SEIR epidemic with vertical

"
=
:
%
z
A
el
2
-
=
%

transmission. SIAM J. Appl. Math., 62 (1), 58-69.
Makinde, O. D. (2007). Adomian decomposition approach to a SIR epidemic model with constant
vaccination strategy. Applied Mathematics and Computation, 184, 842-848.

Makinde, O. D. (2009). On non-purtubative approach to transmission dynamics of infectious

diseases with waning immunity. International Journal of Nonlinear Science and Numerical Simu-
lation, 10(4), 451-458.

May, R.M. and Anderson, R.M. (1987). Transmission dynamics of HIV infection. Nature, 3426,
137-142.

49




m.
=
:
%
:
A
v
2
by
o
%

www.udsspace.uds.edu.gh

Misra, O. P. and Mishra, D. K. (2009). Modeling the effect of booster vaccination on the transmis-
sion dynamics of diseases that spread by droplet infection. Nonlinear analysis: Hybrid system, 3,
657-665.

Mogadas, S. M. and Gumel, A. B. (2003). Mathematical study of a model for childhood diseases
with non-permanent immunity. Journal of computational and Applied Mathematics, 157(2), 347-
363.

Naresh, R and Tripathi, A. (2005). Modeling and analysis of HIV-TB co-infection in a variable
size population. Math. Model. Anal., 10, 275-286.

Newell, M. L. (1998). Mechanism and timing of mother-to-child transmission of HIV-1. AIDS,
12, 832-837.

Perelson A. S. and Nelson P. W. (1999). Mathematical analysis of HIV-1 dynamics in vivo.
SIAMREYV, 41, 3-44.

Rajesh Ramakrishna and Nafees Ahmad. (2006). Derivation of primary sequences and secondary
structures of rev responsive elements from HIV-1 infected mothers and infants following vertical
transmission. Technical report September, College of Medicine, The university of Arizona Health
Sciences Center, Tucson, AZ85724, USA.

Rouzious C., Costagliola D., Burjard M., Blanche S., Mayaux M. J., Griscelli C., and Valleron A.
1.(1995). Estimated timing of mother-to-child HIV- 1 transmission by use of markov model. AMJ
Epidemiology, 142, 1330-1337.

Sharomi, O. Y. (2006). Mathematical analysis of models of HIV epidemiology. Masters thesis,
University of Manitoba, Winnipeg.

The Henry J. Kaiser Family foundation Report (October, 2005). HIV/AIDS Policy Fact Sheet:
"The HIV/AIDS epidemic in Ghana". Retrieved December 5, 2009 from www.kff.org

Van de perre, P. (1999). Transmission of human immunodeficiency virus type-1 through breast-
feeding: how can it be prevented? J. Infect. Dis., 179(3), 405-407.

World Health Organization Media Centre. (2007). "Global HIV prevalence has leveled off". Re-

trieved December 6, 2009, from http/www.who.int/mediacentre/news/release/2007/pr61/en/index.ht.

'f'rurq,»,,.o_ -
ne | :r“ A . A s

50



m.
=
E
%
i
A
v
2
by
3
%

www.udsspace.uds.edu.gh

APPENDIX A

Results of Numerical Simulation of Model for irresponsible

Infectives

Table A.1: Variation of population fraction in different classes with irresponsible infectives

Time(Years) S i i2 a
0 0.650000 | 0.200000 | 0.100000 | 0.050000
1 0.715126 | 0.079942 | 0.141390 | 0.063542
2 0.788657 | 0.039496 | 0.114892 | 0.056954
3 0.849384 | 0.023421 | 0.082564 | 0.044631
4 0.894546 | 0.015507 | 0.057173 | 0.032774
5 0.926628 | 0.010809 | 0.039263 | 0.023300
6 0.948977 | 0.007684 | 0.027022 | 0.016318
7 0.964438 | 0.005493 | 0.018702 | 0.011366
8 0.975132 | 0.003929 | 0.013025 | 0.007914
9 0.982551 | 0.002806 | 0.009119 | 0.005523
10 0.98772 | 0.002002 | 0.006411 | 0.003867

Table A.2: Variation of population in different classes for various values of 8

Irresponsible Infectives

Responsible Infectives

Full-blown AIDs

Time =355 T9 =075 [0=005 | 0=02506=0.75 | 6=095 |8=025]0=0.75] 06=0.95
0 102000 | 02000 | 02000 | 0.1000 | 0.1000 | 0.1000 | 0.0500 | 0.0500 | 0.0500
T 101516 | 0.0961 | 0.0803 | 0.0857 | 0.1293 | 0.1411 | 0.0648 | 0.0639 | 0.0635
2 [0.1208 | 0.0537 | 00398 | 00711 | 0.1087 | 0.1148 | 0.0624 | 0.0582 | 0.0570
3100999 | 0.0340 | 0.0236 | 0.0585 | 0.0816 | 0.0826 | 0.0549 | 0.0467 | 0.0447
4 10085 | 0.0235 | 00157 | 0.0483 | 0.0589 | 0.0572 | 0.0469 | 0.0353 | 0.0328
5 100737 | 00169 | 00109 | 0.0403 | 0.0421 | 0.0393 | 0.0398 | 0.0259 | 0.0234
6 100649 | 00125 | 0.0078 | 0.0342 | 0.0302 | 0.0271 | 0.0339 | 0.0188 | 0.0164
7 100578 | 0.0093 | 0.0056 | 0.0294 | 0.0217 | 0.0188 | 0.0293 | 0.0136 | 0.0114
S 100519 | 0.0060 | 0.0040 | 0.0256 | 0.0158 | 0.0131 | 0.0256 | 0.0099 | 0.0079
9 100470 | 0.0052 | 0.0028 | 0.0226 | 0.0115 | 0.0092 | 0.0226 | 0.0072 | 0.0056
10 100428 | 0.0039 | 0.0020 | 0.0202 | 0.0085 | 0.0064 | 0.0202 | 0.0053 | 0.0039
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APPENDIX B

Results of Numerical Simulation of Model for Infective Immigrants

Table B.1: Variation of population in different classes without immigration (y= 0, Qo = 2000)

Time N I b A
0 | 15000 | 10000 | 2000 | 500
113768 | 2170 | 3976 | 4073
211619 598 | 2565 | 3462
310533 | 248 | 1428 | 2288
410516 | 143 | 781 1388
511221 94 [ 436 | 817
6 | 12352 63 | 252 480
7 13718 41| 150 | 285
8 | 15206 27| 91| 171
9116752 17| 56| 104

10 | 18319 11| 35| o4

Table B.2: Variation of population in different classes for various values of &
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Time Susceptibles Irresponsible Infectives | Responsible Infectives AlDs patients

6=075 | b=085] 6=0.75 o=0D95 | 6=0.75 0=095]|0=075|06=0.95

0 15000 15000 10000 10000 2000 2000 500 500
1 21072 19744 7334 6073 5369 4409 6187 6977
2 21375 18276 5356 3819 5699 3901 | 7779 - 7778
3 19719 15701 4193 2731 5068 2976 7499 6657
4 17904 13760 3580 2277 4340 2295 6670 5367
5 16550 12708 3308 2160 3791 1921 5885 4463
6| 15736 | 12331 3233 2210 3457 1775 5335 3993
7 15342 12337 3256 2318 3296 1763 5024 3841
8 15210 12496 3309 2416 3245 1810 4889 3866
9 15206 12664 3357 2478 3248 1865 4858 3954
10 15244 12781 3387 2504 3269 1905 4871 4038
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Table B.3: Variation of population classes with immigration (y = 0.95, Qp = 2000)

Time N I L A
0 | 15000 | 10000 | 2000 500
126716 | 9037 | 7197 | 7173
2| 31915 | 8173 | 8986 | 10548
3 |33697 | 7523 | 9321 | 11810
4133981 | 7073 | 9122 | 12003
5133778 | 6791 | 8796 | 11770
6 | 33557 | 6641 | 8509 | 11445
7133498 | 6593 | 8317 | 11177
8 | 33640 | 6618 | 8225 | 11016
9 |33961 | 6694 | 8219 | 10965
10 | 34418 | 6803 | 8280 | 11009

Table B.4: Variation of Susceptible and Irresponsible Infective population for various values of 6

Susceptible Population Irresponsible Infectives
0=0.75{0=09510=120]6=0.75(0=095|06=1.20
15000 15000 15000 10000 10000 10000
21072 20411 19695 7334 6081 4818
21375 19704 18113 5356 3825 2543
19719 17412 | 15475 4193 2730 1669
17904 15408 | 13552 3580 2265 1391
16550 14163 12588 3308 2136 1380
15736 13600 12347 3253 2179 1491
15342 13487 12520 3256 2289 1638
15210 13599 12849 3309 2397 1764
15206 137172 13168 3357 2470 1842
15244 | 13916 13398 3387 2504 1875
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Table B.5: Variation of Responsible Infectives and AIDs patients population in different classes
for various values of 6

Time Responsible Infectives AlIDs population

0=075]06=095]06=1206=075]6=095]|6=1.20
0] 2000 2000 2000 500 500 | 500
1 5369 6010 6607 | 6187 6048 5891
;) 5699 5887 5878 7779 7229 6671
3 5068 4805 4378 7499 6550 5675
4 4340 3835 3267 6670 5482 4473
5 3791 3215 2659 5885 4616 3609
6 3457 2914 2433 5335 4095 3154
7 3296 2832 2443 5024 3871 3019
3 3245 2869 2564 4889 3842 3075
9 3248 2946 2704 4858 3903 3206
10 3269 3015 2812 | 4871 3984 3335

Table B.6: Variation of population in different classes for various values of ¥

u
:
u
E | Time Susceptibles Irresponsible Infectives | Responsible Infectives AlDs
O Y=05y=09 | y=05 y=09 | y=05 Y=09 |y=05]7=09
g 0| 15000 | 15000 | 10000 10000 2000 2000 500 500
0 1] 16841 | 20519 4876 7007 4494 5259 5179 | 6061
] 2| 14797 | 20404 2614 4934 3879 5442 5450 7454
f 3| 12588 | 18552 | 1737 372 2867 4726 4461 7035
E 41 11191 | 16704 1455 3191 2137 3971 3468 6143
b 5| 10584 | 15404 1442 2956 1739 3427 2808 5350
= 6| 10496 | 14674 1549 2914 1588 3115 2486 4820
E 7| 10664 | 14362 1688 2962 1586 2979 2405 4541
8| 10899 | 14294 1804 3030 1653 2948 2457 4438
9 11096 | 14332 1873 3085 1732 2967 2554 | 4431
10 | 11217 | 14392 1899 3116 1791 2997 2641 4461
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APPENDIX C

MATLAB codes used in study

function dy = InfectiveImmigrants(t,y)
beta2=0.015;alpha=1;mu=0.02;Q0=0.00;delta=0.75;beta1=0.0S;theta=.95;c=10;gama=0.97;
dy = zeros(4,1);

dy (1)=Q0-mu*y (1) —alpha*y (4) +gama*y (2) ;

dy (2) =c* (betal*y (2) +beta2*y (3)) * (y (1) -y (2) -y (3) -y (4)) /y (1) +gama*y (2) -. ..
(theta+delta+mu) *y (2);

dy (3) =theta*y(2) - (delta+mu) *y (3);

dy (4) =delta* (y(2)+y(3))-(alpha+mu) *y (4] ;

$ [T1,Y1]=o0ded5 (@InfectiveImmigrants, [0 10], [15000,10000,2000 5007);

% plot(Tl,Yl(:,1},’k.—',Tl,Yl(:,Z},’k*’,Tl,Yl(:,S),'k—-’,Tl,Yl(:,4),'k+’)
% [T1,Y1l]=ode45(@InfectiveImmigrants, [0 10],[15000,10000,2000 500]));

$ [T2,Y2]=0de45 (@Infectivelmmigrants, [0 10], [19000 16500 2000 1001);

% [T3,Y3]=ode45{@InfectiveImmigrants,[O 10], [15000 3000 2500 10007);

$ [T4,Y4]=oded5 (RInfectiveImmigrants, [0 10], (10000 8000 1800 300]);

function dy =IrresponsibleInfectives(t,y)
beta2=0.015;alpha=.5;mu=0.02;Q0=0.40;delta=0.25;betal=.08;theta=.75;c=25;
RO=(c*beta1*(delta+QO)+c*beta2*theta)/((delta+QO)*(delta+theta+QO));
dy=zeros(4,1);
dy(1)=Q0-c*(betal*y(2)+beta2*y(3))*y(l)-QO*y(l)+alpha*y(4)*y(l);

dy(2)=c*(betal*y(2)+beta2*y(3))*y(l)-(delta+theta+00)*y{2}+alpha*y(4)*y(2);
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dy (3) =theta*y(2) - (delta+Q0) *y (3) +alpha*y (4) *y (3) ;

dy (4)=delta*(y(2)+y(3))-(alpha+Q0) *y (4) +alpha* (y (4))"2;

% [T1,Yl]=ode23(@IrresponsiblelInfectives, [0 10],[0.65,0.2,0.1,0.05]);

o\@

plot(Tl, ¥i{g,4) k.~ 0L, Y1 (s, 2], "e*® JT1 YL (2,3}, " k=* [ TL Y1 (5,45 ;" kt" ]

o\e

xlabel ( Time (years) ')

o\

ylabel (‘Population fraction’)

% legend('s’,’1i 17,1 2"';"a')
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