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Abstract
Objective MRI at 3 T is said to be more accurate than 1.5 T
MR, but costs and other practical differences mean that it is
unclear which to use.

Methods We systematically reviewed studies comparing di-
agnostic accuracy at 3 T with 1.5 T. We searched MED-
LINE, EMBASE and other sources from 1 January 2000 to
22 October 2010 for studies comparing diagnostic accuracy
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at 1.5 and 3 T in human neuroimaging. We extracted data on
methodology, quality criteria, technical factors, subjects,
signal-to-noise, diagnostic accuracy and errors according
to QUADAS and STARD criteria.
Results Amongst 150 studies (4,500 subjects), most were
tiny, compared old 1.5 T with new 3 T technology, and only
22 (15 %) described diagnostic accuracy. The 3 T images
were often described as “crisper”, but we found little evi-
dence of improved diagnosis. Improvements were limited to
research applications [functional MRI (fMRI), spectroscopy,
automated lesion detection]. Theoretical doubling of the
signal-to-noise ratio was not confirmed, mostly being
25 %. Artefacts were worse and acquisitions took slightly
longer at 3 T.
Conclusion Objective evidence to guide MRI purchasing
decisions and routine diagnostic use is lacking. Rigorous
evaluation accuracy and practicalities of diagnostic imaging
technologies should be the routine, as for pharmacological
interventions, to improve effectiveness of healthcare.
Key Points
• Higher field strength MRI may improve image quality and
diagnostic accuracy.

• There are few direct comparisons of 1.5 and 3 T MRI.
• Theoretical doubling of the signal-to-noise ratio in prac-
tice was only 25 %.

• Objective evidence of improved routine clinical diagnosis
is lacking.

• Other aspects of technology improved images more than
field strength.

Keywords Magnetic resonance imaging . Sensitivity and
specificity . Brain . Neuroimaging . Systematic review

Introduction

Magnetic resonance imaging (MRI) has revolutionised
modern medicine and research, particularly in neurosciences
[1]. Since its introduction to human use in the mid 1980s,
the operating field strengths have progressively increased,
from very low [e.g. 0.15 Tesla (T)] to 1.5 T or 3 T for
clinical use and up to 7 T for research.

Imaging at higher field strengths should increase the
signal detected from tissue, with relatively less increase in
background noise (higher signal-to-noise ratio; SNR) com-
pared with lower field strengths, thereby producing better
images with higher spatial resolution faster, increasing di-
agnostic accuracy [2]. For imaging methods where inherent
signal strength is low, e.g. spectroscopy or functional MRI
(fMRI), the higher field strengths could confer considerable
advantage. However, the potential price is more artefacts
[3], greater magnetic field heterogeneity, increased vigilance
required for patient screening, increased biological effects

[4, 5] and increased cost of equipment purchase, installation,
maintenance and operation.

How should the prospective user, or purchaser, decide
what field strength to use? Throughout medicine, treatment
decisions are based on objective evidence from randomised
clinical trials, without which no drug can obtain a licence.
But diagnostic imaging is poorly served by randomised
trials, or even comparative studies, for several reasons:
perceived lack of need, high expense and constantly chang-
ing technologies. However, the costs of imaging are huge. In
2008, the diagnostic imaging machine market of the USA
totalled over US$5 billion [6] with 27 MRIs per million
population (only Japan had more at 40 per million popula-
tion) and rising [7]. Images have disproportionately persua-
sive powers [8, 9] which can influence attitudes, perceptions
and decisions regarding the value of imaging well beyond
the validity, relevance or accuracy of the actual image [10].
Consequently there is little objective evidence to guide
decisions regarding which imaging method to use, which
may distort diagnoses and influence, possibly adversely,
treatment decisions.

To address a fundamental question in clinical practice
and research—which MR field strength to use and when—
we systematically reviewed the literature on the use of 1.5 or
3 T MRI in clinical practice and research. We restricted this
to neuroimaging, as the area with the longest use in clinical
practice and research.

Materials and methods

The work was undertaken by 28 individuals from the
SINAPSE Collaboration (Scottish Imaging Network, A Plat-
form for Scientific Excellence, http://www.SINAPSE.ac.uk)
and Cochrane Stroke Group, from six different centres and
seven main disciplines (neuroradiology 4, medical physics 12,
psychiatry 2, image analysis 2, neuroscience 1, psychology 3
and general medical/data management/bibliometrics 4).

We used QUADAS [11] and STARD [12] criteria for
assessing the studies and guidance on diagnostic test sys-
tematic reviews from the Cochrane Database of Systematic
Reviews (http://srdta.cochrane.org/handbook-dta-reviews).

Search strategy

We searched Medline and EMBASE from 1 January 2000 to
22 October 2010 using a search strategy (details in Electronic
Supplementary Material) developed and refined with the aid
of the Cochrane Stroke Group literature search coordinator (B.
Thomas). We sought studies that imaged humans at 1.5 and
3 T. We excluded studies published only in abstract; those that
only included animals, phantom objects or simulated data;
review articles; and most studies not published in English
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(owing to limited resources). Two researchers ran the search
strategies and screened studies for further evaluation. Dis-
agreements were resolved by discussion with a third reviewer.
We obtained all potentially relevant papers and distributed
them to 28 researchers for evaluation and data extraction.
Six researchers (K.L., K.S., M.H., W.B., A.C., J.M.W.), in-
cluding three neuroradiologists, reviewed the completed
forms centrally for consistency of data extraction and clinical
accuracy, and arbitrated on any differences in interpretation
and abstraction of data. In the case of multiple publications on
the same subjects, we took care only to count subjects once.

Data extraction

We designed a dedicated data extraction form to record the
study population, design characteristics (prospective, retro-
spective, etc.), body area examined, technical aspects of the
equipment and sequences (including duration of imaging),
analysis of the image data (blinding, number of observers,
etc.), any information on sensitivity or specificity, the study’s
conclusions, the subjects’ ability to tolerate the imaging and
any adverse events or artefacts.

Data synthesis

We entered the data into a dedicated, purpose-designed spread-
sheet. We analysed information on study quality characteristics
(sample size, blinding, prospective/retrospective, etc.), partici-
pants, whether the same subjects were definitely examined at
both field strengths, evidence of bias in attributing a reference
standard diagnosis, technical factors including the specifica-
tions of the equipment, whether the sequences had been opti-
mised for each field strength, data on (or to calculate) sensitivity
and specificity, artefacts, SNR and the authors’ general impres-
sion of the diagnostic value. Our original aim was to perform a
meta-analysis, but insufficient studies provided data on sensi-
tivity or specificity. We therefore focussed on descriptive anal-
yses. Where there were two or more relevant studies on a
particular condition (e.g. stroke or tumours) or sequence (e.g.
spectroscopy or angiography), we summarised all available
data on diagnostic accuracy or SNR, as appropriate.

Results

We identified 6,894 papers published between 1 January 2000
and 22 October 2010 (Fig. 1). After exclusion of 882 dupli-
cates; 3,342 irrelevant papers on the basis of title/abstract; 132
reviews; 240 non-intracranial, non-neurological studies; 1,933
studies not on humans, not comparing 1.5 and 3 T or pub-
lished only in abstract; and 90 non-English language papers,
the remaining 275 publications were assessed in full (Fig. 1).
Of these, 81 studies dealing solely with phantoms or artefacts,

not comparing 1.5 and 3 T, and reviews, plus 44 on non-
neurological disorders, were omitted. This left 150 studies that
were included (Table 1, Electronic Supplemental Material; the
full database is available at http://www.bric.ed.ac.uk).

Study quality assessment

The 150 studies included 4,507 subjects. Only 121 studies (81%,
total n01,935) definitely examined the same subjects at each
field strength, 23 (15 %) examined different subjects and in 6
studies it was unclear (Table 1). A total of 147 studies gave a
clear sample size (median 15, minimum 1, maximum 550, IQR
23.5), of which 36 % included 10 subjects or fewer. In the 121
studies that definitely examined the same subjects at both field
strengths (median sample size 10.5, minimum 1, maximum 110,
IQR 12), 49 % included 10 subjects or fewer (Fig. 1 in the
Electronic Supplemental Material).

Study design was prospective in 127/150 (85 %), the rest
being retrospective or unclear. Imaging at 1.5 T almost always
preceded MR examinations at 3 T. The time between the two
field strength acquisitions was <1 month in 53 studies, 1–
6 months in 6 studies, >1 year in 9 studies and not mentioned

Fig. 1 Results of the search
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in 82/150 studies (55 %). In 12 studies, a potentially disease-
modifying treatment had been given between the acquisitions.
Few studies reported blinding of analysis (27 studies, 18 %),
subject recruitment methods, withdrawals or artefacts, or in-
formation on tolerability of either field strength.

Subjects

Most studies (71/150; 48 %) involved only healthy volun-
teers, 42/150 (28 %) concerned patients with a neurological
disorder, 11 (7 %) a mixed population and 26 (17 %) failed
to describe the subjects. Ten papers concerned tumours, 14
multiple sclerosis (MS), 4 stroke, 13 aneurysm/arteriove-
nous malformation (AVM)/other vascular conditions, 9 ep-
ilepsy and the rest various miscellaneous conditions. Only
34 studies (23 %) verified any disease independently.

Technical factors

Relatively little information was available concerning the
generation or age of the MR equipment, software version or

factors such as slew rates (Table 2). Roughly half the studies
appeared to optimise their sequences for field strength.
Forty-four studies used the same make and model series of
MR equipment, 46 used the same make but not model
series, 25 used different makes and 35 (23 %) did not state
MR manufacturer or model.

Sixty-eight studies that provided the information showed
no difference in imaging duration between 3 T (mean
15 min, 41 s) and 1.5 T (mean 15 min, 27 s) (Mann-
Whitney, P00.95 two-tailed). The study purpose was lesion
detection (44; 29 %), technical development (43; 29 %),
anatomical definition (13; 9 %), side effects assessment (1;
0.1 %) or a combination of the above (49; 33 %). Sixty-four
studies concerned structural sequences, 16 diffusion tensor
MRI, 27 fMRI, 13 spectroscopy, 5 perfusion imaging, 14
MRA and 24 concerned some other form of imaging (Fig. 2
in the Electronic Supplemental Material).

SNR and contrast-to-noise ratio (CNR) were both higher
at 3 T, but the improvement varied with the category of
imaging sequence. On angiography, SNR was higher at 3 T
by a factor of 1.8–2.3 [13–16]. On spectroscopy, SNR was
clearly increased, although the 100 % theoretical increase
was not achieved, even in phantoms, the documented
increases being 23 % [17], 28 % [18], 25–35 % [19], 23–
46 % [20], or 50 % [21]. Most gain in SNR was with short
echo time spectroscopy with little improvement at long echo
times [18, 19, 22]. Use of a phased array or eight-channel
coil instead of a quadrature coil improved the SNR to a
greater extent than did higher field strength [19]. CNR was
doubled on angiography [13, 16, 23], although several

Table 1 Study quality criteria

Yes No Unclear Not
reported

Prospective 127 18 5

Same subjects at both field
strengths

121 23 6

Subject recruitment clear
(inclusion/exclusion
adequately reported)

83 52 15

Blinding of readers to field
strength

27 32 54 37

Blinding of readers to results at alternative field strength

1.5 T 42 19 65 24

3.0 T 37 23 67 23

Normal volunteers only 71

Patients only 42

Time between acquisitions
< 1 month

53 15 49 33

Treatment given between
acquisitions

12 68 39 31

Relevant to disease spectrum 61 40 24 25

Was disease verified externally? 34 50 12 54

Data on observer reliability/
reproducibility

11 87 10 42

Imaging described in replicable detail

1.5 T 122 21 6 1

3.0 T 128 16 6 0

Reporting of uninterpretable/
intermediate test results

22 84 9 35

Reporting of withdrawals 14 106 8 22

Reporting of artefacts 46 85 16 3

Values are number of studies

Table 2 Technical factors

Yes No Unclear Not
relevant

MRI manufacturer same at 1.5
and 3 T

90 25 35

If same, is the model the same? 44 46

Slew rate stated

1.5 T 23 127

3.0 T 25 125

Age of MRI given

1.5 T 2 148

3.0 T 2 148

Same coil design at 1.5 and 3 T 61 38 51

Sequences optimised

1.5 T 75 8 67

3.0 T 79 12 59

Imaging duration stated

1.5 T 64 86

3.0 T 65 85

Values are number of studies
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parameters affecting CNR were inconsistent at 3 and 1.5 T.
CNR between enhancing tumour and non-enhancing brain
was 1.2 to 2.8 times higher at 3 T on contrast-enhanced
imaging with spin echo T1-weighted or magnetisation pre-
pared rapid gradient echo (MP-RAGE) sequences [24, 25],
but was four times lower in tumour vs. brain unenhanced
[25] compared with 1.5 T images.

Artefacts were more common at 3 T but had little effect
on diagnostic accuracy (see below). Only two studies men-
tioned adverse events (one at 1.5 T and one at both 1.5 and
3 T) and 14 studies specifically said there were no adverse
events, but the rest did not mention adverse events. Thirteen
studies reported that subjects tolerated imaging at both field
strengths, the rest failing to mention tolerability.

Diagnostic accuracy

Most studies (128; 85 %) did not provide sensitivity or
specificity data or raw data for their calculation. Of the 22
studies (15 %) that did provide some sensitivity and speci-
ficity information, 7 calculated accuracy on a per patient
basis [17, 26–31], 9 calculated accuracy on a per lesion
basis [32–40], 4 calculated both [16, 41–43] and in two
studies, sensitivity and specificity were irrelevant [44, 45],
precluding a formal meta-analysis. We provide, instead,
summaries of lesion detection, clinical relevance, and true
and false positives and negatives (Table 3). We summarise
the qualitative information to derive an overall indication of
the utility of each field strength.

Vascular abnormalities

Most studies [10, 20, 35, 43], mostly of intracranial aneur-
ysms, reported superior image quality at 3 T, but with little

effect on diagnostic accuracy [13, 14, 46]; for example, visual-
isation of small terminal arterial branches [13, 16, 23, 47],
pathological vessels in moyamoya disease [48], intracranial
aneurysms [14], residual neck in treated aneurysms [27, 49],
and vascular supply of AVMs [42] was better at 3 T. Others
found no difference in aneurysm diagnosis, characterisation or
recurrence detection between 1.5 and 3 T despite differences
in image quality [38, 47]. There was no difference in MR
venography between the two field strengths [46, 50]. Artefacts
were virtually all more pronounced at 3 T [13, 23, 38, 46], but,
with a few exceptions [38], they had little effect on diagnosis.

Tumours

All large solitary lesions were equally well visualised at
both field strengths, although subjectively lesions were
more conspicuous at 3 T [24, 25, 51]. Other differences,
such as different doses of contrast medium, confounded
comparisons of field strength. Triple dose contrast medium
increased lesion conspicuity more than increasing field
strength [24, 51]. A small proportion of very small (<5 mm
diameter) metastases were only detected at 3 T, but there was
no difference in the detection of lesions >5 mm [51]. Pituitary
microadenomas may be more clearly defined (2/5 [30], 3/6
[52]) or located (1/5 [30]) at 3 T as there was one false
positive at 1.5 T [30]. However, other substantial differences
in imaging sequences (dynamic at 3 T, standard contrast-
enhanced at 1.5 T [52]), or use of different machines in
different imaging centres, precluded reliable comparisons.
Susceptibility (pulsation and ringing) artefacts were worse
at 3 T [25, 51].

Multiple sclerosis

Differences in numbers of enhancing lesions seen at 3 vs.
1.5 T were inconsistent, including 7.5 % [33] and 21 % [29]
in two studies, but only 0.5/patient overall (P 0 NS) [53].
Few patients (2.8 % [32] to 3.6 % [53]) showed lesion
enhancement only at 3 T. Suggested increases in lesion
conspicuity on fluid attenuated inversion recovery (FLAIR)
or T2-weighted imaging at 3 T ranged from 13 to 30 [34, 36]
(average difference 3.9 %) [53]. Differences in lesion en-
hancement and volume were inconsistent [32, 53] and po-
tentially confounded by differences in sequences [34]. Most
lesions missed at 1.5 T were very small (1–5 mm [34]) or in
the immediate periventricular tissue [34, 36]. The better
tissue resolution at 3 T improved lesion detection with
automated image analysis software (details not provided)
[32]. Artefacts were more common at 3 T but were in areas
of brain not affected by MS plaques [34, 54]. Better lesion
conspicuity at 3 T could alter disease categorisation, e.g.
15 % of patients fulfilled one additional Swanton criterion
and 27.5 % fulfilled one additional Barkhof criterion leading

Table 3 Information on lesion detection at 1.5 and 3 T

At
1.5 T

At
3.0 T

Same Mixed Not
reported/
unclear

More lesions detected 2 29 9 5 105

More positive
diagnosis of disease

2 16 11 121

More true positives 1 11 7 131

More true negatives 0 3 6 141

More false positives 2 2 7 139

More false negatives 8 3 7 132

Difference between
1.5 and 3.0 Ta

3 81 23 24 19

Values are number of studies
a From left to right: 1.5T better; 3T better; Same (ie 1.5 and 3T differed
but one was not better than the other); mixed (either 1.5 or 3T better in
some aspects)
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to a diagnosis of “disseminated in space” according to
McDonald criteria in 2.5 % [55]. There was no evidence
that higher field strengths led to an earlier diagnosis of
definite MS in patients with a clinically isolated syndrome
[54] and no reliable data on whether there were more false
positive diagnoses at 3 T as only 20 healthy volunteers were
included [54]. There was no difference in inter-rater reliabil-
ity between field strengths [53].

Spectroscopy

Better spectral resolution at 3 T improved separation of
metabolite peaks [17, 18, 20, 21, 56, 57], particularly at
short echo times for closely located metabolites [18, 22, 57],
although the increase in resolution was offset by an increase
in line width at 3 T [18]. No significant differences were
found in metabolite ratios [22] or in whole brain N-acetyl-
aspartate concentrations [58] between 1.5 and 3 T. Coeffi-
cients of variation for metabolite ratios and between-
examination and subject variability were higher at 3 T for
short echo time spectroscopy, but most did not reach statis-
tical significance in one small study [17]. Reproducibility of
metabolite concentrations was better for long than short
echo time spectroscopy and was independent of field
strength at long echo times; coil characteristics (phased
array vs. quadrature) had as much effect on metabolite
quantification as field strength [19]. There was virtually no
information on spectroscopy in clinical diagnosis [17, 59].

fMRI

Most studies had eight or fewer (range 1–14) normal sub-
jects with several duplicate publications. Where given, most
papers indicated increases in the number (average 40 %;
range 23–82 %) and intensity of active voxels at 3 vs. 1.5 T,
mostly in visual or motor cortex. Only one paper reported
effects in basal brain regions, indicating no difference in
amygdaloid signal activation and increased artefactual sig-
nal dropout at 3 vs. 1.5 T [60].

Discussion

We found only subjective evidence of increased lesion de-
tection, finer anatomical detail or improved image resolution
at 3 T and no evidence of reduced MR examination times or
improved diagnostic accuracy vs. 1.5 T. Many of these
differences could also be attributed to differences in gener-
ation of technology, sequences, coils or use of contrast
agents. The conclusion is limited by the poor quality of
the literature and numerous potential biases. Objective evi-
dence of the advantages of 3 T only applies to short echo
time spectroscopy, fMRI in non-basal brain regions and

detection of small MS lesions with automated software, all
of which are predominantly research tools at present [1].
The theoretical advantages of imaging at 3 T rather than
1.5 T, extensively detailed in review articles and anecdotal-
ly, which may in practice be considerable, are not supported
by the current literature.

On the whole, sample sizes were extremely small (10 or
fewer), with little information on blinding, time lapses be-
tween acquisitions or treatment that allowed genuine disease
differences, little information on the actual breadth of dis-
ease encountered in routine practice or research, frequent
use of incomparable technical factors, virtually no informa-
tion on tolerability and increased artefacts and, when mea-
sured, the theoretical 100 % increase in SNR was nearer
25 % on average. The failure to achieve the expected dou-
bling of SNR can be explained by increased magnetic field
heterogeneity, susceptibility and T2 shortening effects at
3 T. There may be other unpublished work that would
provide substantive evidence to fill these gaps in the pub-
lished literature, but unpublished data are very difficult to
find and of lesser reliability than published data as they have
not been evaluated in a rigorous peer review process.

The exceptions where 3 T may outperform 1.5 T are all
currently research applications: short echo time spectrosco-
py, fMRI of non-basal regions and possibly detection of
small MS lesions with automated software. In magnetic
resonance spectroscopy (MRS) and fMRI, a very subtle
low amplitude signal, little stronger than background noise,
is being sought. In MRS, even a 25 % increase in SNR
(rather than the theoretical 100 %) may improve spectral
quality and hence improve differentiation between closely
located metabolites, particularly at short echo times. Perfu-
sion imaging with arterial spin labelling may also benefit
from 3 T, but we found no comparative studies on this.
Improved detection of small MS lesions with automated
software may arise from several factors, not just field
strength. The limited fMRI evidence indicating increased
activation of voxels (both number and intensity) at 3 T
generally referred to non-basal brain areas. For structures
near the skull base, such as amygdala, hippocampus or
inferior frontal regions, 3 T conferred no advantage because
the increased signal drop-out from adjacent skull base struc-
tures overwhelmed any advantage of increased voxel acti-
vation. Hence, the brain region of interest needs to be
considered when deciding if an fMRI experiment should
be performed at 1.5 or 3 T.

The weaknesses of this review include the difficulty of
summarising this literature where the papers varied substan-
tially in the information provided. We lacked resources to
translate most non-English language papers or obtain further
information from the authors, but, with a median sample
size of 10.5, the likelihood of obtaining useful additional
information is low. Our original aim was to perform a meta-
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analysis of sensitivity and specificity, but the available data
were so limited, and in such variable formats, that this was
impossible. We may have included inadvertently some sub-
jects more than once, although we made every attempt to
avoid this. We included all neuroimaging studies for which
we found data, i.e. we did not find any studies comparing
diffusion tensor imaging at 1.5 and 3 T and we found little
on spinal imaging. It was beyond the remit of this review to
evaluate the literature on cardiac, musculo-skeletal, abdom-
inal, pelvic or other MR applications, but a similar exercise
would be useful for those interested in imaging these ana-
tomical areas. Likewise, it was not possible to determine
subjective or biological effects [4, 5].

The strengths include central data verification to stan-
dardise the more subjective components of this literature,
our use of established standards for systematic reviews,
including those specific to diagnostic imaging [11, 12], our
considerable experience of systematic reviews including
those of diagnostic tests, professional advice from a highly
experienced professional literature searcher and many study
evaluators and data extractors with considerable in-depth
professional knowledge of MRI. It was therefore possible
to take every advantage of the relatively sparse information
provided in the papers, making the large number of
reviewers a strength rather than a weakness.

Magnetic resonance imaging technology at 1.5 and 3 T is
rapidly evolving. The annual incremental developments will
likely lead to further improvements in image quality, artefact
reduction, MR data acquisition times, better integration with
ancillary devices such as electroencephalography (EEG)
recording, the patient experience and hopefully diagnostic
accuracy at both field strengths. Many of these future advan-
ces, as well as those in the last 10 years as suggested by
several included papers, could have more effect on improv-
ing diagnostic accuracy or image quality than changes in
field strength. It would be advisable for researchers and
clinicians to contemplate the full range of performance
features rather than just the field strength when considering
which equipment to use.

Comparative studies of diagnostic imaging technologies
are difficult: the technologies are large, expensive and usu-
ally immobile. However, trials of new drugs or medical
devices are not particularly easy or cheap either, and per-
ceived difficulty in performing valid comparisons should
not be reinforced by an assumption of lack of need for
objective comparisons. The timing of comparisons in the
present review suggests that most took place when an older,
usually 1.5 T MR system, was being replaced with a newer,
often 3 T device, allowing for clinical disease progression
and technical advances independent of field strength to
confound comparison. There appeared to be few deliberate
comparisons of equal generations of field strength MR
systems in institutions with access to both. The consequence

of not taking advantage of such situations is that the avail-
able data are from older, less technologically advanced 1.5 T
systems, likely to perform poorly against newer equipment,
whether the latter is 1.5 or 3 T.

It is unfortunate that diagnostic imaging is rarely sub-
jected to the same scrutiny, or underpinned by the same
evidence base, as is demanded for treatments despite being
central to most modern medical care. This means that the
accuracy of diagnoses underlying many treatment decisions
may be suboptimal, in turn undermining treatment benefits.
Diagnostic imaging is expensive, taking up increasing pro-
portions of health care and research budgets, and may even
be harmful: the largest single source of population radiation
exposure in developed countries is medical diagnostic x-
rays [61]. The costs are substantial [7].

To conclude, healthcare providers, government funding
agencies, health departments, researchers, clinicians and
patients should be more aware of the evidence deficit in
diagnostic imaging. They should implement strategies to
evaluate diagnostic imaging technologies rigorously, in the
circumstances in which they are intended to be used in
practice and thereby avoid further unnecessary inflation of
already costly healthcare budgets while improving clinical
outcomes.
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