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1 Introduction whereG = 0.915965594177. is the Catalan constarf]f

The Dirichlet beta function (also known as the CatalanFor positive integer values af the function3(x) may be
beta function or the Dirichlet's-function) is defined for  evaluated explicitly by

x>0 by [4, p. 56]
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where I (x) is the classical Euler's Gamma function

defined as - Also, in terms of the polygamma functiap(™(x), the
rx) = / t*letdt function(x) may be written asd]
JO
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and satisfying the basic relation —— = g _yh-D(=
P =g (¢ (3) 9 (3)]
r 1) =xI(x). 2
(X+1) =" (x) @ The main objective of this paper is to establish some
Let K (x) be defined as inequalities involving the Dirichlet Beta and Euler’s
Gamma functions. We begin by recalling the following
o tx=1 lemmas which shall be required in order to establish our

= Jo mdt’ x>0 (3)  results.

The Dirichlet beta function, which is closely related to the

Riemann zeta function, has important applications in?2 Preliminaries

Analytic Number Theory as well as other branches of

mathematics. See for instancg],[[3] and the related Lemma 1(Generalized Hlder's Inequality). Let
references therein. In particulg(1) = 7 andB(2) = G, f1, f2,..., fn be functions such that the integrals exist.
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Then the inequality ProofLet K(x) be defined as in 3). Then by utilizing

Lemmal, we obtain
b| n
fi(t)
Ln

n b ! aii
dt§i|:| </a i (t)] dt) (4) . ( n >q> w (1)1
- 0

— ———dt
2 a —t
holds fora; > 1 such thaty ; & = 1. 'Zl ai €+e
! n X-1
ProofSee page 790-791 of]} _/ 2 S
Lemma 2(Generalized Minkowski's Inequality). Let (& +e )™ &
f1, f2,..., fa be functions such that the integrals exist. w -l o\ @
Then the inequalit :/ - dt
A 0 il_l(et‘*'e_t)
bl n u G n b " 3 o 1X—1 71.
| dt] < / fit dt) 5 < t)
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holds for u> 1. _ rl(K(X'))_

ProofSee page 790-791 of]|

Lemma 3([9]). Let f and h be continuous rapidly which gives the required resul)
decaying positive functions df, ). Further, let F and

H fi
be defined as Remarkf n=2,a; =a, ap =b, x; = xandx; =y, then,

/ FOr-ldt and H(x /h -t wehae

X Yy 1 1
K(Z+%) < (KO3 (K(y)®

If RO 1S increasing, then so i 5

which implies thatk (x) is logarithmically convex. Also,
since every logarithmically convex function is convex, it
follows thatK(x) is convex.

Lemma 4([7]). Let f and g be two nonnegative functions
of a real variable and m, n be real numbers such that the
integrals in @) exist. Then

/abg(t)(f(t))mdt-/abg(t)(f(t))”dt Corollary 1.The inequality
b men 2 / 2 "
> (Lot a) @ B8] -E¥ <ww ®

Lemma 5([8]). Let f: (0,0) — (0,) be a differentiable,

logarithmically convex function. Then the function holds for x> 0, where y(x) = 7—,&? is the Digamma
function.
_ (fe9)®
g(X) - f(ax)
ProofSinceK(x) = B(X)I (x) is logarithmically convex,
is decreasing ity > 1, and increasing iD < a < 1. then(InK(x))” > 0 which results to §).
3 Main Results Theorem 2Let % > 0,i=1,2,...,n and u> 1. Then the
inequality
We present the main findings of the paper in this section.
1
Theorem 1For i = 1,2,...,n, let a; > 1 such that n “n 1
51, £ = 1. Then the inequality (iziﬁ()q)r()(i)> < iZ\(B(Xi)"(xi))” )
n_x 1
r (ZI:J. ai) - Mty (B(xi))d 7) holds.
1= ,
M roan®  B(3a2)
. . ProofLetK(x) be defined as in3). Then by using the fact
is valid for x > 0. thaty! ;a < (P, a&)", fora >0,u>1in conjunction
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with Lemma2, we obtain
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which yields the result 9).

Theorem 3The functionB(x) is monotone increasing on
(0,0). That s, for0 < x <y, we have

B(x) < B(Y). (10)
ProofLetF, H, f andh be defined as
0 txfl 0
F@ﬁ:ogggm,HM:At*%HhJ@L
f(t)= % and h(t)=
eg+et
Then,% = 1+é,2t is increasing and by Lemn % S
increasing as well. Thus, for@ x <y, we have
B SR e FOOHO) < FOHW
which implies
w tx—
= ome‘ti; at- [ vtean

which further implies

BOIT (I (y) < B (W) (X).

Thus
B(x) < B(y)

as required.

Corollary 2.Let ¥ > 0 for i = 1,2,3,...,n. Then the
inequality
n n n
Bx)<|B Xi (12)
[1Peo= [P 2
is valid.

ProofLet x; > 0 fori =1,2.3,...
increasing, we have

,n. Then sinceB(x) is

0<B(x) <P (

M 5
X
~—

0<B(X2)<B<
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0<B(x) <P (

Taking products yields

as required.

Remarkn particular, ifn=2,x; = xandx; =yin (11),
then we obtain

BX)B(y) <

Theorem 4The inequality

[Bx+y).

B(x+2)
Bx+1) =

B(x+1)

(x+1) B

(12)

holds for x> 0.

ProofLet x > 0, g(t) = g2, f(t) =t, m=x—1,n=
x+1,a= 0 andb = . Then by Lemma, we have

0 tX—l 0 tX+1 0 tx 2
—— dt- —— dt> -
/0 et+e*tdt/o et+e*tOI - [/o ef+etdt}

which implies

BOO (X)- B(x+2)I (x+2) > [B(x+ 1)l (x+1)]>. (13)

By using the functional equation?2), the relation {3
becomes

(X+1)BX)B(X+2) > X(B(x+1))?

which gives the required result.
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4 Conclusion

In this study, we have established some inequalities
involving the Dirichlet beta and Eulers Gamma

functions. We have also discussed the monotonicity of the
Dirichlet beta function. The generalized forms of the

Holder's and Minkowski’'s inequalities among other

analytical techniques were employed.
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