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ABSTRACT 

Residue Number System (RNS) has found a wide spread usage in a 

number of digital signal processing applications such as digital filtering, 

Discrete Fourier transform , Convolution, Correlation, communication, 

and cryptography. This is due to the following RNS inherent features: 

modularity, parallelism, carry free addition, borrow free subtraction, and 

fault tolerance. The major challenges ofRNS architecture lie in moduli set 

selection and in the reverse conversion (conversion from residue 

representation to weighted representation). Reverse Conversion (RC) can 

be achieved either by the traditional Chinese Remainder Theorem (CRT), 

Mixed Radix Conversion (MRC) or the recently introduced new CRTs 
1- , 

(CRT I and II). Several moduli sets have been proposed with algorithms 

designed for performing RC. In this thesis, two pair of moduli sets : 

{22n+1 - 1, 2n, 2n+1 - 1} and {22n+1 - 1, 22n, 2n+1 - 1} and {2n+l_ 

1, 22n, 2n+1 + 1} and {2(3n+2)/2 - 1, 22n, 2(3n+2)/2 + 1} are proposed 

together with unified architecture for efficient reverse conversion. We also 

propose a unified architecture for efficient reverse conversion in existing 

moduli sets {2n - 1, 2n + 1, 2n, 22n+1 - 1} and {2n - 1, 2n + 

1, 22n, 22n+1 - 1}. Both theoretical and experimental results (from Xilinx 

ISE 14.3) suggest that the proposed schemes outperform the known 

related state of the art schemes in terms of area and delay. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background of the Study 

In the last few decades, researchers have been looking at solving the major 

challenge in improving computational performance of digital systems i.e., 

the reduction or elimination of the carry propagation chains in Weighted 

Number Systems (WNS), e.g., binary number systems. One solution that 

has been proposed to speed up addition process is by making use of a 

number system with specialized carry characteristics e.g., Residue 

Number Systems (RNS) (Gbolagade et al. 2010). 

RNS is a non-weighted number system that utilizes remainders to 

represent numbers. It is defined in terms of a set of relatively prime 

moduli {mjh=l,k such that the gcdl m., mj) = 1 for i"* j, where gcd 

means the greatest common divisor of m., and m., and M = nt., m., is 

the dynamic range. The residues of a decimal number X can be obtained as 

Xj = IXlmp thus X can be represented in RNS as X = (x., XZ, X3' ... r Xk), 

o :5 Xj :5 m., This representation is unique for any integerX E [0, M - 1]. 

1X1mi' is the modulo operation of X with respect to m, (Gbolagade et al. 

2011). 

RNS is very useful in addition and multiplication dominated digital signal 

processing applications such as Fast Fourier Transform, digital filtering, 
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convolution, direct digital frequency synthesis, image processing and 

cryptography among others. This is due to its inherent features such as 

carry free addition; borrow free subtraction, digit by digit multiplication 

without partial product, fault tolerance, and parallelism. The speed of the 

arithmetic operations relies on the size of the numbers involved; smaller 

numbers imply faster operations. Since the numbers used in this system 

are smaller, it is known for faster implementation of arithmetic operations, 

and hence it is very attractive. 

However, RNS has not found a widespread usage in general purpose 

computing due to the following difficult RNS arithmetic operations: 

overflow detection (Theodore, 1989 and Theodore, 1990)., magnitude 

comparison, sign detection, moduli selection, and data conversion (Wang, 

et al. 2002). Out of these numerous RNS challenges, Moduli selection and 

Data conversion are the two most critical issues (Wang, et al. 2002). 

RNS architectures are typically composed of three main parts, namely, a 

forward (binary-to-residue) converter, residue arithmetic units, and a 

reverse (residue-to-binary) converter (see figure 1.1 below). 

Data conversion can be categorized into forward and reverse conversions 

(performed by the forward and reverse converter respectively). The former 

involves converting a binary or decimal number into its RNS equivalent 

while the later conversion involves converting the RNS number into 

binary or decimal. 

2 
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Figure 1.1: RNS Processor 
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The residue-to-binary converter is the most challenging part of any RNS 

architecture making reverse conversion relatively, more complex. 

Therefore for RNS design to be competitive, the conversion process must 

be very fast and require a low hardware demand so that the conversion 

overhead may not nullify the fast arithmetic advantage of RNS 

(Gbolagade, 2010). 

1.2 Literature Review 

In this section, we review relevant works done on both moduli selection 

and reverse conversion in RNS. Sub Section 1.2.1 reviews moduli 

selestion whilst Sub Section 1.2.2 reviews reverse conversion. 

3 
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1.2.1 Moduli Selection Background 

The set of the moduli chosen for RNS affects both the representational 

efficiency and the complexity of arithmetic algorithms. In general, it is 

desired to make the speed of the moduli as small as possible, since it is the 

magnitude of the largest modulus Mk-1 that dictates the speed of 

arithmetic operations. It is also often desired to try to make all the moduli 

comparable in magnitude to the largest one, since with the computation 

speed is already dictated by Mk-1 (Parhami, 2000). 

However, speed and cost do not just depend on the widths of the residues 

but also on the moduli chosen. For instance, power-of-2 moduli are more 

desirable since they simplify arithmetic operations such that modulus 22n 

might be better than the smaller modulus 2n + 1 (except, perhabs, with 

table-lookup implementation). Also, moduli of the form 2a - 1 where 

1 < a E R are desirable and referred to as low-cost moduli (Parhami, 

2000). 

A special case ofRNS with three moduli of the form (2n - 1, Z", 2n + 1) 

and popularly known as the traditional moduli set is widely recommended 

these days because its conversion circuitry offers high speed and 

simplicity (Parhami, 2010). 

The condition that the moduli set must be pair-wise relatively prime must 

always be taken into consideration. Examples of existing moduli sets 

include; [Z", 2n - 1, 2n + 1} (Piestrak, 1995), {2n+1 - 1, 2n, 2n - 1} 

4 

www.udsspace.uds.edu.gh 

 

 



(Mohan, 2007), {2n - 1, 2n + 1, 22n+1 - I} (Molahosseini et al. 2008), 

and [Z" - 1, Z", 2n + 1, 22n+1 - I} (Molahosseini et al. 2010). 

1.2.2 Data Conversion Background 

The utilization of RNS originated from the Chinese Remainder Theorem 

(CRT). The CRT is a mathematical idea from Sun Tzu (Master Sun's 

Arithmetic Manual) in the 4th century AD. 

The ancient study of the RNS begins with a verse from Chinese born Sun 

Tzu's third-century book titled Suan-Ching. It reads; 

"We have things of which we do not know the number, If we count them 

by three, the remainder is 2, If we count them by five, the remainder is 3, 

If we count them by seven, the remainder is 2, How many things are 

there?" The answer, 23. 

How to get the answer 23 is outlined in Sun Tzu's historic work. He 

presents a formula for manipulating remainders of an integer after division 

by 3, 5, and 7. The puzzle essentially asks us to convert the RNS number 

(21312)RNS(7ISI3) into its decimal equivalent. Sun Tzu formulated a 

method for manipulating these remainders (also known as residues), into 

integers. This method is regarded today as the Chinese Remainder 

Theorem (CRT) and is one of the common rules of converting residues 

into integers. 
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1.2.2.1 Chinese Remainder Theorem (CRT) 

The CRT is formulated as follows: 

For a moduli set {m., mz, .. " m.} with the dynamic range M = np=l m., 

the residue number [x., xz, "', xn} can be converted into the decimal 

number X, according to the CRT as follows (Gbolagade et. al. 2010): 

(1.1 ) 

where M = np=l m., M, = ~ and M, -1 is the multiplicative inverse of M, 
mj 

with respect to m.. 

1.2.2.2 Mixed Radix Conversion 

Another method for data conversion is the Mixed Radix Conversion 

(MRC) which can be represented as (Gbolagade et al. 2010): 

(1.2) 

where the Mixed Radix Digits (MRDs), a., i = I, n can be computed as 

follows (Molahosseini et al. 2008): 

( 1.3) 

Given the MRDs aj,O:5 aj < m., any positive number In the interval 

[0, np=l m, - 1] can be uniquely represented. 
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1.2.2.3 New Chinese Remainder Theorems 

As earlier stated, the speed of the arithmetic operations is mainly based on 

the size of the numbers involved in the operations and therefore smaller 

numbers imply faster operations. As a result, even the CRT is parallel, it is 

not desired because of its dependence on the large modulo M operation 

size. On the other hand, though the MRC requires a smaller operation size, 

the slow process of finding the MRDs (its serial nature) makes it 

undesirable too. In order to solve these problems with the traditional CRT 

and the MRC the New CRTs (CRT-I and CRT-II) were proposed in 

(Wang et al. 2000) to make the computations faster and efficient without 

any overheads. These are formulated below: 

CRT-I: 

X = Xl + fllkl(X2 - Xl) + k2f2(X3 - X2) + ... + kn-lf2 ... fn-l(xn- 

(1.4) 

CRT-II (for four moduli set): 

X = Z + flf2lkl(Y - Z)l.e3f4 (1.5) 

(1.6) 

( 1.7) 

with, 

( 1.8) 

(1.9) 
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(1.10) 

where Pi and k., i = [1,4] are the moduli and multiplicative inverses 

respectively. 

1.3 Related Work and Problem Statement 

Wang et al. (2002), proposed adder based residue to binary converters for 

the traditional moduli set i.e. {Zn - 1, 2n, Zn + 1}. Their proposals tuned 

to be better than (Piestrak, 1995), (Bhardwaj et al. 1998) and (Gallaher et 

al. 1997) in terms of both area and delay. 

Mohan (2007), proposed the new moduli set {zn+1 - 1, zn, 2n - 1} 

together with three RNS-to-binary converters. This moduli set had lower 

RNS arithmetic speed compared to the traditional moduli set since it 

eliminates the complex Zn + 1 modulo. One of the converters was MRC 

based whilst the other two were based on the traditional CRT. This moduli 

set uses moduli of uniform word length (n to n+ 1 bits). It was derived 

from a previously investigated four-moduli supper set {Zn - 1, zn, Zn + 

1, Zn+l - 1,}. The current state of the art reverse converter for the moduli 

set {Zn+l - 1, Zn, Zn - 1} was proposed by Gbolagade et al. (2010). The 

traditional CRT was simplified to obtain two new memory-less residue to 

binary converters that required mod-(Zn+l - 1) operations instead of both 

mod-(Zn+l - 1) and mod-fZ'' - 1) required by the converters proposed 

by Mohan (2007). Whilst the first converter did not cover the entire 
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dynamic range, the second proposed converter did so. FPGA 

implementation results indicated that, on average, the proposed limited 

dynamic range converter achieved about 42% area reduction whilst the 

proposed full dynamic range converter provided 29.48% area reduction 

when compared with the related state of the art converter. Both proposed 

converters also exhibited small speed improvements over the state of the 

art equivalent converter in Gbolagade et al. (20 I 0). 

Molahossieni et al. (2008) enhanced the modulus Zn+l - 1 in the moduli 

set {Zn+l - 1, Zn, Zn - 1} to obtain the moduli set {Z2n+l - 1, zn, Zn - 1} 

with an MRC based converter. A speed efficient CRT based converter 

which does not cover the entire dynamic range was proposed in 

Gbolagade et al. (2010). 

The moduli set {Z2n+l - 1, z2n, Zn - 1} was proposed in Gbolagade et al. 

(2009) by extending the modulus Zn in the moduli set {Z2n+l - 

1, Zn, Zn - 1} to the modulus Z2n. In this work the traditional CRT and 

MRC were simplified to obtain three reverse converters; two fast CRT 

based converters one of which did not cover the entire dynamic range and 

an MRC based converter. Experimental results from ASIC 0.13 11m 

Standard Cell technology implementation showed that on the average the 

proposed converters were better than the one in Molahosseini et al. 

(2008). 

Hariri et al. (2007) proposed the moduli set {Z2n - 1, Zn, Z2n + 1}, for 

higher dynamic range three moduli sets. The traditional CRT was 
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simplified to obtain a low area cost and high speed reverse converter at the 

same dynamic range when compared to Wang et al. (2002). 

The dynamic range (DR) provided by most of these moduli sets are either 

not sufficient for applications which require larger DR and or they do not 

support applications that require more parallelism. To solve this problem, 

4n-bit DR 4-moduli sets such as {2n - 1, Z", 2n + 1, 2n+1 - 1} and 

{ 2n - 1, 2n, 2n + 1, 2n+1 + 1} were proposed in Bhardwaj et al. (1999) 

and Vinod and Premkumah (2000) respectively. Recently, higher dynamic 

range moduli sets {2n - 1, 2n, 2n + 1, 22n+1 - 1} and {2n - 1, 22n, 2n + 

1, 22n + 1} were proposed in Molahosseini et. al. (20 I 0) with CRT II and 

CRT I based converters respectively. The moduli set { 2n - 1, 2n, 2n + 

1, 22n + 1} was obtained by enhancing the power of two modulo in the 

moduli set { 2n - 1, 22n, 2n + 1, 22n + 1} proposed by Cao et al. (2003). 
In Sousa and Antao (2012), an MRC divide and conquer approach was 

used to present a unified reverse conversion architecture for the moduli 

sets { 2n - 1, 2n, 2n + 1, 22n+1 - 1} and {2n - 1, 22n, 2n + 1, 22n+1 - 1} 

which is configurable for either moduli sets. The converter for the 

{ 2n - 1, 2n, 2n + 1, 22n+1 - 1} moduli set outperformed the one In 

Molahosseini et al. (2010) whilst that of the {Z" - 1, 22n, 2n + 1, 22n+1 - 

1} moduli set outperform the converter in Zhang and Siy, (2008) for the 

moduli set {2n - 1, 2n + 1, 22n - 2,22n+1 - 3}. The major 

disadvantages of these moduli sets include: 

10 
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1. The presence of very complex multiplicative inverses and moduli 

that lead to very expensive reverse conversion as reported in 

Mohan and Premkumar (2007), Antao and Sousa, (2012), 

Molahosseini et al. (2010) and Zhang and Siy, (2008) . 

11. Poor RNS arithmetic speed due to the presence of channel 

arithmetic units modulo 22n + 1 e.g. {2n - 1, 2n, 22n + 1, 22n + 

l}, { 2n - 1, 22n, 2n + 1, 22n + 1} and { 22n - 1, 2n, 22n + 1} 

Ill. All the converter architectures in these schemes depend heavily on 

modular adders which impose twice the delay of a regular binary 

adder at the same area (Sousa et. al. 2012). 

The ability to solve these problems; proposing new moduli sets with lower 

RNS arithmetic speed, eliminating complex multiplicative inverses in the 

conversion process, implementation of converters that do not require the 

explicit use of modulo operations i.e. require only CSAs and binary CP As 

to implement is required to design high speed RNS systems at lower area 

cost. These interventions are also required in order to efficiently 

implement some difficult RNS operations, e.g., overflow detection, 

magnitude comparison, sign detection, division and also to build fault 

tolerant RNS architectures. Due to the necessities of these interventions, 

in this thesis, we seek to propose efficient moduli sets with efficient data 

conversion techniques. 

11 
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1.4 Research Questions 

As a result of the problems stated above, we ask ourselves the following 

the research questions: 

I. Can we propose new moduli sets for efficient reverse 

conversion? 

II. Can we unify the architecture for reverse conversion In the 

proposed moduli sets? 

III. Can we write synthesizable YHDL code for the proposed 

converters as well as the state of the art. 

IV. Can we implement the proposed algorithms and the state of the 

art on Field Programable Gate Arrays (FPGAs)? 

v. What will be the effect of the proposed algorithms in terms of 

hardware resources and conversion speed? 

1.5 Objectives 

The following objectives have been set to address the research questions 

above: 

I. Propose new and efficient moduli sets for efficient reverse 

conversion. 

ii. Unify the architecture for reverse conversion In the proposed 

moduli sets. 

iii. Implement the proposed algorithms and the state of the art on 

xilinx FPGA. 

12 
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IV. Evaluate the performance of the proposed algorithms against the 

state of the art designs In terms of hardware resources and 

conversion speed. 

1.6 Significance of Study 

As stated earlier, the two most critical issues for the residue arithmetic are 

moduli selection and data conversion. For a successful application of 

RNS, data conversion must be very fast so that the conversion overhead 

doesn't nullify the RNS advantages (Gbolagade et. al., 2008). Also, as 

earlier on stated, efficient moduli selection and data converter designs are 

required in order to efficiently implement some difficult RNS operations, 

e.g., overflow detection, magnitude comparison, sign detection, division 

and also to build fault tolerant RNS architectures. 

Proposing newer moduli sets, efficient reverse converters and overflow 

detection algorithms will therefore bring enhancement in speed and area 

consumption to DSP intensive computations like digital filtering, 

convolutions, correlations, DFT, FFT computations, direct digital 

frequency synthesis, image processing and cryptography. A broad research 

like the one conducted here will as well contribute towards the realization 

of RNS based general purpose processors. 

13 
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CHAPTER TWO 

UNIFIED VLSI IMPLEMENTATION OF RESIDUE-TO-BINARY 
CONVERTERS FOR THE NEW MODULI SETS {22n+1 - 

1,2n, 2n+1 - 1} AND {22n+1 - 1, 22n, 2n+1 - 1} 

2.1 Introduction and Background 

The moduli set {2n+1 - I, 2n, 2n - I} was proposed in Molahosseini et al. 

(2008) by removing the moduos 2n + 1 from the 4-moduli set {2n - 

I, 2n, 2n + I, 2n+1 - I} . This is due to the fact that performing modulo 

(2n + 1 )-type arithmetic is complex and degrades the entire RNS 

processor performance in terms of both area and delay (Gbolagade et al. 

2010). Recently, the modulus 2n+1 - 1 in the moduli set {2n+l_ 

I, 2n, 2n - I} was enhanced to obtain the moduli set {22n+1 - 1, 2n, 2n - 

I} and its associated MRC based converter was presented. Also, moduli 

sets {2n - I, 2n, 2n + i.z> + I} (Cao et al. 2003) and 

I, 2n, 2n + l,22n+1 - I} (Molahosseini et al. 2010) were proposed to 

support higher dynamic range (DR) and increase parallelism in the RNS 

arithmetic unit. However, the state of the art converter for the moduli set 

{2n - I, 2n,2n + l,22n+1 - I} was proposed in Sousa and Antao (2012) 

using MRC divide and conquer approach. The major limitation of these 

moduli sets is the presence of the long delay moduli 22n + 1 and 2n + 1. 
In this chapter, we propose two new moduli sets {22n+1 - I, 2n, 2n+1 - I} 

and {22n+1 - I, 22n, 2n+1 - I} for efficient data conversion and 

arithmetic operations in RNS. We further propose a method for unifying 
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the design of the converters for the proposed moduli sets and show that 

our schemes outperform the known state of the art related schemes. 

The MRC for three moduli sets is given as: 

(2.1 ) 

where the Mixed Radix Digits (MRDs), ij, i = 1,3 can be computed as 

follows (Gbolagade et al. 2010): 

(2.2) 

where, :\j,j is the multiplicative Inverse of m, with respect to mj i.e. 

Given the MRDs ij,O:5 ij < m., any positive number In the interval 

[0, nr=l m, - 1] can be uniquely represented. 

The remainder of this chapter is organized as follows. In Section 2.2, the 

new moduli sets and their respective reverse conversion algorithms are 

proposed. Section 2.3 presents the hardware implementation of the 

conversion techniques, while Section 2.4 gives a performance comparison 

with the similar best known state of the art converters and Section 2.5 

concludes the chapter. 

2.2 Proposed Converters 

In this section, we present fast and area efficient reverse converters for the 

moduli sets {Z2n+l - 1,Zn, Zn+l - 1} and {Z2n+l - 1, z2n, zn+l - 1}. 
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The notations presented below are adopted from Sousa et al. (2012) and 

will be very useful in designing the proposed reverse converter: 

I. For an n-bit value y, bits are referred from the Most Significant Bit 

(MSB) to the Least Significant Bit (LSB) as y[ n - 1], ... , y[O]. 

ii. y1[k] refers to an l-bit number such that: y1[k] = y[k + I 

1]21-1 + ... + y[k + 1]2 + y[k]; 

III. 0 and Z each refer to a number whose binary representation is an 

all-one and all-zero string, respectively; 

IV. The symbol I><l operates the concatenation of the binary 

representation of two numbers. 

The following Lemmas are important In the design of the proposed 

converters: 

Lemma 1: Modulo 2s ofa number is equivalent to s LSBs of the number. 

Lemma 2: Modulo (2S - 1) of a negative number is equivalent to the 

one's complement of the number, which is obtained by subtracting the 

number from (2S - 1) (Gbolagade et al. 2010). 

Lemma 3: Modulo (2S - 1) multiplication of a residue number by 2t , 

where sand t are positive integers, is equivalent to t bit circular left 

shifting (Gbolagade et al. 2010). 

Lemma 4: Modulo a of an integer b of higher length than a (where a is n­ 

bit long) can be expressed as modulo a of the sum of integers gotten by 

partitioning b into n-bit fields. 
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Lemma 5: The sum of a and Znb is computed as b concatenation a if a is 

an n-bit number. 

Lemma 6: Modulo (ZS - 1) of the sum of two n-bit numbers can be 

computed using a binary Carry Propagate Adder (CPA) with either a 

constant carry in of 1 or O. 

2.2.1 Proposed Method for Reverse Conversion 

We represent the target moduli sets by {z2n+l - 1, zUn, zn+l - 1}, with 

U = l,Z. First, we show that the moduli are relatively prime and suitable 

for RNS. Next, we show that the computation of multiplicative inverses 

are unity and present a low complexity design which does not require the 

explicit use of modulo operation. 

Theorem 1: The moduli set {z2n+l - 1, ZUn, Zn+l - 1} includes pair wise 

relatively prime moduli. 

Proof: 

From Euclidean theorem, we have: 

gcd( Z2n+l - 1, Zun) = 1 

gcd(zUn, zn+l - 1) = gcd(Zn+l-u - 1,1) = 1 

gcd(z2n+l - 1, zn+l - 1) = gcd(Zn - 1,1) = 1 

Thus the elements of the moduli set 

pairwise relatively prime. 

{Z2n+l - 1, zUn, Zn+l - 1} are 
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Theorem 2: Given the moduli set {22n+1 - 1, ZUn, Zn+1 - 1}, where, 

m; = z2n+1 - 1, ffi2 = Zun, and m, = Zn+1 - 1 for every integer n > 1, 

the followings hold true: 

"1,2 = -1 

"1.3 = -Z 

"2,3 = ZU 

(2.3) 

(2.4) 

(2.5) 

Proof: 

Since: 

l(z2n+1 -1) * (-1)12un = l_z2n+1 + 112un = !1-z2n+112un + 1112un!2un 

= 1112un = 1 

Then, "1,2 = -1 and (2.3) holds true. 

Similarly, since: 

I(Z2n+1 -1) * (-Z)12n+l_1 = II-Z2n+212n+1_1 * IZI2n+l_112n+l_1 

= 1-1 + ZI2 = 1112n+l_1 = 1 

Then, "1,2 = -Z and (2.4) holds true. 

Similarly, since: 

I(Zun) * ZUI2n+1_1 = IZun+uI2n+1_1 = I(Zn+1)uI2n+1_1 

= 1(IZn+112n+l_1)UI2n+1_1 = 1u = 1 

Then, "1,2 = ZU and (2.5) holds true. 

By substituting (2.3), (2.4) and (2.5) into (2.2), the MRDs for the targeted 

moduli set are computed as follows: 

(2.6) 
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t2 = IXl - X212un (2.7) 

Also, 

(2.8) 

We can further simplify (2.8) as follows: 

(2.9) 

= IZU(xr+l[n] + xr[O] I><J Z [0] )12n+l_l (Applying Lemma 

4) 

Applying Lemma 3 to (2.9) will give us: 

(2.10) 

with, 

(2.11 ) 

(2.12) 

k - I ZU+l I - n-U[O] U+l[ U] 2 - - X3 2n+l_l - X3 I><J X3 n - (Applying 

Lemma 3) (2.13) 

(2.14) 

Applying Lemma 4 to (2.11) we have: 

(2.15) 

with, 

(2.16) 

= t~-U+1 [0] I><J t~ [n - 1] (Applying Lemma 3) 
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= £~-U+1[Un - n + U - 1] txl OU[O] (Applying Lemma 3) 

It is worth noting that k31 in (2.15) and all subsequent equations only 

applies to the case when U = 2 since we cannot apply Lemma 4 cannot be 

applied to (2.11) when U = 1. 

Substituting (2.11), (2.12), (2.l3), (2.16) and (2.17) into (2.8) we have; 

£3 = Ikl1 + k12 + k2 + k31 + k3212n+l_1 (2.18) 

Applying Lemma 6, (2.18) could be further simplified into either (2.19) or 

(2.20) below: 

(2.19) 

(2.20) 

Theorem 3: Given the conditions in theorem 2 above, the binary 

equivalent X, of an RNS number (xv X21 x3) can be computed as follows: 

(2.21 ) 

Proof: 

Substituting m; = 22n+1 - 1, m2 = 2Un, rn, = 2n+1 - 1 and the MRDs 

into (2.1) we obtain (2.21). 

Equation (2.21) can further be simplified as: 

X = 'to + 't1 + 1 (2.22) 

with, 

(2.23) 

(2.24) 
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= On [0] IXI f~+1 [0] IXI f~n [0] (Applying Lemma 5) 

2.3 Hardware Implementation 

The schematic diagram depicted in Figure 2.1 represents the proposed 

unified architecture for proposed reverse converters for the modul i sets 

under investigation. 

As shown in Figure 2.1, fz is computed according to (2.7) using a Un-bit 

binary CPA (namely CPA 1), whilst f3 requires (U + 1) CSAs with End- 

Around Carry (EAC) of length (n + 1)-bit (notably CSAs 1 through to 

CSA (U + 1) with EACs) and two binary CPAs of length (n + 1)-bit 
using anticipated computations from (2.19) and (2.20) and a multiplexer to 

select the correct result. To obtain the final result X, a (U + 3)n + 2-bit 

binary CPA 4 is used to compute (2.22). 

Table 2.1 presents the values for delay and circuit area required by the 

proposed converters and the known equivalent state of the art converters 

in Molahosseini et al. (2008), Cao et al. (2003) and Sousa and Antao 

(2012). We assume in this work as in and Antao (2012) that the delay of a 

CPA with EAC is twice the delay ofa binary CPA. Considering "tFA and 

I1FA as the delay and area of a 1-bit Full Adder (FA), respectively. 

Furthermore, we consider that the area and delay of a half adder (HA) are 

I1HA = ~ 11 FA and "tHA = ~"tFA' respectively. z 2 

The values of area and delay for the proposed converters are presented in 

Table 2.1 as follows: CPA 1 requires (Un)I1FA and (Un hFA to compute 
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f2' while f3 is computed at a delay of (n + U + 3)-tFA and ((U + 3)n + 

2 ).1FA area (it is worth noting that CSAs 1 and (U + 1) are made up of 1 

and U HAs respectively). It is worth nothing that in the computation of the 

final result X, Equation (2.22), CPA 4 is made up of2n + 1-bit half adders 

and thus requires an area of ((U + 2)n + 1.5).1FA and imposes a delay of 

((2 + U)n + 1.5}tFA 

The total delay therefore required for complete reverse conversion using 

the proposed architecture is one less the sum of delays required for 

computing (2.7), (2.19) or (2.20) and (2.22) i.e. (Un hFA + (n + U + 

2hFA + ((U + 2)n + 1.5}tFA - 'tFA = ((2U + 3)n + U + 2.5)'tFA since 

the delay of CSA 1 is hidden in that of CPA 1. Thus the proposed 

converters will require delays of (5n + 3.5hFA and (7n + 4.5)'tFA for 

U = 1 and U = 2 respectively. In terms of area, the proposed converters 

require (Un).1FA + ((U + 3)n + 2 ).1FA + ((U + 2)n + 1.5).1FA = 

((3U + 5)n + 3.5).1FA i.e. (8n + 3.5).1FA and (lln + 3.5).1FA 

respectively for U = 1 and U = 2. 
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Un P (n + I)-bit CSA 1 : 
I I 

n ¥f - rC-f 1- r--f I ~- - -- 
~------~ ~ ~ 

mux 1 

OPPR 

(U + 3)n + 2 

x 

Figure 2. 1: Schematic Diagram of Proposed Unified Converter 

(Dashed signal lines and adder apply only when U = 2) 

Table 2.1: Comparison of the speed of different moduli sets 

Moduli Set Critical Path Delay 
{22n+1 - 1, 2n, 2n+1 - I} 22n+1 - 1 21og2(n + 0.5) + 5 
{22n+1 - 1, 2n, 2n - I} 

{22n+1 _ 1, 22n, 2n+1 - I} 
{ 2n - 1, 2n, 2n + 1,22n+1 - I} 2n + 1 2Iog2(n) + 6 
{2n - 1, 2n, 2n + 1,22n + I} 22n + 1 21og2(n) + 8 
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Table 2.2: Area, Delay Comparison 

DR Converter Area (t.FA) Delay('rFA) 

4n Molahosseini et al. (2008) 9n + 2 IOn + 3 
Our Work 8n + 3.5 5n + 3.5 

5n Sousa and Antao (2012) 13n + 2 8n+ 1 

Cao et al. (2003) lln + 6 8n + 3 

Our Work Iln+3.5 7n + 4.5 

2.4 Performance Evaluation 

To evaluate the performance of the proposed residue to binary converters, 

we compare our proposals with related state of the art 4n and Sn DR 

moduli sets presented in Molahosseini et al. (2008), Cao et al. (2003) and 

Sousa and Antao (2012). 

The speed of the arithmetic unit of RNS systems based on the proposed 

moduli sets and Molahosseini et al. (2008) is dictated by the critical 

modulos Z2n+l - 1 whilst those of Sousa and Antao (2012) and Cao et al. 

(2003) are restricted to low-performing critical moduli Zn + 1 and 

z2n + 1 respectively. Table 2.1 shows the critical moduli of the proposed 

moduli sets and the state of the art and their respective unite gate delays 

adopted from Molahosseini et al. (2010). From Table 2.1 it is clear that 

though Sousa and Antao (2012) and Cao et al. (2003) support higher 

parallelism, the proposed converter for the moduli set {Z2n+l_ 
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1, 22n, 2n+1 - 1} has relatively better RNS arithmetic unit speed. It is also 

worth noting that the proposed moduli sets have slightly better DR 

compared to the state of the art. On the part of area and delay requirement, 

the theoretical analysis presented in Table 2.2 shows that the proposed 

converters outperform the state of the art converters in Molahosseini et al. 

(2008), Cao et al. (2003) and Sousa and Antao (2012) in terms of both 

area and delay. It is also worth noting that the converters for the proposed 

moduli sets do not require the use of modular adders (CPAs with EACs 

for that matter) as opposed to the mods_22n+l - 1, 22n - 1 and 24n - 1 

arithmetic required by Molahosseini et al. (2008), Cao et al. (2003) and 

Sousa and Antao (2012) respectively. 

A well known library of arithmetic units (Zimmermann, 1998), which 

contains a structural specification of components, namely optimized prefix 

adders written in synthesizable VHDL code (Sousa and Antao, 2012), 

was employed to obtain the HDL specification of both the proposed and 

related state of the art converters. Using the HDL specification of the 

converters, experimental assessment was carried out using Xilinx ISE 14.3 

software to target a Xc4vlx15-1 OsD63 FPGA. The results obtained after 

design place and route are given in terms of the number of FPGA slices 

and input-to-output propagation delays (in nano seconds) for various DR 

requirements (different values ofn) are presented in Table 2.3. 
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Table 2.3: Converters' Delay 't [ns] and Area [Number of Slices] 

DR Converter n=2 n=4 n=B n = 16 
tJ. T tJ. T tJ. T tJ. T 

4n Molahosseini et al. (2008) 20 15.4 45 24.8 105 27.3 215 33.8 
Our Work 12 10.5 26 12.7 52 13.4 100 14.9 

5n Sousa and Antao (2012) 24 16.2 59 24.2 115 27.0 235 36.8 
Cao et at. (2003) 34 18.3 74 20.1 161 23.3 346 23.8 

These results suggest that, the proposed converter for the moduli set 

{22n+1 - 1, 2n, 2n+1 - 1} improves the area and delay in Molahosseini et 

al. (2008) by 50.65% and 49.16% respectively. On the other hand, the 

converter for the proposed moduli set {22n+1 - 1, 22n, 2n+1 - 1} 

improves the area and delay in Sousa and Antao (2012) by about 39.03% 

and 44.53% respectively, whilst the area and delay in Cao et al. (2003) 

are improved by about 53.03% and 32.40% respectively. 

2.5 Conclusion 

In this chapter, two new moduli sets {22n+1 - 1, 2n, 2n+1 - 1} and 

{22n+1 - 1, 22n, 2n+1 - 1} together with their associated MRC based 

reverse converters have been proposed. We presented a unified and 

configurable architecture for reverse conversion in the proposed moduli 

sets by presenting a converter for the moduli set {22n+1 - 1, 2Un, 2n+1 - 

1} for values of U = 1,2. We demonstrated that the computation of 

multiplicative inverses could be avoided. The proposed converters and the 

best known equivalent state of the art converters were implemented on 
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Xilinx Xc4vlx 15-1 Osf363 FPGA. On average, the converter for the 

proposed moduli set {22n+1 - 1, 2n, 2n+1 - 1} improves area by about 

50.65% and delay by about 49.16% when compared to the known 

equivalent state of the art converter. Also, the converter for the proposed 

moduli set {22n+1 - 1, 2n, 2n+1 - 1} improves the area and delay required 

by the state of the art converter for the moduli set 

{2n - 1, Z", 2n + l,22n+1 - 1} by about 39.03% and 44.53% 

respectively and also improves the area and delay required by the state of 

the art converter for the moduli set 

{2n - 1, 2n, 2n + l,22n + 1} by about 53.03% and 32.40% respectively. 
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CHAPTER THREE 

CONFIGURABLE RESIDUE- TO-BINARY CONVERTERS FOR 
THE MODULI SETS {2n+1 - 1, 22n, 2n+1 + 1} AND {2(3n+2)/2 - 

1, 22n, 2(3n+2)/2 + 1} 

3.1 Introduction and Background 

Due to the lower dynamic range (DR) of the moduli set {2n - 1, 2n, 2n + 

1}, it was extended to get the moduli set {22n - 1, 2n, 22n + 1} (Hariri et 

al. 2007). However, the major disadvantage of the moduli set {22n_ 

1, 2n, 22n + 1} is that it requires slow and expensive RC as well as 

channel arithmetic units modulo 22n + 1. This type of arithmetic have 

been well documented to be disadvantageous in previous chapters. 

In this chapter, we propose the moduli sets {2n+1 - 1, 22n, 2n+1 + 1} and 

{2(3n+2)/2 - 1, 22n, 2(3n+2)/2 + 1} (for even n) which eliminate the major 

disadvantages of Bhardwaj et al. (1999), Hariri et al. (2007) and Cao et 

al. (2003) discussed above and have an added advantage of higher DR. 

The CRT which is used to derive reverse converters for the proposed 

moduli sets is presented for three moduli sets as (Gbolagade et al. 2010): 

(3.1 ) 

with, 

(3.2) 

M M·=- 
I rn, 

(3.3) 
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IMiMi11m. = 1, Vi = [1,3] 
1 

(3.4) 

The remainder of this chapter is organized as follows. In Section 3.2, the 

new moduli sets and their respective reverse conversion algorithms are 

proposed. Section 3.3 presents the hardware implementation of the 

conversion techniques, while Section 3.4 gives a performance comparison 

with the similar best known state of the art converters and Section 3.5 

concludes the chapter. 

3.2 Proposed Converters 

In this section, we present efficient reverse converters for the moduli sets 

{2n+1 - 1, 22n, 2n+1 + 1} and {2(3n+2)/2 - 1, 22n, 2(3n+2)/2 + 1}. 

The following notations below are adopted from Sousa and Antao (2012) 

for presenting the proposed method and the corresponding reverse 

converter: 

i. For an n-bit value y, bits are referred from the Most Significant Bit 

(MSB) to the Least Significant Bit (LSB) as y[ n - 1], ... , y[O]. 

ii. yl [k] refers to an I-bit number such that: yl [k] = y[k + I 

1]21-1 + ... + y[k + 1]2 + y[k]; 

111. 0 and Z each refer to a number whose binary representation is an 

all-one and all-zero string, respectively; 

iv. The symbol IX! operates the concatenation of the binary 

representation of two numbers. 
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The following Lemmas are important In the design of the proposed 

converters: 

Lemma 1: Modulo (2S - 1) of a negative number is equivalent to the 

one's complement of the number, which is obtained by subtracting the 

number from (2S - 1) (Gbolagade et al. 2010). 

Lemma 2: Modulo (2S - 1) multiplication of a residue number by 2t , 

where sand t are positive integers, is equivalent to t bit circular left 

shifting (Gbolagade et al. 2010). 

3.21 Proposed Method for Reverse Conversion 

We represent the target moduli sets by {21:/2 - 1, 22n, 21:/2 + 1} with 

T = 3n + 2, 2n + 2 (T = 3n + 2, n must be even). First, we show that the 

moduli are prime relative and suitable for RNS. Next, we show that the 

computation of multiplicative inverses are unity and present a low 

complexity design which requires only carry save adders (CSAs) and 

binary carry propagate adders (CPAs). 

Theorem 1: The moduli set {21:/2 _l,22n,21:/2 + 1} includes pair wise 

relatively prime moduli. 

Proof: 

From Euclidean theorem, we have: 

gcd(22n,21:/2 - 1) = 1 

gcd(21:/2 + 1,21:/2 - 1) = gcd(21:/2 - 1,2) = 1 
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:.. 

gcd(22n,2T/2 + 1) = 1 

Thus the elements of the moduli set {2T/2 - 1, 22n, 2T/2 + 1} are pairwise 

relatively prime. 

Substituting fi1 = 22n, fi2 = 2T/2 - 1 and m , = 2T/2 + 1 into (3.2) and 

(3.3), we obtain: 

(3.5) 

M2 = 22n(2T/2 + 1) 

M3 = 22n(2T/2 - 1) 

(3.6) 

(3.7) 

Theorem 2: Given the moduli set {2T/2 - l,22n,2T/2 + 1} and holding 

all conditions as specified above, the followings hold true: 

(3.8) 

(3.9) 

(3.10) 

Proof: 

Since: 

1(-1) * (2T -1)1z2n = 1 (12T122n = 0) 

Then (3.8) holds true. 

Similarly, since: 

1 2T-2n-1 * 22n(2T/2 + 1)1 = 12TI / = 1 2':;2_1 2' 2-1 

Then (3.9) holds true. 

Similarly, since: 

1 -2T-2n-1 * 22n(2T/2 - 1)1 = 12TI / = 1 2,/2+1 2' 2+1 
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Then (3.10) holds true. 

Theorem 3: The binary equivalent X, of an RNS number (x., X2, X3) can 

be computed as follows: 

(3.11 ) 

with, 

p= 

Proof: By substituting (3.5) through to (3.10) into (3.1) and factorizing 

z2n from the right hand side we obtain (3.11). 

We can further simplify (3.12) as: 

(3.13) 

with, 

(3.14 ) 

(3.15) 

Iz,-2n-1( )1 = X2 ~ X2 2'-1 

(3.16) 

with, 
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'\ -123'-2n-1 I 1\31 - 2 X3 
2'-1 

(3.17) 

'\ 12-r-2n-1 I 1\32 = X3 2'-1 (3.18) 

= z2n--r/2 [0] ~ X3 ~ Z-r-2n-1 [0] 

Substituting (3.16) into (3.13) we obtain (3.19): 

(3.19) 

3.3 Hardware Implementation 

The schematic diagram for the proposed converter is showed in Figure 

3.1. We use the method of Mathew et al. (2000) to compute p according to 

(3.19). By this method, two r-bit CSAs and two T-bit binary CPA's are 

required. The CPAs work in parallel (CPAs 2 and 3 in Figure 3.1). Whilst 

one of the CPAs has a constant carry-in of zero, the other has a constant 

carry-in of one. The correct result is selected by a multiplexer (MUX 1) 

based on the carry-out of CPA with constant carry-in of zero. This result is 

concatenated with Xl at no hardware cost to realize the final binary 

equivalent of any RNS number. 

The values of area and delay are presented in Table 3.1 and obtained as 

follows: it is worth noting following: 
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1. eSA 1 is made up of C21: - 2n - 1 )-bit pairs of XNOR/OR gates 

since Ai and A31 contain (T - 2n)-bit and G - 1 )-bit Is all in 
different bit positions. Thus, this eSA demands an area of 

( 2n + 1 - D f1FA and imposes a delay of DFA· 

11. eSA 2 is made up of G - 1 )-bit AND/OR pam since A32 

contains G - 1 )-bit Os. thus demands an area of G - 1) f1FA and 
imposes a delay of DFA. 

111. The Cl'As each demand (T)f1FA and (T)DFA. 

iv. The proposed converters demand an area of (2T + 2n)f1FA and 

impose a delay of (T + 2)DFA since Cl'As 1 and 2 are 

implemented in parallel. 
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X2 

Operands Preparations (OPPR) 

r-bit CSA 1 

T 

r-blt (SA 2 

mux 1 

X2 

x 

Figure 3.1: Schematic Diagram of Proposed Unified Converter 

Table 3.1: Characterization of Each Part of The Proposed Reverse 

Converter 

Component Area(.1FA) Delay(DFA) 

CSA 1 r 1 2n + 1-- 
2 

CSA2 r 1 2-1 
CPA 1 r r 
CPA 2 r r 
Total Zr + 2n r+2 
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3.4 Performance Evaluation 

The major limiting factors of the moduli sets in Wang et al. (2002) and 

Hariri et al. (2007) compared to the ones proposed in this work is that, at 

equal DR our proposals present faster RNS arithmetic unit speed as 

depicted Table 3.2. In Table 3.2, proposed 1 and proposed 2 refer to the 

moduli sets {Zn+l - 1, z2n, Zn+l + 1} and {Z(3n+2)/2 - 1, Z2n, Z(3n+2)/2 + 

1} respectively. Additionally, theoretical analyses of converters for the 

proposed moduli sets and the state of the art converters in Wang et al. 

(2002) and Hariri et al. (2007) are presented in Table 3.3. Converters 1 

and 2 in Table 3.3, refer to the converters for the moduli sets {zn+l - 

1, Z2n, Zn+l + 1} and {Z(3n+2)/2 - 1, Z2n, z(3n+2)/2 + 1} respectively. 

Although faster and more area expensive adders can be used, this analysis 

considers as in Wang et al. (2002) and Hariri et al. (2007), that an-bit 

CPA with End-Around Carry (EAC) has twice the delay of a normal n-bit 

CPA, but the same area. The EAC approach is an efficient method to 

compute modulo Zn - 1 addition, which consists in redirecting the 

resulting carry-out of an addition into the carry-in (Sousa et al. 2012). 

These results suggest the superiority of our schemes. 

Table 3.2: Comparison of The Speed of The Different Moduli Sets 

Moduli Set Critical Path Delay 
Wang et al. (2002) 2n + 1 2Iogz(n) + 6 
Hariri et al. (2007) 22n + 1 2Iogz(n) + 8 
Proposed 1 2n+1 + 1 2 log2 (n + 1) + 6 
Proposed 2 z(3n+2)/2 + 1 2Iog2(1.5n + 1) + 6 

36 

www.udsspace.uds.edu.gh 

 

 



: 

Table 3.3: Area, Delay Comparison 

Converter DR Area (ilFA) Delay (DFA) 

Wang et al. (2002) 3n 4n 4n + 2 
Hariri et al. (2007) 5n 5n 8n + 1 
Converter 1 4n + 2 6n+ 2 2n + 4 
Converter 2 5n+ 2 8n + 4 3n + 4 

To fairly evaluate the performance of our schemes compared to the state 

of the art, a well known library of arithmetic units (Zimmermann, 1998), 

which contains a structural specification of optimized prefix adders 

written in synthesizable YHDL code was employed to obtain the HDL 

specification of both the proposed and related state of the art converters. 

These HDL specification of the converters were used to perform 

experimental assessment using Xilinx ISE 14.3 software to target a 

Spartan 3 FPGA. The results obtained after design place and route 

presented in terms of the number of FPGA slices and input-to-output 

propagation delays (in nano seconds) for various DR requirements 

(different values of n) are presented in Tables 3.4 and 3.5. It is worth 

noting that for every n in Table 3.4, the corresponding area and delay for 

Wang et al. (2002) and Hariri et al. (2007) are derived using the lower or 

upper bond of (4n + 2)/3 and (4n + 2)/5 respectively. Similarly, for 

every n in Table 3.5, the corresponding area and delay for Wang et al. 

(2002) is derived using the lower or upper bond of (5n + 2)/3. These 
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results suggest that at equal DR: The proposed converter for the moduli set 

{2n+1 - 1, 22n, 2n+1 + 1} reduces the area demanded by the related state 

of the art converter in Wang et al. (2002) by about 58.03% and delay by 

about 63.45% and also reduces the area demanded by the converter in 

Hariri et al. (2007) by about 40.89% and delay by about 59.54% (see 

Table 3.4). These results further reveal that the proposed converter for the 

moduli set {2(3n+2)/2 - 1, 22n, 2(3n+2)/2 + 1} reduces the area demanded 

by the related state of the art converter in Wang et al. (2002) by about 

18.29% and delay by about 60.1 %. This proposed converter also reduces 

the delay imposed by Hariri et al. (2007) by about 55.34% at an area cost 

of about 15.07% (see Table 3.5). 

Table 3.4: Converters' Delay "[ [ns] and Area [Number of Slices] 

({zn+1 - 1, z2n, zn+l + 1}) 

Converter n=Z n=4 n=8 n = 16 
!J. T t::.. T !J. T !J. T 

Wang et al. (2002) 20 15.4 45 24.8 105 27.3 215 33.8 
Hariri et al. (2007) 13 11.5 27 13.9 56 14.1 113 15.3 

Converter 2 21 14.9 52 18.0 1 II 22.1 236 22.9 

Table 3.5: Converters' Delay "[ [ns] and Area [Number of Slices] 

({z(3n+2)/2 _1,Z2n,Z(3n+2)/2 + 1}) 

Converter n=Z n=4 n=8 n = 16 
!J. T !J. T !J. T !J. T 

Wang et al. (2002) 20 15.4 45 24.8 105 27.3 215 33.8 
Hariri et al. (2007) 13 11.5 27 13.9 56 14.1 113 15.3 
Proposed 21 14.9 52 18.0 I 11 22.1 236 22.9 
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; 

Since the converter in Hariri et al. (2007) outperforms the proposed 

converter for the moduli set {2(3n+2)/2 - 1,22n,2(3n+2)/2 + I} in terms 

of area, we further compare these converters using the area delay square 

metric (.1D2). Results from this metric (shown in Table 3.6) suggest that 

in terms of overall performance, the proposed converter for the moduli set 

{2(3n+2)/2 - I, 22n, 2(3n+2)/2 + I} is 78.64% better than the converter in 

Hariri et al. (2007). 

Table 3.6: Converters' .1D2 [103 slices ns"] 

Converter n=2 n=4 n=8 n = 16 
[4] 10 13 23 24 
Converter 2 5 7 10 9 

3.5 Conclusion 

In this chapter, we proposed efficient residue-to-binary converters for the 

new moduli sets {2n+1 - 1, 22n, 2n+1 + I} and 

{2(3n+2)/2 - 1,22n,2(3n+2)/2 + I}. We presented a unified architecture 

for reverse conversion in the two moduli sets by presenting a converter for 

the moduli set {2't/2 _I,22n,2't/2 + I} with T = 3n + 2,2n + 2. 

Experiments performed on the proposed converters and the related state of 

the art using Xilinx ISE 14.3 software to target a Spartan 3 FPGA suggest 

that the proposed converters outperform the related state of the art 

schemes. 
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CHAPTER FOUR 

CONFIGURABLE RESIDUE- TO-BINARY CONVERTERS FOR 
THE MODULI SET {2n - 1, 211n, 2n + 1, 22n+1 - 1} 

4.1 Introduction and Background 

Recently, larger dynamic range moduli sets { 2n - 1, 2n, 2n + 1, 22n+1 - 

1} and { 2n - 1, 2n, 2n + 1, 22n + 1} were proposed in Molahosseini et al. 

(20 I 0) with CRT II and CRT I based converters respectively. In Sousa 

and Antao (2012), an MRC divide and conquer approach was used to 

present converters for the moduli sets { 2n - 1, 2n, 2n + 1, 22n+1 - 1} and 

{2n - 1, 22n, 2n + 1, 22n+1 - 1}. The converter for the {2n - 1, Z", 2n + 

1, 22n+1 - 1} moduli set outperformed the one in Molahosseini et al. 

(2010) whilst that of the {2n - 1, 22n, 2n + 1, 22n+1 - 1} moduli set 

outperform the converter in Zhang and Siy (2008) for the moduli set 

{ 2n - 1, 2n + 1, 22n - 1,22n+1 - 3}. However, the converters in Sousa 

and Antao (2012) still exhibit some high area and delay characteristics. 

Therefore, in this brief we present comparatively faster and lower area 

cost CRT II based reverse converters for the {2n - 1, 211n, 2n + 

1, 22n+1 - 1} moduli set which is derived by unifying the moduli sets 

{ 2n - 1, 2n, 2n + 1, 22n+1 - 1} (Molahosseini et al. 2010) and {2n- 

1, 22n, 2n + 1, 22n+1 - 1} (Sousa and Antao, 2012). 

The CRT II for four moduli sets is given as (Molahosseini et al. 2010): 

(4.1) 

(4.2) 

40 

www.udsspace.uds.edu.gh 

 

 



(4.3) 

with, 

IklP1Pzlp3P4 = 1 

IkzP11p2 = 1 

Ik3P31p4 = 1 

(4.4) 

(4.5) 

(4.6) 

where Pi and kj, i = [1,4] are the moduli and multiplicative Inverses 

respectively. 

The remainder of this chapter is organized as follows. In Section 4.2, the 

new moduli sets and their respective reverse conversion algorithms are 

proposed. Section 4.3 presents the hardware implementation of the 

conversion techniques, while Section 4.4 gives a performance comparison 

with the similar best known state of the art converters and Section 4.5 

concludes the chapter. 

4.2.0 Proposed Converters 

In this section, we present an efficient reverse converter for the moduli set 

[Z" - 1, 2n + 1, 21ln, 2Zn+1 - 1}, with 1.1 = 1,2. 

The following notations below are adopted from Sousa and Antao (2012) 

for presenting the proposed method and the corresponding reverse 

converter: 

i. For an n-bit value y, bits are referred from the Most 

Significant Bit (MSB) to the Least Significant Bit (LSB) as 

y[n - I], ... ,y[O]. 

41 

www.udsspace.uds.edu.gh 

 

 



11. yl[k] refers to an l-bit number such that: yl[k] = y[k + 

I - 1]21-1 + ... + y[k + 1]2 + y[k]; 
Ill. 0 and Z each refer to a number whose binary 

representation is an all-one and all-zero string, respectively; 

iv. The symbol ~ operates the concatenation of the binary 

representation of two numbers. 

The following Lemmas are important in the design of the proposed 

converters: 

Lemma 1: Modulo 25 of a number is equivalent to s least significant bits 

of the number. 

Lemma 2: Modulo (25 - 1) of a negative number is equivalent to the 

one's complement of the number, which is obtained by subtracting the 

number from (25 - 1) (Gbolagade et al. 2010). 

Lemma 3: Modulo (25 - 1) multiplication of a residue number by 2t , 

where sand t are positive integers, is equivalent to t bit circular left 

shifting (Gbolagade et al. 2010). 

Lemma 4: Modulo a of an integer b of higher length than a (where a is n­ 

bit long) can be expressed as modulo a of the sum of integers gotten by 

partitioning b into n-bit fields. 

4.2.1 Proposed Method for Reverse Conversion 
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First, we showed that the computation of multiplicative inverses are unity 

and present a low complexity design which requires only carry save 

adders (CSAs) and carry propagate adders (CPAs). 

Theorem 1: Given the moduli set {2n - I, 2n + I, 2Un, 2Zn+1 - I}, 

where, P1 = 21!n, fz = 2Zn+1 - 1, P3 = 2n + 1 and P4 = 2n - 1 for 

every integer n > 1, the followings hold true: 

(4.7) 

(4.8) 

(4.9) 

Proof: 

Since: 

Then (4.7) holds true. 

Similarly, since: 

1 2(Z-I!)n+1 * 21!nl = 12zn+11 zn-r i = 1 z2n+l_1 Z-l 

Then (4.8) holds true. 

The proof for (4.9) was showed in Molahosseini et al. (2010). 

By substituting (4.7), (4.8) and (4.9) and the' given moduli into (4.1) 

through to (4.3), we have: 

(4.10) 

(4.11) 
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with, 

Y = X3 + (Z" + 1)1.. 

co = IZ(2-~)n+l(x - X )1 2 1 22n+1_1 

We can further simplify (4.14), (4.15) and (4.13) as follows: 

for (4.14): 

with, 

for (4.15): Applying Lemma 4 will give us: 

with, 

X31 = x£ [0] V X3 [n] 
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where v means OR operation. 

for (4.13): we substitute in (11) and (12) into (13) obtain: 

with, 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

Theorem 2: Given the conditions in theorem 1 above, the binary 

equivalent X, of an RNS number (xv X2, X3' x4) can be computed as 

follows: 

(4.27) 

with, 
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" 
Proof: 

Substituting (4.11) into (4.10) and simplifying, we obtain (4.27) as 

follows: 

(4.29) 

4.3 Hardware Implementation 

The diagram of blocks in Figure 4.1 represents the proposed reverse 

converter architecture. Considering TFA and tJ.FA as the delay and area of 

a I-bit Full Adder (FA), respectively, we consider also, as in Sousa and 

Antao (2012), that the delay of a Carry-Propagate Adder (CPA) with End- 

Around Carry (EAC) is twice the delay of a regular CPA at a similar 

hardware cost and show in Table 4.1 the values for delay and circuit area 

required by the proposed converters and the equivalent state of the art 

converters in Sousa and Antao (2012). Furthermore, we consider that the 

1 1 
area and delay of a half adder (HA) are tJ.HA = ztJ.FA and THA = ZTFA, 
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respectively. The bitwise operations are ignored for area and delay 

analysis, as they are expected to be negligible regarding the F As and HAs. 

From Figure 4.1, E is computed according to (4.17) using 2n + I-bit eSA 

1 with EAe and regular ePA 1. Since (4.17) has 2n + I-bit of Is, eSA I 

is thus reduced into 2n + I-bit pairs of XNOR/OR gates. It is worth 

noting that the carry passed from this eSA to ePA 1 will always contain 

(2 - fl)n + I-bit of Is and thus ePA 1 is made up of (2 - fl)n + I-bit 

HAs. Therefore the computation of E imposes a delay of (0.5(2 + fl)n + 

1.5)TFA at the demand of (0.5(2 + fl)n + 0.5)LlFA area. w is computed 

by performing (2 - fl)n + I-bit left cyclic shifting on E. 

We use the method of Mathew et at. (2000) to compute A according to 

(18). By this method, two n-bit binary Cl'A's work in parallel (Cl'As 2 

and 3 in Figure 4.1). Whilst ePA 2 has a constant carry-in of zero, ePA 3 

has a constant carry-in of one. The correct result is selected by a 

multiplexer (MDX 1) based on the carry-out of ePA 2. Therefore, A 

requires (2n)LlFA and (n)rFA to compute. To compute a from (4.21), 

again the method of Mathew et al. (2000) is used. This requires two eSAs 

(notably eSAs 2 and 3) , two Cl'As (Cl'As 4 and 5) all of length 2n-bit, 

and mux 2. Since kl and k4 in (22) have (n - 1) and (2 - fl)n-bit of Os 

and 1 s respectively, eSAs 2 and 3 are made up of (n - 1) and (2 - fl)n­ 

bit pairs of AND/OR and XNOR/OR gates respectively. As a result, 

((fl + 5)n + I)LlFA and (2n + 2)rFA are required to compute a. A 
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(2 - Il)n-bit left cyclic shifting is performed on a to realize p. X is 

computed from (4.28) using (4n + I)-bit regular CPA 6. It is worth 

noting that, CPA 6 is made up of 2n + J -bit HAs since one of its operands 

has 2n + I-bit 1 s. As a result, the computation of X demands (3n + 

O.5)LlFA area and imposes a delay of (3n + O.5}rFA' Finally, the binary 

equivalent X of an RNS number is computed from (4.27) as X 

concatenation Xl at no hardware cost. 

x, x, 

OPPR 3 

Figure 4.1: Schematic Diagram of Proposed Unified 
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The values of area and delay in Table 4.1 are obtained as follows: The 

total area required for the proposed unified converter is the cumulative 

area required to compute E, A, a and X, which amounts to ((11 + 

1.51l)n + 4)LlFA- Therefore, the proposed converter for the moduli set 

[Z" - 1, 2n + 1, 2n, 22n+1 - 1} (i.e. when 11 = 1) demands an area of 

(12.5n + 4)LlFA whilst the proposed converter for the moduli set {Z" - 

1, 2n + 1, 22n, 22n+1 - 1} (i.e. when 11 = 2) demands an area of (14n + 

4)LlFA. On the other hand, the delay of the proposed unified moduli set is 

((6 + O.51l)n + 11 + 2 )TFA, which is the cumulative delay required to 

compute E, A and X since the delay to compute A is hidden in that required 

to compute E. Therefore, the proposed converter for the moduli set 

{2n - 1, 2n + 1, 2n, 22n+1 - 1} imposes a delay of (6.5n + 3)TFA whilst 

the proposed converter for the moduli set [Z" - 1, 2n + 1, 22n, 22n+1 - 1} 

imposes a delay of (7n + 4)TFA- 

Table 4.1: Area, Delay Comparison 

Moduli Set Converter Area Delay 
(LlFA) (TFA) 

{2n - 1,2n + 1, 2n,22n+1 Sousa and Antao 13n+2 8n+l 
- 1} (2012) 

Our Work 12.5n + 4 6.5n+3 
{2n - 1,2n + 1, 22n,22n+l Sousa and Antao 16n + 1 8n+2 

-1} (2012) 
Our Work 14n+4 7n+4 

4.4 Performance Evaluation 

To evaluate the performance of the proposed residue to binary converters, 

we compare our proposals with the related state of the art converters in 
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Sousa and Antao (2012). From the theoretical analysis presented in Table 

4.1, the proposed converters outperform the related state of the art in terms 

of both area and delay. It is also worth noting that the proposed converters 

does not require the use of modular adders as opposed to the mod-Z?" - 1 

arithmetic required by the converters in Sousa and Antao (2012). 

A well known library of arithmetic units (Zimmermann, 1998), which 

contains a structural specification of components, namely optimized prefix 

adders written in synthesizable VHDL code (Sousa et al. 2012), was 

employed to obtain the HOL specification of both the proposed and 

related state of the art converters. Using the HDL specification of these 

converters, experimental assessment was carried out using Xilinx ISE 14.3 

software to target a Spartan 3 FPGA. The results obtained after design 

place and route are given in terms of the number of FPGA slices and 

input-to-output propagation delays (in nano seconds) for various DR 

requirements (different values of n) are presented in Table 4.2. These 

results suggest that, the proposed converter for the moduli set {2n- 

1, 2n + 1, 2n, 22n+1 - 1} improves the area demanded by the related state 

of the art converter in Sousa and Antao (2012) by about 29.09% and 

delay by about 46.33%. On the other hand, the proposed converter for the 

moduli set {2n - 1,2n + 1, 22n, 22n+1 - 1} improves the area demanded 

by the related state of the art converter in Sousa and Antao (2012) by 

about 24.50% and delay by about 43.45%. It is also worth nothing that 

this proposed converter outperforms the state of the art converter for the 
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comparatively n-bit less DR moduli set {2n - 1,2n + 1, Z", 22n+1 - 1} 

with about 19.85% and 46.84% in terms of area and delay respectively. 

Table 4.2: Converters' Delay '( [ns] and Area [Number of Slices] 

Moduli Set Converter n=Z n=4 n=8 n = 16 

!J. T !J. T !J. T !J. T 

{Z" - 1, zn Sousa and Antao 27 23.6 67 33.8 138 41.3 287 58 
+ 1, 2n, 22n+1 - 1} (2012) 

Our Work 24 18.4 52 22 100 21.6 192 22.6 

{2n -1, 2n Sousa and Antao 30 22.1 65 35.6 147 36.6 309 53 
+ 1,22n,22n+l - 1} (2012) 

Our Work 23 18.3 56 2l.8 109 21 228 22.2 

4.5 Conclusion 

In this chapter, we proposed an efficient residue-to-binary converter for 

the moduli set {2n - 1, 2~n, 2n + 1, 22n+1 - 1} for J1 = 1,2. 

Experimental results suggest that, the proposed converter for the moduli 

set {2n - 1,2n + 1, 2n, 22n+1 - 1} improves the area and delay of the 

related state of the art converter in Sousa and Antao (2012) by about 

29.09% and 46.33% respectively, while the proposed converter for the 

moduli set [Z" - 1, 2n + 1, 22n, 22n+1 - 1} improves the area and delay 

of the related state of the art converter in Sousa and Antao (2012) by 

about 24.50% and 43.45% respectively. These results also suggest that 

the proposed converter for the moduli set [Z" - 1, 2n + 1, 22n, 22n+1 - 1} 

outperforms the state of the art converter for the comparatively n-bit less 

DR moduli set {2n - 1, 2n + 1, 2n, 22n+1 - 1} with about 19.85% and 

46.84% in terms of area and delay respectively. 
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 
In this thesis, our focus was first on proposing new and efficient moduli 

sets, then building efficient residue to binary converters for these and 

existing moduli sets. 

This is an important issue, since, the superiority of Residue Number 

System (RNS) based processors is mainly based on the combined effect of 

hardware required by both the moduli selected and reverse converter. This 

work is also significant since many other RNS difficult computations such 

as; overflow detection, magnitude comparison, sign detection, etc., largely 

depend on moduli selection and reverse conversion. 

The remainder of this chapter is organized as follows. Section 5.2 

summarizes the work and results presented in this thesis. Section 5.3 

outlines the major contributions of this thesis, while in Section 5.4 we 

present some recommendations which will further improve the RNS 

arithmetic domain when investigated. 

5.2 Summary 
1. In Chapter two, we presented two new moduli sets {Z2n+l_ 

1, Zn, Zn+l - 1} and {Z2n+l - 1, z2n, Zn+l - 1} for RNS. 

Consequently, residue to binary converters for these moduli sets 

were proposed based on Mixed Radix Conversion (MRC) 

technique. We unify the architecture for reverse conversion in the 
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proposed moduli sets by presenting a configurable converter for 

the moduli set (22n+1 - 1, 2Un, 2n+1 - 1} for values of U = 1,2. 

We showed that, the computation of multiplicative inverses could 

be avoided and presented low complexity converters that did not 

require the explicit use of modulo operations as opposed to mods- 

22n - 1, 22n+1 - 1 and 24n - 1 required by the state of the art. 

The proposed converters and the state of the art converters were 

implemented on Xilinx Xc4vlxI5-10sf363 FPGA. The 

implementation results suggest that, on the average, the converter 

for the proposed moduli set (22n+1 - 1, 2n, 2n+1 - 1} improved 

area and delay by about 50.65% and 49.16%, respectively when 

compared to the related state of the art converter in Molahosseini 

et al. (2008), while the converter for the proposed moduli set 

(22n+1 - 1, 22n, 2n+1 - 1} improved area and delay required by 

the state of the art converter for the moduli set (2n- 

1, 2n, 2n + l,22n+1 - 1} by about 39.03% and 44.53% 

respectively and also improved the area and delay required by the 

state of the art converter for the moduli set 

(2n - 1, 2n, 2n + i.z> + 1} by about 53.03% and 32.40% 

respectively. 

II. In chapter three, we proposed another pair of new moduli sets 

{2n+1 _ 1, 22n, 2n+1 + 1} and {2(3n+2)/2 - 1, 22n, 2(3n+2)/2 + 1} 

with unified reverse conversion architecture. We showed that, the 

::: 
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computation of multiplicative inverses could be avoided and 

presented low complexity converters that did not require the 

explicit use of modulo operations as opposed to mods-Z?" - 1 and 

24n - 1 required by the state of the art. Experiments were 

performed on our converters and the state of the art using Xilinx 

ISE 14.3 software to target a Spartan 3 FPGA board. These 

experimental results suggest that on the average, at equal DR, the 

proposed converter for the moduli set {2n+1 - 1, 22n, 2n+1 + 1} 

improved the area demanded by the related state of the art 

converter in Wang et al. (2002) by about 58.03% and delay by 

about 63.45%. This proposed converter also improved the area 

demanded by the converter in Hariri et al. (2007) by about 40.89% 

and delay by about 59.54%. These results further showed that the 

proposed converter for the moduli set 

{2(3n+2)/2 - 1, 22n, 2(3n+2)/2 + 1} on its part, improved the area 

demanded by the related state of the art converter in Wang et al. 

(2002) by about 18.29% and delay by about 60.1% and delay 

imposed by Hariri et al. (2007) by about 55.34% with 78.64%. 

iii. In chapter Four, we proposed efficient residue-to-binary converters 

for existing moduli sets {2n - 1, 2n, 2n + 1, 22n+1 - 1} and 

{ 2n - 1, 21ln, 2n + 1, 22n+1 - 1}. We unified the architecture for 

reverse conversion in these moduli sets to realize a confugurable 

converter for the moduli set { 2n - 1, 21ln, 2n + 1, 22n+1 - 1} with 
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J1 = 1,2. The proposed converters did not require the explicit use 

of modulo operations as opposed to the mod-Z?" - 1 required by 

the related state of the art converters. Theoretical analyses of 

hardware resource and conversion delay suggest that, the proposed 

scheme outperforms the equivalent state of the art converters. To 

validate these analyses, both the proposed converters and the state 

of the art were implemented using Xilinx ISE 14.3 software to 

target a Spartan 3 FPGA board. Experimental results suggest that 

compared to the state of the art related converters in Sousa and 

Antao (2012), the proposed converter improves area and delay by 

about 29.09% and 46.33% and about 24.50% and 43.45% for 

J1 = 1 and J1 = 2 respectively. Additionally, the proposed 

converter for J1 = 2 outperforms the state of the art related 

converter for the comparatively lower dynamic range moduli set 

{2n - l,2n,2n + 1, 22n+1 - 1} in Sousa and Antao (2012) with 

about 19.85% and 46.84% area and delay improvements 

respectively. 

5.3 Major Contributions 
The major contributions of this study can be summarized by the following: 

I. We proposed the moduli set {22n+1 - 1, 2n, 2n+1 - 1}. We 

simplified the MRC to obtain a modulo operation free converter 
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opposed to the mod_Z2n+1 - 1 required by the proposal In 

Mohosseini et al. (2008) respectively. 

II. We proposed the moduli set {z2n+l - 1, Z2n, Zn+l - 1} with faster 

RNS arithmetic speed compared with Sousa and Antao (2012) and 

Cao et al. (2003). We simplified the MRC to obtain a modulo 

operation free converter opposed to the mods-Zf" - 1, and 

z4n - 1 required by the proposals in Sousa and Antao (2012) and 

Cao et al. (2003) respectively. 

iii. We proposed the moduli set {zn+l - 1, z2n, Zn+l + 1} with faster 

RNS arithmetic speed compared with Wang et al. (2012) and 

Hariri et al. (2007) at equal Dynamic Range (DR). We simplified 

the CRT to obtain a modulo operation free converter opposed to 

the mods-Zf" - 1, and z4n - 1 required by the proposals in Wang 

et al. (2012) and Hariri et al. (2007) respectively. 

iv. We proposed the moduli set {Z(3n+2)/2 - 1, z2n, Z(3n+2)/2 + 1} 

with faster RNS arithmetic speed compared with Wang et al. 

(2012) and Hariri et al. (2007) at equal DR. We simplified the 

CRT to obtain a modulo operation free converter opposed to the 

mods-Z?" - 1, and Z4n - 1 required by the proposals in Wang et 

al. (2012) and Hariri et al. (2007) respectively. 

v. We proposed an efficient reverse converter for the moduli set 

{Zn - 1, Z", Zn + 1, Z2n+l - 1}. We simplified the CRT-II to 
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obtain a modulo operation free converter opposed to the mod- 

22n - 1 by the proposals in Sousa and Antao (2012). 

vi. We proposed an efficient reverse converter for the moduli set 

{ 2n - 1, 22n, 2n + 1, 22n+1 - 1}. We simplified the CRT-II to 

obtain a modulo operation free converter opposed to the mod- 

22n - 1 by the proposals in Sousa and Antao (2012). 

5.4 Recommendations 
In this thesis, four new moduli sets and six reverse converters have been 

proposed. Moduli selection and efficient converter design are a major step 

in the improvement of RNS based special purpose processors and 

realization ofRNS based general purpose processors. This section presents 

some recommendations that could further improve RNS usage in both 

special and general purpose processors: 

I. Since special purpose processors are build using the related state of 

the art schemes in literature, haven proofed in this work that all 

proposed moduli sets present faster arithmetic channel speed 

compared to the related state of the art, we recommend that the 

moduli sets proposed in this work be used in such processors 

instead of the related state of the art. 

II. We also recommend that since the majority of the algorithms for 

performing difficult RNS operations such as overflow and sign 

detection, division, magnitude comparison, etc., are based on 
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reverse conversion, it will be interesting to re-design existing 

algorithms for resolving these difficult RNS operations using the 

efficient reverse converters proposed in this thesis. 

111. Furthermore, we recommend the proposal and investigation of 

more parallelized moduli sets (beyond the three modulus moduli 

sets proposed in this work) yet attempting to eliminate the modulo 

2n + 1 arithmetic (since it is well known for degrading the entire 

RNS processor in terms of both area and delay). 
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