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ABSTRACT

This dissertation investigates the effect of heat and mass transfer over a heated inclined
plate with viscous dissipation. An incompressible ferrofluid such as polyethylene oxide
solution is made to uniformly flow over a heated plate and a transverse magnetic field
applied to regulate the flow. The partial differential equations modelling the problem
include the continuity, momentum, energy and concentration equations. The resulting
system of partial differential equations is transformed into a system of non-linear
ordinary differential equations by employing the technique of Similarity Analysis. The
dimensionless system of third order ordinary differential equations is then transformed
into a system of first order differential equations. The transformed system of first order
equations is then solved by using the fourth order Runge Kutta algorithm along with
shooting method, with the aid of Maple 16 computer software package. It was observed
that the temperature of the plate decreased when the angle of inclination () increased
from 0° to 10° (“cooling angle”) and increased when the angle of inclination was
greater than10°. The temperature also decreased when both thermal and solutal Grashof
numbers (Gr) and (Gc) respectively were increased. However a rise in temperature was
observed when the Prandtl number (Pr), Eckert number (Ec), Biot number (Bi), viscous
dissipation parameter (N), Schmidt number (Sc) and local heat generation Parameter (Q)

were increased.
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CHAPTER ONE

1.0 INTRODUCTION

1.1 Background of the Study

Heat and mass transfer is commonly encountered in many engineering and industrial
processes. Efforts to understand and control the process to achieve quality products have
led to the use of various techniques. The use of magnets in flow processes have recently
been known and referred to as Magnetohydrodynamics (MHD). It enables the cooling
process to be controlled to achieve a desired product quality. It is important to understand
the various techniques employed that have the potential of meeting this goal. This

chapter presents the background, objectives and justification of the study.

Conventional base fluids such as water, air and oil have been known and used for cooling
mechanical systems in industrial processes over many centuries. In recent times, the
concepts of boundary layer have assumed an important dimension due to its numerous
applications in engineering innovations and industrial processes. An essential part of

boundary layer theory is the determination of friction drag of bodies in a flow.

(Prandtl, 1904), introduced the boundary layer theory to study the flow structure of
viscous fluid near solid boundaries. The early contributions in this area of fluid dynamics
include that of (Blasius, 1908), who solved the famous boundary layer equation for a flat

moving plate problem and found a power series solution of the model.

(Falkner & Skan, 1931), generalized the Blaius problem by considering the boundary

layer flow over a wedge inclined at a certain angle.
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(Sakiadis, 1961) investigated the boundary layer flow over a continuously moving rigid
surface with constant speed whilst (Crane, 1970) was the first to investigate the boundary
layer flow due to a stretching surface and found exact solutions of the boundary layer
equations. A numerical solution of the classical Blasius flow problem was presented by
(Cortell, 2005). (Cortell, 2008), further provided numerical solutions for the Sakiadis
flow by considering the effects of radiation on the boundary layer problem. The
boundary layer flow characteristics of fluids in porous media have been studied
extensively because of its many engineering applications such as in the design of heat

exchangers, catalytic reactors, cooling devices, and during chemical reaction processes.

1.2 Problem Statement

Base fluids (water and air) have been known and used for cooling purposes in everyday
life. However, they are found to be less efficient in cooling mechanical systems in
industry. It has been established that the rate of cooling of a surface depends on the
viscosity of the fluid and the rate at which the surface transfers the heat in the process of

cooling.

The advent of ferrofluids (e.g. polyethylene oxide solution), which have both electrical
and magnetic properties makes it possible to control flow kinematics with the ultimate
aim of increasing the efficiency of heat transfer. The orientation of a surface is also a
significant factor in determining the speed of fluid flow as it enhances the rate of heat
and mass transfer over the surface. Many fluid flow processes over flat and vertical
surfaces have been studied and used for cooling purposes in industry. However, to
improve the efficiency of systems and quality of products, more researches is needed. An

inclined surface can be considered as an obvious problem that will hasten the velocity of

2
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flow but what would that mean to the cooling process? These are issues this study will

look into.
1.3 Objectives of the Study

1.3.1 General Objective

The general objective is to investigate the heat and mass transfer characteristics in MHD

boundary layer flow over an inclined surface.

1.3.2 Specific Objectives

The specific objectives of the study are:

i. To develop theoretical framework modelling the flow of ferrofluid on inclined
surface.

ii. To use the techniques of similarity analysis to transform the resulting partial
differential equations into ordinary differential equations.

iii. To employ numerical analysis to solve the resulting boundary value problem.

iv. To analyse the effects of various controlling parameters on the rate of heat and

mass transfers of ferrofluids on inclined surfaces.

1.4 Justification of Study

Many industrial processes involve the transfer of heat by means of flowing fluids to
achieve cooling. The flows of ferro-fluids over inclined surfaces possess greater potential
of enhancing efficient cooling. When ferro-fluids are made to flow over inclined surfaces
in the presence of transverse magnetic fields, a better cooling with greater efficiency is
achieved due to the fact that the flow can be regulated. This is useful in the building of

small heat transfer systems with lower capital cost with improved efficiency. This study
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will greatly enhance the efficient cooling processes encountered in various industries
such as in the electronic, medical, food processing and manufacturing industries as well

as in nuclear industry.

1.5 Computational Approach

The hydromagnetic boundary layer flow over an inclined surface will be modelled in the
form of differential equations, which constitute a nonlinear boundary value problem.
Nonlinear differential equations have been used extensively in describing flow processes
and their solutions remain extremely important and of practical relevance. Approximate
solutions for the nonlinear systems of differential equations modelling MHD flow over
an inclined surface will be constructed using the fourth order Runge-Kutta integration
scheme coupled with a numerical shooting technique. Results will be presented
numerically and graphically and discussed quantitatively with respect to various

parameters embedded in the study.

1.6 Organization of the Study

The rest of the study is organised as follows: Chapter two presents the literature review
of the study with some important definitions relevant to the study. Chapter three outlines
the procedure of modelling the problem in the form of differential equations. Chapter
four then discusses the results of the study highlighting the effects of various controlling
thermo-physical parameters. Chapter five concludes the study with some

recommendations for further studies.
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CHAPTER TWO

2.0 LITERATURE REVIEW

2.1 Introduction
This chapter examines existing works related to the problem under study. Review of flow
on various surface orientations and chemical reactive flows together with relevant

definitions of terms and concepts related to the study are presented.

2.2 Flow on various Orientations of Surfaces

Research on heat and mass transfers in fluids on different orientations has been
conducted. The effect of transpiration (suction or blowing) on ordinary fluid flow and
heat transfer as well as skin friction coefficients for the steady, laminar and free
convection boundary layer flow over a heated horizontal surface has been studied
extensively by (Hossain & Mojumder, 2010). They observed that increasing the
magnitude of suction/blowing the magnitude of the velocity increases, where as with the
increase of the suction and blowing the maximum values of the temperature decreases.
(Gnaneswara & Bhaskar, 2011) investigated the mass transfer and heat generation effects
on MHD free convection flow past an inclined vertical surface in a porous and observed
that a positive increase in Eckert number reduces the velocity and temperatures in the
flow. (Sivasankaran et al., 2006) employed the lie group analysis method to study the
natural convection heat and mass transfer in an inclined surface, and observed that the
temperature and velocity of the fluid decrease at a very fast rate in the case of water in
comparison with air. Increasing the Prandtl number decreases the temperature and

velocity of the fluid and increases the concentration. Whilst (Ibrahim & Makinde, 2011)

5




TINIWVERSIT YW FOR IDODEWVWEIL OPMNMEIN L STLITIDIES

www.udsspace.uds.edu.gh

conducted a theoretical study of steady MHD boundary layer flow past a low-heat-
resistant sheet moving vertically downwards and observed that the buoyancy force
parameter increases the velocity of flow but reduces the temperature due to convective

cooling.

Heat and mass transfer characteristics of natural convection of a chemically reacting
Newtonian fluid along a vertical and inclined plates in the presence of diffusion-thermo
(Dufour) and thermal-diffusion (Soret) effects has been studied by (Beg et al., 2009).
They observed that an increase in Dufour number (Du) and simultaneous decrease in
Soret number (Sr) causes a rise in fluid temperature (8). The presence of chemical
reaction and non-uniform heat source over an unsteady stretching surface was
investigated by (Seini, 2013), who observed that the heat and mass transfer rates as well
as the skin friction coefficient depended on the unsteadiness parameter, the space-

dependent and the temperature-dependent parameters for a heat source or sink.

The velocity and heat transfer in a boundary layer flow with thermal radiation past a
moving vertical porous plate was examined by (Makinde et al., 2007). They observed
that the fluid temperature decreased with an increase in fluid suction at the plate. An
increase in the fluid velocity is observed with an increase in the radiative heat absorption
parameter. (Reddy er al., 2010) analyzed the steady two-dimensional MHD free
convection flow of viscous dissipating past a semi-infinite moving vertical plate in a
porous medium with Soret and Dufour effects. They observed that a positive increase in
Eckert number is shown to reduce the velocity and temperatures in the flow. Also
increasing the Prandtl number substantially decreases the translational velocity and the
temperature. Heat and mass transfer over a stretching sheet under the influence of a

6
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uniform transverse magnetic field and Hall current were conducted by (Shit, 2009). He
observed that the flow velocities f ' and f gradually increases with the increase of Hall
current parameter m while, in the case of cross flow velocity g, temperature as well as the

concentration a reversal trend was observed.

(Mansour et al., 2007), analytically studied the MHD flow of a micro polar fluid due to
heat and mass transfer through a porous medium bounded by an infinite vertical porous
plate in the presence of a transverse magnetic field in slip-flow regime. They observed
that as the magnetic parameter increase the velocity profiles decreases, the angular
velocity profiles decreases and it has no effect on temperature and concentrations.
Similarly, the transient free convective flow of a viscous incompressible fluid over an
infinite vertical porous plate embedded in highly porous medium of time dependent
permeability under periodic suction has been studied by (Ahmed, 2010). He found that
the velocity of the flow field falls more rapidly for frequency of oscillation in comparison
to time and all the brancheé of u diminishing monotonically in case of heating of the

plate.

(Gnaneswara et al., 2011), investigated the mass transfer and heat generation effects on
MHD free convection flow past an inclined surface in a porous medium. They observed

that, the boundary layer thickness decreases with an increase in the magnetic parameter.

(Aziz, 2009), obtained a similarity solution for laminar thermal boundary layer over a
flat plate with a convective surface boundary condition. The paper demonstrates that a
similarity solution is possible if the convective heat transfer associated with the hot fluid

on the lower surface of the plate is proportional to x'2. (Gebharat, 1962), examined the
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influence of viscous dissipation effect in natural convective flows showing that the heat

transfer rates are reduced by increasing dissipation parameters.

2.3 Chemically Reactive Flows

There are many transfer processes governed by the combined action of buoyancy forces
due to both thermal and mass diffusion in the presence of chemical reaction. They have
many applications in nuclear reactor technology, combustion, solar collectors, drying,
dehydration, polymer production and in operations of chemical and food processing

plants.

The effect of chemical reaction on a moving isothermal vertical surface with suction has
been investigated by (Muthucumaraswamy, 2002). He observed the velocity and
concentration increased during the generative reaction and decrease in the destructive
reaction. (Kandasamy, 2005), then analyzed the effects of chemical reaction and thermal
stratification over vertical stretching surfaces and observed that, the flow field is
influenced appreciably by the presence of thermal stratification, chemical reaction and
magnetic field. The application of chemical reaction to a micropolar flow over an
isothermal vertical cone has been studied by (Abdou, 2007). He found out that The
influence of chemical reaction on the fluid flow along the wall of the cone accelerate
with increase of chemical reaction parameter, on the other hand, temperature of the fluid
increases with increase of chemical reaction parameter but concentration of the fluid

reduces.

(Ibrahim et al., 2008), investigated the chemical reaction and absorption effects on the

unsteady MHD flow past a semi-infinite vertical permeable moving plate. They observed
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that, there was a fall in velocity with increase of Heat absorption parameter ¢ or chemical
reaction parameter k or Schmidt number Sc. (Muthucumaraswamy & Janakiraman, 2008)
investigated the mass transfer effect on isothermal vertical oscillating plate in the
presence of chemical reaction and observed that, the concentration increases with

decreasing chemical reaction parameter K and the Schmidt number Sc.

The effect of chemical reaction on free convection flow through a porous medium
bounded by a vertical surface was reported by (Das, 2010). It was observed that the rate

of heat transfer at the surface increased when the chemical reaction parameter increases.

(Ibrahim & Makinde, 2010), studied the effects of chemical reaction on MHD boundary
layer flow of heat and mass transfer over a moving vertical plate with suction using the
Newton—Raphson shooting method alongside the fourth-order Runge—Kutta integration
scheme. They observed that the momentum boundary layer thickness decreased while
both thermal and concentration boundary layer thicknesses increased with increasing
magnetic field intensity. They concluded that increasing wall suction enhances the
boundary layer thickness and reduces the skin friction together with the heat and mass

transfer rate at the moving plate surface.

Etwire and seini (2014) investigated the radiative MHD flow over a vertical plate with
convective boundary conditions using the fourth-order Runge-Kutta integration scheme
with the shooting method and observed that the radiation parameter increases the thermal
boundary layer thickness. Senapati (2012) also noticed that the mass concentration

decreases when the reaction rate parameter is increased.
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2.4 Basic Properties and Definitions of Terms

2.4.1 Newton’s Law of Viscosity and Newtonian Fluids
According to Newton’s law of viscosity for laminar flow, the shear stress is directly

proportional to the strain rate or the velocity gradient; that is
, 2.1)

where 7, is the shear stress, u is the constant of proportionality representing the dynamic
L . ou . . . . .
viscosity of the fluid and — is the velocity gradient. The shear stress is maximum at the

surface of the plate in direct contact with the fluid, due to the no slip condition. Fluids
obeying the Newton’s law of viscosity (2.1) are referred to as Newtonian fluids.

Otherwise, they are non-Newtonian

2.4.2 Fourier’s Law of Heat Conduction

The Fourier’s law of heat conduction relates the heat flow with temperature differences
and conductivity of the medium. Assuming that, the temperature 7T varies directly in a
direction, x it can be written mathematically as:

ar
=—k—, 22
q ; (2.2)

where g is the heat energy through a unit area in a unit time, & is the material transport
property, called the conductivity of the medium. Equation (2.2) is valid for all common
solids, liquids and gases. The minus sign signify that heat flow is positive in the direction

of decreasing temperature.

10
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2.4.3 Fick's Law of Mass Diffusion

Consider a mixture of two fluid species 4 and B, with p, and p, densities respectively
and suppose that p, varies as p, in the direction, x. Then, there will be a diffusion mass

transfer of species 4 in the direction of its decreasing density defined by the following

equation:

d
Jy=-D, —"i”xi, 2.3)

where [,y is the mass flux of species 4 in the direction of x and D,y is the molecular
diffusion coefficient, which varies with temperature, pressure and the mixture

composition.

2.5 Dimensionless Parameters in Convective Heat and Mass Transfer
Dimensionless numbers measure the relative importance of different forces or the
transport phenomenon involving fluid flow. In these dimensionless numbers, different

properties of the flow are lumped together to represent their cumulative effect.

2.5.1 The Eckert Number (Ec)
The Eckert number (Ec) is a useful dimensionless quantity in fluid dynamics. It is the
ratio of the kinetic energy to the enthalpy (or the dynamic temperature to the

temperature) driving force for heat transfer and is given by:

Ec= 2.4)

C,AT

11
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where u is the fluid velocity ,C, is the specific heat at constant pressure and AT is the

driving force for heat transfer (i.e. wall temperature minus free stream temperature). The
Eckert number is a key parameter in determining the viscous dissipation of energy in a

low speed flow.

2.5.2 The Grashof Number (Gr)

The Grashof number is a dimensionless quantity for analysing the velocity distribution in
free convection systems. It is defined as the ratio of the buoyancy force to the viscous
force. The Grashof number is analogous to the Reynolds number in forced convection

and given by:

3 .2
Gr = ﬂAngLp ’

)7,

@2.5)

where f is the volumetric expansion coefficient, p is the density evaluated at the mean
temperature, g is the gravitational constant, AT is the temperature difference, L is the

distance between the high temperature and low temperature regions and y is the dynamic

viscosity of the convective fluid.

2.5.3 The Prandtl Number (Pr)

The Prandt]l number is defined as the ratio of viscous diffusivity to the thermal diffusivity

HC,
2.6
I (2.6)

Pr=

In heat transfer problems, the Prandtl number controls the relative thickness of the
momentum and thermal boundary layers. When Pr is small, heat diffuses very quickly

compared to the velocity (momentum). When both the thermal and viscous diffusivities

12
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are equal, the Prandtl number becomes unity; in which case, both the momentum and

thermal boundary layers are equal.

2.5.4 The Schmidt Number (Sc)
The Schmidt number is defined as the ratio of the kinematic viscosity to the molecular
diffusivity.

v
Sc=—, 2.7
e=7 2.7

Where D is the molecular or chemical diffusivity and v is the kinematic viscosity or
viscous diffusivity.
2.5.5 Skin Friction Co-efficient (C )

The dimensionless shear stress at the surface is called the skin friction coefficient given

C,=—~ (2.8)

where 7, is the wall shear stress, p is the density and u is the coefficient of dynamic

viscosity. The overall skin friction coefﬁcient,f; is based on the average of the ratio of

shear stress 1, and the length L of the plate.

2.5.6 The Nusselt Number (Nu)
The Nusselt Number is the measure of the ratio of the magnitude of convective heat
transfer rate to the magnitude of the heat transfer rate that would exist under pure

conduction.

13
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h (T, -T
y=lr& =D 29)
kT, -T)/1
The convective heat transfer from the surface depends on the magnitude of the term

h, (T, —T), where hy is the heat transfer coefficient and T,, and T are the temperatures

of wall and fluid respectively. In the absence of flow, the heat transfer will purely be due
to conduction. The Fourier’s law states that the quantity k(T,, — T)/l is the measure of
the heat transfer rate, where k is the thermal conductivity and / is the characteristic

length.

2.5.7 The Sherwood Number (Sh)
The Sherwood number (Sh) is defined as the dimensionless mass flux at the surface
given as;

m,x

h=m, (210)

where m,, is the mass flux at the surface and D is the diffusion coefficient.

2.5.8 The Biot Number (Bi)
The Biot number is defined as the ratio of temperature gradient within the body to the
overall temperature gradient in the fluid. It is similar to the Nusselt number and given by

the expression;

hL
Bi=—, 2.11
i== 2.11)

Were L is the characteristic length % is the heat transfer coefficient.

14
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CHAPTER THREE

3.0 DEVELOPMENT OF MATHEMATICAL MODELS FOR FLOW

PROBLEMS

3.1 Introduction
This chapter presents the mathematical derivations of equations of mass conservation,

momentum, energy and concentration necessary to study all fluid flow problems.

Computational fluid dynamics is best described in the form of partial differential
equations as the characteristics of flowing fluids depend on multiple flow quantities such
as the distances and velocities. Hence the generalized governing equations are developed
and applied to analyse a typical industrial problem. The equations are derived based on
some fundamental laws of physics. The control volume approach to flow analysis is used

in this study.

3.2 The Principles of Mass Conservation
Consider a parcel of fluid flowing into and out of a three dimensional infinitesimal

control volume depicted in Figure 3.1.

15
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/\@

\

3 (Pav

Figure 3.1: Finite control volume of moving fluid element.

At any specific time t, the control volume can be viewed as a system. The mass

conservation for this infinitesimal system will be zero. That is,
D
= V=0 3.1
-~ Vjpd 3.1
Using Reynold’s Transport Theorem (RTT), equation (3.1) can be written as
D d
— V=— V+ (U, pdd=0 3.2
D,J”" dthd j (3.2)

For a constant control volume, the derivative can enter into the integral on the right hand

side of equation (3.2) to obtain;
J'd—pdV+jU pdA =0 (3.3)
b dt rn

The first term in (3.3) for the infinitesimal volume, neglecting higher order derivatives ,

is expressed as;

16
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jd—pdV=d—pdxdydz +.. (3.4)
J dt ar

The second term in equation (3.3) is expressed as;

Jdxdz

y+dy

[U,.pda =1(pw), - (pu),, . Jdvdz +1(p¥)], - (ov)
4 (3.5)

+[(pw)|, = (pw),, , Jdxdy

The difference between point x and x + dx can be obtained by developing a Taylor

series as;

(pu),,, .. = (pu)|, +% dx (3.6)

X

It can be noticed that the operation in the x coordinate produces an additional term. The
same can be done for y and z coordinates. Thus, an infinitesimal volume element dV is
obtained for all directions. The result obtained by substituting (3.6) into (3.5) is divided
by dxdydz and simplified using the definition of the partial derivative in the regular

process to obtain;

_ | 0(pu) , 8(pv) A O(pw)
JUrnmA_{ ax + ay + 62 ]

Combining the result obtained in simplifying the first term (3.4) and the second term, we

obtained the general continuity equation in Cartesian coordinates as;

§£+6pu+6pv+apw=0

o6 & oy oz S

17
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For steady incompressible fluid flow, the continuity equation is simply written as;

ox oy Oz

where U, denotes velocities in the x, y and z directions.

3.3 The Law of Momentum Conservation
Newton’s second law of motions is applicable to a small infinitesimal moving fluid.
That is, the rate of change of momentum of fluid leaving a control volume is directly

proportional to the sum of the forces acting on the control volume, leading to:

F =ma 3.9)

where F the force acting on the control volume, m mass of fluid and 4 acceleration.
One directional vector equation for the x coordinate axis is derived and generalized for
the entire Cartesian system using the elemental control volume of sides dx, dy and dz

shown in Figure 3.2.

18
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Figure 3.2: Infinitesimally small moving fluid element.

Forces acting on the cubic element of fluid include the surface forces, gravitational forces
(body force) and internal forces. Only the forces in the x — direction are shown in

Figure 3.2. Thus,

Internal force = Surface forces + Body forces.

Let the body force per unit mass acting on the fluid element be denoted by f, with f, as

its x-component, the body force acting on the infinitesimal cube in the x direction is;

i = o ddndydz (3.10)

The dot product yields a force in the direction of x.

19
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Figure 3.3: Illustration of shear stress a and normal stress b.

The surface force f,, in the x direction on the x plane is;

fxx =Txx|x+dx><dydz—r“|xxdydz

The surface force f,, in the x direction by the y plane is;

Sy =T xdxdz—‘rwyxdxdz

yxlyﬂiy

The surface force f,, in the x direction by the z plane is;

z+dz x M) T

, X dxdy

fxz =T,

(3.11a)

(3.11b)

(3.11¢)

The pressure force f,, acts inwards producing a resultant in the negative x direction;

fPX = I)ix —Plx+dx Xdde

(3.11d)

Hence, the total net surface forces W, resulting from pressure force shear stresses in the

x direction is;

20
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X

[(ryx + %’x—dy] -7, :'dxdz + [(sz + a;: dzj -7, ]dxdy

Simplifying yields;

W, = I:P—(P+6—deﬂa§zdz +[[Txx +a—r"f—dx)-—ru]dydz+
o ox

o
w, =98 0% T | O | (.12)
& o oy oz

The total force in the x — direction F, is obtained by summing equations 3.10 and 3.12;

pid + zx
o&x  Ox oy oz

7
F, =(_6_P+ar’“ + 4 oz )dxajzdz+/y;dxdydz (3.13)

Equation 3.13 represents the left-hand side of equation 3.9. Considering the right-hand

side of the equation, since mass of the fluid element is fixed, we have;
dm = pdxdydz

The acceleration of the fluid element is the time-rate-of-change of its velocity. Hence, the

component of acceleration a, in the x- direction is denoted by;

Du
a, =—
Dt

When equations 3. 10, 3.12 and 3.13 are substituted into 3.9 the results become;

—— ==

o&x ox oy oz

0
Du ( oP Ot T or dedydz+pfxdxdydz

21
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Simplifying yields;

Du oP or, Otr, or,
— = + + +
oy | e

).’.Mx

(2.14)

This is the non-conservative form of the differential momentum equation of a viscous

flow in the x direction. Similarly, in the y and z directions, we have respectively;

0 0 0
P—D—Y= Ry T O +4f,
Dt \ & o o
0
pﬂ: —a—P+aT"’+ T’”+ar" + 4,
Dr | & o o &

(3.15)

(3.16)

Equations 3.14, 3.15 and 3.16 require that the stress tensor be defined in terms of

velocity deformation. The relationship between the stress tensor and deformation

depends on the class of materials involved. Additionally, the deformation can be viewed

as a function of the velocity field. Furthermore, reduction of shear stress does not return

the fluid to its original state as in some solids. However increasing the shear stress yields

larger deformation. The momentum conservation equations are also called the Navier-

Stokes equations. From equation 3.14, the substantial derivative can be written as;

Du ou =
—=p—+pV.V
P Dt P ot o “
That is; a—(’gu)=,0§-1i+uip—
ot Ot ot

ou _olpu) . 0p

Thus, p—
Pa~"a “u

22

(3.17)

(3.18)
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Applying the vector identity for the divergence of the product of a scalar times a vector,

we have;

V. (pui')= uv- (pl7)+ (pI7) Vu
Implying that;
o7 -Vu =V -(pu? )-uv - (o) (3.19)

Substituting equations 3.18 and 3.19 into 3.17 results in;

p%=?%—u%te—uv-(pﬁ)+v-(puﬁ)

This implies that;

Du_dlpu)_ ( +V. (pV))+V {ou??) (3.20)

Dt ot

The term in bracket in 3.19 is identical to the lefi-hand side of the continuity equation in

3.7, hence, zero. Thus, 3.20 reduce to;

ppﬁ:g%+v-(pul7)

Dt

Substituting into 3.14 results in;

a(pu) % op 9r, Or, or
V' V — XX B zZx
o + (pu ) ( 0x+ r™ + s + = ]+g’x (3.21)

Equation 3.22 is the conservation component of the momentum equation in the x -

direction.

23
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Similarly, in the y and z directions the momentum equations are respectively;

A, q. (ov7)= ( Zf a{; +a;’j’ +a;:]+pfy

3 pw) -\ ( op or, 9Or, or,
a T (pWV)'( =" Ty T )T

Sir Isaac Newton observed that the shear stress in a fluid was proportional to the time-
rate-of-strain (velocity gradient). Such fluids are called Newtonian fluids. For such type

of fluids, Stokes in 1845 obtained the following shear stress relations;
Txx=/1V-I7+2,u%,rw=/1V'I7+2y§-‘:,ru=/1\7-17+2y6—w-,

ox oy oz
T, =T _=U _a_v+_6_u_ T, =7, = (@+6_w_)r =7, = -aﬁ+?—‘i
ARl is PVIPYS L s PP & St PP

where u is the molecular viscosity coefficient and 4 is the bulk viscosity coefficient.

3.22)

Stokes also hypothesised that; A= —% H

Substituting respective terms of 3.22 into 3.21 produces the complete conservation form

of the Navier - Stoke equations in the x direction as;

olpu) , dlpu?) , dlow)  a(ouw)

+ + + P9 AV-V+2/1% +
ot Ox oy 1574 ox oOx ox
af fov,ou)), 2 (6u aw)+pf
v\ o o)) 2\ o

Similarly, in the y and z directions;
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o), olpw) , o), o) _ P 5 (#(@J,a_u)}

ot ox oy oz By 6x ox Oy
0 —~ ov) 0 6w o

a(pw)+a(puw)+a(pvw)+a(pw2)=_glj+_q( (2.2)-

o | o & o 7z a\"\%  ox
of (ow )} o ow
— + +—| AV.V +2
6y[ (By 82)] 62( ”a) A

In vector form, we have;

and

pl—)DE=—VP+(;;:+1)V(V-U)+;N2U+/JB (3.23)

where the last term on the right represent the body force term of the momentum equation.

3.4 The Principles of Energy Conservation
According to the first law of thermodynamics the energy of a body is conserved. Hence

the energy of the fluid in the control volume must be conserved. This implies that,

energy inside the
fluid element

into due to body and
the fluid element surface forces

{Rate of change of Net flux of heat } Rate of work done
+

or A = B + c (3.24)
where A, B and C denote the respective terms above.

The rate of work done by the body force acting on the fluid element moving at a velocity
Vis gof - Vexdydz
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For the surface forces, the pressure plus shear and normal stresses, we consider the forces

in the x — direction as shown in the Figure 3.4;

g,
A /[ur,,«»—é-;’—'dy] dx dzg

i
|
y ,\E uz dx dy _/ ax
: I -~ dlurn,)
! |/ [

utxdy dz -————{dz S b -
» 7d C
G Oy 02 et 2N ('x %‘2" dx) dy dz
/~ -—
il Ut dr dz lu,
(] b [ur;,+ 8 d ]d d

Figure 3.4: Energy fluxes associated with an infinitesimally small fluid element.

The rate of work done on the moving fluid element by the pressure and shear forces in
the x — direction is obtained by multiplying the x — component of the velocity, u by the

forces. Hence, work done on face abcd by 7, dxdz is uz  dxdz as shown in Figure 3.4.

Similarly, works done on the other planes of x — direction are indicated as above.

Therefore, the net rate of work done by pressure in the x — direction is
ox Ox

Also, the net rate of work done by the shear stresses in the x — direction on the y — plane,

that is on face abcd and ef gh is

26
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[(uryx + a(liTT’“)ajzj —uT, ]dxdz = a—(%:—)’“—)dxdydz

Similarly, the net rate of work done by shear stresses in the x — direction on the x planes

(i.e. face adeh and bcf g) is

[(u‘rn + Ma;’“—) dx) —-ur, ]dj/dz = a—(l;;—’“) dxdydz

The net rate of work done by shear stresses in the x — direction on the z — plane (i.e.

face abef and cdhg is;

[(uz’n + a("T”‘)dzJ —ur,, :ldxdy = %dmydz

Hence the net pressure and surface forces in the x — direction is

olur

_a(up)+a(urxx)+ ( yx)+a(urzx) dbe/dZ
ox Ox oy 0z

In the above expression, only surface forces in the x — direction are considered. When

surface forces in the y and z directions are included, the net pressure and surface forces

would be respectively,

ovp) dbr,) abr,) abe,)
[_ gyp)Jr e e }dxdydz

and
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olwr

o), o), Abv) )
oz ox oy oz

The net rate of work done on the moving fluid element is the sum of the surface force

contributions in the x, y and z — directions as well as the body force, hence C in equation

3.24 will be;

Cco {3(1417) ,962) +6(wp))¢cdydz +(a(urn) o) Sur)),

x oy & ox oy 0z
a(v TJ{V) 6(‘)1'-»') a(v TZ)’) a(w Tu) 6(w z.)'z) a("V rzz
( > = )dxaﬁzdz +( P > = ]dxdydz+ (3.25)

Rla)
L

The net heat flux into the control volume is due to volumetric heating such as absorption
or emission of radiation across the surface due to temperature gradients as a result of

thermal conduction. We define ¢ as the rate of volumetric heat addition per unit mass.
Since the mass of the moving fluid element is pdxdydz then,

{Volumetric heating

of the element }= padxdydz

Heat transferred by thermal conduction into the moving fluid element across face adheis

e

Therefore the net heat transferred in the x — direction into the fluid element by thermal

conduction is.
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. (. . %4 _ 9,
{qx (qx o )dx]dydz— . dxdydz (3.26a)

Similarly, the net heat transferred in the y and z— directions are respectively,

- a . a .
_q'y —(qy +§y—yJadexdz = —% dxdyds (3.26b)
B . .

q. - (é, + gq-i)dy]dxdz = —gq-‘-dxdydz (3.26¢)
i oz oz

Summing the resulting terms in equations 3.26a, 3.26b and 3.26c¢ results in;

Heating of the fluid element} _ (o4, 04, &g,
{ by thermal conduction =l T dy 5 bydz
The net heat flux in the fluid element in equation 3.24 is;
. (6q, 04, &
B= - ==+ +—% | |dxdydz 3.27
[pq ( x oy e dy (3.27)

Heat transfer by thermal conduction is proportional to the local temperature gradient

hence:

. oT . or . oT
q, =—'k'5x— s q, =-ka, and q, =-k52—, (328)

where £ is the thermal conductivity. Substituting respective terms of equation 3.28 into

3.27, we have;
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. of,or\ of(,ory of,or

The total energy of a moving fluid per unit mass is the sum of its internal energy per unit

mass, e, and its kinetic energy per unit mass, V2 /2. Hence, the total energy per unit mass
2

is (e + Yz—) Since a moving fluid element is followed, the time-rate-of-change of energy

per unit mass is given by the substantial derivative. The mass of the fluid element is

pdxdydz , hence we obtain ‘4’ in equation 3.24 as;

D vV
A=p—|e+— |dx 3.30
th[e 2) dydz (3.30)

The final form of the energy equation is obtained by substituting equation 3.25, 3.29, and

3.30 into equation 3.24 to get:

p_l_).(e+Z_i)=pq+.2(ké£)+_a_(k_a_]:_)+_2(kgz)_2(_u£2_
Dt 2 x\ &) oyl o) &\ & ox
op) _owp) , our) , ur,) oz, obr,) obr,)
oy Oz ox oy 0z Ox dy

6(vr,y)+ dwr,,) N a(w"n)+ owr,,) +of -V
0z ox % 0z

+ (3.31)

The momentum of the fluid element in the x, y and z directions are obtained respectively

as;
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2 1 o, (3.32)

Integrating each of the equations in 3.32 with respect to u, v and w respectively yields:

Du*/2  ouP our, Outr, Out
p = +

+ + = +
Di o e Ty T Y

Dv2/2__avP+6vrw+6vrw+6vrzy
Dt vy ox &y &z

+ pvf, (3.33)

Dw*/2  owP owr, ©Owr, odwr,
P == + + +

+
Dt = Tm Ty &

Adding the equations in 3.33 and noting that #* +v* + w? =¥V we obtained;

w
Dt ox Oy Ox

0 0 Ov 0
Ly (T (Pl ), Os 4+ +8er2 +p(ufx+vf +wfz)
x oy Oz ox Oy 0z d

DV/2  oP oP oP (61’ ot,, araJ
= u + +

(3.34)

Subtracting equation 3.34 from 3.31 and noting that /f V= p(ufx +vf, + wfz) yield;

De . of(,0Ty é(,0T) o{,oT Ou ov ow
p—=pg+—k—|+—|bk—|+—|bk— |- p| —+—+—
D¢ ox\ ox) oy\ 9oy ) oz\ oz ox oy Oz
Ld
¥ oz

(3.35)
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Equation 3.35 is the energy equation in terms of internal energy (e). This is the non-
conservative form of the energy equation. Substituting respective terms in equation 3.22

into 3.35 yields the energy equation in terms of the flow-field variables as follows:

De ., of(,0T)y o(,0Ty o(,0T
p—=pj+—|k— |+—k— [+—| k— |-
Dt ox\ Ox) oy\ oy) odz\ oz

2
p(éﬁ+.a_”+iw.]+ %+%+%ﬂ) ; (3.36)
z

2] 2] (2] (22 (22 2]

The energy equation in the conservation form can be obtained by considering the term in

the left hand side of equation 3.36. The definition of substantial derivative implies that:

D ~
pF‘; = p%‘:— + pV Ve (3.37)
However,

o pa o

or (3.38)
de _0lpe) _,0p
ot ot ot

From the vector identity concerning the divergence of the product of a scalar and a

vector,
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V. (peV)z ev- (pl;:)+ pI7'- Ve
or (3.39)

pI;'-Ve=V-(peI7)—eV-(pﬁ)

Substituting 3.38 and 3.39 into equation 3.37 results in;

p-fi:@-a(’?f—)—e[%+v-(pr7)]+v-(pel7) (3.40)

The term in squared brackets in equation 3.40 is zero, from the continuity equation,

hence equation 3.40 becomes;

De d(0e) N
LTV - (pe7) (341)

Substituting 3.40 into 3.36 yields;

aT(pte)+V-(pel7)=pq+§x—(k%)+

(kéi},i[kﬂ)_
oy ) oz\ o0z

Pl

(3.42)

ox Oy Oz
y[Z(gu-) +2[QV—J +2(—61J +(%+-a—v] +(§3+@) +(@+@) ]
ox dy oz oy Oox 0z Ox 0z Oy

Equation 3.42 is the conservation form of the energy equation, written in terms of

ou oy an (6u v 6w)2+

internal energy.

In terms of total energy, equation 3.41 can be written as;
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D(szi) ) y? y?

Substituting 3.43 into the left hand side of equation 3.31 yields;

g[p(e+§]]+v.[p(e+.§)ﬁ]=m+§(kg)+§(kgj+
2,20 2ke) o) _oop), o), ofur,.) , ofur,) 44

2\"6z) o oy oz ox 3y Bz

a(VTxy)+ a(vr}’)’)_}_ a(vrzy)+ a(Wsz) + a(wr}’l)+ a(M}Tzz)
o &y oz ox EY bz

]

+pf-V

Equation 3.44 is the conservation form of the energy equation written in terms of total

energy.

Substituting respective terms of equation 3.22 into equation 3.44 we obtained;

0 y? V:\s|_ .. o(,0T) o(,orT
5[p(e+—é——)]+V[p(e+—5—]V:|=pq+5;(k—67)+5y-(k-é)—))+

2 (,,zz)_ oup) _op) _3lwp) , ﬁ(gg Lo, @]z N
Oz\ 0Oz Ox oy 0z ox Oy Oz

[(a::)’ (av)z (aw)2 (au 6v)2 (6u 6w)2 (6v awn
H2A— +2d—| +2d— | +H{—+— | +H{—+— | +| —+—1 |+
ox Oy 0z oy Ox 0z Ox 0z oy

oV

This simplifies to;
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g[p(e+gi)]+v.[p(e+gi)ﬁ]=pq+§(kg)+%(k%§)+

_6_ ?ﬂ _a(up)_a(vp)_a(w,)) : -
az(kaz) O Y o +u®+pof -V

(3.45)

Where,
[(au)’ (asz (6w)2 (8u 8v)2 (8u 6w)2 (6v aw)zJ ou o aw)2
O=12l— | +2—1} +2}— ) +|—+—| +|—+— | +|—+—| [+ —+—+—
ox % & y & & & &z Oy x oy o

The internal energy of the incompressible flows, 3.45 simplifies to;

Oe Oe Oe Oe o*'T 8T o'r
—tUu—+v—+w—|= —+——+— [+ 4D
o0 ox oy oz ox° oy° oz

Where de=c,0T and ¢, =c, for incompressible flows, the generalized thermal energy

equation is obtained as;

or or or or o’T o*T o’T
PC | —+u—+v—+w =kl —5+—5+=5
ox° oy Oz

or 46
a o & oz )“@ (3.40)

3.5 Conservation of Chemical Species Concentration

If the viscous fluid consists of a binary mixture in which there are species concentration
gradients (Figure 2.4), there will be relative transport of the species, and species
conservation must be satisfied at each point in the fluid. The pertinent form of the
conservation equation may be obtained by identifying the processes that affect the

transport and generation of species A for a differential control volume in the fluid.
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MA,advy+6y MA.dif,}'+a}’

MA,adv,x I ay MA,adv,x+ax
—_—
e
M aairx M 4 a5 xvox
I I ox
XYy My M 4ay.y

Figure 3.5 Species conservation in two-dimensional flow of a viscous fluid

Consider the control volume of Figure 3.5 where Species A may be transported by
advection (with the mean velocity of the mixture) and by diffusion (relative to the mean
motion) in each of the coordinate directions. The concentration may also be affected by

chemical reactions, and the rate at which the mass of species A is generated per unit

volume due to such reactions is designated by ».. The net rate at which species A enters

the control volume due to advection in the x-direction is;
M taive~ M agiresae = 0 u)— [(pAu)+ -a%"—i)axJay = a—(%@axay (3.47)
x

Similarly, multiplying both sides of the Fick’s law by the molecular weight M, (kg/mol)
of species A to evaluate the diffusion flux, the ner rate at which species A enters the

control volume due to diffusion in the x-direction is:
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. . 0 0 )
M aadif =~ M agiprvax = (— D, -£—A—)6y - l:(— Dy —EA—) + E(— D, Pu ax):iay

ox B ox
0 0P 4
=2\ D, 4 |5
5x[ “* 6x) ¥

(3.48)

Expressions similar to equations 3.47 and 3.48 may be formulated for the y-direction.
Referring to Figure 3.5, the species conservation requirement is
M 4oavx— M gaaviox+ M gadvy— M 4.aavrop + M 46i x—
. . . . (3.49)
M saipsrox+ M aairy— M agiysvop— M aa =0
Substituting from equations 3.47 and 3.48, as well as from similar forms for the y-

direction, it follows that,

6(pAu)+3(PAV)=£(D 2&}& . %4\, (3.50)
o vy axl “a) " '

A more useful form of this equation may be obtained by expanding the terms on the left-
hand side of (3.50). Substituting from the overall continuity equation for an

incompressible fluid reduces equation 3.50 to:

u%—+v-%=—g(DAB ap"')+i D, %4 +;7A
Ox oy ox Ox oy oy

or in Molar form to:

ocC ocC 0 oC 0 oc .
u axA +V‘gA='a—x(DAB-EA)+By—[DAB——4—J+NA (351)

where C is the concentration, D is the molecular diffusivity and N 4 is the rate at which

the species A is generated/destructed per unit volume.
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3.6 MHD Boundary Layer Flow past an Inclined Plate with Viscous Dissipation

The differential equations governing the flow of ferrofluid over inclined surfaces are
modelled using the Navier — Stokes equations. The modelled equations are used to solve
a problem commonly encountered in industry. Suitable similarity variables have been
employed to reduce the partial differential equations to nonlinear higher order ordinary
differential equations. The resulting equations are solved numerically and results
presented graphically. A parametric analysis is conducted to examine the influence of
various parameters on the velocity, temperature and concentration of the ferrofluid in the
boundary layer. The plate was inclined at 6° for the study, however to analyse the effect
of inclination, angle used were 0°, 6° , 10°,15°,30°, 60° and 90°. Other important
parameters of interest such as the skin-friction coefficient, Nusselt number and the
Sherwood numbers have been investigated. The values of a specific parameter of interest
was increased whilst others were kept constant to study the effect of the parameter on the
skin friction coefficient, rate of heat transfer, temperature of plate and rate of mass

transfer.

3.6.1 The Mathematical Model Generation

An incompressible ferrofluid such as polyethylene oxide solution is assumed to flow
uniformly over a heated plate with applied transverse magnetic field. A Cartesian
coordinate system is adopted with the origin fixed in such a way that the x — axis is
taken along the direction of the flat surface and the y —axis measured normal to the
surface of the plate. A uniform heat is applied in the direction of the y —axis under the
plate. The flow is induced by the combined effect of convection in the boundary layer

and the angle of inclination. It is assumed that the fluid flows continuously over the flat
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plate with a uniform thickness h. In addition, the effect of viscous dissipation and
chemical reaction are incorporated. The plate is then tilted to variable angles o; ,

i=1,2,3,...7 to study the effect of inclination of the flow on the flat plate (Fig. 3.6).

Fig. 3.6: Ferrofluid flowing over an Inclined Plate

The differential equations governing the flow are the continuity, momentum, energy and

concentration equations along with appropriate boundary conditions.

3.6.2 Modeling the Continuity Equation

For two dimensional incompressible steady flows, equation 3.8 simplifies to;

av —
5x__,__a;_() (3.52)
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3.6.3 Modelling the Momentum Equation for the problem

For incompressible viscous flow, the term V. U vanishes, thus equation 3.24 reduces to;

DU

—— =-VP+uVU+
>y H s
or (3.53)
p% = pfy —VP+uvViU

In this case, the body force pf; is that due to gravity, hence we have 3.53 transformed

into:

oU aU aU ou oP OP 0P
ol —+— -pg——+—+— 1|+
ot ax ay oz & dy oz
62U+62U+62U
ﬂ ax2 ayZ 622

For two dimensional incompressible steady flows we have;

oUu oU oP oP o’U U
) (A2

2 2
Since the fluid is flowing along the direction of the x axis, o << 2}—) nd 6—2 0 l;
& o ox ay

2

hence equation 3.54 becomes; _GE +6_U - —a—P +u o (2]
ox Oy ox oy

Since the density of the mixture is a function of its temperature and mass fraction of its

species, it can be expanded using a Taylor's series near the vicinity of a reference point

(T, Cx) of a single chemically reacting element given by:
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op op
= +2P(r-T)+L(C-C
. pw+aT( °°)+ac(c )

where p_, is the density at the reference point. By definition, the coefficient of thermal

expansion S and composition coefficient of volume expansion 8" are respectively:

1 (op 1 {op
= ———] — d = e —
s, el

and neglecting the higher order terms in the Taylor's series expansion yields:
p=p.~pbr(T~T.)-p.p(C-C.) (3.55)

which is valid only if 8,(T'-7,) and 8.(C-C,) <<1

Substituting equation 3.55 into the momentum equation results in;

o, ou)__ _ N oA P
"ax”ay) P8+ Pu8l (T -T.)+p.gB.(C-C.) ax+u(ax2+ay2)(3-56)

Dividing equation 3.57 by p reduces to:

Ou Ou Pw 13p u(d*u 0%u

— v —=-""g+4 T-T,)+ C-C,)———+5 —+— 3.57
uax vay p g gﬂT( oo) gﬂc( oo) p ax p(axz ayz ( )

op §

Given that; -51’- = —gci =—p.g (3.58)
Substituting equation 3.58 into 3.57 results in;

ou ou p 1 o’u J%u
U—+v—=-"g+ B (T-T,)+ C-C )+—p g+ —+—

A Vil A2 - (T-T.)+gpA.(C-C.) a8 (axz ayz)
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ou 0 o*u 8*
e AT CHA M LESEEY

. ... 0w ?u
Furthermore, in a boundary layer approximation, —- <<—,
o oy

Therefore the governing momentum equation becomes:

a 2

u—li+va—u=ua—l;—+g,BT(T—Tw)+gﬂC(C—Cw), (3.59)
& o

where v is the kinematic viscosity and g is gravitational acceleration.

For a porous inclined surface in the presence of transverse magnetic field, we modify the

momentum equation to cater for the inclination Lorenz force components to obtain;

2 2
u%xu-+v%yu=v%§+gﬂT(T—T,,)sina+gﬂc(C—Cm)sina—o?;" u—i—(u—Um) (3.60)

3.6.4 Modelling the Energy Equation for the problem
The generalized form of the energy equation was derived in (3.46). For two dimensional

flow;

oT  oT ar] (aZT oT
v =k +—

o +u5x—+ gy‘ axz ayz)-l"lud)

where @ = (—@2)2 + @ 2 + 6_u+@ 2 ——2— %+@ 2is the viscous dissipative term
=) 5 oy x| 3|k o P '

For a steady flow, %f— =0, hence, (3.60) reduces to:
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2 2
pC[ or , aT]_k(a T, oT

.61
SRt il b~ ay2J+/@ (3.61)

In boundary layer approximations, it is often observed that generally g— << % v<<u
29

~0 and _Q_Z<<6 T,
ox?

o’

u

SdEs

hence

|

Hence the boundary layer form of the viscous dissipative term simplifies to: ® = (6u)

2 2
Therefore pC, [u g: + vﬂ] k or + ﬂ(@)

Or u£+v£= o
ox

%

2
k
+_U_(@) ,where @ =—— and p=uvp
c e,

14

The energy equation thus becomes:

(3.62)

or  oT _ 62T+£(@)2
x Y ¢, \

where v is the kinematic viscosity, @ is the thermal diffusivity and c, is the specific

heat at constant pressure. For steady two dimensional incompressible viscous flows over
a heated porous plate in the presence of magnetic field, the energy equation is modified

to incorporate the heat generation terms as;

2 2 2
29T . a—T—ao 9 {+—V-(§£) +Y u2+GB° u? + 2 (T-1) (3.63)
ox oy o ¢, oy kc‘,J P, pe,
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where B, is a constant magnetic field strength and Q, is the energy generation

parameter.

3.6.5 Modelling the Concentration Equation for the Problem

The generalized concentration equation was derived from equation 3.51 as:

494, oC, a(DMaCA)+—a—(DABaCA)+J§u,

y—==—
Ox oy Ox ox oy oy
2 2
In boundary layer approximation, P << ? , so the equation reduces to:
x
2 .
ua—c+va—C=Da?+NA (3.64)
ox Oy oy

Assuming that the chemical reaction leads to the destruction of species A, then the molar

destruction rate can be defined as

Na=—C" where C=C-C.,, (3.65)

The index n represents the order of the reaction, y is the plate surface rate of chemical

reaction. Substituting (3.65) into (3.64) gives the concentration equation as;

2
u§§_+v_a_€=Da c

& oy Y

-y(c-cC.)y (3.66)

For first order chemical reaction n = 1, hence equation 3.64 becomes;

2
oc, oc _ o'

u— " 5 -y(c-c,) (3.67)
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3.6.6 The Boundary Conditions of the Model

The above governing equations generally require initial and boundary conditions to
enable a solution. The boundary of the domain may either be solid or fluid and the
computation domain comprises usually only a part of the whole flow field. For mass and
momentum equations all velocity components are specified, for the energy and
concentration equations, the values of the dependent variables such as the temperature
and the concentration respectively at the wall and upstream are also specified. As the
surface is a solid wall, no-slip condition is specified on the boundary.

The vertical and horizontal components of velocity at the wall are set to zero. The

concentration at the wall is set to be C,,. It is also assumed that the plate is heated by

convection from a hot fluid at temperature 7, which provides a heat transfer coefficient,

h, and the plate generates heat Q),. Hence the wall surface velocity, temperature and

concentration are;

u(%,0) =0, v(x,0)=0,—k %T = h,[T, -T(x,0)] andC(x,0)=C, (3.68)

T INIWVERSILT Y FOR IDESWEIL  OPMEINTDT S TUOIDIES

The free stream velocity, temperature and concentration are as follows

c “. u(x,0) > U, T(x,0)>T,, C(x,0)>C, (3.69)

3.7 The Numerical Procedure
Introducing the following non-dimensional variables, the partial differential equations are

transformed to dimensionless equations;

1

7= ( ),w \fmf(n),ﬁ(ﬂ)—

c-c,
¢( )-C < (3.70)
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where n,y, 49(77), and ¢(17) are the dimensionless independent variable, stream function,

temperature and concentration respectively.

The stream function and the velocity components relate in the usual way as;

u=5_l// and v=—a—w

oy x

on oy on ox

Using chain rule where; u = oy on and v = _ Oy on

oy , on (U . )
Thus, — = \/(xU and <L = ]| —=

on N/ )f'(m) o
Substituting, we obtained;

u =%yl/i = ,/vaxf'(n)-\/% =U,f'(n)

o] -1 ) 1) -1 - o

as velocity components in the x and y directions.

3.7.1 Continuity of Flow

Differentiating u with respect to x leads to;

ou_y o 1) (Ve S 1.
-é;—Umf(n( 2)y(v)x =-5= n-f"(n)

Also, differentiating v with respect to y leads to;
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%=%‘/—[\/'f(ﬂ)+ﬂf’7)\/— rf()]——_”f(”)

Substituting ou and o into the continuity equation satisfies it identically. Thus, the

Y
flow represents the case of a fluid which can be analyzed using the chosen similarity

variables.

3.7.2 Dimensionless Momentum Equation
The terms in the momentum equation are transformed and then substituted into equation

3.60 as follows;

v o)A )| =L ) ) S vl

Ox

o'u UX _,
and > vxf ()
Also
Lo LT 10 e LU )
2t by s s [ =2 10 505 10) )

U’ Ul
Vg =y )= 1), L w-U.) =T U ()~ VL),

aB2 0132
— oU
p > o)

Substituting the respective terms into the momentum equation 3.60 results in;
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s o ) 1)+ 2% 0 10) 70)-28= - 1) 1) =
X 2 x 2 x

2
2 2
(24

Y r(n)+ g (T-T.)sina + g (C~C.)sina -2
W P

Uwf'(n)—%Uwf'(n)+%Uw

Simplifying and multiplying by(‘J—’xz- yields;

-

-f”(n)+%f'(n)~f"(77)+ gﬂgy(T-Tm)sina +gf' (—jx?(C—Cm)Sma ~

©

G.71)
oB? x v x v x
o X YV X Y* _o
> Umf(n) kUwf(n)+kUw
2
But, G":gél)i(l%:_@,Gc=gﬁCx(C‘;_C‘”),§= v ,M=—OE-9£
U°° U°° KUuo ono

Substituting respective terms into equation 3.71 yields the transformed momentum

equation as;
f’”+%f-f"+Gr-¢9-sina+Gc~¢-sina—(5+M)f'+6=O (3.72)

3.7.3 Dimensionless Energy Equation
The various terms of the energy equation are transformed into ordinary differential

equations as follows;
T=T,+6(n\T, -T.,)
Differentiating with respect to x using the chain rule yields;

or 1 U, % 1 y U, ,
=T =T )y == x2.0(n)\===(T" -T ).Z. |Z=.
5 2( W =T.)-y ,/ X () 2(Tw %) . ,/ 6'(n)
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,,%xLUwfr(,,).[_%(Tw_Tm)g.\/%.e'(n)} 1Y, _1)n-1lr)00)

Also, differentiating T with respect to y results in;

Z_(, T)\/‘ L@, - T)\/-\/_G”(n) (T, -T.)- ”0"(77)

Thus,

L b 0 1006 1) (L 001 e 10)- 10 6. -0

%}T;=%U7 n-(T, 'Tm)f'(ﬂ)'g’(ﬂ)"z"f'(Tw -T,)- f(n)-6'(n)

2

(o))

S

U, . U, 1 "
=a-(T,-T.) —=-0"n)=== (. -T.)-0"n)

4

where o =v/Pr
U
=51, -1.) %= 17 (0)

U2

o0

Sincc, Cp = m

xwU,

O

kN(T, -T.,)

L . -(Uwf'(ﬂ))2= UL, ¢, =
c k-c

p 4 P

kNT
|4 u2= v ( T)vUZfIZ( ) NU
K-c k-c xwU. k

p p ®

(T, -T.) £ (@)

2 o2 0, 0,
"U T-T T,-T.)0
] ) =S (s ( L)= ( )
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Substituting the respective terms from into (3.63) yields;

T PR 2 O T S P )3 2 (L T ) 6')
<o L 1) 0 Belr, - SN T S B UL ) 2, T )

. xPr .
Simplifying and multiplying through by —————— results in;
plifying plying through by =77
__1_ g .0 —_ 0" . . "2 . . 12 0B2x U: 2 Qo xPr
5 Pr-7(1)-6'(7)=6"(n)+ Ec -Pr- f7*()+ N -Pr- £ () + PR e ()+ . U, 6(n)
2, 2

But, M=SB_01’EC =——U—°‘;,bx=Uw,Q=£,Pr=2

pU., c,(T,-T,) pe,U, a
Substituting respective terms yields;
9"+%-Pr-f-0’+Q-Pr-9+Ec-Pr-f"2 +N-Pr f? +Pr-Ec-Mf'* =0 (3.73)

3.7.4 Dimensionless Concentration Equation

The terms of the concentration equation 3.67 are transformed using the selected

._Cw

similarity variables. From the dimensionless quantity ¢(77) = c—c

C=¢(m(C, -C.)+C,

Differentiating with respect to x using the chain rule gives:

Loty [L) v €. -c)=-12 [P )40
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Multiplying u by % results in;

?|R
| —

%F(C -C,)U.f' ¢(n)————77(C ~C.)f"¢'(n)

Similarly, differentiating with respect to y using the chain rule, we have;

8C Uw '
e [E)'(C”'C“’)'¢

Multiplying v by %yg results in;

oC

2l ) f(nl,/ (c,-C.)

v—=——-77(C C)f(n)¢(n)———(C -C.)f(r)n)

%4

C-C, =¢m(C,-C,),and (C-C,)=y-(C, -C.) ¢()

Substituting respective terms into equation 3.67 leads to:

1U,

——Z=.q.(C, -C.)f' ¢(77)+——77(C ~C.)f"(n)-¢'(n)-

2

;%«:w -C.)ftWn)=D-(C, ~C.) 2= 4 (0)-7-(C. ~C.) ¢

Simplifying, ———(C -C.)f(npn)=D-(C, C)
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o)+ LY XY b =
S+ 1 1)~ L g =0

Ua
#"(n)+3Se- £ (0)- ¢ ()~ ASe() =0 ¢.74)
where Sc:% and ﬂ:U—}/':

Hence equation 3.74 is the required dimensionless form of the concentration equation.

3.7.5 Dimensionless Boundary Conditions

The boundary conditions are transformed as follows.

Given that, #(x,0)=0, from (3.73), u=U,..f"(7) and 7 = 2 / u

';' .
Wheny=0, n=0, =U,_f'(0)=0, = f(0)=0
. 1 WU , ]
Given that, v(x,0)= 0,and v= 3 ———?—[m” (77)— f (77)] as in (3.74);
b

When y =0, = 17 =0 and v = 0, substituting into (3.33) we have;

el /0)-fO), = r@)=0

0=1
2V x

Considering the third boundary condition given as — K‘% =h, [T =T (x,O)]

L o (r.-1.)| 20t
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Multiply both sides of (3.85) by - k and equating the results to &, [T = T(x,O)J;

—k%— = —k(T, —Tw)-\[—U;'—"--B'(n)

~k(T, -T,)- \/% -0'(n) = h, [T, - T(x,0)]

0’(7]):-}% E.M.—_Tfj ﬁH’(ﬂ):%\/—%.(T—Tw)—(Tw—Tw)

v, (,-1,)° T, -T,

w (T-T.) (T,-T.)
v, T,-T, T,-T,

h ‘ -
But Bi, =L (-—%J and 6(0)= (r-T.) ,
k \\u, T, -T,

=.6'(0)= B, [6(0)-1]

b

h
. 0'(m)=-L
()=~

Transforming the fourth boundary condition, C (x,O) =C,;

0

y =0,= 7 =0 and substituting into ¢(n) = C we have;

w o

c,(x0)-Cc, C,-C
w Ld = w o0 - 1 ... — 1
c,-¢c, c,-C, 70

#(0) =

oo

Transforming the fifth boundary condition, u(x, oo) =U_, asy >w0,=>n—>»©

Substituting into u = U, f"(n), U, =U, f(0) = f'(x0)= (EJ& =1, .. f'(o)=1

L]
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Transforming the sixth boundary condition, T{x,®)=1T,, using8(;) = ; '7; .

Wheny >0,=>n7—>w and T —>7T_, :)6(00):?"—;” =0, ..60(0)=0.

w

-C

0 .

c,-C,’°

Transforming the seventh boundary condition, C(x, oo) =C,, usinggd(n) =

@«

oo_Coo
C,-C

w o0

Asy—>o,=>n—->o and C->C, = ¢(xo)=

=0 .. ¢(0)=0

It is noticed that the local parameters B,,Gr,Gc and B are all functions of x. However

in order to have similarity solution all parameters must be constant and we therefore

-1

make the following assumptions hf = ax% B = bx!, fB-=cx" and y= dx™" where a,

b, ¢ and d are constants.
At the surface of the plate 7 =0, u=0, v=0,C=C, and T =T,
Thus, /'(0)=0, 7(0)=0, #(0)=1, 6(0)=1,
As 7>, f(0)=1, 80)=0, §(=)=0 (3.75)

3.7.6 Reduction of Order
The third order nonlinear ordinary differential equations are reduced to a system of first

order ordinary differential equations to enable direct solutions;

Let x, = f(n), x, = f'(n) and x;, = f"(77).
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=x =f'(N)=x,, x, = f(n)=x;andx; = (7).
Let y, =6(n) andy, =6'(n) =y =0'(M)=y,, y, =6"(1).

Let z, =¢(n)and z, =¢'(1) =z, =¢'(n) =z, andz; =¢"(77) .

Hence the required first order system is;

X5 =—%x, -x, —Gr-y, sinfa) —Ge- z, si{la) + (6 + M) -x, =6

, 3.76
= ( )

Vs =—-;—Pr-x1 -y,—Q-Pry, —Ec-Pr-x} ~N-Pr-x2—PrEc-M-x;
z=12,

, 1
z, =——2—Sc-x1 -z2,+[f-Sc-z

The corresponding boundary conditions are obtained as;

When 7=0, u=0,v=0,C=C,and T =T,
x%,(0)=0,x,(0)=0, z,(0)=1, y,(0)=Bi-(»(0)-1), x,(0) =5, ,(0)=s,, 2,(0) =5,

As >, x,(0)=1, y,(=)=0, z,(=)=0 (3.77)

This first order system of differential equations 3.76 along with the boundary conditions
3.77 shall be coded using the 4™ order Runge-Kutta algorithm with the shooting method

to obtain relevant results for analysis in the next chapter.
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CHAPTER FOUR

4.0 RESULTS AND DISCUSSIONS

4.1 Introduction

The transformed dimensionless nonlinear ordinary differential equations with boundary
conditions are solved with Maple 16 using the fourth-order Runge-Kutta method.
Numerical results are tabulated increasing values of various controlling parameters and
discussed. Graphical illustrations of the results have also been given for velocity,

temperature and concentration profiles in the boundary layer region.

4.2 Numerical Results and Discussions

The transformed third order ordinary differential equations were reduced to a system of
first order ordinary differential equations and simulated under similar conditions to
previously published work of Makinde and Olanrewaju (2010). A comparison of results
showed an excellent agreement validating the procedure,(see Table 4.1). Similar
observations were made when compared with Makinde (2010) in Table 4.2, validating

the procedure.

Table 4.1: Comparison of f"(0), —6'(0) and &(0) for values of Bi, Gr and Pr when
p=Q=N=Ec=6=M=0and a=7/2

Makinde and Olanrewaju (2010)

Present Results

Bi_ Gr  Pr f'©0 -0 6(0) S"(0) -6'0) 6(0)
01 01 072 0.36881 0.07507 0.24922 0.368816  0.075077 0.249228
10 01 072 0.44036 0.23750 0.76249  0.440365 0.237506 0.762494

100 01 0.72 0.46792 0.30559 0.96944  0.467928 0.305596 0.969440

01 05 072 0.49702 0.07613 0.23862  0.497022 0.076138 0.238623
01 10 072 0.63200 0.07704 0.22955  0.632007 0.077045 0.229552
01 01 3.00 0.34939 0.08304 0.16954  0.349397  0.083046 0.169540
01 01 710 0.34270 0.08672 0.13278  0.342705 0.086721 0.132788
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Table 4.2: Comparison of /"(0), —&'(0) , 6(0) and — ¢'(0) for values of Bi, Gr, Ge,
Prand Scwhen f=Q=N=Ec=6=0 and a=7/2.

Makinde (2010) Present Results
Bi Gr Gc Ha Pr Sc f"(0) —6'(0) —¢'(0) f"(0) —6'00) —¢'(0)
0.1 0.1 0.1 0.1 0.72 0.62 -0.40227 0.07864 0.33374 -0.40227 0.07864 0.33374
1.0 0.1 0.1 0.1 0.72 0.62 -0.35214 0.27315 0.34103 -0.35214 0.27315 0.34103
0.1 05 0.1 0.1 0.72 0.62 -0.32221 0.07917 0.34513 -0.32221 0.07917 0.34513
0.1 1.0 0.1 0.1 0.72 0.62 -0.23125 0.07969 0.35667 -0.23125 0.07969 0.35667
0.1 0.1 05 0.1 0.72 0.62 -0.02641 0.08071 0.38140 -0.02641 0.08071 0.38140
0.1 01 10 0.1 072 0.62 -0.37992 0.08204 0.41767 -0.37992 0.08204 0.41767
0.1 01 0.1 05 0.72 0.62 -2.21793 0.06616 0.18066 -2.21793 0.06616 0.18066
0.1 0.1 0.1 1.0 0.72 0.62 -0.43079 0.08194 0.33252 -0.43079 0.08194 0.33252
0.1 0.1 0.1 0.1 1.00 0.62 -0.42123 0.09335 0.33056 -0.42123 0.09335 0.33056
0.1 01 0.1 0.1 7.10 0.62 -0.44170 0.07848 0.38446 -0.44170 0.07848 0.38446
0.1 0.1 0.1 0.1 0.72 0.78 -0.45309 0.07792 0.79815 -0.45309 0.07792 0.79815

The effects of increasing parameter on the skin friction coefficient, Nusselt number and
Sherwood numbers as well as plate surface temperature are numerically displayed in
Tables 4.3 and 4.4. From Table 4.3, it is observed that increasing the Biot number (Bi)
from 0.1 to 1.0 resulted in an increase in the skin friction coefficient from 2.119394 to
2.163412 but decreased the Nusselt from - 0.048412 to - 0.154048 and Sherwood
numbers from - 0.429002 to - 0.430830. Thus, increasing the Biot number implies an
increase in‘the heat transfer coefficient which enhances buoyancy in the boundary layer.
Agitated fluid molecules on the surface of the plate increased the friction coefficient
thereby increasing the plate surface temperature from 0.515880 to 0.845952 as shown in

Table 4.3.

It is also observed that increasing the angle of inclination from 0° to 90° has a dual
effect of decreasing or increasing the temperature and skin friction coefficient in the
boundary layer. From Table 4.3, it can be observed that increasing the angle of

inclination from 0° to 10° decrease the temperature of the plate from 0.518299 to
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0.515214 and above 10? caused an increase in the plate’s temperature from 0.515214 to
0.519434. However increased angle of inclination generally resulted in decreasing

Sherwood number from - 0.419191 to - 0.462569 as depicted in Table 4.3.

Table 4.3: Effect of Parameter Variations on Heat and Mass Transfer Rate for
Pr=0.72,Ec=0.02,Q0=0.1,Gr=3.2,Gc=3.5and Sc = 0.6

Bi & M B8 N O JS(0) —6'(0) 80 —4'(0)

01 #/30 05 01 0.04 40 2119394 0.048412 0.515880  0.429002
05 7/30 05 01 0.04 40 2150929 0.123875 0.752251  0.430313
1.0 /30 05 01 004 40 2163412 0.154048 0.845952  0.430830
0.1 00 05 01 004 40 1901360 0.048170 0.518299  0.419191
01 #/30 05 0.1 0.04 4.0 2119394 0.048412 0.515880  0.429002
01 =/18 05 01 0.04 40 2262447 0.048479 0.515214  0.435235
01 m7/12 05 0.1 0.04 4.0 2437863  0.048475 0.515249  0.442676
01 7x/6 05 01 004 4.0 2931966  0.048057 0.519434  0.462569
01 #/3 05 01 004 4.0 2931966  0.048057 0.519434  0.462569
01 7x/2 05 01 004 4.0 2931920 0.048057 0.519434  0.462569
01 7/30 10 01 0.04 40 2017248 0.043801 0.561993  0.417651
01 #~/30 15 01 0.04 40 1930576 0.038817 0.611826  0.407795
01 x#/30 25 01 0.04 40 1790817  0.027950 0.720504  0.391478
01 #~/30 05 02 0.04 40 2116495 0.048404 0.515962  0.486312
01 x/30 05 03 0.04 40 2113918 0.048397 0.516034  0.538941
01 7/30 05 04 004 40 2111599  0.048390 0.516610 0.587781
01 #/30 05 01 0.16 4.0 2212897 -0.009115 1.091146  0.434583
01 x/30 05 01 0.20 4.0 2244744 -0.028719 1.287192  0.436453
01 7/30 05 0.1 024 40 2276940 -0.048544 1.485442  0.438329
01 x/30 05 01 0.04 45 2236181 0.048301 0.516986  0.431744
01 /30 05 01 0.04 50 2346934 0.048192 0.518082  0.434132
01 #~/30 05 01 0.04 6.0 2553597 0.047978 0.520217 0.438119

The effect of variation of angle of inclination on the skin friction coefficient is observed
in Table 4.3. Between 0° and 60° the skin friction increased from 1.901360 to
2.931966 and decreased from 2.931966 to 2.931920 for angles from 60° to 90° .
Increasing the magnetic field parameter from 1.0 to 2.5 caused a decrease in the skin

friction coefficient from 2.017248 to 1.790817 but increased the temperature of the plate
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from 0.561993 to 0.720504 and Sherwood number from - 0.417651 to - 0.391478. The
magnetic field produces a Lorenz force which retards the motion of the fluid and reduces
the buoyancy causes an in increased Nusselt number from -0.043801 to - 0.027950 and
Sherwood number from -0.462569 to -0.391478, resulting in an increase in the

temperature of the plate from 0.561993 to 0.720504 as shown in Table 4.3.

Table 4.4: Effect of Parameters Variation on Heat and Mass Transfer Rate for
Bi=01, a=7/30,M=0.5, #=0.1,N=3.2,and § = 4.

PP Ec S Gr_Gc_Q _ f"(0) -6'0 6(0) st AW)

072 002 06 32 35 010 2119394 0.048412 0.515880 0.429002
1.00 002 06 32 35 010 2121602 0.046576 0.534239 0.429005
360 002 06 32 35 010 2138888 0.031605 0.683949 0.429200
072 040 06 32 35 010 2.388417 -0.127549 2.275494 0.442892
072 080 06 32 35 010 2707231 -0.340511 4.405112 0.457972
072 100 06 3.2 35 010 2884466 -0.460915 5.609155 0.465809
072 0.02 12 32 35 010 2109251 0.048375 0.516246 0.584786
072 002 14 32 35 010 2106767 0.048366 0.516337 0.625958
072 002 16 3.2 35 010 2104554 0.048358 0.516416 0.663802
072 002 06 35 35 010 2126531 0.048416 0.515840 0.429368
072 002 06 40 35 0.10 2138421 0.048422 0515777 0.429978
072 002 06 7.0 35 010 2209685 0.048447 0.515534 0.433602
072 0.02 06 32 4.0 010 2139499 0.048427 0.515732 0.429808
072 002 06 32 45 010 2159590 0.048440 0.515595 0.430611
072 002 06 32 7.0 010 2259821 0.048492 0.515085 0.434581
072 002 06 32 35 020 2154505 0.025975 0.740251 0.430842
072 002 06 32 35 025 2184939 0.006484 0.935162 0.432413
072 002 06 3.2 3.5 030 2232745 -0.024196 1.241959 0.434847

Increasing the chemical reaction parameter from 0.2 to 0.4 caused a decrease in the skin
friction coefficient from 2.116495 to 2.111599 and the Sherwood number from
-0.486312 to -0.587781 but increased the Nusselt number from 0.048404 to 0.048390, as
in Table 4.3. As a result, the plate’s temperature increased from 0.515962 to 0.516610 due
to exothermic reaction and the shear stresses between fluid molecules and between fluid

molecules and the plate surface. Increasing the viscous dissipation parameter from 0.16
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to 6.24 caused an increase in the local skin friction coefficient from 2.212897 to
2.276940 and the local Nusselt number from 0.009115 to 0.048544, but decreases the
local Sherwood number from -0.434583 to -0.438329. Increasing the porosity parameter
from 4.5 to 6.0 increased the local skin friction coefficient from 2.236181 to 2.553597
and local Nusselt number from -0.048301 to -0.047978, but decreases the local
Sherwood number from -0.431744 to -0.438119. The parameters are observed to
decrease the local Sherwood number because both parameters enhance interaction
between molecules of the fluid and the plate surface increasing shear stress and

temperature of the plate as in Table: 4.3.

It is further observed that increasing the Prandtl number from 0.72 to 3.60 the skin
friction coefficient increased from 2.119394 to 2.138888, the Nusselt number from
-0.048412 to -0.031605, the plate’s temperature from 0.515880 to 0.683949 and the
Sherwood number from -0.429002 to -0.429200. Also increasing the Eckert number from
0.40 to 1.00, the skin friction coefficient increased from 2.388417 to 2.884466, the
Nusselt number from 0.127549 to 0.460915, the plate’s temperature from 2.275494 to

5.609155 and the Sherwood number decreased from -0.442892 to 0.465809.

However increasing the Schmidt number from 1.2 to 1.6 decreased the skin friction
coefficient from 2.109251 to 2.104554, the Sherwood number from -0.584786 to -
0.663802 and increased the Nusselt number from -0.048375 to -0.048358, the plate’s
temperature from 0.516246 to 0.516416. The increase in Schmidt number decreased the
local skin friction coefficient and the Sherwood number, thereby shrinking the
concentration boundary layer. However the increase in the Nusselt number thickens the

thermal boundary layer as depicted numerically in Table 4.4.
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Similarly, increasing the thermal Grashof number from 3.5 to 7.0 increased the skin
friction coefficient from 2.126531 to 2.209685, decreased the Nusselt number from
-0.048416 to -0.048447, the plate’s temperature from 0.515840 to 0.515534 and the

Sherwood number from -0.429368 to -0.433602 as in Table 4.4.

Furthermore, increasing the solutal Grashof number from 4.0 to 7.0 increased the skin
friction coefficient from 2.139499 to 2.259821, decreased the Nusselt number from -
0.048427 to -0.048492, the plate’s temperature from 0.515732 to 0.515085 and the
Sherwood number from -0.429808 to -0.434581. An increase in both Grashof numbers
improves buoyancy and convection which enable fluid molecules to efficiently move
away from the plate surface leading to reduction in temperature. However shear stresses
between the energetic molecules and the surface of the inclined plate accounts for the

increased skin friction coefficient.

In addition increasing the local heat generation parameter from 0.20 to 0.30 increased
the skin friction coefficient from 2.154505 to 2.232745, the Nusselt number from -
0.025975 to 0.024196, the temperature of the plate from 0.740251 to 1.241959 and

decreased the Sherwood number from -0.430842 to -0.434847 as shown in Table 4.4.

The increase in Schmidt number decreased the local skin friction coefficient and the
Sherwood number, thereby shrinking the concentration boundary layer. However the
increase in the Nusselt number thickens the thermal boundary layer as depicted

numerically in Table 4.4.
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4.3 Graphical Results and Discussions

4.3.1 Effects of Parameter Variation on Velocity Profiles

The effects of parameter variation on the velocity profile in the boundary layer are shown
below in Figures 4.1 - 4.10. It is observed in Figure 4.1 that increasing values of the
angle of inclination tend to sharply increase the velocity of the fluid within the boundary
layer. The effect of inclination enhanced the effect of gravity and buoyancy forces which
resulted in increased velocity in the boundary layer. Also a significant increase in
velocity is observed when the viscous dissipation, thermal Grashof, solutal Grashof, local
heat generation, Eckert number, Biot number and porosity parameters are increased as
depicted in Figures 4.2, 4.3, 4.4, 4.6, 4.7, 4.9 and 4.10 respectively. The increased
velocity is as a result of the inclination and buoyancy forces. It also facilitates efficient

transport and distribution of heat and mass.

It is also observed that increasing the Prandtl number and the magnetic parameter results
in decreased velocity in the boundary layer of the fluid as displayed in Figure 4.2 and 4.6
respectively. The decreased velocity that is observed from the increase of the magnetic

parameter resulted in the thickening of the thermal and concentration boundary layers.
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Figure 4.1: Effect of variation of angle of inclination () on velocity profile.
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Figure 4.2: Effect of variation of viscous dissipation parameter (N) on velocity

profile.
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Figure 4.3: Effect of variation of thermal Grashof number (Gr) on velocity profile.
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Figure 4.4: Effect of variation of solutal Grashof number (Gc¢) on velocity profile.

64




MTITINIWERSIT Y FOR IDESWEIT (OPMNEDNN T S TITLIIDIE S

www.udsspace.uds.edu.gh

M=05
£ 0000 AA;= ig
+.+++ M =25
’ Pr=0.72, Ec = 0.02, N=0.04, Sc = 0.6, Gr =32,
0-2 7 Ge =3.5,5=4.0,8 =01, Q=0.1, Bi = 0.1,
7] a=rn/30
D T ¥ Al L] v 1] v L) v 1
a 2 4 6 8 10
T

Figure 4.5: Effect of variation of Magnetic Parameter (M) on velocity profile.
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Figure 4.6: Effect of variation of Local heat source parameter (Q) on velocity

profile.
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Figure 4.7: Effect of variation of Eckert number (Ec) on velocity profile.
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Figure 4.8: Effect of variation of Schmidt number (Sc) on velocity profile.
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Figure 4.9: Effect of variation of Biot number (Bi) on velocity profile
1 -
0.8
1 ] | oo 6=45
...... 6§ =50
0.6 4 4 ++++ 0 = 6.0
£ T
0.4 - Pr=0.72, Ec = 0.02, N= 0.04, Sc = 0.6, Gr = 3.2,
| Gc=35M=05,=0.1,Q=0.1, a=~/30
0.2
-4
D v L} ¥ T T I ] 1
0 2 4 6 g 10
n
Figure 4.10: Effect of variation of Porosity (&) on velocity profile.
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4.3.2 Effects of Parameter Variation on Temperature Profiles

The effects of parameters variation on the temperature profile are shown in Figures 4.11 -
4.17. Increasing the angle of inclination causes a decrease in temperature as graphically
displayed in Figure 4.11. The temperature drop resulted from the increased velocity
which enhanced convection and heat dissipation. We also observed in Figure 4.12 that
increasing the value of the Prandtl number decreases the temperature in the boundary
layer. The combined effects of inclination and buoyancy forces significantly contributed
to the resultant decreased temperature in the boundary layer. It is also observed that
increasing the Eckert number, viscous dissipation parameter, Schmidt number, local heat
generation parameter and Biot number resulted in increased temperature as depicted in
Figures 4.12 — 4.17 respectively. In Figure 4.14 and 4.16, it is observed that increasing
both the viscous dissipation and the local heat generation parameters, significantly

increases the thickness of the thermal boundary layer.
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Figure 4.11: Effect of variation of angle of inclination () on Temperature profile.
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Figure 4.12: Effect of variation of Prandtl number (Pr) on Temperature profile.
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Figure 4.13: Effect of variation of Eckert number on Temperature profile.
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Figure 4.14: Effect of variation of viscous dissipation parameter (N) on
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Figure 4.15: Effect of variation of Schmidt number (Sc) on Temperature profile.
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Figure 4.17: Effect of variation of Biot number (Bi) on Temperature profile.
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4.3.3 Effects of Parameter Variation on Concentration Profiles

Figures 4.18 - 4.21 depict the effects of variation of parameters on the thickness of the
concentration boundary layer. A reduction in thickness of the concentration boundary
layer is observed upon increasing the angle of inclination, Schmidt number and Chemical
reaction parameter as displayed in Figures 4.18, 4.19 and 4.21 respectively. The decay of
the thickness of the concentration boundary layer is as a result of increased velocity and
molecular diffusion. The thinning of the concentration boundary layer indicates efficient
transport of mass of fluid. However we observed an increase in the concentration
boundary layer when the magnetic parameter is increased as graphically displayed in
Figure 4.20. The Lorenz force produced by the magnetic field retard free convective
transfer of fluid mass leaving some molecules stack to the surface of the plate, resulting

in the thickening of the concentration boundary layer.
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Figure 4.18: Effect of variation of angle of inclination on Concentration profile.
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Figure 4.19: Effect of variation of Schmidt number on Concentration profile.
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Figure 4.20: Effect of variation of Magnetic Parameter on Concentration profile.
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Figure 4.21: Effect of variation of Chemical Reaction Parameter on Concentration
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CHAPTER FIVE

5.0 CONCLUSIONS AND RECOMMENDATIONS

5.1 Introduction

In this chapter a summary of the effect of variation of parameters under study has been

presented. Applications arising from the observed effects of some parameters have also

been recommended for cooling and heating in industrial processes.

5.2 Conclusion

The study established that the orientation of a surface has effects on the heat and mass

transfer characteristics. An increase in the angle of inclination increased the velocity of

flow but decreased the temperature of the fluid within some ranges of inclination. The

thermo-physical parameters were significant on the velocity, temperature and

concentration profiles and the results are summarized as follows:

—

ii.

Velocity profiles significantly increased as the angle of inclination ()
increased. The velocity profiles were also observed to increase with viscous
dissipation (N), thermal and Solutal Grashof numbers (Gr, Gc), Porosity(d),
Ecker number (Ec), Biot number (Bi) and local heat generation (Q)
parameters. However, a decrease in velocity was also observed when the

magnetic field parameter (M) and the Schmidt number were increased.

The temperature decreased when the angle of inclination was within 0° and
109 or “cooling angle” and increased when the angle of inclination was

greater than10°. The temperature also decreased when both thermal and
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solutal Grashof numbers (Gr and Gc respectively) were increased. However
a rise in temperature was observed when the Prandtl number (Pr), Eckert
number (Ec), Biot number (Bi), viscous dissipation parameter (N), Schmidt

number (Sc) and local heat generation Parameter (Q) were increased.

iii.  The concentration in the boundary layer decreases with increase in the angle
of inclination(e). A decrease in concentration was also observed when the
chemical reaction paraeter (£3), the Schmidt number (Sc), thermal Grashof
number (Gr) , solutal Grashof number (Gc) and Biot number (Bi) were
increased. However an increase in concentration in the boundary layer was

observed when the magnetic field parameter (M) was increased.

5.3 Recommendations

It is therefore recommended that;

.

iii.

In applying the technique of inclination to enhance cooling of material in
industrial process the range of the “cooling angle” should be considered.

The chemical reaction Parameter and Schmidt number which enhances mass
diffusivity should be considered in processes involving fluid transportation.

The viscous dissipation parameter had an integral effect in increasing the
temperature in the boundary layer and should be considered in the design of
heating systems.

The study should be extended to nanofluid flow.
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APPENDICES

APPENDIX A: Publications.
C.J. Etwire, Y L. Seini, D.A. Azure (2015), MHD Thermal Boundary Layer Flows over a
Flat Plate with Internal Heat Generation, Viscous Dissipation and Convective Surface

Boundary Conditions. Intl. J. Emerging Tech. and Advance Eng, 5 (5), 335-342.
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APPENDIX B: Maple numerical code for solving the system of ordinary differential

equations.

> Pri=072:M=05:B:=01:Gc:=35:Gr=32:0:= —3’—:)—:

Sc:=0.6:0:=0.1:Ec:=0.02:N:=004:3:=4:Bi:= 0.1

fens = {F(y),8(y),6(»)}:

sy5 = diff (F(»),583) + - F()-diff (F(7),52) + Gr-8(»)
-sin(at) + Ge-o(y)-sin(a) — (8 + M) -diff (F(y),y) + 8=0,
diff (8(7),¥82) + 5+ Pr-F(y)-diff (8(y),) + Ec-Pr
(diff (F(y),¥82)) + N-Pr-(diff (F(y),))? + Pr-Ec-M
(i (F(7),9)) + Q-Pr-0(y) = 0,diff (4(»), 82) + 5S¢

“F(y)-diff (6(y),y) — Sc-B-¢(y) =0,D(F)(0) =0, F(0) =0,
D(0)(0) =Bi-((8)(0) — 1),4(0) =1,D(F)(10) = 1,6(10)
=0,¢(10)=0:

d3 1 d2 . 1
:y? F(y) + 5 F(y) [-(—1;2— F(y)] +3.26(y) Sm(3_0 n)

+3.50(y) sin(% n) —45 (% F(y)) 4 4=o,-(§i2 8(y)

2 2
+ 0.3600000000F (y) (—gy- G(y)) +0.0144 [—dd—z F(y)]
1y

d 2 d
+0.0288( B F(y)) +o.oo720( B F(y)) +0.0720(y)

_o d
=0, " o(y) + 0.3000000000F(y) ( o ¢(y)) —0.064(y)

=0,D(F)(0) =0, F(0) =0,D(8)(0) =0.16(0) — 0.1, ¢(0)
=1,D(F)(10) = 1,0(10) =0, $(10) =0

p = dsolve ({sys, D(F)(0) =0, F(0) =0,D(0)(0) = Bi- ((0)(0)
— 1),4(0) = 1, D(F) (10) = 1, 8(10) = 0, $(10) =0}, fens, type
= numeric, method = bvp, abserr = 1e—6)

proc{x_bvp) ... end proc

dsoll = dsolve ({sys}, numeric, output = operator)
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[y =proc(y) ... end proc, F=proc(y) ... end proc, D(F) =
proc(y)

end proc, Dm(F) = proc(y) ... end proc, ¢ = proc(y)

end proc, D(¢) = proc(y) ... end proc, 8 = proc(y) ... end proc,
D(8) =proc(y) ... end proc]

dsoll (0);

[y=0,F(0) =0.,D(F)(0) =0, D (F)(0) = 2.11939437882820903
$(0) =0.99999999999999978D (4} (0) =
-0.429001727908662478(0) = 0.515880212934890392D(8) (0)
= -0.048411978706510955p
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APPENDIX C: Numerical Formulae for Solving the System of Ordinary Differential
Equations.

i. The Fourth order Runge-Kutta Formula.

kl = hf(xn’yn)

h k
k,=h +—,y, +—
2 f(xn 2 yn 2)

h k

k,=h +=,y, +—=
3 f(xn 2 yn 2)
k, =hf(xn +h,y, +k3)

kl k2 k3 k4 5
=y, +—+—+—=—+—+0(h
Yun =Yy ¥t ot -2+ O)

Where #4 is the step size.

ii. The Newton-Raphson’s formula.

. flx)
B= % f’(xo)
_ flx)

xi+1 - xi f'(x,)

Where x, is an initial guess.
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