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ABSTRACT

A mathematical investigation into the Blasius flow of an Magneto-HydroDynamics

(MHD) micropolar fluid past a permeable flat plate with thermal radiation has been

conducted. The governing boundary layer equations were modelled in the form of partial

differential equations and transformed into ordinary differential equations using

similarity analysis. The resulting higher order ordinary differential equations were then

reduced to a system of first order differential equations and solved numerically using the

Newton Raphson shooting method together with the forth-order Runge-Kutta integration

scheme. The effects of embedded parameters on the fluid velocity, temperature profile,

local skin friction coefficient, the rate of heat transfer (the local Nusselt number) and

couple stresses in the flow regime have been depicted in tabular and graphical forms and

discussed quantitatively. It was concluded from the study that, the magnetic field

strength is the only embedded parameter that controls the flow kinematics and enhances

the heat transfer process. In the same way, embedded parameters associated with thermal

radiation, convective heating and viscous dissipation enhanced the heat transfer process.
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CHAPTER ONE

INTRODUCTION
1.0 Introduction

This chapter presents the general introduction to the study. It provides a brief background

leading to the problem statement. The general and specific objectives are stated as well

as the significance of the study. It is concluded with the structure ofthe study.

1.1 Background to the Study

Fluid refers to any substance that has a tendency to deform continuously when subjected

to shear stresses. Flow in pipes and channels, circulation of blood in vascular tumors,

coating or spraying processes, flow of conducting fluids as well as flow under surface

tension are all areas of active research. When fluid flows past objects, its molecules

closer to the surface of the object is disturbed generating aerodynamic forces between the

fluid and the object. As a result, molecules touching the surface directly stick to it while

those particles located distances away are slowed down in their collisions with those

sticking to the surface. These molecules in tum slow down the flow just above them such

that molecules further away from the surface are least disturbed. Thus, a thin layer of

fluid near the surface is set up in which the velocity changes from zero at the surface to

the free stream value some distance away. Engineers called this the boundary layer as it

occurs near the boundary of the object.

All fluids are basically classified into liquids or gases. Liquids are difficult to compress

whereas gases are easily compressed and expand to fill their container. A gas has no free

surface. The most important characteristic of a fluid from the viewpoint of fluid

mechanics is its compressibility and viscosity. Fluid tends to flow when acted upon by

----------- ~--~----~-~~ ~--~-~-.---~~ --~-----~---~~--~------ --~-~
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forces because they cannot resist the induced shearing effects. PrandtI (1904) observed

that when fluid flow over a surface, its particles directly in touch with the surface move

with it. Particles sticking to a stationary surface will thus have zero velocities. For gases,

increased temperature makes the molecular movement more vigorous leading to

increased molecular activity which increases the velocity near the surface.

In Newtonian fluids, the viscous stresses arising from the flow at every point is linearly

proportional to the rate of change in deformation over time. Non-Newtonian fluids on the

other hand have flow properties that differ in any way from those of the Newtonian

fluids. Most commonly, the viscosity of non-Newtonian fluids is dependent on shear rate

or shear rate history. Many salt solutions, molten polymers, ketchup, custard, toothpaste,

starch suspensions, paints, blood and shampoo are examples of non-Newtonian fluids. In

a non-Newtonian fluid, the relation between the shear stress and the shear rate is linear

with the constant of proportionality being the coefficient of viscosity. The relation

between the shear stress and the shear rate is different and can even be time dependent.

Therefore a constant coefficient of viscosity cannot be defined.

Heat transfer processes basically occur in three forms namely; conduction, radiation, and

convection. Conduction is the exchange of energy by direct interaction between

molecules of a substance having temperature differences. It can occur in gases, liquids, or

solids and has a strong basis in the molecular kinetic theory of Physics. Radiation is a

transfer of thermal energy in the form of electromagnetic waves. Like electromagnetic

radiation (light, X-rays, microwaves), thermal radiation travels with the speed of light,

passing most easily through a vacuum or a nearly transparent gasses. Liquids containing

2
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gases, such as carbon dioxide and water vapour, and glasses transmit only a portion of

incident radiation, while most of solids are essentially opaque to radiation.

Convection remains the basic mode of heat transfer in fluids. It refers in general terms to

the movement of molecules within fluids. Convective heat and mass transfer take place

through both diffusion (the random Brownian motion of individual particles in the fluid)

and by advection, in which matter or heat is transported by the larger-scale motion of

currents in the fluid. In the context of heat and mass transfer, the term "convection" is

used to refer to the sum of advective and diffusion.

Convection is the transfer of energy by conduction and radiation in moving fluid media.

The motion of the fluid is an essential part of convective heat transfer. A key step in

calculating the rate of heat transfer by convection is the calculation of the heat-transfer

coefficient. In many cases of industrial importance, heat is transferred from one fluid,

through a solid wall, to another fluid. The transfer often involves the use of heat

exchangers.

1.2 Statement of the Problem

Many of the recent advances in science and technology are aimed at making devices

smaller, effective and efficient. The electronic industry provides the best example of the

gains in productivity, efficiency, scale and even new culture-changing products that

result from designing and controlling small devices. Similar advances and applications in

fluid dynamics are occurring at a rapid pace; the resulting technology is called Micro-

fluidics. That is, when the typical sizes of the fluid-carrying channels are smaller than

one millimeter. The theory of micropolar fluids is a special case of the theory of simple

micro fluids. The ability to control flow kinematics in channels of such small dimensions

3
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is leading to advances in basic research and technological innovations in biology,

chemistry, engineering, and physics. The advances are most significant in research

focusing on new materials, new fabrication methods, cooling of electronic devices,

multiphase flows in labs-on-a-chip, and efforts to understand basic processes in

individual biological cells. Among the techniques to control flow kinematics, the idea of

using magnetic fields appear to be the most attractive because of its ease of

implementation and its non-intrusive nature (Arthur et a/., 2014).

MHD micropolar fluid has received considerable attention of many researchers

(Eringen, 2001) and (Ishak et al., 2006) and the references therein. However, the

combined effect of viscous dissipation and convective boundary condition on micropolar

stagnation point flow over a porous surface in the presence of transverse magnetic field

which often encountered in industry is limited.

1.3 Objectives of the Study

1.3.1 Main objective

To investigate the Blasius flow of MHD micropolar fluid combined with radiation,

viscous dissipation and convective boundary conditions.

1.3.2 Specific Objectives of the Study

The specific objectives of the study are:

i) To develop a mathematical model governing the flow of micropolar fluids.

ii) To employ the techniques of similarity analysis to transform the modelled partial

differential equations into ordinary differential equations.

iii) To solve the transformed boundary value problem using numerical methods.

4
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1.4 Significance of the Study

Understanding fluid dynamics in small devices led to advances in the study of micropolar

fluid which is crucial to advances in science and engineering. For instance, modem

engineering have led to an integrated system of thousands of small channels with

hundreds of individually controlled valves into a single "lab-on-a-chip," thus pointing the

way to the kind of large-scale integration that transformed electrical circuit design and

led to the computer revolution. These integrations produced more heat that led to the

discovery of new heat transfer techniques. Understandably, research into heat transfer by

MHD micropolar fluid has become a very important branch of fluid dynamics. This

study will be of great importance in the design of systems or bodies in high speed flows

and also in the design of thrust bearings and radial diffusers as well as in transpiration

cooling and thermal oil recovery

1.5 Computational and Numerical Approach

The differential equations describing hydromagnetic boundary layer flow interaction

with heat transfer over a flat surface constitute a nonlinear problem in an unbounded

computational domain. The theory of nonlinear differential equations is quite elaborate

and their solutions remain an extremely important problem of practical relevance in

industrial and engineering systems. Approximate solutions for the nonlinear systems of

differential equations modeling MHD flow over flat surfaces will be constructed using

the fourth order Runge-Kutta integration scheme coupled with a numerical shooting

technique. Numerical and graphical results will be presented and discussed quantitatively

with respect to various parameters embedded in the problem.

5
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1.6 Organization of the Study

The rest of the study is organized as follows: In Chapter Two of the study, we shall

review relevant literature on micropolar fluids. Chapter Three presents the basic

formulation of the generalized models, which are then applied to solve a specific problem

of MHD micropolar fluid. Chapter Four then presents the results and discussions.

Chapter Five presents the conclusions and recommendations of the study.

6
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CHAPTER TWO

REVIEW OF LITERATURE
2.0 Introduction

This Chapter presents a review of related literature on micropolar fluids, which forms the

bases for the study. It presents the research already done on micropolar fluids, stagnation

point flows, thermal radiation on flow processes and finally the electromagnetic effects

on fluid flow.

2.1 Micropolar Fluids

The classical Newtonian fluid model has not been adequate enough in describing some

modem engineering and industrial processes involving materials with internal structure.

Hoyt and Fabula (1964) experimentally investigated fluids that could not be

characterized by the Newtonian model. Fluids having polymeric additives display more

reduction of shear stresses and polymeric concentration as exhibited by Newtonian fluids

(Eringen, 1965). The theory of micropolar fluids introduced by Eringen (1964, ]966) is

one of the best theories that have been employed to describe the deformation of such

materials.

Micropolar fluids are those consisting of randomly oriented particles suspended in a

viscous medium, which can undergo rotation capable of affecting the hydrodynamics of

the flow, making it a distinctly non- Newtonian fluid. They constitute an important

branch of non-Newtonian fluid dynamics where micro-rotation effects as well as micro-

inertia are exhibited. Eringen's theory has provided a good model for studying a number

of complicated fluids such as colloidal fluids, polymeric fluids and blood.

7
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Research into micropolar fluids has attracted the attention of many scientists mainly due

to its important applications in industrial processes. These fluids find typical applications

in colloidal flow, liquid crystals, lubricants, turbulent shear flow and flow in capillaries,

heat exchangers, bubbly liquids, ferro-fluids, and even in the flow of blood in arteries, all

of which contain intrinsic flow polarities.

The theoretical study of laminar flow over a flat plate as proposed by Blasius (1908) has

been a cornerstone of fluid flow theories for many decades. Several wind tunnel results

have consistently shown very good correspondence between the Blasius flow and

experimental findings (Jovanovic et al., 2006). The dynamics of micropolar fluids as

originated from the theory of Eringen (1966) is an interesting area of fluid research. This

theory explains the flow of colloidal suspensions (Hadimoto and Tokioka, 1969), liquid

crystals, Lockwood et al., (1987), polymeric fluids, human and animal blood, (Ariman et

a!., 1974) among others.

Ahmadi (1976) proposed solutions for the flow of micropolar fluids past a semi-infinite

plate while considering micro inertia effects. Soundalgekar and Takhar (1983) later

studied the flow and heat transfer past a continuously moving plate in micropolar fluid

whilst Rees and Pop (1998) analyzed the free convection boundary layer flow of

micropolar fluids from a vertical flat plate. Ali and Hayat (2008) analyzed the peristaltic

flow of a micropolar fluid in an asymmetric channel. Similarly, Sajid et a!., (2009) used

the homotopy analysis method to examine the boundary layer flow of a micropolar fluid

through a porous channel while Hayat and Ali (2008) investigated the effects of

endoscope on peristaltic flow of micropolar fluid. Hayat et al. (2008) further examined

the mixed convection flow of micropolar fluid over a non-linearly stretching sheet.

8
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The two-dimensional flow of fluid near a stagnation-point is a classical problem in fluid

dynamics. It plays a major role in industry particularly in the design of thrust bearings

and radial diffusers, drag reduction, transpiration cooling and thermal oil recovery.

2.2 Stagnation Point Flows

The steady flow in the neighborhood of a stagnation-point was first studied by Hiemenz

(1911) who employed the similarity techniques to transform the associated Navier-

Stokes equations to non-linear systems of ordinary differential equations. This problem

was extended by Homann (1936) to the case of axisymmetric stagnation-point flow.

Later, the problem of stagnation point flow in two or three-dimensional cases were

extended in numerous ways to include various physical effects.

MHD boundary layer flow is of considerable interest in the technical field due to its

frequent occurrence in industrial technology and geothermal applications involving high-

temperature plasmas applicable to nuclear fusion energy conversion, liquid metal fluids

and MHD power generation systems. Nazar et at. (2004) studied the stagnation point

flow of a micropolar fluid towards a stretching sheet whilst the MHO flow of micropolar

fluid near a stagnation-point towards a non-linearly stretching surface was investigated

by Hayat et al. (2009). Mahapatra and Gupta (2002) studied the heat transfer in the

steady two dimensional stagnation-point flow of a viscous fluid by taking into account

different aspects of the problem. Ishak et al. (2008) analyzed the MHD flow of a

micropolar fluid towards a stagnation point on a vertical surface. Sparrow et al. (1961)

earlier studied the effect of magnetic field on the natural convection heat transfer. Patel

and Timol (2011) also studied the two-dimensional MHD stagnation-point flow of a

power law fluid over a stretching surface. MHO flow of a micropolar fluid near a

9

--- -------

www.udsspace.uds.edu.gh 

 

 

 

 



stagnation-point towards a non-linear stretching surface was considered by Hayat (2009).

Ibrahim and Makinde (2011) investigated the chemically reacting MHD boundary layer

flow past a low-heat-sheet moving vertically downwards. Christian et al. (2014)

examined the MHD boundary layer stagnation point flow with radiation and chemical

reaction towards a heated shrinking porous surface.

2.3 Thermal Radiation on Flow Processes

The effect of thermal radiation on flow and heat transfer processes is of great importance

in the design of many advanced energy conversion systems operating at high

temperatures. Thermal radiations within such systems occur because of the emission by

the hot walls into the working fluid. Many researchers have considered the radiation

effects in their studies, Pop et al. (2004) and Zhu et al. (2011) among others.

Viscous dissipation plays an important role in various devices, which are subjected to

large deceleration, in geological processes, polymer processing and also in strong

gravitational field processes on large scales (on large planets) and has received

considerable attention from researchers. Viscous dissipation changes the temperature

distribution by playing a role of an energy source which leads to changes in the heat

transfer rate. Subhas et al. (2007) studied viscoelastic MHD flow and heat transfer over a

stretching sheet with viscous and ohmic dissipation. Makinde (2011) provided some

similarity solutions for natural convection from a moving vertical plate with internal heat

generation with convective boundary conditions. Lakshmi et al. (2012) examined the

MHO boundary layer flow of heat and mass transfer over a moving vertical plate in a

porous medium with suction and viscous dissipation. More recently, Arthur et al. (2014)

investigated the chemically reacting hydromagnetic flow over a flat surface in the

10
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presence of radiation with viscous dissipation and convective boundary conditions while

Imoro et al. (2014), examined the heat and mass transfer over a vertical surface with

convective boundary conditions in the presence of viscous dissipation and nth order

chemical reaction.

2.4 Electromagnetic Effects of Fluid Flow

The interaction of moving conducting fluids with electric and magnetic fields provide for

a rich variety of phenomena associated with electro-fluid-mechanical energy conversion.

Effects from such interactions can be observed in liquids, gases, two-phase mixtures, or

plasmas. Numerous scientific and technical applications exist such as heating and flow

control in metal processing, power generation from two-phase mixtures or seeded high-

temperature gases, magnetic confinement of high-temperature plasmas-even dynamos

that create magnetic fields in planetary bodies (Neil and Tillack, 1993). Several terms

have been applied to this broad field of electromagnetic effects in conducting fluids,

such as magneto-fluid- mechanics, magneto-gas-dynamics, and the more common one

used here - magneto-hydrodynamics, or more simply as MHD.

MHD is the study of the dynamics of electrically conducting fluids such as plasmas,

liquid metals and salt water or electrolyte. The fundamental concept behind MHO is that,

magnetic fields can induce current in moving conductive fluid, which in tum creates

forces on the fluid and also charges the magnetic field itself.

Incompressible fluid MHO was officially introduced in 1936 by Hannes Alfven (1908-

1995) who described astrophysical phenomena as an independent scientific discipline.

Hartmann and Lazarus (1975), performed theoretical and experimental studies of MHO

11
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flows in ducts. The most appropriate name for the phenomena would be "Magneto Fluid

Mechanics," but the original name "Magneto-hydrodynamics" is still generally used,

(Abdou et al., 2007). This study was conducted to investigate some aspects of MHD flow

of micropolar fluids and apply the concepts to solve important problems faced by modern

engineering and industrial practice.

12
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CHAPTER THREE

METHODOLOGY

3.0 Introduction

The Chapter first provides some basic definitions of terms relevant to the study. A

general model is derived and applied to solve a common industrial problem of

micropolar fluids.

3.1 Basic Properties of Fluids

In studying the flow of fluids, some terms and definitions are often encountered. This

section identifies such properties and briefly describes their importance and relevance.

i) Non-Linearity

All physical systems can be modelled in a form of nonlinear systems of differential

equations. These nonlinearities in dynamical systems make solutions of most problems

difficult to obtain. It is often necessary to approximate these non-linear equations to

systems of linear equations by making some appropriate assumptions that allow direct

solutions to be approximated. In fluid flow problems, nonlinearities are mostly due to the

convective acceleration terms associated with the change of velocity over position. Thus,

any convective flow, whether turbulent or not will involve nonlinearities.

ii) Density

Density (P) is defined as mass (m) per unit volume (V). That is,

m
p=-

V
(3.1)

The reciprocal of density is the specific volume (v), which is defined as volume per unit

mass. The density of a substance, in general depends on temperature and pressure. The

13
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density of most gases is proportional to pressure and inversely proportional to

temperature. Liquids and solids, on the other hand, are essentially incompressible, and

the variation of their density with pressure is usually negligible. The density of liquids

and solids depends more strongly on temperature than it does on pressure.

iii) Viscosity

The velocity of fluid particles increase as the distance from the surface increases and

reaches the maximum called the free stream value at a region far away from the object.

The shearing stresses opposing the relative motion of fluid develop with magnitude

depending on the velocity gradient from layer to layer. For fluids obeying Newton's law

of viscosity, the x- coordinate is taken to act along the direction of flow with velocity, u.

The shear stress (r) in a fluid at a distance, y from the surface is given by:

du
£=11-

dy
(3.2)

Where p, is the co-efficient of dynamic viscosity defined as the shear force per unit area

required to drag one layer of fluid with unit velocity past another layer a unit distance

away from it in the fluid. The SI units for dynamic viscosity is the Newton- seconds per

meter squared (Nsm-2)

iv) Kinematic Viscosity

The kinematic viscosity is defined as the ratio of the dynamic viscosity (p,) to the mass

density. It is measured in squared meters per second (rrr's") and mathematically

expressed as

(3.3)

14
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v), Internal Energy

The energy stored in a system due to the molecular interaction and bonding is referred to

as the internal energy. A given mass of a viscous fluid may be viewed as a

thermodynamic system that stores various forms of energies. The internal energy of a

fluid includes the energy due to translation, rotation, vibration and the energy of

molecular dissociation as well as energy of electronic excitation of the molecules.

Internal energy has units of Jmol".

vi) Thermal Conductivity

The thermal conductivity, 1( is a measure of a material's ability to conduct heat. It relates

the vector rate of heat transfer per unit area, q (also called the heat flux) to the vector

gradient of temperature, I!!T. For solids and liquids the Fourier's law of heat conduction

is given as:

q=-KVT, (3.4)

where the negative sign indicates that heat flux is positive in the direction of decreasing

temperature.

vii) Heat Transfer Coefficient

The local rate of convective heat transfer between a surface and the fluid is given by

Newton's law of cooling

(3.5)

Where hs is the local heat transfer coefficient at the surface, T, is the temperature of the

surface, T is the bulk fluid temperature and q is the energy flux defined by Fourier's law

given in equation (3.5).
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3.2 Formulation of Basic Mathematical Models

The differential equations modelling the motion of a parcel of fluid through a controlled

volume is obtained by applying the conservation laws of mass to a small volume of fluid.

Consider the mass flux through each face of the fixed infinitesimal control volume

shown in Fig 3.1 (Cengel and Cimbala,2006).

3.2.1 The Continuity Equation

The net flux of mass entering the element be equal to the rate of change of the mass of

the element; that is,

(3.6)

To perform this mass balance, identify pu, pv and pw at the centre of the element and

then treat each of these quantities as a single variable.

J-.
I

(
,)V.>u) ax)

I'll --.- -. dtdldX 2.

rjz

Figure 3.1 Mass flux through each of the six faces of a control volume of fluid
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Figure 3.1 shows the mass flux through each of the six faces. Equation (3.6) then takes

the form

[pu _ a(pu) dx]dYdZ_ [pu +a(pu) dX]dYdZ+[pv _ a(pv) dY]dXdZ_ [pv _ a(pv) dY]dXdZ
& 2 & 2 ~ 2 ~ 2

[ a(pw) dZ] [ a(pw) dZ] a ( )+ pw---- dxdy- pw+--- dxdy=- pdxdydzaz 2 az 2 at (3.7)

Subtracting the appropriate terms and dividing by dxdydzgives,

a(pu) a(pv) a(pw) ap--+--+--=--
& ~ az at

(3.8)

Expanding and simplifying results in

(3.9)

In terms of substantial derivative, (3.9) can be written as

(3.10)

This is the most general form of the differential continuity equation expressed in

rectangular coordinates. The gradient operator, V called "del" can be introduced, which,

in rectangular coordinates, is

a ~ a ~ a ~V=-i+-j+-k
& ~ az (3.11)

The continuity equation can then be written in the form
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Dp + pV. v =0 (3.12)
Dt

Where V = u i +v J + w k and V· V is called the divergence of the velocity. This form

of the continuity equation is not limited to any particular coordinate system.

3.2.2 The Navier-Stokes Equations

The differential momentum equation is a vector equation In a scalar form. These

component equations define the velocity and pressure fields. There are nine stress

components of the stress tensorl"ij that act at a particular point in a flow field. These

stress tensors can be related to the velocity and the vector fields with the appropriate

equations.

(
'.' rflTzx Oz) d d(TlX - -.,- - x y

Of 2,
dx

( ;~ dY)d d(TyX+, - Xl
\. dy 2,

(
(. (J(TXX dX') d !. (r~x - -,-' - yo

dx 2,
(1fT. xx dX)' d d•(rxx +- -,- - y z

dx 2

(
' ~ ..T 'x dY) d d{Tyx -. - x L

fly 2

y,J-.,
Z

(.'. al.' l~ 01) d dau + -.,- - X Y
(11 2

Figure 3.2. X-directional surface forces due to stress tensor component of a control

volume

The stress components that act at a point are displayed on a two- and three-dimensional

rectangular element shown in Figure 3.2 ( Cengel and Cimbala, 2006). The element is
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considered as an exaggerated point, a cubical point; the stress components act in the

positive direction on a positive face (a normal vector point in the positive coordinate

direction) and in the negative direction on a negative face (a normal vector points in the

negative coordinate direction). The first subscript on a stress component denotes the face,

upon which the component acts, and the second subscript denotes the direction in which

it acts. Thus, the component Txy acts in the positive y-direction on a positive x-face.

A stress component that acts perpendicular to a face is referred to as a normal stress; the

components (Jxx, (Jy'yand(Jzz are normal stresses. A stress component that acts tangential to

a face is called a shear stress; the components Txy, Tyx Txz Tzx Tyz and Tzy are the shear stress

components. There are nine stress components that act at a particular point in a fluid. The

differential momentum equations are derived by considering the forces that act on the

infinitesimal fluid particle. In Figure 3.2, only forces acting on the faces are shown. The

stress components are assumed to be functions of x, y, z and t. Thus, the values of the

stress components change from face to face since the location of each face is slightly

different. The body force is shown acting in any arbitrary direction.

Newton's second law applied to a fluid particle, for the x-component direction, Ifx =

max. For the particle shown, it takes the form:

[
aa xr dX] [ aTyr dY] [ aT::xdZ] [ 8a xx dX]a +--- dydz+ T +--- dxdz+ T +--- dxdy- a ---- dydz

xx 8x2 yr 8y2 ::x az2 xx 8x2

[
aT yr dY] [ aT::xdZ] Du- T ---- dxdz- T ---- dxdy= pg dxdydz=pdxdydz-

yr By 2 zx az 2 x Dt ' (3.13)
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where the component of the gravity vector g in the x-direction is gx and Du is the x-
Dt

component acceleration of the fluid particle. Dividing by the volume dxdydz, (3.13)

simplifies to

(3.14)

Similarly, for y- and z-directions, we have

Dv aTxy aa.w aTzy
p-=--+--+--+pg ,

Dt ax By az Y
(3.15)

Dw aTxz aTy.: aazzp- = --+--+--+ pg,.
Dt ax By az .

(3.16)

We can show by taking moments about the axes passing through the centre of the

infinitesimal element, that

(3.17)

That is, the stress tensor is symmetric; so there are actually six independent stress

components. The stress tensor may be displayed in the usual way as

(3.18)

The subscripts i and j take on numerical values 1, 2, or 3. Then TI2 represents the

element 'fxy in the first row and the second column.
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Many fluids exhibit a linear relationship between the stress components and the velocity

gradients. Such fluids are called Newtonian fluids and include common fluids such as

water, oil, and air. If in addition to linearity, we require that the fluid be isotropic, it is

possible to relate the stress components and the velocity gradients using only two fluid

properties, the viscosity p and the second coefficient of viscosity 'A. The stress-velocity

gradient relations, often referred to as the constitutive equations are given by Cengel and

Cimbala (2006) as;

OU (OU &V)a= =-p+2p,-+AV,V, 'xy =p, -+- ,ox ay Ox

&v (OU aw)a =-p+2J1-+1V·V, =11-+-
>y ray '-'" roz ox' (3.19)

aw (&V aw)a__=-p+21J-+1V·V, =p, -+- .
-- r: GZ ')Z OZ ay

For most gases and for monatomic gases, the second coefficient of viscosity is related to

the viscosity by

(3.20)

a condition known as Stokes' hypothesis. The negative average of the three normal

stresses is equal to the pressure, that is,

- ~ (a_n + ayy + a==) = p. (3.21)

Using (3.19), this can be shown to always be true for a liquid in which V· V = 0, and

with stokes' hypothesis, it is also true for a gas. If the constitutive equations are
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substituted into the differential momentum equations (3.14), (3.15), and (3.16), there

results, using Stokes' hypothesis,

(3.22)

(3.23)

(3.24)

where a homogeneous fluid is assumed. That is, the fluid properties (for example, the

viscosity) are independent of position. For an incompressible flow, these equations

reduced to,

(3.25)

(3.26)

(3.27)

These are the Navier-Stokes Equations, named after Louis M. H. Navier (1785-1836) and

George Stokes (1819-1903). The three differential equations together with the continuity

equation give four equations and four unknowns in u, v, wand p. The viscosity and

density are the fluid properties that can often be determined. With the appropriate
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boundary and initial conditions, approximate solutions can be obtained. Several

relatively simple geometries allow for analytical solutions.

Numerical solutions have also been determined for many flows of interest. Since the

equations are in the form of nonlinear partial differential equations, it cannot be certain

that the solution, obtained can exactly be realized in the laboratory. That is: the solutions

are not unique. For example, a laminar flow and a turbulent flow may have the identical

initial and boundary conditions, yet the two flows (the two solutions) are very different.

We can express the Navier-Stokes equations in vector form by multiplying (3.25), (3.26)

and (3.27) by i, J and k respectively, and adding recognizing that;

DV Du ~ Dv ~ Dw ~
-=-i+-j+-k,
Dt Dt Dt Dt

(3.28)

2 2~ 2~ 2 ~V' V = V' ui + V' vj + V' wk,

where the Laplacian is defined as:

(3.29)

Combining the above, the Navier-Stokes equations in (3.25), (3.26) and (3.27) take the

vector form

DV
P-=-V'P+ pg+JN2V

Dt
(3.30)
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3.2.3 The Angular Momentum

In classical mechanics, angular momentum is defined as the product of the vector

position and momentum,

i j k
L=!,.xp= x Y z

Px Py pz
(3.31)

Note that the angular momentum itself is a vector. The three Cartesian components of the

angular momentum are:

(3.32)

We can measure the angular momentum of a particle in a given quantum state. Define the

operators X and t: associated respectively to the position and the momentum of the

particle.

L=XxP (2.33)

where P = -ih'i!.. Note that in order to define the angular momentum, we have to use the

definitions for the position and momentum operators and the expression for angular

momentum in classical mechanics. Equation (3.28) yields explicit expressions for the

components of the angular momentum as differential operators:

~ (a a)L = -ih y--z-
x az ay I

~ (a a)L = -ih z--x-
y ax az I

~ (a a)Lz = -ih xay- y ax (3.34)

Equation (3.29) can be economically written as:

24

~- .. ~.-~ -~-. ~-- -----

www.udsspace.uds.edu.gh 

 

 

 

 



~ a
L- = -ihE--kX---

l lJ ) aXk (3.35)

where we have to sum over the repeated indices.

~ ~ 2( a a)( a a)L L = -h y--z- z--x-
x Y az ay ax az

{a a2 a2 a2 a2
}= _h2 y--yz---yx--z2_-+zx-- Iax azax az2 ayax ayaz

Whilst,

~ ~ 2( a a)( a a)L L = -h (z--x- (y--z-
Y x ax az az ay

Note the usual properties of partial derivatives

a2 a2

axaz= azaxI etc (3.36)

we obtain on subtraction the desired result

[
~ ~] 2 (a a ) . ~LXI Ly = h xay- y ax = ihl., (3.37)
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3.2.4 The Energy Equation

Most problems of interest in fluid mechanics do not involve temperature gradients. They

do however involve flows in which temperature everywhere is constant. For such flows,

it is not necessary to introduce the differential energy equation. There are situations,

however, for both compressible and incompressible flows, in which temperature

gradients are important, and for such flows the differential energy equation is necessary.

The differential energy equation is derived neglecting viscous effects, an assumption that

significantly simplifies the derivation. Since the shear stresses that result from viscosity

are quite small for many applications, this assumption may be acceptable. These shear

stresses do, however, account for the high temperatures that bum up satellites on re-entry

to the atmosphere; if they are significant, they must be included in any analysis.

Consider the infinitesimal fluid element again shown in Figure 3.1. The heat transfer rate

Q through an area A is given by the Fourier's law of heat transfer, named after lean B.l.

Fourier (1768-1830):

Q.=-KA aT
an'

(3.38)

where n is the direction normal to the area, T is the temperature, and K is the thermal

conductivity, assumed to be constant. The rate of work done by a force is the magnitude

of the force multiplied by the velocity in the direction of the force, that is,

W=pAV, (3.39)

where V is the velocity in the direction of the pressure force pA. The first law of

thermodynamics applied to a fluid particle can be written as

26

www.udsspace.uds.edu.gh 

 

 

 

 



· . DE
Q-W= t» : (3.40)

where DIDt is used since we are following a fluid particle at the instant shown.

For a particle occupying the infinitesimal element of Figure 3.l, the relationships above

leads to:

{aT! aT! J a {aTI er J a 1--1«dyd. - -- --(pu)dxdydz+KIixd - -- --(pvjUxdydz
ax x+dx ax x ax 8y y+~ 8y y 8y

{
aT! aTI J a D (u

2
+V2+W2 J+sdxd - -- --(pw)dxdydz= pdxdydz- +gz+li, (3.41)

az z+dz az z az Dt 2

where ft is the internal energy, E has included kinetic, potential and internal energy, and

the z-axis is assumed vertical. Also, since the mass of a fluid particle is constant pdxdydz

is outside the DIDt -operator. Divide both sides by dxdydz to get:

This can be rearranged as follows:

ap Du Dv Dw Dz Dii
-w-=pu-+pv-+pw-+pg-+p-.

az Dt Dt Dt Dt Dt
(3.43)

The Euler's equations are applicable for this inviscid flow. Hence, the last three terms on

the left hand side equal the first four terms on the right if we recognize that
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Dz az az az az
-=-+U-+V-+W-=(J)
Dt at ax By az '

(3.44)

since x, y, z and t are all independent variables. The simplified energy equation then takes

the form

(3.45)

In vector form, this is expressed as

D'i1 2
p-=J01 T-pV·V

Dt
(3.46)

Before simplifying this equation for incompressible gas flow, it could be written in terms

of enthalpy rather than internal energy. Using

u = h- p.
p

(3.47)

The energy equation now becomes

(3.48)

Two special cases can be considered. First, for a liquid flow, the continuity equation

requires that V .V = 0 and with Ii' = CpT, cp being the specific heat capacity at constant

pressure. Equation (3.48) becomes

(3.49)
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where we have introduced the thermal diffusivity defined by

K
a=--

PCp
(3.50)

If viscous effects are not negligible, the derivation would include the work input due to

the shear stress components. This would add a term to the right-hand side of the

differential energy equations above; this term is called the dissipation function ct>,

which, in rectangular coordinates, is

[(au)2 (avJ2 (Ow)2 1(au av)2 1(av Ow)2 1 (au Ow)2]ct>=2Jl - + - +- +--+- +--+- +--+- (3.51)ax ay az 2ay ax 2az ay 2az ax

Therefore, the energy equation for incompressible fluid flow becomes

DT = a,~?T+ ct>
Dt

(3.52)

where the left hand represents the convective term whilst the right hand side are

respectively, the rate of heat diffusion to the fluid particles and the rate of viscous

dissipation per unit volume.

3.3 Blasius flow of MHD micropolar fluid past a plate with thermal radiation

The mathematical models developed in section 3.2 are employed to investigate a

particular engineering problem frequently encountered in industry. Relevant assumptions

are made and a numerical procedure based on the forth-order Runge-Kutta algorithm

used to solve the problem. In this section, the combined effects of magnetic field, thermal
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radiation with microrotation on the Blasius flow of an electrically conducting micropolar

fluid on a permeable surface is studied.

3.3.1 Modelling the Blasius Flow Problem

Consider an MHD stagnation point flow of an electrically conducting micropolar fluid

impinging normally on a heated vertical plate. The flow is assumed to be two-

dimensional and steady, viscous and incompressible. It is further assumed that the

velocity of the flow external to the boundary U and the temperature Tw of the plate are

proportional to the distance x from the stagnation point so that U = ax and Tw = bx, where

a and b are constants.

u
I

= 19
= v

Buoyancy assisted region
.~<

C...,
~ ...,

8

Buoyancy opposed region

Figure 3.3: Schematic diagram of the problem

Following convection flow with heat transfer over a vertical plate in a stream of cold

fluid at temperature Too,it is also assumed that the left surface of the plate is heated by

convection from a hot fluid at temperature T; which provides a heat transfer coefficient
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h.; A uniform stationary magnetic field of strength Bo is applied to the velocity field and

the magnetic Reynolds number is assumed to be negligible. The induced magnetic field

can be neglected as compared to the imposed magnetic field. It is further assumed that

there is no applied polarization voltage, so the electric field is zero. Under these

assumptions along with the Boussinesq and boundary layer approximations, the

boundary layer equations modelling the flow is given by

au+Ov=o
ax ay ,

(3.53)

au au dU (jJ+kJa2u k en aBg ( ) ( '\u-+v-=U-+ -- --+--+-- u-U +g/J T-Too"
ax ay dx p ay2 P ay p (3.54)

.( en aHJ a
2
H ( auJP.J u-+v- =r---k 2H+-ax ay ay2 ay ,

(3.55)

(3.56)

subject to boundary conditions:

aT
Y=o: u=o, v=-V, H=O K-=-h (T -T)'ay W)1.' ,

y ~ 00: u ~ U, H ~ 0, T ~ Too, (3.57)

3.3.2 Dimensionless Governing Equations

The similarity solution is based on the idea that the velocity and temperature distributions

at any position along the plate surface, x, will collapse if plotted in dimensionless form as
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a function of appropriately defined similarity variable. The similarity variable is defined

as the ratio of the distance from the plate surface (y) to the approximate thickness of the

momentum boundary layer ( om)'

(3.58)

Therefore, the partial differential equations that describe the problem in terms of x and y

will collapse to ordinary differential equations in 17 for dimensionless velocity,

temperature and micro-rotation.

3.3.3 The Similarity Variable

The growth of the velocity and thermal boundary layers in a laminar flow occur primarily

due to the molecular diffusion of momentum and energy. Therefore, the momentum

boundary layer thickness ( om) will grow approximately according to:

where v is the kinematic viscosity and t is time, which is related to the distance from the

leading edge (x) and the characteristic velocity (uchar) according to:

x
t=--

uchar

In this study, the length is the total length of the plate (which is taken along the x-axis)

while the characteristic velocity is the constant free-stream velocity far from the plate

cu; = ax). Thus,
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And (3.59)

Following the presentation of Ostrach (1952), the constant used to define the similarity

parameter is adjusted slightly, thus (3.59) becomes,

(3.60)

Hence (3.59) defines the similarity variable for the problem under investigation.

The dimensionless velocity and temperature fields are obtained from:

(3.61)

At any position, x will collapse when expressed in terms of (3.60). Therefore,

f' = f'(x,y)= f'(17) (3.62)

(3.63)

3.3.4 The Stream Function

The stream function is defined such that the continuity equation, (3.53), is automatically

satisfied. That is,
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(3.64)

The stream function is related to the volumetric flow Q between the surface of the plate

and any position y according to,

(3.65)

where W is the width of the plate. The volumetric flow rate is can be computed from the

velocity field as:

Q=WS: u dy

This can be expressed in terms of the dimensionless variables (/' and ») as;

Q = awx~ i" r dn (3.66)

Substituting Equation (3.66) into Equation (3.64) leads to:

If/ = ax~ i" /'(1]) d1] (3.67)

The integral £' 1'(1]) dn = /(1]) in Equation (3.67) can be thought of as a dimensionless

form of the stream function and must be a function of only the similarity variable ('7).

Simplifying Equation (3.67) leads to:

If/ = ra;; xf(1])

This can be rewritten as: (3.68)
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Equation (3.68) represents the stream function of the flow problem in this study.

3.4 Transformation of the Modelled Equations

The similarity variables are substituted into the governing x-momentum, angular

momentum and thermal energy conservation equations as well as the boundary

conditions for velocity, temperature and micro-rotation in order to transform the three

coupled partial differential equations into three coupled ordinary differential equations

that can readily be solved easily. The continuity equation is automatically satisfied using

the stream function as defined. The transformation process involves taking the problem

in terms of x and y and re-stating it in terms of '7 .

The similarity variable (3.59) is differentiated with respect to x and y to get;

(3.69)

The x- component of velocity (u) is expressed in terms of the similarity variables as:

u = 81j/ = ax/'(TJ)
By (3.70)

Similarly, the y - component of velocity (v) in terms of the similarity variables is:

(3.71)

The partial derivatives of u with respect to x and yare obtained as follows:
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(3.72)

The partial derivative of v with respect to y gives:

(3.73)

The continuity equation is satisfied and therefore we proceed with the analysis to get the

dimensionless momentum and energy equations.

3.4.1 The Dimensionless Momentum Equation

Substituting (3.72) and (3.73) into (3.54) gives,

Simplifying and grouping like-terms yields,

dividing through by a2 x and putting pv = f.1 gives,
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~2 k
Noting that the coefficient __ 0 = M is the magnetic field parameter, - = K is the

pa f.l

vortex viscosity parameter and which can be simplified further as

A, = Grx/Re;, represents the buoyancy or mixed convection parameter where

Grx = g/JT (T; - T,,,,)x3 / v2 is the local thermal Grashof number and Rex = Ux / v "isthe

local Reynolds number. Moreover, A. is a constant with A. < 0 and A. > 0 corresponds to the

opposing and assisting buoyancy flows respectively, while A. = 0 is purely a forced

convection flow.

Substituting these parameters and rearranging gives,

(3.75)

This represents the dimensionless momentum equation which is a third-order non-linear

ordinary differential equation.

3.4.2 The Dimensionless Energy Equation

To obtain the dimensionless energy equation for the flow problem, we write (3.61) as,

(3.76)

From the assumption that the temperature Tw(x) at the wall is proportional to the distance

x from the stagnation point, that is, Tw = bx+ Too, where b is constant. Thus (3.76)

becomes,

(3.77)

37

www.udsspace.uds.edu.gh 

 

 

 

 



Finding the partial derivatives of (3.77) with respect to x and y yields,

aT = bO( )ax 1J , (3.78)a2T _ ab 0"(· )----x 1Jay2 V

For simplicity, the radiative heat flux term in the energy equation in (3.56) is analyzed by

utilizing the Rosseland diffusion approximation (Sparrow, Cess and Timol, 1961) for an

optically thick boundary layer flow as follows:

(3.79)

where K' and a* are the mean absorption coefficient and the Stefan-Boltzmann constant

respectively. This approximation is valid at points optically far from the bounding

surface, and it is good only for intensive absorption, that is, for an optically thick

boundary layer (Pradeep and Hussain, 2001).

It is assumed that the temperature differences within the flow such as the term 1" may be

expressed as a linear function of temperature. Hence, expanding 1" in a Taylor series

about Ta; and neglecting higher order terms leads to;

(3.80)

Differentiating (3.80) with respect to y gives,
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Substituting into (3.79) gives:

Differentiating (3.81) with respect to y gives,

The energy equation then transforms as;

Expanding, dividing through by IX p and grouping like-terms in give,

Dividing through bY(~J ab x and simplifying in yield,
IXp v
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But ~ = a is the thermal diffusivity and ax = U is the free stream velocity.
PCp

Here the dimensionless parameters of the flow are: Pr = ~ is the Prandtl number;
a

Ra = 40"7
3

00 is the thermal radiation parameter; M = O"B~ is the local magnetic field
d' p

parameter; and Br = J.1U;' is the Brinkmann number. Thus,
JdJx

This can be rewritten as:

Equation (3.84) is the dimensionless thermal boundary layer equation. This is a second

order nonlinear ordinary differential equation.
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3.4.3 Dimensionless Angular Momentum Equation

For momentum we can write:

Finding the partial derivatives of with respect to x andy yields,

aN ~ () aN a
2

,() a
2

N a
2

~ "()-=-a -h1], -=--xh 1] ,--=-- -xh 1]ax v ~ v ~2 V V
(3.85)

Substituting Equations (3.85) into (3.55) gives,

m[axf'('1{ - a~h(IJ l)- Fa;;f(IJ { - : xh'('1l)] ~{ a: ~Xh.('1 l)-
k( - 2a~xh{IJ l+ a~ xr(IJ l)

(3.86)

Here J = o] a represents the micro-inertia density and following the works of authors in

literature, we assume that the spin gradient viscosity, r={;i+k/2)J=f.1(1+K/2)J,

where K = k] f.1is the vortex viscosity parameter. This assumption is made to allow the

field of equations, predict the correct behaviour in the limiting case when the micro-

structure effects become negligible and the total spin, H reduces to the angular velocity

(see Ishak et al., 2008). Expanding and grouping like terms in (3.86) give,

p~[ -a' ~xf'(IJ)h(IJl+ a' ~xf(IJ)h'(IJl] ~ -1'(1 + ~X~Xa: ~}h.('1)-

k( - 2a~ xh{IJl+ a~ xf·('1 lJ
(3.87)
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Dividing through by - pua~x and simplifying in gives,

The dimensionless parameter here is: K = k] f.1 is the vortex viscosity parameter

Simplifying further and rearranging in yield,

Equation (3.88) is the dimensionless angular momentum boundary layer equation. This is

a second order nonlinear ordinary differential equation.

3.4.4 Dimensionless Boundary Conditions

The corresponding dimensionless boundary conditions are obtained by substituting the

relevant terms into equation (3.56)

For the convective boundary condition, substitute the dimensionless temperature gradient

into -K: = h,(r,-r).

That is,

Simplifying further by substituting (3.14) for T gives,
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Re-arranging for the dimensionless temperature gradient yields,

0'(0)= hw ~[0(0)-1]
K ~-;;

(3.89)

. h ~ .Bi = ~ - represent the Biot number.
K a

Hence, the convective boundary condition in dimensionless form is expressed as:

0'(0)= &[0(0)-1] (3.90)

The transformed boundary conditions are then stated as follows:

f(O)=jw, f'(O) =0, 0'(0)= Bi[0(0)-11 h(O)= 0,

f'( (0) = 1, 0(00) = 0, h(oo) = o. (3.91)

In the above equations, a prime denote the order of differentiation with respect to the

similarity variable nand fw = j J;;;; is the suction parameter.
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CHAPTER FOUR

RESULTS AND DISCUSSIONS
4.0 Introduction

This chapter presents the results obtained through the analysis of the dimensionless

coupled governing equations. The results are presented in both tables and graphical

forms and discussed quantitatively for various parameter values.

4.1 Numerical Procedure

A numerical shooting technique based on the fourth-order Runge-Kutta integration

algorithm was used to select a representative value for infinity, the similarity value can

assume (1'/00,), we begin with some initial guess value and solve the problem with some

particular set of parameters to obtain f "(0), h'(O) and 8'(0). The solution process is

repeated with another larger values of 1'/00 until two successive values of/"(O), h'(O) and

8'(0) differ only after a desired digit signifying the limit of the boundary along n. The last

value of 1'/00 is chosen as appropriate value for that particular simultaneous equation of

first order for seven unknowns following the method of superposition.

To solve this system we require seven initial conditions. There are only two initial

conditions/'(O) and/(O) on!; and one initial condition each on hand 8. This means that

there are three initial conditions,/"(O), h'(O) and 8'(0) which are not specified. Now, we

employ numerical shooting technique where these two ending boundary conditions are

utilized to produce two unknown initial conditions at .., = O. In this calculation, the step

size of 1'11'/= 0.001 was used while obtaining the numerical solution with 1'/max=1O and six-

decimal (10-6) accuracy as the criterion for convergence. The numerical procedure was

carried out using a Maple 16 software package. A representative set of numerical results
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are displayed graphically and discussed quantitatively to show some interesting aspects

of some pertinent controlling parameters of the flow on the dimensionless axial velocity

profiles, micro-rotation profiles, temperature profiles, shear stress, couple stress and the

rate of heat transfer. The discussions of the results are also presented.

4.2 Numerical Results

From the process of numerical computation, the plate surface shear stress, couple stress

and the local Nusselt number, which are respectively proportional to f'(O), h'(O) and -

8'(0) are computed from and their numerical values presented in tabular form. Tables

4.1 and 4.2 show the comparison of the works of Ramachandran et al. (1988), Lok et al.

(2005) and Ishak et al. (2008) with the present study for various values of the Prandtl

number (Pr). These numerical results were carried out using the fourth-order Runge-

Kutta integration algorithm alongside a Maple 16 software package. It is clear from the

table that the result of study is consistent with their works which validate the numerical

approach adopted in this study.

4.3 Order Reduction

The transformed higher order ordinary differential equations obtained in equations

(3.75), (3.84) and (3.88) and stated here for emphasis;

{l+K)/"'(TJ)- /'2 + ff"(TJ) +M(I- /'('1»- Kh'(TJ) + JeO(TJ)= 0

(1 + ~ } "('I ) + /('1 )h'(TJ) - f'(TJ )h(TJ)+ K(/"(TJ) - 2h(TJ» = 0
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These equations are reduced to first order systems of differential equations.

From equation (3.75), Let x, =/(1]), x2 =/,(1]), X3 =/"(1])

From equation (3.84), Let r, = h(1]), Y2 = h'(1]),

From equation (3.88), Let z, = 8(1]), Z2 = 8'(1])

X' =_I_x2 __ I_xx _ M (l-x ) __ k_y -~z
3 l+k 2 l+k \ 2 l+k 2 I+k 2 I+k \

Y' _ I x y _ I x y _ k (x - 2y )
2 -1+kI2 2 \ l+kl2 \ 2 l+kl2 3 \

, Pr ( ) Br 2 Br .M ( )2
Z2= 4 x2Z\-X\Z2 - 4 x3- 4 l-x2

I+-Ra I+-Ra I+-Ra
333

Applying the first order reduction to the boundary conditions is as follows:

Xl (0) = [w, X2(0) = 0, Z2 (0) = Bi[Zl (0) - 1]

Yl(O) = 0, X2(00) = 1, Zl(oo) = 0, Yl(oo) = 0

These reduced first order systems of differential equations was run on Maple 16 software

for varying values of the Prandtl number when M = K = Br = Ra = 0, A = 1 and Bix= 107

and the results compared to previous works of Ramachandran et al. (1988), Lok et at.

(2005) and Ishak et at. (2008)
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Table 4.1: Comparison of results off "(0) for varying values of Pr with M = K = Br =

Ra = 0, A= 1 and Bi,> 107

Ramachandran Lok et al. Ishak et al.

Pr et al. (1988) (2005) (2008) Present study

0.7 1.7063 1.706376 1.7063 1.7063226

1 - - 1.6755 1.6754365

7 1.5179 1.517952 1.5179 1.5179126

10 - - 1.4928 1.4928386

Table 4.2: Comparison of results of -0(0) for varying values of Pr with M = K = Br

=Ra = 0, A= 1 and Bi;» 107

Ramachandran Lok et al. Ishak et al. Present

Pr et al. (1988) (2005) (2008) study

0.7 0.7641 0.764087 0.7641 0.7640633

1 - - 0.8708 0.8707785

7 1.7224 1.722775 1.7225 1.7223813

10 - - 1.9448 1.9446170

4.4 Shear Stress, Couple Stress and Rates of Heat Transfer

The effects of varying parameter values on the shear stress, couple stress and the rate of

heat transfer (local NusseIt number) are obtained from equations (3.75), (3.84), and

(3.88) and shown in Table 4.3. It is observed that both the shear and couple stresses

increase with increasing values of M, jw, Br, Bi, Ra and "A ("A > 0); and decreases with

increasing values of Pr, K and "A ("A < 0). This means that the combined effect of magnetic
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· . . . h t t fer thermal radiation,field intensity, suction, viscous dissipation, convective ea rans ,

and buoyancy force due to assisting flow is to increase the shear and couple stresses; and

the combined effect of the linear momentum diffusion, angular momentum diffusion and

buoyancy force due to opposing flow is to decrease the shear and couple stresses at the

surface of the plate.

On the other hand, the rate of heat transfer at the plate surface increases with Pr, jW and

Bi numbers and reduces with increasing values of M, K, Br, Ra and A. This means that

the combined effect of the momentum diffusion, suction and convective heat transfer as

well as the buoyancy force due to assisting flow is to increase the rate of heat transfer.

Furthermore, the combined effect of the magnetic field intensity, micro-rotation

diffusion, viscous dissipation, thermal radiation and buoyancy force due to both assisting

and opposing flows is to decrease the shear and couple stresses at the surface of the plate.
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Table 4.3: Shear stress, Couple stress and Nusse\t number under v .
parameters anous

Pr M [ i '-~a
I--

Br Bi fw /"(0)
0.7 0.1 1.0

h'(O)
1.0 0.1 0.1

-8'(0)

1.0
0.1 0.1 0.957132 0.308024

0.1 1.0 1.0
0.081916

0.1 0.1 0.1 0,1
7.0 0.1 L~

0.945168 ~'J~~r'-- :-----..

\~
r----.

~.\~.\
~ l ~~~l~~t

0.1•... 0.1 0.910460

10.0 0.1 1.0 1.0
0.300194 0.093238

0.1 0.1 0.1 0.1

0.7 0.5 1.0 1.0
0.907330 0.299823 0.094352

0.1 0.1 0.1 0.1 1.062086

0.7 1.0 1.0 1.0

0.321666 0.080289

0.1 0.1 0.1 0.1 1.179707

0.7 0.1 2.0 1.0 0.1

0.335759 0.078528

0.1 0.1 0.1 0.745933

0.7 0.1 3.0 1.0 0.1

0.374231 0.082125

0.1 0.1 0.1 0.624275

0.7 0.1 1.0

0.386234 0.082127

-3.0 0.1 0.1 0.1 0.1 -0.451157

0.7

·0.063904 0.031934

0.1 1.0 -2.0 0.1 0.1 0.1 0.1 -0.445804

0.7

·0.078155 0.004750

0.1 1.0 1.0 0.1 0.1 0.1 0.1 0.957132 0.308024 0.081016

0.7 0.1 1.0 2.0 0.1 0.1 0.1 0.1 1.015643 0.316797 0.081817

0.7 0.1 1.0 1.0 0.5 0.1 0.1 0.1 0.963837 0.309628 0.081024

0.7 0.1 1.0 1.0 1.0 0.1 0.1 0.1 0.971236 0.311393 0.079943

0.7 0.1 1.0 1.0 1.0 0.5 0.1 0.1 1.039356 0.320988 0.059759

0.7 0.1 1.0 1.0 1.0 1.0 0.1 0.1 1.154654 0.338446 0.027177

0.7 0.1 1.0 1.0 1.0 0.1 0.5 0.1 1.039449 0.319955 0.270775

0.7 0.1 1.0 1.0 1.0 0.1 1.0 0.1 1.085869 0.382010 0.382020

0.7 0.1 1.0 1.0 1.0 0.1 0.1 0.5 1.070366 0.339993 0.084424

0.7 0.1 1.0 1.0 1.0 0.1 0.1 1.0 1.228099 0.378357 0.086757

Table 4.4 snows the computations of the shear stress and the rate of heat transfer at the

surface for (K~ O. I) with various values of convection parameter 0·)·With respect to the

model. K ~ 0 means Newtonian fluid whereas K * 0 (K ~ 1 is used in this study) means

non-Newtonian fluids. As shown in Table 4.4 for the Newtonian fluid case (K ~ 0), the
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shear stress increases and the rate of heat transfer reduces at the surface for increasing

buoyancy force due to both assisting and opposing flows. Furthermore, for the non-

Newtonian fluid case (K t- 0), increasing the buoyancy force due to opposing flow

reduces the skin friction and the rate of heat transfer at the surface whereas increasing the

buoyancy force due to assisting flow increases the shear stress and reduces the rate of

heat transfer at the surface.

Table 4.4: Numerical results of Shear stress and Nusselt number

Pr M Ra Br Bi Fw K ;. /"(0) -0'(0)

1.0 0.1 0.1 0.1 0.1 0.1 0 -3 -0.640149 0.035007

1.0 0.1 0.1 0.1 0.1 0.1 0 -2 -0.633822 0.008194

1.0 0.1 0.1 0.1 0.1 0.1 0 0 1.330132 0.083632

1.0 0.1 0.1 0.1 0.1 0.1 0 1 1.412149 0.083452

1.0 0.1 0.1 0.1 0.1 0.1 0 2 1.494733 0.083253

1.0 0.1 0.1 0.1 0.1 0.1 1 -3 -0.476468 0.028082

1.0 0.1 0.1 0.1 0.1 0.1 1 -2 -0.471736 0.001633

1.0 0.1 0.1 0.1 0.1 0.1 1 0 0.898236 0.084312

1.0 0.1 0.1 0.1 0.1 0.1 1 1 0.945768 0.084270

1.0 0.1 0.1 0.1 0.1 0.1 1 2 0.992927 0.084218
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4.5 Graphical Results

4.5.1 Velocity Profiles

The effects of parameter variation on the velocity boundary layer are shown in Figures

4.1- 4.6. Normally, the fluid velocity is minimal at the plate surface and increases to the

free stream value satisfying the far field boundary conditions. The effect of the Magnetic

Parameter (M) on the velocity is shown in Figure 4.1. It is observed that a longitudinal

decrease in the velocity accompanies a steady decrease in the magnetic field intensity.

This is due to the fact that the applied magnetic field normal to the flow direction induces

the drag in terms of a Lorentz force which provides resistance to flow.

For various values of suction parameter (fW), the profiles of the velocity across the

boundary layer are shown in Figure 4.2. The velocity decreases for increasing values of

fw. This can be attributed to the fact that suction is an agent which causes resistance to

the fluid flow hence retarding the fluid velocity.
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f'(T))

0.8 - M=1
000 M=2
..... M=3
+++ M=4

0.6

0.4

0.2

Pr = 0.72, fw = 0.1, Br= 0.1,
Bi = 0.1, Ra=O.1, K=I, A=1

O~--~~r-~---r--~--~~r-~---r--.
o 2 4 6 8 10

Figure 4. 1: Velocity profiles for varying values of magnetic field parameter

f'(T))

0.8

0.6

0.4

0.2

- fw=O.1
000 fw = 0.5

fw = 1.0
+++ fw = 1.5

Pr = 0.72, M=I, Br= 0.1, Bi
= 0.1, Ra=O.l, K=I, A=1

O~--~-'r-~---.--~--r-~---.---r--.o 2 4 6 8 10

Figure 4. 2: Velocity profiles for varying values of suction parameter

52

--~~- -~ -~----.--------

www.udsspace.uds.edu.gh 

 

 

 

 



Figures 4.3, 4.4 and 4.5 depict the effects of Brinkmann number (Br), Biot number (Bi)

and thermal radiation parameter (Ra) respectively, on the dimensionless velocity. It is

observed that increasing values of Br, Bi and Ra reduce the velocity at the surface of the

plate and increase the free stream value due to rising buoyancy force as a result of

viscous heating, convective heat transfer and thermal radiation respectively.

++;t~+~~~~~~~~+H~W+~~~+ •.;oa
+"C>
.0

+

0.8

0.6

- Br=O.l
000 Br = 0.5
..... Br = 1.0
+++ Br = 1.5

f'(T])

0.4
Pr = 0.72, M=I, fw = 0.1,
Bi = 0.1, Ra=O.l, K=l, ),,=1

0.2

O~--~~--~---r--~--~~~~--~--,
o 2 4 6 8 10

"
Figure 4. 3: Velocity profiles for varying values of Brinkmann Number
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+++ Bi = 1.5

Pr = 0.72, M=l, fw = 0.1,
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Figure 4. 4: Velocity profiles for varying values of Biot num her

f'(Tt)

0.8 K=O
000 K= 1

K=2
+++ K=4

<>. +
+

0.6

Pr = 0.72, M=I, fw = 0.1, Br=
0.1, Bi = 0.1, Ra=O.l, A.>O

+

0.4 +

+

0.2

O~--'---'---~--'---~---.--~---.---r--~o 2 4 6 8 10

Figure 4. 5: Velocity profiles for varying! values of material parameter (assisting flow)
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Figure 4.6 represents the variation of different values of vortex viscosity parameter (K)

on the dimensionless velocity distributions for assisting and opposing flows. It is

observed that increasing the values of K for both assisting and opposing flows lead to a

decrease in the fluid flow, which causes the momentum boundary layer thickness

generally, to shrink away from the plate satisfying the far field boundary conditions. It

therefore suffices here to say that, increases in angular momentum diffusion will lead to a

better flow kinematics.

0.8

o • '+++
o • +o • +
• +

D. +
0. +

+

0.6

-- K=O
000 K= 1
..... K=2
+++ K=4

f'("f\)

+

Pr = 0.72, M=I, fw = 0.1, Br= 0.1,
Bi = 0.1, Ra=O.1, )...<00.4

+
0.2

O~--~--.--.r--.--~---.--~--~--~~o 2 4 6 8 10

Figure 4.6: Velocity profiles for varying values of vortex viscosity parameter (opposing flow)
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4.4.2 Micro-rotation Profiles

The effects of parameter variation on the micro-rotation boundary layer are shown in

Figures 4.7-4.12. Figures 4.7 and 4.8 show the effect of magnetic field and suction

parameters respectively on the micro-rotation profiles. It is observed that a longitudinal

decrease in micro-rotation profiles is accompanied by increasing values of both M and

fw. This can be attributed to the fact that increasing the magnetic field intensity induces

the Lorenz force, which tends to increase the couple stress (Table 4.3) hence the

longitudinal decrease in the micro-rotation.

0.09

0.08

0.07

0.06

0.05
h(-rf)

0.04

0.03

0.02

0.01

0
0 2

- M=l
000 M=2
..... M=3
+++ M=4

Pr = 0.72, fw = 0.1, Br= 0.1,
Bi = 0.1, Ra=O.l, K=l, ",=1

4 6 8 10

Figure 4. 7: Microrotation profiles for varying values of magnetic field parameter

56

www.udsspace.uds.edu.gh 

 

 

 

 



0.09

0.08

0.07

0.06

0.05
h(TI)

0.04

0.03

0.02

0.01

0
0 2

fw = 0.1
000 fw = 0.5

fw = 1.0
+++ fw = 1.5

Pr = 0.72, M = 1, Br= 0.1, Bi = 0.1,
Ra=O.I, K=I, )...=1

4 8 106
1'1

Figure 4. 8: Microrotation profiles for varying values of suction parameter
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Figure 4.9: Microrotation profiles for varying values of Brinkmann Number
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Figures 4.10 and 4.11 show the effect of Brinkmann and Biot numbers respectively on

the micro-rotation profiles. It is observed that increasing values of both parameters

reduces the micro-rotation profiles at the surface of the plate and increases the free

stream thereof. This is due to the fact that in increasing Br and Bi, internal heat rises due

to viscous dissipation and convective heat transfer leading to buoyancy effects.

Figures 4.12 and 4.13 depict the effect of vortex viscosity parameter for assisting and

opposing flows respectively. It is observed that increasing values of the vortex viscosity

increases microrotation profiles at the surface of the plate and reduces to free stream for

both flows, due to a rise in angular momentum diffusion.
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Figure 4. 10: Microrotation profiles for varying values of Biot number
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Figure 4.11: Microrotation profiles for varying values of vortex viscosity parameter (assisting flow)
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Figure 4. 12: Microrotation profiles for varying values of vortex viscosity parameter (opposing flow)
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4.4.3 Temperature Profiles

The effects of parameter variation on temperature profiles are shown in Figures 4.13-

4.21. Normally, the fluid temperature is highest at the surface of the plate and shrinks to

free stream temperature satisfying the boundary conditions. It is observed from Figures

4.13-4.15 that increasing the magnetic field intensity slightly increases the thickness of

the thermal boundary layer at the surface whereas increasing suction reduces the thermal

boundary layer thickness.

0.25 +

0+

M= 1
000 M=2

M=3
+++ M=40.20

0.15
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0.10 "t
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Figure 4. 13: Temperature profiles for varying values of magnetic field parameter
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Figure 4.14: Temperature profiles for varying values ofsuction parameter
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Figure 4. 15: Temperature profiles for varying values of the Prandtl number
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Also, it is observed from Figure 4.16 that increasing values of the Prandtl number leads

to a decrease in the thermal boundary layer thickness. This can be attributed to the fact

that increasing Pr means increase in momentum diffusion over thermal diffusion and

hence a decrease in the thermal boundary layer thickness at the surface. Meanwhile, from

Figures 4.16-4.18, it is observed that increasing the intensity of viscous dissipation and

convective heat transfer increase the temperature profiles.
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Figure 4. 16: Temperature profiles for varying values of the Brinkman number
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Figure 4. 17: Temperature profiles for varying values of Biot number
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Figure 4. 18: Temperature profiles for varying values of the radiation parameter
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Figure 4. 19: Temperature profiles for varying values of material parameter (assisting flow)
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Figure 4. 20: Temperature profiles for varying values of material parameter (opposing flow)
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This is due to the fact that as more heat is generated within the fluid, the fluid

temperature increases leading to a sharp inclination of the temperature gradient between

the plate surface and the fluid.

Moreover, Figures 19-20 show that increasing the vortex viscosity parameter for both

assisting and opposing flows increases the thermal boundary layer thickness resulting

into greater flow resistance (especially for assisting flow) in the boundary layer, thus

reducing the rate at which heat is convected by the fluid. This, in tum, increases the fluid

temperature in the neighbourhood of the plate surface causing the heat transfer rate at the

wall to deteriorate. This influence of the micropolar structure of the fluid may be

beneficial in the flow and temperature control of polymeric processing.
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CHAPTER FIVE

CONCLUSIONS AND RECOMMENDATIONS

5.0 Introduction

This chapter presents the summary of findings, conclusions and recommendations of

the study.

5.1 Summary of Findings

The research primarily investigated the combined effects of thermal radiation, viscous

dissipation and convective heating on MHD micropolar flow over a vertical surface with

heat transfer and convective boundary conditions. The effects of controlling parameters

on the shear stress, couple stress, the rate of heat transfers, velocity, microrotation and

temperature profiles were examined.

The equations governing the fluid flow in general was derived and based on some

assumptions, a mathematical model was developed for a Blasius flow of micropolar fluid

past a flat surface with the associated boundary conditions. These models were observed

to be nonlinear partial differential equations of higher order whose solution was not

readily available. To make these partial differential equations solvable numerically,

similarity analysis was employed to transformed these equations to ordinary differential

equations, which were then reduced to a system of nonlinear ordinary differential

equations. The nonlinear ordinary differential equations were solved by using the forth -

order Runge-Kutta integration scheme along with the Newton Raphson algorithm on

Maple 16 software.
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5.2 Conclusions

1. The thermal boundary layer thickness, which is associated with the rate of heat

transfer increases with the Magnetic field strength, viscous dissipation,

convective heating, radiation and the viscosity at the vortex due to the flow

rotations.

Il. The momentum diffusion, due to suction and increased viscosity dominated

thermal diffusion resulting in a reduced thermal boundary layer.

iii. The induced Lorenz force and suction can be employed to reduce the velocity of

the flow as well as the thickness of the micro-rotation. It is also noteworthy that

increasing the micro-rotation and temperature parameters tend to increase the

momentum ofthe flow due to dominant buoyancy forces.

IV. Increases in viscous dissipation and radiation have adverse effect on the rate of

heat transfer whereas increasing convective heat transfer enhances the heat

transfer process. On the other hand, the rate of mass transfer is enhanced by an

increase in the Lorenz force and the microrotation parameters.

v. The present of the magnetic field parameter and suction lead to a reduction in

flow whereas the permeability increases the fluid velocity.

VI. The rate of heat transfer at the surface of the plate can be controlled by

permeability, suction and the magnetic field strength to achieve desired flow

kinematics.
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5.3 Recommendations

i. Investigation of the effects of cooling and heating on MHD heat transfer revealed

that for the convective heat flux boundary condition, heat transfer (and associated

enhancement) is higher when flow temperature is higher. As the surface

temperature increases, the heat transfer and the associated enhancement increases.

These facts should be taken into account for the practical application of MHD in

heat transfer device.

II. Textile manufacturing involves a crucial energy-intensive drying stage at the end

of the process to remove moisture left from dye setting. It is recommended that,

in the process of optimising heat transfer in the drying process, thermal radiation

should be controlled.

iii. In the design of plate fin exchangers, convective heat transfer parameter among

other parameters, must be given considerate attention, since it enhances the heat

transfer process.

IV. In the process of heat transfer, viscous dissipation parameters must be controlled

as it increases temperature.

5.4 Suggestion for further study

i. In heat and mass transfer processes, the Soret and Dufour effects are

neglected because they are smaller order of magnitude than the effects

described by Fourier's and Fick's laws. Further research to include Soret and

Dufour effects in the present study is recommended.

II. Flow of micropolar fluids on inclined surfaces IS recommended as it

represents general orientation of plate.

68

----~-~------

www.udsspace.uds.edu.gh 

 

 

 

 



111. MHD micropolar fluids on curved surfaces and circular conduits will be an

interesting area of research.
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APPENDICES

APPENDIX I

Fourth order Runge-Kutta and Newton-Raphson's algorithms

i. The Fourth order Runge-Kutta Formula.

,1 h k2)
k3 = hJl», +2,Yn +2"

k, = hf{xn +h,Yn +k3)

Y =Y +~+ k2 + k3 + k4 +O(h5)
n+l n 6 3 3 6

Where h is the step size.

ii. The Newton-Raphson's formula.

x =X _ f(xJ
I 0 J'(xo)

f(x;)
X;+I = X; - f'{x;)

Where Xo is an initial guess.
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APPENDIX II

Maple code for numerical results

> Pr := 10: M := 0 : K := 0 : A. := 1 : Ra := 0 : Br := 0 : Bi
:= 1000000:jW := 0 :

fens := {F(y), 9(y), h(y)} :

sysl := (1 + K) 'difT(F(y),y$3) + F(y) -diff (F(y),y$2) + M· (1
- difT(F(y),y)) -difT(F(y),y)2 + A.·9(y) + K-difT(h(y),y) =

-1, (I + ~ . Ra)- difT(9(y),y$2) + Pr·F(y)·difT(9(y),y)

- Pr·9(y) 'difT(F(y),y) + Br' (difT(F(y),y$2))2 = 0, ( 1

+ ~ )-difT(h(y),y$2) + F(y)' ( difT(h(y),y)) - difT(F(y),

y)·h(y) - K(2'h(y) + difT(F(y),y$2)) =O,D(F)(O) =0,

F(O) =jW,h(O) =- ~ 'Ff/(0),D(9)(0) =Bi·(9(0) - 1),

D(F)( 10) = 1, 9( 10) = 0, h(10) = 0:

d3 (d2
. J (d ) 2-3 F(y) + F(y) --2 F(y) - -.' F(y) + sty) = -1,

dy dy dy

el
2

( d . ) ( d )- 9(y) + IOF(y) - sty) - 109(y) - F(y) =0,
4v2 dy dy

L h(y) + F{y) (....!. h(J')) - (....!. F(Y)) h{y) =0,
4l dy dy

D(F)(O) = 0, F(O) = 0,11(0) = -+ D(2) (F)(O), D( S) to)

= 10000008(0) - 100000Q D(F) (10) = 1, 9( 10) = 0, h ( 10) = 0

p := dsolve( {SYS1, D(F)(O) =O,F(O) =jw,h(O) =- ~ ·Ff/(O),

D( 9 )(0) = Bi- (8(0) - 1), D(F) (10) = 1,8(10) = 0, h(lO) = O},

jens, type = numeric, method = bvp, abserr = 0.000001)

proc(x __bvp) ... end proc
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dsoll := dsolve ( {sys 1},numeric, output = operator)

[y=proc(y) ... endproc,F=proc(y) ... endproc,O(F) =

proc(y)

end proc, 0(2) (F) = proc(y) ... end proc, h = proc(y)

end proc, O( h) = proc(y) .., end proc, e = proc(y) .,. end proc,

O( e) = proc(y) ... end proc]

dsoll (0);

[y=O,F(O) =O.,O(F)(O) =O.,O(2)(F)(O) = 1.4928381823183689,6

17(0) = -0.74641909115918447,!D(h)(0)

= 0.62306971465695004,13(0) = 0.99999805538653674,4D( e) (0)

= -1.9446134629342168)
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APPENDIX III

Maple code for graphical results

> Pr := 0.72: M := 1 : K:= 1 : A := 1 : Ra := I : Br := 0.1 : Bi
:= 0.1 :jw := 0.1 :

fens := {F(y), S(y), hey)} :

sys:= (l + K)·dif.f(F(y),y$3) + F(y)·dif.f(F(y),y$2) + M·(I
- dif.f(F(y),y))-dif.f(F(y),y)2 + A.·S(y) + K·dif.f(h(y),y) =
-1, (1 + ~. Ra)- dif.f(S(y),y$2) + Pr·F(y)·dif.f(S(y),y)

- Pr·S(y) ·dif.f(F(y),y) + Br- (dif.f(F(y),y$2))2 + M

·Br·(l- dlf.f(F(y),y))2=0, (1 + ~ )-dlf.f(h(y),y$2)

+ F(y)· (dlf.f(h(y),y)) - dif.f(F(y),y)·h(y) + K· (-2·h(y)
+ dlf.f(F(y),y$2)) = 0:

pJ := dsotve( {.rys,D(F)(O) =O,F(O) =jw,h(O) =- ~ ·F"(O),

D(S)(O) =Bi'(S(O) - l),D(F)(IO) = I,S(10) =O,h(lO) =O},

fcns , type = numeric, method = bvp, abserr = 1e- 6)

proc(x_bvp) ... end proc

pif := odeplot (pi, [y, F'(y)], 0 .. 10, numpoints = 50, labels = [''ll'',
"f (11)"], style = patch, symbol = asterisk, color = black) :

pIt := odeplot (p 1, [y, a(y) ], 0 .. 10, numpoints = 50, labels = [''ll ",
"8(11)"], style = patch, symbol = asterisk, color = black) :

pIc := odeplot(pl, [y, hey)], 0 .. 10, numpoints = 50, labels = [''ll'',
"h(l1)"), style = patch, symbol = asterisk, color = black) :

with (plots ) :

Pr:= 0.72:M:= I:K:= I:A:= I i Ra i= 1:Br:= 0.1 :Bi
:= 0.1 :jw := 0.1 :

fens := {F(y), sty), h(y)} :
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sys := (1 + K) odijf(F(y),y$3) + F(y) odijf(F(y),y$2) + M. (1
- dijf(F(y),y)) -dijf(F(y),y)2 + AOS(y) + Kodijf(h(y),y) =

-1, (1 + ; 0 -l dijf(S(y),y$2) + ProF(y)odijf(S(y),y)

- ProS(y) odijf(F(y),y) + Br- (dijf(F(y),y$2))2 + M

oBro(1- dijf(F(y),y))2=0, (1 + ~ )-dijf(h(y),y$2)

+ F(y) 0 ( dijf(h(y),y)) - dijf(F(y),y) oh(y) + K: (-20h(y)
+ dijf(F(y),y$2)) =0:

p2 := dsolve( {sys,D(F) (0) =O,F(O) =jW,h(O) =- ~ °F"(O),

D(S)(O) =Bio(S(O) - 1),D(F)(1O) = I,S(10) =0,h(10) =O},

fcns , type = numeric, method = bvp, abserr = Ie - 6)

proc(x_bvp) 0.0 end proc

> p2f:= odeplot (p2, [y, F' (y) ], 0 .. 10,numpoints = 50, labels = ["rl",
"f (11)"], style =point, symbol = circle, color = black) :

> p3 := dsolve( {sys,D(F) (0) =O,F(O) =jW,h(O) =- ~ of''(O),

D(S)(O) =Bio(S(O) - 1),D(F)(10) = I,S(1O) =O,h(IO) =o},
fcns , type = numeric, method = bvp, abserr = Ie - 6)

proc(x)JVp) ..0 end proc

p3f := odeplot (p3, [y, F'(y)], 0 .. 10, numpoints = 50, labels = ["11",
"f(11)"], style = point, symbol = point, color = black) :

p3t := odeplot(p3, [y, 8(y)], 0 0010, numpoints = 50, labels = ["rl",
"8(11)"],style = point, symbol = point, color == black) :

p3c := odeplot(p3, [y,h(y)],OoolO,numpoints == 50, labels = ["rl",
"h(11)"], style = point, symbol == point, color == black) :

with (plots) :

80

www.udsspace.uds.edu.gh 

 

 

 

 



Pr := 0.72: M:= I : K:= I : A, := I : Ra := I : Br := 0.1 :Hi
:= 0.1 .fw := O.l :

fens := {F(y), S(y), h(y)}:

sys := (I + K) ·d!ff(F(y),y$3) + F(y) ·d!ff(F(y),y$2) + M· (I
- d!ff(F(y),y))-d!ff(F(y),y)2 + A,·S(y) + K-d!ff(h(y),y) ==

-I, (I + ; .-l d!ff(S(y),y$2) + Pr·F(y)·d!ff(S(y),y)

- Pro S(y) .diff t Fi y ),y) + Br- (d!ff(F(y ),y$2))2 + M

·Hr·O-d!ff(F(y),y))2==0, (1 + ~ )-d!ff(h(y),y$2)

+ F(y)· ( d!ff(h(y),y)) - d!ff(F(y),y)·h(y) + K- (-2·h(y)
+ d!ff(F(y ),y$2)) == 0 :

p4 := dsolve( {sys,D(F)(O) ==O,F(O)==jW,h(O) ==- ~ ·F"(O),

D(S)(O) ==Hi·(S(O) - I),D(F)(IO) == I,S(IO) =O,h{lO) =O},

jcns, type == numeric, method == bvp, abserr == 1e - 6)

proc(x_hvp) ... end proc

p4j := odeplot (p4, [y, P(y)], 0 .. 10,numpoints == 50, labels == ["1'1",
"f (11)"], style = point, symbol == cross, color = black) :

p4t := odeplot (p4, [y, S(y)], 0 .. 10,numpoints == 50, labels == ["1'1",
"S(11)"], style == point, symbol = cross, color = black) :

p4c := odeplot (p4, [y, h (y)], 0 .. 10,numpoints = 50, labels = [''rJ",
"h(11)"], style =point, symbol == cross, color = black) :

> plots [display ]( {plj, p2j;p3j, p4j} );

8]
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