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A mathematical model is presented for a two-dimensional, steady, viscous, incompressible, electrically 
conducting and laminar free convection boundary layer flow with radiation from a flat plate in a 
chemically reactive medium in the presence of a transverse magnetic field. The basic equations 
governing the flow are in the form of partial differential equations and have been reduced to a set of 
non-linear ordinary differential equations by applying suitable similarity transformations. The problem 
is tackled numerically using shooting techniques with the fourth order Runge-Kutta integration scheme. 
Pertinent results with respect to embedded parameters are displayed graphically for the velocity, 
temperature and concentration profiles and discussed quantitatively.  
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INTRODUCTION  
 
Boundary layer flows induced over flat-plates by uniform 
free streams are well known in literature as Blasius 
(1908) problems. Howarth (1938) first conducted hand 
computations using Runge-Kutta numerical methods for 
flat plate flows. Thereafter, many authors investigated 
various aspect of the problem. Blasius solution for flow 
past a flat plate was investigated by Abussita (1994) and 
the existence of a solution was established. Asaithambi 
(1998) presented a finite-difference method for the 
solution of the Falkner-Skan equation and recently, Wang 
(2004) obtained an approximate solution for classical 
Blasius equation using Adomian decomposition method. 
Kuo (2004) studied the solutions of thermal boundary 
layer problems for flow past flat-plates using differential 
transformation method.  

Convective  heat  transfer  with  thermal  radiation  is of  
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great importance in processes involving high 
temperatures such as in gas turbines, nuclear power 
plants, and thermal energy storage among others. 
Hossain and Takhar (1996) studied the effect of thermal 
radiation using the Rosseland diffusion approximation on 
mixed convection along a vertical plate with uniform free 
stream velocity and surface temperature. Similarly, 
Hossain et al. (1999a, 2001b) analysed the thermal 
radiation of a gray fluid which is emitting and absorbing 
radiation in a non-scattering medium. Later, Raptis et al. 
(2004) analysed the radiative flow in the presence of a 
magnetic field while Cortell (2007a, 2008b) studied the 
effects of thermal radiation on several distinct boundary 
layers. Cortell (2008a, 2008c) further studied radiation 
effects on Blasius and Sakiadis flows when plate is 
maintained at a constant temperature. He determined the 
effects of physical parameters like Prandtl number (Pr) 
and radiation parameter (NR) on heat transfer 
characteristics. The free-convection flow with thermal 
radiation and mass transfer past a moving vertical porous  
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Figure 1. Physical configuration and coordinate system. 

 
 
 
plate was investigated by Makinde (2005). Makinde et al. 
(2008) analysed the effect of thermal radiation on the 
heat and mass transfer flow of a variable viscosity fluid 
past a vertical porous plate permeated by a transverse 
magnetic field. The present study is an extension of 
Raptis et al. (2004) to include the combined effects of 
radiation and magnetic field strength in a chemically 
reactive medium as it has greater application in the 
industry. 
 
 
PROBLEM FORMULATION  
 
We consider a two-dimensional free convection effects on the 
steady incompressible laminar MHD heat and mass transfer 
characteristics of a radiated vertical plate, the velocity of the fluid far 
away from the plate surface is considered as the free stream value. 
The variations of surface temperature and concentration are linear. 
The flow configuration and coordinate system are shown in Figure 
1.  

All the fluid properties are assumed to be constant except for the 
density variations in the buoyancy force term of the linear 
momentum equation. The magnetic Reynolds number is assumed 
to be small, so that the induced magnetic field is neglected. No 
electrical field is assumed to exist and both viscous and magnetic 
dissipations are neglected. The Hall effects, the viscous dissipation 
and the joule heating terms are also neglected. Under these 
assumptions, along with Boussinesq approximations, the boundary 
layer equations describing the flow are summarized as follows; 
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The appropriate boundary conditions for the problem are given as  
 

0== vu , axTTT w +== ∞ , bxCCC w +== ∞ ,

 at y = 0,                                             (5) 
 

,∞= Uu  ∞= TT , ∞= CC , as  .∞→y  
 
We use the Rosseland approximation for radiation of an optically 
thick boundary layer given by Raptis et al. (2004) and Cortel 
(2008b) in a simplified radiative heat flux form as 
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where *σ  and k* are the Stefan-Boltzmann constant and 
Rosseland mean absorption coefficient, respectively.  
 
We assume that the temperature difference within the flow such as 
the term T4 may be expressed as a linear function of temperature. 
Hence, expanding T4 in a Taylor series about T� (the fluid 
temperature at the free stream) and neglecting higher –order terms 
as in Bataller (2008), we obtain 
 

434 34 ∞∞ −≅ TTTT .                (7) 
 
Substituting Equations (6) and (7) into Equation (3) in the 
appropriate form leads to  
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where pck ρα /=  is the thermal diffusivity. 

 
 It is clear from Equation (8) that the effect of radiation is to 

enhance the thermal diffusivity. If we take, 
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the radiation parameter as in Bataller (2008), Equation (8) can be 
rewritten as  
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We  introduce  the  similarity  variable  η   and   the   dimensionless 
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stream function )(ηf  as  
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where �(�) is a dimensionless temperature of the fluid in the 
boundary layer region, )(ηφ is a dimensionless species 
concentration of the fluid, T represents temperature of the fluid and 
Tw is the temperature of the plate. T� is the temperature of the fluid 
far away from the plate. Similarly, C represents the concentration of 
the chemical species in the fluid, Cw is the species concentration at 
the wall, C� is the species concentration of the fluid far away from 

the plate. Thus, ∞>> TTTw  and ∞>> CCCw . With these 

set of dependent and independent variables, Equation (1) is 
satisfied simultaneously while Equations (2), (3), and (4) reduced to 
Equations (12), (13) and (14) respectively: 
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where primes denote differentiation with respect to �. The boundary 
conditions are also transformed into the following, 
 

,0=′f  ,0=f  ,1=θ  ,1=φ   at ,0=y  
,1=′f  ,0=θ ,0=φ  as ,∞→y                           (15) 
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NUMERICAL PROCEDURE 
 
The set of Equations (11) to (14) under the boundary conditions 
(15) have been solved numerically using the Runge-Kutta 
parameter integration scheme with a modified version of the 
Newton-Raphson shooting method.   

 
 
 
 
We let; 
 

1xf = , 2' xf = , 3'' xf = , 4x=θ , 5x=′θ , 6x=φ ,  

7x=′φ .                                                           (16) 

 
Equations (11) to (14) are transformed into systems of first order 
differential equations as follows; 
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subject to the following initial conditions;  
 

0)0(1 =x , 0)0(2 =x , 13 )0( sx = , 1)0(4 =x , 

25 )0( sx = , 1)0(6 =x , 37 )0( sx = .                                 (18)  

 

In a shooting method, the unspecified initial conditions; 1s , 2s  
and 3s  in Equation (18) are assumed. Equation (17) is then 

integrated numerically as an initial valued problem to a given 
terminal point. The accuracy of the assumed missing initial 
condition is then checked by comparing the calculated value of the 
dependent variable at the terminal point with its given value there. If 
a difference exists, improved values of the missing initial conditions 
must be obtained and the process is repeated. The computations 
were done by a written program which uses a symbolic and 
computational computer language MAPLE. A step size of η∆ = 
0.001 was selected to be satisfactory for a convergence criterion of 
10-7 in nearly all cases. The maximum value of η∞, to each group of 
parameters Sc, M, GT, Gc, and Pr is determined when the values of 
unknown boundary conditions at η  = 0 not change to successful 
loop with error less than 10-7. From the process of numerical 
computation, the local skin friction coefficient, the local Nusselt 
number and the local Sherwood number, which are respectively 
proportional to )0(f ′′ , )0(θ ′− , and )0(φ ′−  are worked out 
and their numerical values presented in Table 1. 
 
 
RESULTS  
 
Numerical results are reported in Table 1 and Figures 2 
to 18. The Prandtl number was taken to be Pr = 0.72 
which  corresponds  to  air; the values of Schmidt number  
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Table 1. Computations showing )0(f ′′ , )0(θ ′ and )0(φ ′  for various values of embedded parameter Pr = 0.72. 
 

M Sc GT Gc NR )0(f ′′  )0(θ ′−  )0(φ′−  

0.1 0.24 1 1 0.1 2.866119713808 0.161700863207 0.328152353412 
0.5 0.24 1 1 0.1 2.715774578241 0.157411248176 0.314801374214 
1.0 0.24 1 1 0.1 2.643497318099 0.153586285415 0.30305664137 
0.1 0.62 1 1 0.1 2.695192292243 0.158655504441 0.483332708610 
0.1 0.78 1 1 0.1 2.657009248999 0.158108875638 0.528123751194 
0.1 2.64 1 1 0.1 2.475889567788 0.156053727069 0.825402340528 
0.1 0.24 2 1 0.1 3.951783250461 0.174262325794 0.365670905056 
0.1 0.24 3 1 0.1 4.956292787925 0.184369404514 0.394692607664 
0.1 0.24 1 2 0.1 3.688807313223 0.167771186014 0.349825387426 
0.1 0.24 1 3 0.1 4.452867338900 0.172780621291 0.367601468364 
0.1 0.24 1 1 0.5 2.632252841126 0.281993102788 0.310074237495 
0.1 0.24 1 1 1 2.546307639267 0.341497727175 0.303814500108 
0.1 0.24 1 1 2 2.484472309332 0.392179538023 0.299598770273 
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Figure 2. Velocity profile for Pr = 0.71, Sc = 0.24, GT = 1, Gc = 1, NR = 0.1. 

 
 
 
(Sc) were chosen to be Sc = 0.24, 0.62, 0.78, 2.62, 
representing diffusing chemical species of most common 
interest in air like H2, H2O, NH3, and Propyl Benzene 
respectively. Attention is focused on positive values of 
the buoyancy parameters, that is, Grashof number Gt > 0 
(which corresponds to the cooling problem) and solutal 
Grashof number Gc > 0 (which indicates that the chemical 
species concentration in the free stream region is less 
than the concentration at the boundary surface). 

From  Table 1,  it  is  important  to  note   that  the   skin  

friction together with the heat and mass transfer rate at 
the plate surface decreases with increasing intensity of 
magnetic field (M). Also, the rate of heat and mass 
transfers at the plate surface increases with increasing 
intensity of buoyancy forces (GT, Gc). Moreover, the skin 
friction and the surface heat transfer rate decreases, 
while the surface mass transfer rate increases with 
increasing Schmidt numbers. It is noted further that, 
increasing the radiation parameter (NR) result in an 
increase  in  the  heat transfer rate but a reduction in both  
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Figure 3. Velocity profile for M = 0.1, Sc = 0.24, GT = 1, Gc = 
1, NR = 0.1. 
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Figure 4. Velocity profile for M = 0.1, Pr = 0.71, GT = 1, 
Gc = 1, NR = 0.1. 

 
 
 
the skin friction and the mass transfer rate. 
 
 
DISCUSSION 
 
Effect of parameter variation on velocity profiles 
 
Figure 2 shows the effect of increasing the magnetic 
field strength on the momentum boundary-layer 
thickness. It is now a well established fact that  increasing  
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Figure 5. Velocity profile for M = 0.1, Pr = 0.71, Sc = 0.24, 
Gc = 1, NR = 0.1. 
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Figure 6. Velocity profile for M = 0.1, Pr = 0.71, Sc = 0.24, 
GT = 1, NR = 0.1. 

 
 
 
the magnetic field strength dampened the velocity field by 
creating a drag force that opposes the fluid motion, 
causing the velocity to decrease. This force is known as 
the Lorenz force. Figures 3 and 4 show that when the 
Prandtl number or the Schmidt number increases, the 
velocity profile decreases. However, increasing the 
thermal and solutal Grashof parameters increases the 
velocity  near  the  plate  (Figure  5  and   6).  This   is   as  
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Figure 7. Velocity Profile for M = 0.1, Pr = 0.71, Sc = 0.24, 
GT = 1, Gc = 1. 
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Figure 8. Temperature profile for Pr = 0.71, Sc = 0.24, GT = 
1, Gc = 1, NR = 0.1. 

 
 
 
expected because near a heat radiating plate, molecules 
of the fluid have higher activity due to the energy 
absorbed. Increasing the radiation parameter also 
reduces the velocity as illustrated in Figure 7. In all 
cases, the velocity at the plate surface is zero due to the 
‘no slip’ condition. This increases to beyond the free 
stream value due to the radiated plate but settles down to 
the free stream value after some time.  
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Figure 9. Dimensionless temperature profile when M = 
0.1, Sc = 0.24, GT = 1, Gc = 1, NR = 0.1. 
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Figure 10. Temperature profile for M = 0.1, Pr = 0.71, GT 
= 1, Gc = 1, NR = 0.1. 

 
 
 
Effects of parameter variation on temperature 
profiles 
 
Figures 8 to 13 illustrate the effect of various parameter 
values on the thermal boundary layer thickness. In Figure 
8, increasing the magnetic parameter results in a slight 
increase in the thermal boundary layer, where as in 
Figure  9, there  is  a pronounced decrease in the thermal  
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Figure 11. Temperature profile for M = 0.1, Pr = 0.71, 
Sc = 0.24, Gc = 1, NR = 0.1. 
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Figure 12. Temperature profile for M = 0.1, Pr = 0.71, Sc 
= 0.24, GT = 1, NR = 0.1. 

 
 
 
boundary layer when the Prandtl number is increased. 
Increasing the Schmidt number as in Figure 10 results in 
a slight increase in the thermal boundary layer, however, 
increase in thermal and solutal Grashof numbers, as well 
as the radiation parameter (Figures 11 to 13) 
respectively, causes a reduction in the thermal boundary 
layer thickness.  
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Figure 13. Temperature profile for M = 0.1, Pr = 0.71, 
Sc = 0.24, GT = 1, Gc = 1. 
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Figure 14. Concentration profile for Pr = 0.71, Sc = 0.24, 
Gt = 1, Gc = 1, NR = 0.1. 

 
 
 
Effects of parameter variation on concentration 
profiles 
 
Figures 14 to 19 depict chemical species concentration 
profiles against spanwise coordinate η for varying 
physical parameter values in the boundary layer region. 
The species concentration is highest at the plate surface 
and decreases to zero far away from the plate satisfying 
the  boundary  condition. It is noted that the concentration  
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Figure 15. Dimensionless concentration profile when M 
= 0.1, Sc = 0.24, GT = 1,   Gc = 1, NR = 0.1. 
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Figure 16. Concentration profile for M = 0.1, Pr = 0.71, 
GT = 1, Gc = 1, NR = 0.1. 

 
 
 
boundary layer thickened with increasing values of the 
magnetic parameter and Prandtl numbers (Figures 14 
and 15). It can be observed further that increasing the 
values of the Schmidt number, the thermal and solutal 
Grashof numbers reduce the concentration boundary 
layer (Figures 15 to 18). In Figure 18, the radiation 
parameter is observed to increase with the concentration 
boundary layer. 
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Figure 17. Concentration profile for M = 0.1 Pr = 0.71, Sc 
= 0.24, Gc = 1, NR = 0.1. 
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Figure 18. Concentration profile for M = 0.1 Pr = 0.71, Sc = 
0.24, GT = 1, NR = 0.1. 

 
 
Conclusion 
 
An IVP procedure is employed to give numerical 
solutions of the Blasius momentum boundary layers 
across a vertical flat-plate and heat transfer in the 
presence  of thermal radiation under a convective surface 
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Figure 19. Concentration profile for M = 0.1 Pr = 0.71, Sc = 
0.24, GT = 1, Gc = 1. 

 
 
 
boundary condition. The transformed partial differential 
equations together with the boundary conditions are 
solved numerically by a shooting 4th order Runge-Kutta 
procedure. The combined effect of increasing the Prandtl 
number and the radiation parameter tend to reduce the 
thermal boundary layer thickness along the plate. This 
yields a reduction in the fluid temperature.  In general, the 
Blasius flow provides a thicker thermal boundary layer 
but this trend can be reversed at low values of 
parameters entering the problem.  
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