
UNIVERSITY FOR DEVELOPMENT STUDIES 

 

 

  

 

 

 

POWER SERIES INVERTED KUMARASWAMY DISTRIBUTION 

WITH APPLICATIONS TO LIFETIME DATA 

 

 

 

 

 

GODWIN DZAKPASU 

 

 

 

 

 

 

2019 

 

www.udsspace.uds.edu.gh 

 

 



UNIVERSITY FOR DEVELOPMENT STUDIES 

 

 

 

POWER SERIES INVERTED KUMARASWAMY DISTRIBUTION 

WITH APPLICATIONS TO LIFETIME DATA  

 

 

GODWIN DZAKPASU (B.Sc. MATHEMATICAL SCIENCE 

(STATISTICS OPTION)) 

UDS/MAS/0004/17 

 

 

 

 

THESIS SUBMITTED TO THE DEPARTMENT OF STATISTICS, 

FACULTY OF MATHEMATICAL SCIENCES, UNIVERSITY FOR 

DEVELOPMENT STUDIES IN PARTIAL FULFILLMENT OF 

THE REQUIREMENTS FOR THE AWARD OF MASTER OF 

PHILOSOPHY DEGREE IN APPLIED STATISTICS 

 

NOVEMBER, 2019 

www.udsspace.uds.edu.gh 

 

 



i 
 

DECLARATION 

Student  

I hereby declare that this thesis is the result of my own original work and 

that no part of it has been presented for another degree in this University or 

elsewhere. Related works by others which served as a source of knowledge 

have been duly referenced. 

 

Candidate’s Signature: ……………...……………      Date: ……………..  

 

Name: Godwin Dzakpasu  

 

Supervisors’  

I hereby declare that the preparation and presentation of the thesis was 

supervised in accordance with the guidelines on supervision of thesis laid 

down by the University for Development Studies.  

 

 Supervisor’s Signature: …………………………         Date: …………….  

 

 

Name: Dr. Solomon Sarpong  

 

 

 

www.udsspace.uds.edu.gh 

 

 



ii 
 

ABSTRACT 

The inverted Kumaraswamy distribution has a drawback in modeling 

lifetime data which show non-monotone failure rates. Thus, a new class of 

distributions called power series inverted Kumaraswamy distribution was 

developed by compounding the inverted Kumaraswamy distribution with 

zero truncated power series distribution with the goal of making it more 

flexible. The new class of distributions were developed using the stochastic 

representation 1 2min  ( , ,... )NZ T T T  which is the time to the first failure of a 

system of identical components that are in a series. The statistical properties 

such as quantile, moments, moment generating function, stochastic ordering 

property and order statistics were developed for the new class of 

distributions. The maximum likelihood method was employed to develop 

estimators for the parameters. Special sub-distributions namely, Poisson 

inverted Kumaraswamy distribution, geometric inverted Kumaraswamy 

distribution, binomial inverted Kumaraswamy distribution and logarithmic 

inverted Kumaraswamy distribution were developed from the new class of 

distributions. The failure rate of the special distributions can be increasing, 

decreasing, bathtub and upside-down bathtub-shaped. Monte Carlo 

simulations were performed to examine the behavior of the estimators.  The 

applications of the special distributions were illustrated using two lifetime 

data sets and the results revealed that among all the special distributions, the 

Geometric inverted Kumaraswamy distribution performs better. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background of the Study 

In statistics, the study of data is the foundation of its analysis. Data can be 

analyzed with visible techniques or graphical representations such as 

histograms, bar plots, bar charts, and so on. The above mentioned falls 

under descriptive statistics which has a limitation. Its drawback is that it is 

unable to make a generalization to other people or objects. This is where 

probability distribution comes into play. The use of probability 

distribution to model real data enhances the characterization of the 

variability and unpredictability or uncertainty in a data set by determining 

the patterns of variation. In as much as statistical probability distributions 

summarize the observations into a brief but comprehensive mathematical 

form containing a few parameters, they also provide means to analyze the 

basic structure that govern the data generating mechanism. 

To define the probability distribution of a stochastic variable Y , we make 

use of the following concepts: cumulative distribution function (CDF), 

( ( ) Pr( ))F y Y y   probability density function (PDF), ( ( ) '( ))f y F y , 

quantile function 
1( ( ) ( ))Q p F p , quantile density function, density 

quantile, ( ( ) ( ( ))p Yf p f Q p . In classical statistics, CDF and PDF are 

considered the most popular techniques of defining most distributions in 

statistical theory and practice. In statistical modeling, the main objective is 

finding appropriate probability distributions that adequately describe a 
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data set obtained by surveys, experiments and so on. To achieve this, there 

are two extensive methods that is, deriving theoretical models from basic 

assumptions using relations underlying the data and empirical modeling. 

The latter method is data dependent and is convenient in situations where 

there is lack of understanding in the data generating process. The 

underlying goal of this method is determining the best distributional 

approximation to the data by focusing on versatile families of distributions 

with sufficient parameters that are capable of producing various shapes 

and characteristics that match the properties exhibited by the available 

observations. The former method makes assumptions about the physical 

characteristics that govern the data generating process and subsequently 

obtain an appropriate model that satisfies such assumptions or adapting 

existing models from other disciplines (Atem, 2018).  

The challenge in empirical statistical modeling is finding a distribution 

function’s parameter estimates that are as close as possible to the true 

values of the theoretical model parameters. Based on the degree of 

accuracy desired, diverse modeling procedures that ensure closeness in the 

estimate and the true parameter value may be used. 

 However, we cannot find any statistical distribution that is suitable to the 

various types of data and so the need to generalize existing distributions or 

develop new ones. Current research works focus on determining new 

families of distributions that encompass classical distributions and also 

provide great versatility in modeling data. As a result, diverse techniques 
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to develop modern models by the addition of extra parameters have been 

introduced. Most of these generalizations are formed as a clarification of 

the data generating process and providing a better fit. 

In statistics, different data can be analyzed in different ways. The problem 

with data is making correct inferences about the data. The knowledge of 

the appropriate distribution of a data set or determining the right 

distribution of a specified data set enables one to make accurate inferences 

concerning the data. Classical statistical distributions may not be able to 

model correctly all the various data sets that exist. This is the motivation 

for generalizing existing distributions or creating new ones. Statisticians 

are coming out with new models and families of models that generalizes 

well-known distributions and also helps in modelling different types of 

data for instance lifetime data.     

Lifetime data modelling has become prominent in the field of survival 

analysis. Currently, more distributions have been introduced to model 

different forms of data. Kumaraswamy (1980) developed a distribution 

with similar traits to the beta distribution but with some advantages, 

including closed-form CDF. This distribution can be applied to several 

natural phenomena whose results have lower and upper bounds, such as 

atmospheric temperatures, individual heights, rainfall data and so on 

(Kumaraswamy, 1980; Jones, 2009; Golizadeh et al., 2011; Sindhu et al., 

2013; El-Deen et al., 2014). The inverted Kumaraswamy distribution 

proposed by Al-Fattah et al. (2017) is an inverse form of the 
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Kumaraswamy distribution proposed by Kumaraswamy (1980). Recently, 

extensions of the inverse Kumaraswamy (IKum) distribution have been 

proposed in literature. These include the Marshall-Olkin IKum distribution 

(Tomy and Gillariose, 2018) and the generalized IKum distribution (Iqbal 

et al., 2017). Thus, this study seeks to advance another modification of the 

IKum distribution called the power series IKum distribution with the aim 

of making it more flexible.  

 

1.2 Problem Statement 

The Ikum distribution has been used in modeling lifetime data. However, 

in many applied instances, the IKum distribution fails to give adequate fits 

to lifetime data such as the life cycle of machines, human mortality and 

biomedical data which show non-monotone failure rates.  

Current statistical improvements focus on developing new generalizations 

of the IKum distribution to make it more flexible in modelling data from 

diverse fields of study. Thus, this study proposes another extension of the 

IKum distribution with the goal of making it more flexible with regards to 

modeling lifetime data. 

 

1.3 General Objective 

To develop and study the properties of power series IKum distribution and 

apply it to survival data. 
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1.4 Specific Objectives 

1. To develop a new power series IKum distribution. 

2. To derive the statistical properties of the new distribution. 

3. To develop estimators for the parameters of the new distribution 

using maximum likelihood method. 

4. To assess the performance of the estimators using simulation. 

5. To demonstrate the application of the power series IKum 

distribution using real data sets. 

 

1.5 Significance of the Study 

Developing the Power series inverted Kumaraswamy distribution is 

premised on a number of motivations which can be applied in some 

practical situations given below. 

1. Due to the stochastic illustration  1 2min , ,..., NZ T T T  the 

power series IKum distribution can be applied in many 

industrial applications and biological organisms. 

2. The power series IKum distribution can be used to model 

adequately the time to the first failure of a system of 

identical components that are in a series. 

3. The power series IKum distribution exhibits some 

interesting characteristics with non-monotonic failure rates 

such as bathtub, upside bathtub and increasing-decreasing-
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increasing failure rates which are more likely to be 

encountered in real life situations.   

  

1.6 Thesis Outline 

The thesis is organized into five chapters including this one. Chapter two 

presents literature on modified distributions. Chapter three presents the 

methodology of the study. Chapter four presents the results and 

discussions. Finally, chapter five presents the summary, conclusion and 

recommendations of the study. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

This chapter presents several modifications and generalizations of 

distributions which aim at making them more flexible. This is because this 

research work is an extension of an existing model. 

2.2 Modified Distributions 

A lot of research has been done on modifications of previously developed 

distributions to allow for more flexibility so as to cater for the increasing 

number of data sets. 

Quite recently, Nasiru et al. (2018) developed a modern family of models 

by name the exponentiated generalized power series class. They defined 

some special distributions of the family and their applications were 

demonstrated with real sets of data. The results of the simulation revealed 

the parameters of the distributions were good with regards to the 

estimation techniques. 

Nasiru et al. (2018) worked on the Poisson exponentiated Erlang truncated 

exponential model and the statistical characteristics of this current model 

were studied and expressed. The potency of the current model was 

exhibited using real data set and the empirical results obtained showed that 

the new model was better than the other models it was compared with in 
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terms of goodness-of-fit. The bivariate Poisson exponentiated Erlang-

truncated exponential distribution was also proposed.  

Tomy and Gillariose (2018) pioneered a new class of continuous model 

called the Marshall-Olkin IKum Distribution using Marshall-Olkin 

extended method. Their new method has increasing, decreasing and 

unimodal pdf as some of its shapes. The new distribution can become a 

better substitute for the Kumaraswamy distribution and the IKum 

distribution. Their proposed model enfolded some special sub models and 

also got some existing distributions by adding appropriate transformations. 

Alizadeh et al. (2018) advanced a modern family of continuous-models by 

name the complementary generalized transmuted Poisson-G class. They 

provided certain characteristics of the model. The importance of the model 

was shown using applications to two real sets of data.  

Jamal et al. (2018) proposed the “Generalized Inverted Kumaraswamy-G

” class of distributions. Once again, after careful assessment and 

examination, it was realized that the new class of models indicated good 

flexibility. It out-performed some of the already existing models in 

literature. 

Elbatal et al. (2018) came up with a current model which is known by the 

name Kumaraswamy extension exponential model and it is practically 

based on the Kumaraswamy distribution. Sub groups of the new 

distribution were presented in the study. A number of its statistical 

characteristics were also expressed. The estimators were developed and 
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the performance of the model was exhibited. Finally, how well the model 

fits real data sets was shown. The new model was compared with three 

other models. 

Unal et al. (2018) proposed the “Alpha Power Inverted Exponential” 

distribution. They provided some of the statistical characteristics which 

include hazard rate function. The shapes of the latter were determined. 

The importance of the model was displayed with real data applications. 

The results obtained indicated that the model provided good fit. 

Elgarhy et al. (2018) examined and proposed the exponential generalized 

Kumaraswamy distribution. Parameter estimation was discussed in the 

work and certain characteristics were derived. The strength of the new 

model was exhibited by the use of real sets of data and the results clearly 

showed that the model performed very well. 

Elbatal et al. (2017) came up with a modern family of models known as 

the exponential Pareto power series models. They discussed some sub 

models and developed some characteristics of this model. Further studies 

revealed that the new model out-performed older ones.   

Muhammad and Yahaya (2017) proposed and studied a distribution 

known as the half-logistic Poisson model. They provided several 

characteristics of the study and vividly expressed them in the study. It was 

asserted that their model gave better fits than other ones. 

Fattah et al. (2017) proposed the exponential transmuted Weibull 

geometric distribution. The new model has 22 sub distributions. Its 
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performance was examined and this was done with two real sets of data, 

censored and uncensored. The estimates were assessed using simulation. It 

was discovered that the model performed better than old ones in literature. 

Dey et al. (2017) introduced a current model known as the  logarithmic 

transformed generalized exponential distribution. Special cases of the 

model were discussed and clearly expressed in the study. The   

logarithmic transformed generalized exponential density function has the 

ability to produce different shapes. Also, the characteristics of the 

distribution were developed.   

Usman et al. (2017) pioneered a current model known as the 

Kumaraswamy Half-logistic distribution. They examined some 

characteristics of the model and the importance of these features were 

clearly depicted in the study. Further studies revealed that the model can 

be a good substitute to previously developed ones. 

Mohammed (2017) developed a new distribution by name the log-

exponentiated Kumaraswamy model. The shapes of some of its functions 

were shown in the study and several characteristics were laid down with 

clarity. The data used to illustrate the performance of the new model were 

stratified into different working ages. The model was deemed to be a good 

fit for different kinds of data. 

Chakrabarty and Chowdury (2016) spearheaded two probability 

distributions known as the compounded inverse Weibull distributions. 

Essential characteristics such as quantiles and moments were developed. 
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For both models, they exhibited their potentiality on three real sets of data. 

Their model thrived in comparison with other models. 

Alkarni (2016) developed a modern distribution by name generalized 

extended Weibull power series class of models. He studied the 

characteristics of this group of models and expressed the process in the 

research work. The applicability of the models was displayed on a real set 

of data. 

Silva et al. (2016) defined the generalized gamma power series family, a 

distribution with unique characteristics and good for lifetime data. These 

interesting characteristics were showcased in the study. Quite recently, the 

current model has become a subject worth exploring. Careful studies 

revealed that the model out-classed certain older ones developed.   

Saboor et al. (2016) brought forth a new distribution by name the 

transmuted exponential weibull geometric distribution. It has about ten 

models as special cases. How well the model fits data sets was showcased 

in this research work. The study further revealed that the model performed 

better than existing ones. 

Behairy et al. (2016) introduced the Kumaraswamy-Burr Type III 

distribution which has some special well-known sub-groups. Its 

characteristics were discussed and a careful study revealed that the new 

model out-performed other models. Their model has now become an 

interesting case for most researchers. 
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Abdelall (2016) advanced the odd generalized exponential modified-

Weibull model by making use of the generator developed by Tahir et al. 

(2015). He studied certain characteristics of this model and compared this 

distribution with old ones to confirm the effectiveness of the new 

distribution and based on the result obtained, it was realized that the 

current model out-performed the others mentioned in the work.  

Rodrigues et al. (2016) introduced a new distribution known as the 

exponentiated Kumaraswamy inverse Weibull, a modification of inverse 

Weibull distribution, which is more extensible than its predecessors and 

accommodate numerous special cases which include the inverse 

exponential, inverse Rayleigh and inverse Weibull models. The model 

parameters estimation was achieved via moments and maximum 

likelihood estimation methods.  

Jafari and Tahmasebi (2015) came up with the Gompertz power series 

family of distribution which was developed for life data. They made use of 

certain techniques such as the expectation-maximization algorithm in their 

study. They also performed simulation studies and determined the 

importance of the model on real sets of data.  

Shafiei et al. (2015) in their study came up with a current group of models 

known as the inverse Weibull distributions. They provided certain 

characteristics of the model such as moments. To show the flexibility of 

this distribution, they demonstrated it on real data sets. After comparing 

with older models, it was realized that the new model out-matches the rest.  
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Warahena-Liyanage and Pararai (2015) proposed a group of models 

popularly referred to as the Lindley power series model. They provided 

certain characteristics and touched on the use of these features. They also 

presented sub-groups and exhibited the accuracy of the estimates. The 

strength of the models was illustrated using real data applications. 

Tahmsebi et al. (2015) pioneered a group of models known as the 

exponentiated G-power series models. They obtained certain 

characteristics of the model and also established that the model can be 

used to analyze different forms of data. The model was discovered to be 

better than some existing ones.  

Abdul-Moniem (2015) introduced a new distribution called exponential 

Nadarajah and Haghighi’s exponential distribution. This model exhibits 

certain desirable behaviors. By applying the new distribution to real data, 

it was seen that it can be quite effective to provide better fit than the 

Nadarajah and Haghighi’s exponential distribution. 

Nekoukhou and Bidram (2015) developed a trending model by name the 

exponentiated discrete Weibull model. The new distribution has sub-

groups which are clearly expressed in the research work. They derived 

certain statistical characteristics of the model. The shapes of the model 

were exhibited and finally, they illustrated the relevance of the model 

using a real set of data.  

Sankara and Anjana (2015) developed a new model which exhibits 

favorable shapes and characteristics for life data. They tested the 
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effectiveness of the model and also derived some of its characteristics. Its 

importance was demonstrated on a real data set and the result proved that 

it provided better fit to the data. 

Aryal and Elbatal (2015) proposed the Kumaraswamy modified inverse 

weibull distribution. They achieved this by extending the modified inverse 

Weibull distribution. Their work has provided a new model that is capable 

of modelling real life data. The performance of the new model was 

ascertained to be very good. 

Oguntunde et al. (2015) derived a two parameter inverted weighted 

exponential distribution. Its various statistical characteristics were 

established. Real life applications were provided to assess the superiority 

of the inverted weighted exponential distribution over existing 

distributions. The model shows unimodal and decreasing failure rate as 

such, this distribution can be used to describe and model real life 

phenomena with unimodal or decreasing failure rates. For the real life 

applications provided, the inverted weighted exponential distribution 

performed better than the weighted exponential distribution. 

Tahir et al. (2015) made an assertion that the generalized exponential 

model was applicable to lifetime data with monotonic hazard rate 

function. However, it is ineffective when some of its functions exhibit 

certain shapes. Based on these limitations mentioned above, they proposed 

a new class of models by name the generalized exponential family of 

distributions. 
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Several researchers have worked on the generator introduced by Tahir et 

al. (2015). Some studied the odd generalized exponential Gompertz and 

adopted the generator of the odd generalized exponential class of models. 

They derived Fisher’s information matrix and compared the new 

distribution’s performance with other already known models and it was 

established that the odd generalized Gompertz out-performed the rest. 

Nadarajah et al. (2014) engineered a modern group of models referred to 

as the exponentiated-G geometric class.  The flexibility of this model was 

illustrated and the results indicated that it fitted better than the other 

models it was compared with. The model exhibited some desirable shapes 

and certain characteristics were displayed. 

Gui et al. (2014) introduced a new compound distribution, named the 

Lindley-Poisson distribution.  Their aim of developing this new 

distribution was to apply it to lifetime data. At the end of their study, it 

was evident that the developed model contributes significantly to lifetime 

analysis and its parameters are quite good. It can also be used in place of 

other models.   

Chung and Kang (2014) pioneered the exponentiated Weibull-geometric 

distribution. The process of compounding was used to develop the new 

model. Several characteristics were expressed in the work. The 

performance of the parameters were assessed. The importance of the new 

model was demonstrated and it was realized that the new model is more 

flexible. 
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Bidram and Nekoukhou (2013), came out with a modern group of models 

called the Double bounded Kumaraswamy-Power Series Class of 

Distributions. In their study, they showed the compounding process and 

the techniques used for establishing the characteristics of the new model. 

The potency of the model was also showcased in the research. 

Alkarni (2013) introduced a group of models named a family of truncated 

binomial lifetime models and studied the characteristics of this class. The 

new family can generalize several distributions. After assessing its 

performance, it was shown to be quite good. The importance of the new 

distribution was also displayed in the study. 

Nadarajah and Eljabri (2013) introduced the Kumaraswamy GP model. To 

obtain the new distribution, the generalized Pareto model was extended. 

Comparison to other distributions was done and from the results, it was 

clearly evident that the proposed model gave better fit than the other 

models. 

Cordeiro et al. (2013) advanced the beta exponentiated Weibull model 

which is a modification of two other models mentioned in the literature. 

Their work showed some expressions of certain characteristics in closed 

form and others were represented by derived explicit expressions. They 

used the Akaike information criterion (AIC) and realized their model out-

performed the two models it was compared to. 

Sarhan et al. (2013) worked on the exponentiated generalized linear 

exponential model which has some sub-models. After some careful 
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examinations, it was realized that the new model provided better 

flexibility than the other models to which it was compared with in the 

work. It is also evident that the model can be employed as a replacement 

to previously developed models. 

Bakouch et al. (2012) came up with a new distribution called the 

exponentiated exponential binomial distribution.  The performance of the 

model was compared to existing ones and it was evident that the new 

model performed better. Some of the statistical characteristics were 

showcased in the study. 

Mahmoudi and Shiran (2012) developed a model popularly referred to as 

the exponentiated Weibull-geometric model. This new model has special 

cases which were discussed in the study. Certain functions of the model 

exhibits desirable shapes. They also developed some statistical 

characteristics of the new model. 

Mahmoudi and Jafari (2012) pioneered the generalized exponential power 

series models with the aim of adding an extra dimension to the exponential 

power series in order to make it more flexible. Some characteristics of this 

family were explored and its ability to model different data sets was 

illustrated to great effect.  

The Weibull power series family of distributions determined by Morais 

and Barreto-Souza (2011) contains alternate models such as the 

exponential power series models. Various shapes are exhibited by this 
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family models. Also worth noting are the characteristics of the group 

which were clearly highlighted in the study.   

Cordeiro and Castro (2011) developed the Kumaraswamy generated class 

for modifying other distributions by studying a stochastic variable X

which has the baseline CDF  P x . An idea akin to the above was used to 

consider the distribution functions of Weibull and Inverse Weibull 

distribution as candidates for ( )P x to achieve the Kumaraswamy Weibull 

model and Kumaraswamy inverse Weibull model.  

Pascoa and Cordeiro (2011) introduced and studied the Kumaraswamy 

generalized gamma distribution, based on the Kumaraswamy distribution 

(Jones, 2009).  Certain statistical characteristics were discussed. Two real 

data sets were analyzed with this distribution. A review of the research 

showed that the model is capable of providing good fits. 

Chakhandi and Ganjali (2009) introduced the exponential power series 

class of models. This group of models was shown in the study to be very 

good and comprises of sub-models. They showcased the usefulness on 

different sets of data and the results obtained paint a good picture of the 

model. Their model is capable of replacing older ones.  

Cho et al. (2009) came up with the acclaimed model known as the 

exponential extreme value distribution and reviewed critically some of its 

theoretical characteristics. Some derivations of this model were expressed 

with utmost clarity. The potency of the model was displayed using 

censored data.  
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Gupta and Kundu (1999) started and developed the generalized 

exponential models. More authors did further studies of this model. The 

model is known to exhibit favorable behaviors. The applications of the 

model was demonstrated using real data set. 

In the past decades, a number of studies have been made with reference to 

distributions of power series, Patil (1962) studied certain features of 

extended power series models. He also considered estimation and other 

characteristics of the model. He ascertained the members of this family. 

He further studied the truncated versions and his research has become a 

headlight for statisticians investigating this area.  

Khatri (1959) on some properties of power series distribution generalized 

what Noack (1950) did, to multivariate distributions. Further, he derived 

the multivariate modifications of power series distributions with the 

illustrations of multinomial distributions and extended it to truncated 

power series distributions. 

Noack (1950) studied a family of stochastic variable alongside discrete 

distributions and delved into its moment and cumulant properties. He also 

determined that the special cases of these models with their moment and 

cumulant characteristics belong to this class. 
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CHAPTER THREE 

METHODOLOGY 

3.1 Introduction 

The techniques for developing a new distribution, estimation of the 

parameters and the philosophy for the best estimation approach is 

presented. The focus of this study is on lifetime data and the procedure for 

modelling lifetime data including its analysis.   

 

3.2 Data and Source 

For purposes of the study, two lifetime secondary data sets were used to 

illustrate the applications of the developed distributions. The first data set 

comprises of 30   values for the failure time of repairable objects used by 

Murthy et al. (2004) and it is represented in Table 3.1. 

Table 3.1: Failure time of repairable objects 

1.43  3.46  4.36  0.70  0.63  

0.11  2.46  0.40  1.06  1.23  

0.71  0.59  1.74  1.46  1.24  

0.77  0.74  4.73  0.30  1.97  

2.63  1.23  2.23  1.82  1.86  

1.49  0.94  0.45  2.37  1.17  

  

The second data consists of 34  observations of vinyl chloride used for 

monitoring wells in mg/L. The data set presented in Table 3.2 was first 

used by Bhaumik et al. (2009). 
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Table 3.2: Vinyl chloride for monitoring wells in mg/L 

5.1 8.0  2.0  2.5  0.1  6.8  

1.2  0.8  0.5  2.3  0.1  1.2  

1.3  0.4  5.3  1.0  1.8  0.4  

0.6  0.6  3.2  0.2  0.9  0.2  

0.5  0.9  2.7  0.1  2.0  

 1.1 0.4  2.9  0.2  4.0  

  

3.3 Inverted Kumaraswamy Distribution  

A random variable X is said to have a Kumaraswamy distribution 

(Kumaraswamy, 1980) if its PDF is given by  

   
1

1; , 1 ,  0 1,  ,  0,                     (3.1)f x x x x
     


      

and its CDF is given by 

( ) 1 (1 ) ,  0 1,  0,  0.                                (3.2)F x x x           

The IKum distribution which is the inverse form of the Kumaraswamy 

distribution is obtained using transformation 1 1.T X   Hence, the 

random variable T is said to have the IKum distribution if its pdf is 

defined as  

( 1) 1( ; , ) (1 ) (1 (1 ) ) ,  0;  ,  0,           (3.3)f t t t t                

and CDF is defined as 

( ; , ) (1 (1 ) ) ,  0;  ,  0.                                 (3.4)F t t t          
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3.4 Power Series Class of Distributions 

Let N  be a discrete random variable from a power series distribution 

(truncated at zero) and whose pdf is given as 

 
 

,  1, 2,3,...,                                             (3.5)
n

na
P N n n

C




  

 

where  
1

n

n

n

C a 




  and na  depends on n  and (0, )s , s  can be  . 

 
1

n

n

n

C a 




  is finite and its first, second and third derivatives with 

respect to   are defined and given as    ' . ,  '' .C C  and  ''' . ,C

respectively. The binomial, Poisson, geometric and logarithmic 

distributions are classified under the power series family of distribution. 

Table 1 depicts some useful quantities of the zero truncated power series 

distribution. 

Table 3.3: Useful Quantities for Some Power Series Distributions 

Distribution  C    'C    1C 
 

na  s  

Poisson 1e   e   log 1    
1

!n


  0,  

Geometric  
1

1 


   
2

1 


   
1

1 


  1   0,1  

Logarithmic  log 1     
1

1 


  1 e   1n   0,1  

Binomial  1 1
m

    
1

1
m

m





 

 
1

1 1m    

m

n

 
 
 

 
 0,  
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3.5 Maximum Likelihood Estimation 

The maximum likelihood estimation (MLE) can be defined as a method of 

estimating a statistical model’s parameters by choosing the set of values of 

the model parameters that maximizes the likelihood function. Let 

1 2( , ,..., )T

nX X X X  be a vector of random variables from one of a class 

of distributions on 
n

 and indexed by p -dimensional parameters 

1 2( , ,..., )T

p     where p   and .p n  Let  F X   be the 

distribution function of X  and that the joint density function 

 1 2, ,... /nf x x x   exists. Then the likelihood of   is the function 

   1 2, ,..., ,                                                          (3.6)nL f x x x   

which is the probability of observing the given data as a function of  . 

The values of   that maximize the likelihood function are referred to as 

the maximum likelihood estimates of  , i.e., the value(s) that make(s) the 

observed data the most probable. If 1 2( , ,..., )nX X X X  are independent 

and identically distributed, then the likelihood simplifies to 

   
1

.                                                                  (3.7)
n

i

i

L f x 


  

Practically, it is often easy to solve the logarithms of the likelihood 

function, the log-likelihood function, given by 

   
1

log / .
n

i

i

f x 


  

Because logarithm is a monotone function when the likelihood function is 

maximized, the log-likelihood function is also maximized and vice versa. 
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The likelihood equations are obtained by setting the first partial 

derivatives of the log-likelihood function with respect to 1 2, ,..., k    to 

zero; that are 1 2( / , ,..., )
0,  1,2n

i

x x x
i






 


, and solving the system of 

likelihood equations. 

 

3.6 Methods of Evaluating Maximum Likelihood Estimators 

Given that 1 2, ,..., nX X X  stands for a random sample size of n  from the 

sampling model ( / )f x      and   is defined as an unknown parameter. An 

estimator of   obtained by techniques such as method of moment and 

maximum likelihood estimation, is the sample’s function, that is, a statistic

1 2( , ,..., )nT X X X


 . To study the quality of an estimator or asymptotic 

properties of the estimator, mean square error and bias (equivalently root 

mean square error and average bias) are used. 

  

3.6.1 Mean Square Error of an Estimator 

Let 


 represent the estimator of the unknown parameter   from the 

random sample 1 2, ,..., .nX X X  Then the deviations from 


 to the true  ,

| | 


  measures the quality or performance of the estimator. That is the 

mean square error (MSE) of an estimator 


 of a parameter   is the 

function of   defined as 

www.udsspace.uds.edu.gh 

 

 



25 
 

MSE 2 2 2( ) var( ) ( ( ) ) var( ) ( ( ))         (3.8)Bias       
     

          

The expectation in (3.7) corresponds to the random variables 

1 2, ,..., nX X X  since they are the only random components in the 

expression. The sequence of estimators { }n



  is weakly consistent or 

equivalently MSE consistent if 
n 


  in probability as n  . That is,

0  if n   

(| | ) 0.                                                                            (3.9)n 


     

Equivalently, and a sequence of estimators n


is weakly consistent if  

lim ( ) 0.                                                                               (3.10)n
n

MSE 



  

That is MSE descends to zero if the number of observations increase. 

 

3.6.2 Bias of an estimator 

This can be defined as the difference between the estimator’s expected 

value 


  and the true value of the parameter   being estimated. That is,  

( ) ( ) .                                                                      (3.11)Bias   
 

    

An estimator is unbiased if ( ) , .  


    For an unbiased estimator


, 

2( ) var( )                                                         (3.12)MSE   
  

     
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and so, an estimator is said to be unbiased if its MSE is equal to its 

variance. The sequence of estimators { }


is asymptotically unbiased if 

( ) 


  as n  . 

 

3.7 Model Comparison and Model Selection Criteria 

To show how applicable and flexible our proposed model is, its 

performance is compared with other established competing models with 

reference to information lost. Basically, a comparison of various model-

selection approaches’ ability to discover a real model involves a trade-off 

between goodness-of-fit and model’s parsimony. So, we tend to use 

information criteria techniques and goodness-of-fit statistics that correct 

model for complexity, to constrain the model from over fitting to assess 

the most effective model from a range of totally different models which 

can have different number of parameters. The Akaike information criteria 

(AIC), the corrected Akaike information criteria (AICc) and the Bayesian 

information criterion (BIC) are the most commonly used information 

criteria. The information criterion selects model with lesser values of AIC, 

AICc and BIC for a given set of candidate models and specified data set. 

The Akaike information criterion (AIC) (Akaike, 1974) measures 

statistical models’ quality for an observed data set. It measures 

information lost when the data generating process is expressed as a 

statistical model by obtaining an equilibrium in the trade-off between 
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goodness-of-fit of the model and its complexity. Assume we have a 

statistical model of some data x . Let p represent the number of estimated 

parameters in the model and L


 the model’s likelihood function’s 

maximum value, that is, ( / )L p x 
 

  where 


 are the values of the 

parameter that maximize the likelihood function. The AIC is then given by 

2 2log( ).                                                                    (3.13)AIC p L


   

AIC rewards goodness-of-fit, but it also attaches a penalty (to minimize 

over fitting) that is an increasing function of the number of estimated 

parameters. 

AICc (Hurvich and Tsai, 1989) is AIC with a correction for finite sample 

sizes defined as follows: 

2 ( 1)
,                                                         (3.14)

( 1)

p p
AICc AIC

n p


 

 
 

where n  is the number of observations, and p is the number of estimated 

parameters, that is, AICc is basically AIC with a bigger sanction for 

additional parameters. It is advisable to use AICc if the sample size is 

small or when the parameters of the model are too many (Anderson, 

2002). 

The Bayesian information criterion (BIC) (Schwarz, 1978) is a technique 

for model selection among a finite set of models. It is possible to increase 

the likelihood by adding parameters when fitting models but with trade-off 

for over fitting. Both BIC and AIC try to fix this problem by proposing a 
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sanction term for the number of parameters in the model; the sanction term 

is larger in BIC than in AIC. The BIC is defined as  

log( ) 2log( ),                                                           (3.15)BIC n p L


   

where L


 is the value that maximizes the model’s likelihood function, n  is 

the sample size and p  is the number of parameters to be estimated. 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.0 Introduction 

The results and discussions of the study are presented in this chapter. The 

chapter is represented in six parts, which are: PSIKum distribution, 

statistical properties, estimation of parameters, special distributions, 

simulations and applications. 

 

4.1 Power Series Inverted Kumaraswamy Distribution 

Given the random variable N  represents the number of failure causes, 

1,2,...,n   and the underlying distribution of N  is the zero truncated 

power series distribution. Suppose that 1 2, ,..., NT T T  is a sequence of 

independent and identically distributed, continuous random variables 

independent of N that follows IKum distribution with parameters  and 

 . These random variables denote the lifetimes associated with the failure 

causes. Usually N is the number of causes and the lifetime iT  is time to 

failure of the 
thi  subsystem. Let 

(1)T  be the minimum failure time and is 

defined as: 

(1) 1 2min{ , ,..., }.                                 (4.1)NT T T T  

The conditional CDF of 
(1) |T N n  is given by 
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1

( | ) 1 ( | )

                   1 [1 ( )]           

                   1 [1 (1 (1 ) ) ] .                        (4.2)

n

i

n

F t N n P T t N

G t

t  





   

  

    

  

 

Hence, the marginal CDF of 
(1)T  is given by 

 

 

1

1 1

( ) 1 [1 (1 (1 ) ) ]
( )

       [1 (1 (1 ) ) ]
( ) ( )

(1 (1 (1 ) )
       1 , 0, 0, 0, 0.             (4.3)

( )

n
nn

n

n
n

n n

n n

a
F t t

C

a a
t

C C

C t
t

C

 

 

 








 


  








 


 



    

    

         



   

The PSIKum distribution consists of a number of sub-distributions, which 

include the following: the Poisson IKum (PIKum), the geometric IKum 

(GIKum), the binomial IKum (BIKum) and the logarithmic IKum 

(LIKum) distributions. This proposed distribution can be referred to as the 

PSIKum class of distributions because it comprises of a number of sub-

models. The importance of this newly developed model can be illustrated 

in the fields of medical, industrial and finance where minimum risk 

problems arise. For instance, in reliability analysis where identical 

components connected in series requires the failure of just one component 

for the entire system to shut down (Silva, 2013).  

The associated PDF of the PSIKum distribution is obtained by 

differentiating the marginal CDF in equation (4.3) and is given by 
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'

1 1
(1 (1 (1 ) ) )

( ) (1 ) (1 (1 ) ) ,  0,  (4.4)
( )

C t
f t t t t

C

 

  







   
        

 

 where 0,  0    are shape parameters and 0   is the scale 

parameter. Henceforth, we represent a random variable X that follows the 

PSIKum distribution as ~ PSIKum ( ; , , )X t    . 

The survival function plays a critical role in both biological and 

engineering studies. For example in the biological sciences and other 

related fields, it is used to study the average time to the occurrence of 

events. In the engineering sciences, it is used to estimate the reliability of a 

system. The survival function of the PSIKum can be expressed as 

( ) 1 ( )

(1 (1 (1 ) )
       , 0.                           (4.5)

( )

S t F t

C t
t

C

 





 

     
 

The hazard rate function of a random variable is useful when studying the 

failure rate of a component. It is the instantaneous rate at which events 

happen given no previous events (instantaneous failure rate). The hazard 

rate function of the PSIKum random variable is defined by 

'

1 1

( )
( )

( )

(1 (1 (1 ) ) )
      (1 ) (1 (1 ) ) ,  0.  (4.6)

(1 (1 (1 ) ) )

f t
h t

S t

C t
t t t

C t

 

  

 








   





        
    

 

Proposition 4.1. The IKum converges to the PSIKum when 0 .   

Proof.  Since 
1

( ) n

n

n

C a 




 , we have 
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1

(1 (1 (1 ) )
( ) 1 ,

( )

       1 1 (1 (1 ) ) .
( )

n

n
n

n

C t
F t

C

a

t
C

 

 















     

      


 

Considering 0  , we obtain 

1

0 0

1

1 (1 (1 ) )

lim ( ) 1 lim .

n
n

n

n

n

n

n

a t

F t

a

 

 




 







 



    
 




 

By applying L’Hôpital’s rule, we obtain 

1

1

0 0 1

1

1

1

2

0 1

1

2

1

1

1 (1 (1 ) )

lim ( ) 1 lim

1 (1 (1 ) ) 1 (1 (1 ) )

              1 lim

1 (1 (1 ) )
             1

       

n
n

n

n

n

n

n

n
n

n

n

n

n

n

na t

F t

na

a t na t

a na

a t

a

 

 

   



 









 




 




  




  




 





    
 

            
 



     









      (1 (1 ) ) .                                            t    

 

This completes the proof. 

Proposition 4.2. The PDF of the PSIKum distribution can be expressed as 

an infinite mixture of the density of the smallest order statistic of the 

IKum distribution with parameters   and  . 

Proof. Using 
1

( ) n

n

n

C a 




  and 
1

1

'( ) n

n

n

C na 






 , the PDF of the 

PSIKum distribution can be expressed as 
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1

1 1 1

1
1

1 1 1

1
1 1

(1 (1 (1 ) ) )

( ) (1 ) (1 (1 ) )
( )

1 (1 (1 ) )

       (1 ) (1 (1 ) )
( )

      (1 ) (1 (1 ) ) 1 (1 (1 ) )
( )

n

n

n

n
n

n

n

n
n

n

na t

f t t t
C

na t

t t
C

na
t t t

C

 

  

 

  

    





















    




 

    


    

    
   

    
   

        





1

,
n







 

but 

1

1

( )
( )

( ) ( ) ( ),

n

n

n

a
P N n

C

f t P N n g t








 

  

 

where 
1

1 1

(1) ( ) (1 ) (1 (1 ) ) 1 (1 (1 ) ) )
n

g t n t t t    


              

is the density function of the smallest order statistic of the IKum. Thus the 

proof is complete. 

 

4.2 Statistical Properties 

Most at times, it is important to derive the statistical properties when new 

distributions are developed. This section presents statistical properties 

such as the quantile function, moments, moment generating function 

(MGF), stochastic ordering property and order statistics. 

4.2.1 Quantile function 

The quantile function or the inverse CDF of a random variable is very 

useful when generating random numbers from a given probability 
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distribution. It can also be used to describe some properties of a 

distribution such as the median, kurtosis and skewness. 

Proposition 4.3. The PSIKum quantile is given by 

1
1

1((1 ) ( ))
1 1 1, [0,1],                (4.7)u

C u C
t u








 
         

  

 

where 1C  is defined as the inverse of C . 

Proof. By definition, the quantile function is given by 

 1( ) inf : ( ) ,0 1.                                   (4.8)u uF u t F t u u      

If F is strictly increasing and continuous, then 
1( )F u

 is the unique real 

number ut  such that ( )uF t u . Thus, equating the CDF of the PSIKum 

distribution to u and solving for ut  yields 

1
1

1((1 ) ( ))
1 1 1,  [0,1]u

C u C
t u








 
         

  

. 

This completes the proof. 

It is evident that the quantile function of the PSIKum class of distributions 

is tractable and can be used for generating random numbers from the 

distributions. Sometimes the data may contain outliers or extreme values 

and the median may be required as the most appropriate measure of 

central tendency rather than the mean. The median of the PSIKum class of 

distributions is obtained by substituting 0.5u  into the quantile function. 

Thus, the median is given by 
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1
1

1

0.5

(0.5 ( ))
1 1 1.                                  (4.9)

C C
t








 
        

  

 

 

4.2.2 Moments 

The moments of a random variable are essential in statistical inference. 

They are used to investigate important characteristics of a distribution 

such as the measures of central tendency, measures of dispersion and 

measures of shapes. In this subsection, the 
thr non-central moment of the 

PSIKum random variable is derived. 

Proposition 4.4. If T  ~ PSIKum ( ; , , ),t    then the 
thr non-central 

moment of T   is given by 

'

1 0 0

1
( )( 1)

                   1 , ( 1) , , 1,2,...,               (4.10)

r
r i j

r

n i j

n r
u nP N n

i j

j
B i j r



 


 
 

  

  
     

  

 
    

 


 

where 

1

1 1

0

( , ) (1 )a bB a b y y dy    is the beta function. 

 

Proof. By definition, the 
thr non-central moment of a continuous random 

variable T with the support (0, ) is given by 

'

0

( ) ( ) .r r

ru E T t f t dt



    

 From Proposition 4.2, we have 
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'

(1)

10

1
1 1

1 0

( ) ( )

   ( ) (1 ) (1 (1 ) ) 1 (1 (1 ) ) .

r

r

n

n
r

n

u t P N n g t dt

nP N n t t t t dt    

 






    



 

         



 

 

Using the binomial theorem 
1

0

1
(1 ) ( 1) , 1i i

i

z z z
i








 
    

 
  and the 

fact that   0 1 1 1,t



     the 

thr non-central moment can further be 

expressed as 

 

 

' 1 1

1 00

( 1) 1
1

1 0 0

1
( ) (1 ) (1 (1 ) ) ( 1) 1 (1 )

1
   ( )( 1) (1 ) 1 (1 ) .

i
r i

r

n i

i
i r

n i

n
u nP N n t t t t dt

i

n
nP N n t t t dt

i

   

 





 
    

 

 
 

  

 

 
        

 

 
      

 

 

 

 

Let (1 )y t   , by change of subject 
1

1t y 


  . As 0, 1t y   and as  

, 0.t y   Also, 
1(1 ) .dy t dt      Hence, 

   
1

0
( 1) 1'

1 0 1

1
( )( 1) 1 1 .

r
ii

r

n i

n
u nP N n y y dy

i






 

 

 

 
      

 
   

Using the expansion 
0

( ) .v j v j

j

v
x a x a

j






 
   

 
  Thus, 

1

' ( ) 1

1 0 0 0

1
( )( 1) (1 )

j
r

r i j i j

r

n i j

n r
u nP N n y y dy

i j
 


 
   

  

  
     

  
   

But 
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1

1 1

0

'

1 0 0

( , ) (1 )

1
( )( 1) 1 , ( 1) , , 1,2,....

a b

r
r i j

r

n i j

B a b y y dy

n r j
u nP N n B i j r

i j
  



 

 
 

  

 



    
          

   





 

This completes the proof for 
thr  non-central moment. 

 

4.2.3 Moment Generating Function 

The MGFs are special functions employed to establish the moments if 

they exist for a random variable and functions of moments such as mean 

and variance, kurtosis and skewness in a much simpler way. 

Proposition 4.5. If ~ PSIKum ( ; , , )T t    , then the MGF is 

0 1 0 0

1( 1) ( )
( )

!

                   1 , ( 1) , .                            (4.11)

r i j rr

T

r n i j

n rz nP N n
M z

i jr

j
B i j



 


   

   

   
   

  

 
   

 


 

Proof. If the MGF premised on the support (0, ) , exist, then  

 
0

( ) ( ) .zT zt

TM z E e e f t dt



    

Employing Taylor series expansion, the MGF can be expressed as 

'

0

( ) ,
!

r

T r

r

z
M z u

r





  

where 
'

ru  is the 
thr  non-central moment. Hence, substituting the 

thr  non-

central moment gives the MGF as 
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0 1 0 0

1( 1) ( )
( ) 1 , ( 1) , .       

!

r i j rr

T

r n i j

n rz nP N n j
M z B i j

i jr
  



   

   

     
       

   


 

This completes the proof. 

4.2.4 Stochastic Ordering Property 

Stochastic orders (SO) are very applicable in several fields of applied 

probability and statistics. In the fields of reliability and maintainability 

theory, SO have important applications in many areas. Some examples are 

defining notions of positive and negative aging, bounding system 

reliabilities and availability, and comparing maintenance policies 

(Ohnishi, 2002). Stochastic ordering is the common way of ordering 

mechanism in lifetime distributions. A random variable 1T  is said to be 

greater than a random variable 2T  in likelihood ratio order if 1

2

( )

( )
T

T

f t

f t
 is 

an increasing function of t . 

Proposition 4.6. Let 1T ~ PSIKum ( ; , , )t     and 2T ~ IKum ( ; , )t   , 

then 1T  is smaller than 2T  in likelihood ratio order 1 2( )lrT T  provided 

0  . 

Proof. The ratio of the densities 1T  and 2T  is 

 
1

2

' 1 (1 (1 )( )

( ) ( )

T

T

C tf t

f t C


 



   
    . 

Taking the first derivative of 1

2

( )

( )
T

T

f t

f t
 with respect to t , we have 
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 
1

2

''

2 1 1
1 (1 (1 ) )( )

(1 ) (1 (1 ) ) .
( ) ( )

T

T

C tf td
t t

dt f t C

 

  


 




   
   
       

Since 1

2

( )
0

( )

T

T

f td

dt f t
  for all t , 1T  is smaller than 2T  in likelihood ratio 

order. That is 1 2lrT T . This completes the proof. 

4.2.5 Order statistics 

Order statistics are very important tools in non-parametric statistics and 

inference. They are derived from transformation that involves the ordering 

of an entire set of observations on a random variable. Since order statistics 

have hordes of applications in several areas of statistics, it is imperative to 

derive some common order statistics for the PSIKum class of 

distributions. Suppose 1 2, ,..., nT T T  are independent identically distributed 

random sample of size n  from PSIKum class of distributions with CDF 

( )F x  and PDF ( )f x . Let 1: 2: 3: :...n n n n nT T T T     represent the order 

statistics obtained from the sample. The PDF of the thk  order statistic, for 

1,2,...,k n  is given by 

1

:

!
( ) ( )[ ( )] [1 ( )] .

( 1)!( )!

k n k

k n

n
f t f t F t F t

k n k

  
 

 

Since 0 1 ( ) 1F t   , using the binomial expansion 

 
1

:

0

!
( ) ( 1) ( ) ( )  .                  (4.13)

( 1)!( )!

n k
K ii

k n

i

n kn
f t F t f t

ik n k


 



 
   

   
  

Substituting the CDF and PDF of the PSIKum into equation (4.13), we 

have 
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 

  

  

1
1

:

1

0

'

! (1 ) 1 (1 )
( )

( 1)!( )!

1 (1 (1 ) )
( 1) 1

( )

1 1 (1 )

.                                           (4.15)
( )

k n

k i

n k
i

i

n t t
f t

k n k

C tn k

i C

C t

C


 


















  

 








  
 

 

      
     

   
 

   
  

  

 

4.3 Parameter Estimation 

 To illustrate the applications of the developed distribution with regards to 

modeling real data sets, it is vital to develop estimators for estimating the 

parameters of the distribution. In this section, estimators are developed for 

estimating the parameters of the PSIKum class of distributions. Suppose 

1 2, ,..., nt t t  are possible outcomes of a random sample of size n  from

~ PSIKum ( ; , , )T t    , then the total log-likelihood function is given by 

    
1 1

'

1

log( ) ( 1) log(1 ) ( 1) log(1 (1 ) )

    log ( ) log 1 1 (1 )  .                 (4.16)

n n

i i

i i

n

i

i

n t t

n C C t






  

 



 





       

      
    

 


 

The first derivatives of the total log-likelihood function with respect to the 

parameters are; 

   

 

''
'

'1

1 1 (1 ) 1 1 (1 )
( )

.      (4.17)
( ) 1 1 (1 )

n i i

i
i

t C t
n nC

C C t

 
 







   

 



         
           

     
    


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 

     

 

1

''

'1

log 1 (1 )

1 (1 ) 1 1 (1 ) log 1 (1 )

     .  (4.18)

1 1 (1 )

n

i

i

n i i i

i
i

n
t

t C t t

C t



   




 

 







  




   



          
        

    
    





 

 

   

 

1 1

1
''

'1

(1 ) log(1 )
log(1 ) ( 1)

1 (1 )

1 (1 ) (1 ) 1 1 (1 ) log(1 )

    . (4.19)

1 1 (1 )

n n
i i

i

i i i

n i i i i

i
i

t tn
t

t

t t C t t

C t





 
  




 

 
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    
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 



 

The normal equations that need to be solved simultaneously to obtain the 

maximum likelihood estimates of the parameters are obtained by equating 

equations (4.17), (4.18) and (4.19) to zero. That is, 

0, 0, 0.
  

  
  

  
 The resulting normal equations do not have closed 

form and so the maximum likelihood estimates are obtained by solving the 

equations using numerical methods. 

 

4.4 Special Distributions 

In this section, we present the CDF, PDF and the hazard functions of the 

special sub-models of the PSIKum class of distributions. These are: the 

PIKum, GIKum, BIKum and LIKum distributions. 
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4.4.1 Poisson Inverted Kumaraswamy Distribution 

The zero truncated Poisson distribution is a special case of the power 

series distribution with
1

!
na

n
 , '( )C e  , and ( ) 1C e   , ( 0)  . 

From equation (4.3), the CDF of the PSIKum distribution is 

 1 1 (1 )

( ) , 0,                     (4.21)
1

t

e e
F t t

e








 
   

 
 


 

where 0, 0    are shape parameters and 0   is the scale parameter. 

Figure 4.1 shows the plot of the CDF of the PIKum distribution for certain 

chosen values of the parameters. 

 

Figure 4.1: Plot of CDF of PIKum 

 

The PIKum distribution PDF is given by  
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 
 1 1 (1 )

1
1( ) (1 ) 1 (1 ) , 0.             (4.22)

1

t

e
f t t t t

e





 




 
   

 
      


 

Figure 4.2 depicts the PDF of the PIKum distribution for some chosen 

values of the parameters. It is shown clearly from the plot that for certain 

chosen values of the parameters, the PDF can be approximately 

decreasing, upside-down bathtub and right skewed. 

 

Figure 4.2: Plot of PDF of PIKum  

The PIKum distribution hazard function is given by 

 
 

 

1 1 (1 )

1
1

1 1 (1 )

( ) (1 ) 1 (1 ) , 0.       (4.23)

1

t

t

e
h t t t t

e










 









 
   

 
  

 
   

 

    


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The plot of the PIKum hazard function is given in Figure 4.3. It can be 

seen that the hazard rate function shows decreasing, right skewed and 

upside-down bathtub failure rates. 

 

Figure 4.3: Plot of the PIKum hazard function 

 

4.4.2 Geometric Inverted Kumaraswamy Distribution 

The zero truncated geometric distribution is a special case of the power 

series distribution with 1na  , ( )
1

C








, and
'

2

1
( )

(1 )
C 





, 

(0 1)  . From equation (4.3), the CDF of the PSIKum distribution is 

given by 
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  
  

(1 ) 1 1 (1 )
( ) 1 ,  0,                      (4.24)

1 1 1 (1 )

t
F t t

t













   
  

   
 

where 0, 0    are shape parameters and 0 1   is a scale 

parameter. It is important to note that   is also valid for ( ,1) . Figure 

4.4 shows the CDF of the GIKum distribution for certain parameter 

values. 

  

 

Figure 4.4: Plot of CDF of GIKum  

 

The associated GIKum PDF is 
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   

  

1

2

1 (1 ) 1 (1 )
( ) ,  0.                                  (4.25)

1 1 1 (1 )

t t
f t t

t


 




 




 



   
 

    
  

 

Figure 4.5 is the plot of the GIKum distribution PDF for a few chosen 

values. It is clearly shown from the plot that the PDF of the GIKum can 

depict right skewed, upside down bathtub shapes and decreasing failure 

rates. 

 

Figure 4.5: Plot of PDF of GIKum  

 

The GIKum hazard function is  

 

     

1
1(1 ) 1 (1 )

( ) ,  0.                                (4.26)

1 1 1 (1 ) 1 1 (1 )

t t
h t t

t t


 

  






  

 

  
 
         
      
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The plot of GIKum hazard function are shown in Figure 4.6. 

 

Figure 4.6: Plot of the GIKum hazard function  

 

4.4.3 Binomial Inverted Kumaraswamy Distribution 

The zero truncated binomial distribution is a special case of the power 

series distribution with n

m
a

n

 
  
 

, ( ) (1 ) 1mC      and 
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' 1( ) (1 )mC m    , ( 0)  , where ( )m n m  is the number of replicas 

and is a positive integer. Using equation (4.3), the CDF of the BIKum 

distribution is given by 

  1 1 1 (1 ) 1

( ) 1 ,  0,                               (4.27)                    
(1 ) 1

m

m

t

F t t





     
    

 

 

where 0, 0    are shape parameters and 0   is the scale parameter. 

Figure 4.7 shows the CDF of the BIKum for some chosen parameter 

values and 5m  . 

 

Figure 4.7: Plot of BIKum CDF  

 

The associated BIKum PDF is 
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 

1 1

1

( ) (1 ) (1 (1 ) )

[1 (1 (1 (1 ) ) )]
            ,  0.        (4.28)

(1 ) 1

m

m

f t m t t

t
t

  

 







   

 

    

   


 

 

The plot of PDF of the BIKum distribution for some selected values of the 

parameters exhibits decreasing failure rates, and right skewed shapes with 

varying degrees of kurtosis as shown in Figure 4.8.   

 

Figure 4.8: Plot of BIKum CDF 

The BIKum hazard function is  

  

1 1

1

( ) (1 ) (1 (1 ) )

[1 (1 (1 (1 ) ) )]
            ,  0.      (4.29)
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 



    

   


     
  
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The plot of the BIKum hazard function for 5m    are shown in Figure 4.9. 

It can be seen that the hazard rate function exhibits decreasing, right 

skewed and upside-down bathtub failure rates. 

 

Figure 4.9: Plot of BIKum hazard rate function 

4.4.4 Logarithmic Inverted Kumaraswamy Distribution 

The zero truncated logarithmic distribution is a special case of the power 

series distribution with 
1

na
n

  , ( ) log(1 )C      and 
' 1( ) (1 )C      ,

(0 1)  . Using equation (4.3) the CDF of the LIKum distribution is 

given by 

  log 1 1 1 (1 )

( ) 1 , 0,                             (4.30)
log(1 )

t

F t t






    
    


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where 0, 0    are shape parameters and 0 1   is a scale 

parameter. It is worth noting that the parameter   is also valid for ( ,1)

. Figure 4.10 shows the CDF of the LIKum distribution for some chosen 

values of the parameters. 

 

Figure 4.10: Plot of LIKum CDF  

The associated LIKum PDF is 

  

1 1(1 ) (1 (1 ) )
( ) , 0,                   (4.31)

log(1 ) 1 1 (1 ) 1

t t
f t t

t

  






 

   



  
 

     
  

 

Figure 4.11 exhibits the plot of the LIKum density function. It is visible 

that the PDF of the LIKum distribution shows right skewed upside-down 

bathtub and decreasing failure rates for certain chosen parameter values. 
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Figure 4.11: Plot of the LIKum PDF 

 

The corresponding LIKum hazard function is 

     

1 1(1 ) (1 (1 ) )
( ) ,  0. (4.32)

1 1 (1 ) 1 log 1 1 1 (1 ) 

   

   

t t
h t t

t t

  

 
 



 

   

 

  
 
          
      

 

The plot of LIKum hazard function is shown in Figure 4.12. The LIKum 

hazard function can exhibit decreasing, upside-down bathtub and right 

skewed failure rates as depicted in Figure 4.12. 

www.udsspace.uds.edu.gh 

 

 



53 
 

 

Figure 4.12: Plot of LIKum hazard function  

 

4. 5 Monte Carlo Simulation 

Monte Carlo simulation experiments were carried out to investigate the 

performance of the estimators of the parameters of the PSIKum model. 

For demonstration purposes, the PIKum distribution was employed for the 

experiment. The Monte Carlo simulation was replicated 1,000  times for 

each sample size 30,60,90,150,200,300n   and 500 . The following sets 

of parameter values I : 0.1, 0.8, 3.1       and 

: 4.5, 3.8, 8.1II       were used to derive random numbers from the 
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PIKum model. The average estimate (AE), average bias (AB), root mean 

square error (RMSE) and coverage probability (CP) for the estimators of 

the parameters are shown in Table 4.1. The AE as shown in Table 4.1 vary 

with respect to the sample sizes and approaches the actual value as the 

sample size increases. Looking at the absolute value of the ABs, it can be 

seen that the AB for the estimators decays towards zero as the sample size 

increases. Also, the RMSEs for the estimators generally decrease to zero 

as the sample size increases. This implies that the consistency property of 

the estimators can be achieved as n  . The 95%  confidence interval 

CPs for the estimators are generally closer to the nominal value of 0.95 . 

Thus, the estimators for the parameters estimate the parameters of the 

distribution well. 
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Table 4.1: Monte Carlo simulation results 

 

 

 

Parameter n   

I   II 

AE AB RMSE CP   AE AB RMSE CP 

   30 0.1546 0.0546 0.1008 0.982   6.6695 2.1695 5.2363 0.913 

 

60 0.1384 0.0384 0.0761 0.962 

 

5.6402 1.1402 3.9844 0.909 

 

90 0.1325 0.0325 0.0699 0.917 

 

5.1789 0.6789 3.4716 0.917 

 

150 0.123 0.023 0.0578 0.885 

 

4.7494 0.2494 2.4403 0.94 

 

200 0.117 0.017 0.052 0.894 

 

4.7177 0.2177 2.0413 0.953 

 

300 0.1109 0.0109 0.0434 0.879 

 

4.5311 0.0311 1.435 0.952 

  500 0.1058 0.0058 0.0365 0.87   4.5289 0.0289 0.8944 0.959 

   30 0.816 0.016 0.184 0.966   5.2899 1.4899 4.19 0.981 

 

60 0.7966 -0.0034 0.1198 0.959 

 

4.5369 0.7369 2.1967 0.946 

 

90 0.789 -0.011 0.0937 0.972 

 

4.2293 0.4293 1.5747 0.896 

 

150 0.7878 -0.0122 0.0753 0.957 

 

3.9827 0.1827 1.0116 0.919 

 

200 0.7896 -0.0104 0.0653 0.955 

 

3.9486 0.1486 0.8695 0.935 

 

300 0.7903 -0.0097 0.0509 0.949 

 

3.8498 0.0498 0.5855 0.936 

  500 0.7939 -0.0061 0.0382 0.959   3.84 0.04 0.3894 0.96 

   30 2.4831 -0.6169 2.279 0.986   24.8835 16.7835 64.6653 0.754 

 

60 2.5791 -0.5209 1.6547 0.943 

 

18.9536 10.8536 43.5351 0.843 

 

90 2.748 -0.352 1.8798 0.887 

 

18.2635 10.1635 40.2821 0.868 

 

150 2.8645 -0.2355 1.7003 0.879 

 

13.662 5.562 25.0641 0.925 

 

200 3.0132 -0.0868 1.6121 0.892 

 

10.6578 2.5578 11.3016 0.934 

 

300 3.1349 0.0349 1.6059 0.894 

 

9.4379 1.3379 4.935 0.955 

  500 3.1973 0.0973 1.3866 0.906   8.6515 0.5515 2.7021 0.961 
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4.6 Applications to Lifetime Data 

 The importance of the special distributions were displayed using two 

lifetime data sets. The performance of the special distributions was 

compared to each other by comparing their AIC, AICc and BIC values.  

4.6.1 Failure Time of Repairable Objects Data 

Table 4.2 presents the descriptive statistics of the failure time for 

repairable objects data. From Table 4.2, the minimum and maximum 

failure times of the repairable objects are given as 0.11  and 4.73  

respectively. The mean failure time is given as 1.543  and the coefficient 

of skewness and excess kurtosis are given as 1.36  and 1.80  respectively. 

The last two values show that the failure time of the repairable objects is 

right skewed and more peaked than the normal curve.   

 

Table 4.2: Descriptive statistics of failure time of repairable objects.  

Minimum Maximum Mean Skewness Excess Kurtosis 

0.110  4.730  1.543  1.36  1.80  

 

The failure times were modeled using the PIKum, GIKum, BIKum and 

LIKum distributions. It is worth mentioning that 5m   replicas were used 

to fit the BIKum distribution to the data set. Table 4.3 shows the 

maximum likelihood estimates for the parameters of the fitted distribution. 

For the PIKum and LIKum distribution, only the   parameter is 

significant at the 5%  significance level. For the BIKum distribution, all 

three parameters are significant at the 5%  significance level. The GIKum 
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distribution also has only one parameter   being significant at 5%  

significance level 

Table 4.3: Maximum likelihood estimates for the failure time of 

repairable objects data 

Model Estimate standard error z-value P-value 

PIKum 0.3401


  0.3112  1.0928  0.2745  

 

2.5997


  0.5784  4.4949  66.96 10   

 

28.7383


  42.7294  0.6726  0.5012  

GIKum 3.8016


  0.8158  4.6600  63.162 10   

 

2.1907


  2.0339  1.0771 0.2814  

 

8.5820


   13.9504  0.6152  0.5384  

BIKum 0.8924


  0.1911  4.6688  63.030 10   

 

2.9988


  0.6793  4.4145  51.012 10   

 

197.09


  71.8117 10  1.0879  162.2 10    

LIKum 4.9600


  2.7090  1.8309  0.0671  

 

3.9362


  1.8706  2.1042  0.0354 

 

175.6579


   827.6443  0.2122  0.8319  

 : means significant at 5%  significance level. 

Table 4.4 depicts the goodness-of-fit statistics for the fitted distributions. It 

can be seen from Table 4.4 that the GIKum distribution gives the best fit 

for the data since it has the highest log-likelihood value and the least 

values for the AIC, AICc, and BIC. 
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Table 4.4: Goodness-of-fit statistics for the failure time of repairable 

objects data 

Model log-likelihood AIC AICc BIC 

PIKum 39.9000  85.8026  86.7256  90.0062  

GIKum 14.2900   34.5738  35.4969  38.7774  

BIKum 40.1500  86.2964  87.2195  90.4999  

LIKum 39.9900  85.9818  86.7818  90.1854  

*: means best based on the goodness-of-fit-statistic 

Figure 4.13 depicts the empirical CDF of the failure time of repairable 

objects and the fitted CDFs. It can be seen that the fitted distributions 

mimic the empirical CDF of the failure time of repairable objects data.  

 

Figure 4.13: Plots of fitted CDFs for repairable objects data. 

 

The probability-probability plots of the fitted distributions were plotted to 

investigate how well the distributions fit the given data set. From Figure 

4.14, it can be clearly seen that all the special distributions gave good fit to 

the data set as the plot of their observed probability against the expected 
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cluster along the diagonal. However, by comparing their AIC, AICc and 

BIC values, it is evident that the GIKum distribution provided the best fit. 

 

Figure 4.4: probability-probability plots of fitted distributions for 

repairable objects data 
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4.6.2 Vinyl chloride used for monitoring wells in mg/L data 

The observed values in the data stand for vinyl chloride used for 

monitoring wells in mg/L. Table 4.5 shows the descriptive statistics for the 

data set. From Table 4.5, the minimum and maximum values in mg/L are 

given as 0.1   and 8  respectively. The mean value in mg/ L is 1.879 . The 

skewness value of 1.68   shows that the data are right skewed. The excess 

kurtosis value of 2.53shows that the distribution of the vinyl chloride data 

is more peaked than the normal curve and the observations are closely 

distributed around their average value. 

 

Table 4.5 Descriptive statistics for vinyl chloride used for monitoring 

wells in mg/L data 

Minimum Maximum Mean Skewness Excess Kurtosis 

0.1000  8.0000  1.8790  1.6800  2.5300  

  

The vinyl chloride data were modeled using the PIKum, GIKum, BIKum 

and LIKum distributions. It is worth noting that 5m   replicas were used 

to fit the BIKum distribution to the dataset. Table 4.6 shows the estimates 

for the parameters of the fitted distribution. For the PIKum distribution, all 

the parameters except  are significant at the 5%  significance level. For 

the remaining three distributions, all the parameters are significant at the 

5%  significance level. 
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 Table 4.6: Maximum likelihood estimate for vinyl chloride in mg/L 

data 

Model Estimate standard error z-value p-value 

PIKum 24.3544 10


   21.9774 10  2.2020  0.0277  

 

1.5954


  12.3238 10  6.8654  126.6320 10   

 

21.5931 10


   53.0174 10  65.2798 10  162.2 10    

GIKum 2.1196


  0.5716  3.7082  42.087 10   

 

1.7028


  0.8019  2.1235  0.0337  

 

1.2472


   2.3560  0.5294  0.5966  

BIKum 0.5021


  1.3309  2.1118  58.214 10   

 

1.6485


  0.6412  2.5709  21.036 10   

 

25.6923


   86.7895  0.2960  0.8535  

LIKum 2.8676


  1.4467  1.9822  0.0475  

 

1.6373


  0.6477  2.5280  0.0115  

 

29.8536


   108.6257  0.2748  0.7835  

   : means significant at 5%  significance level. 

 

Table 4.7 depicts the goodness-of-fit statistics for the fitted distributions 

and this was used to compare their performance. It can be seen from Table 

4.7 that the GIKum distribution provided the best fit for the data since it 

has the highest value of log-likelihood and the least values of AIC, AICc, 

and BIC. 
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Table 4.7 Goodness-of-fit statistics for vinyl chloride in mg/L data 

Model Log-likelihood AIC AICc BIC 

PIKum 55.2800  116.5500  117.35  121.1291 

GIKum 25.5300   57.0506  57.8506  61.6297  

BIKum 55.4600  116.9216  117.7216  121.5006  

LIKum 55.1900  116.3774  117.1774  120.9565  

    *: means best based on the goodness-of-fit-statistic 

Figure 4.15 depicts the empirical CDF of the vinyl chloride data and the 

fitted CDFs. It can be seen that the fitted distributions mimic the empirical 

CDF of the failure time of the vinyl chloride data.  

 

Figure 4.15: Plots of fitted CDFs for vinyl chloride data. 

 

The probability-probability plots were used to determine how well the 

special distributions fit the data. From Figure 4.16, it is evident that all the 

distributions provided good fit to the data set and their difference cannot 

be easily distinguished. However, by comparing their AIC, AICc and BIC 

values, it is evident that the GIKum provided the best fit to the data set. 
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Figure 4.16: P-P plots of fitted distributions for vinyl chloride data 
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CHAPTER FIVE 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

5.0 Introduction 

 The summary of the study, conclusions and recommendations are 

presented below. 

 

5.1 Summary 

Generalizing most well-known classical distributions and finding an 

alternative to them has become an area of importance to statisticians in 

academic research due to their inability to model correctly all the different 

forms of data sets that exist. 

This thesis presented a current family of three-parameter distributions by 

name the power series inverted Kumaraswamy distribution which is a 

modification of the inverted Kumaraswamy distribution by incorporating 

an extra parameter thereby making it more flexible. The CDF, PDF, 

hazard and survival rate functions of the PSIKum model were derived. 

The PDF of the PSIKum was stated as an infinite mixture of the density of 

the smallest order statistic of the IKum distribution to facilitate the 

derivation of the statistical properties of the PSIKum distribution. Some 

statistical properties such as the moments, moment generating functions, 

quantiles, stochastic ordering property and order statistics of the PSIKum 

distribution were derived. Four special sub-distributions of the PSIKum 
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were derived and these are the PIKum, GIKum, BIKum and LIKum 

distributions. For each of these sub distributions, the CDF, PDF, survival 

and hazard rate functions were derived. The sub distributions can take 

several shapes such as unimodal, bathtub, upside-down bathtub and right 

skewed shapes with varying degrees of kurtosis and this was exhibited 

through the plots of the PDF and hazard rate function. This shows that the 

new family of distributions can model both monotonic and non-monotonic 

failure rates.  

The parameters of the new distribution were estimated by the use of 

maximum likelihood estimation method. The properties of the estimators 

developed for the PSIKum distribution were assessed by performing 

Monte Carlo simulation experiments and it was shown that the estimators 

are capable of estimating the parameters well. 

To demonstrate the flexibility of the new models, two sets of lifetime data 

were used. The first data comprises of 30 values for the failure time of 

repairable objects employed by Murthy et al. (2004) and the second data 

first used by Bhaumik et al. (2009) is represented by vinyl chloride used 

for monitoring wells in mg/L. Descriptive statistics for both data sets 

shows that they are right skewed and more peaked than the normal 

distribution. For both data sets, the GIKum distribution was adjudged the 

best model because it had the least AIC, AICc and BIC values.  

To test how well the new distributions fit the data sets, the empirical CDFs 

of the data sets and the fitted CDFs were plotted. It was discovered that all 
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four distributions fit the given data sets very well. The P-P plots of the 

fitted distribution were also plotted to investigate how well the 

distributions fit the given data set and it was realized that they all provide 

good fit as the plot of their observed probability against the expected 

cluster along the diagonal. 

 

5.2 Conclusions 

This study developed the PSIKum distribution by compounding the zero 

truncated power series distribution with the IKum distribution. The 

mathematical and statistical properties of this new model were studied. 

The model’s hazard function and PDF exhibits different flexible 

behaviors: increasing, decreasing, right skewed and upside-down bathtub. 

These characteristics make them suitable for modeling lifetime data sets 

which exhibit such failure rates. 

Estimators for estimating the parameters were developed. Monte Carlo 

simulation studies were conducted to examine the stability of the estimates 

of the parameters in terms of the average biases and root mean square 

errors and it was revealed that the estimates were asymptotically 

consistent and unbiased. 

Applications of the special distributions using two sets of lifetime data 

showed their flexibility and usefulness in modeling different sets of data. 

It was determined that for both data sets, the GIKum provided the best fit 
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as compared to the other sub-distributions and this was done by comparing 

their AIC, AICc and BIC values.  

 

 5.3 Recommendations for Further Studies 

i. This study focused on scenarios where the least number of events 

has to occur and so we used the stochastic representation 

 (1) 1 2min , ,..., NT T T T  to develop the PSIKum distribution. 

However, one can also study the maximum case by considering the 

stochastic representation  ( ) 1 2max , ,...,n NT T T T  to obtain a new 

class of lifetime distributions for the parallel system.  

ii. In this thesis, all the data sets provided are complete sets of 

lifetime data. However, survival times of some individuals might 

be censored due to various reasons. Therefore, subsequent research 

can be extended to cater for censored survival data. Estimation of 

the parameters of the model can be carried out using the maximum 

likelihood method through the expectation-maximization algorithm 

and the Bayesian approach can also be considered. 
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