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Increased climate variability during the last four decades has made the agricultural
environment in many developing countries more uncertain, resulting in increasing
exposure to risk when producing crops. In this study, we use recent farm-level data from
Ghana to examine the drivers of individual and joint adoption of crop choice and soil
and water conservation practices, and how adoption of these practices impacts on farm
performance (crop revenue) and exposure to risks (skewness of crop yield).We employ a
multinomial endogenous switching regression model to account for selectivity bias due
to both observable and unobservable factors. The empirical results reveal that farmers’
adoption of crop choice and soil and water conservation leads to higher crop revenues
and reduced riskiness in crop production, with the largest impact on crop revenues
coming from joint adoption. The findings also show that education of the household
head, access to extension and weather information influence the likelihood of adopting
these practices. Thus, enhancing extension services and access to climate information
and irrigation can reduce gaps in adoption of soil and water conservation and crop
choice, considered as climate-smart practices that will eventually improve crop revenues
and reduce farmers’ exposure to climate-related production risks.

Key words: Africa, climate-smart practices, farm performance, impact assessment, risk
exposure.

1. Introduction

Climate variability continues to be a major challenge to achieving food
security in sub-Saharan Africa (SSA) due to the incidence of high temper-
ature, erratic rainfall regimes, coupled with low adoption of modern
technologies (IPCC 2007; World Bank 2010). Although sub-Saharan Africa
contributes less than 5 per cent of global greenhouse gas (GHG) emissions, it
is the most vulnerable to the negative effects of climate change, as the region’s
development prospects are closely linked to climate because of heavy reliance
on rainfall (IAASTD 2009; Tol 2018). The vulnerability has been attributed
to structural, technological and institutional weaknesses, higher poverty, as
well as relative proximity to the equator (IPCC 2007). The impact of climate
change on agricultural productivity especially in developing countries is well
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documented (IPCC 2007; Di Falco and Veronesi 2013; Gunathilaka et al.
2018). The key issue is not whether climate change will have adverse impact
on crop productivity, but the extent of productivity losses from climate
variability or uncertainties and the prospect of mitigating the negative
impacts through adoption of appropriate climate-smart practices.
The international community has recommended the incorporation of

adaptation into national development plans (IPCC 2007; World Bank 2010).
A better understanding of adaptation is critical, especially in developing
countries and in the agricultural sector, because of their vulnerability to
climate change (IPCC 2007; Tibesigwaet al. 2014). As argued by Tol (2018),
adaptation is being considered by economists more widely as part of
important measures to complement climate mitigation. Various climate-
smart practices, including planting of new crop varieties, changing planting
dates, growing drought-resistant crops, use of crop insurance mechanisms,
irrigation, and adoption of soil and water conservation measures, have been
used by farmers in developing countries to cope with the negative effects of
climate change and to ensure high yields (Di Falco and Veronesi 2013;
Adamson et al. 2017). Thus, a practice may be considered as ‘climate-smart’,
if it falls within the three main objectives of climate-smart agriculture, stated
by the FAO (2013) as: (a) sustainably increasing agricultural productivity and
incomes; (b) adapting and building resilience to climate change; and (c)
reducing greenhouse gas emissions.
Although the promotion of climate-smart agriculture in sub-Saharan

Africa is ongoing as part of many developing countries’ sustainable
agricultural development policy (Lipper and Zilberman 2018), empirical
evidence shows that adoption rates among smallholder farmers are still low
(Arslan et al. 2015; Barnard et al. 2015). Promotion of climate-smart
agriculture in Ghana gained momentum since the country ratified the United
Nations Framework Convention on Climate Change in 1995 (EPA 2011).
The Kyoto Protocol was adopted by Ghana’s Parliament in 2002 and
eventually led to the current National Climate Change Policy (Ministry of
Environment, Science, Technology and Innovation 2015). Through various
state and non-state agencies, Ghana has sought to make climate-smart
agriculture part of its agricultural development policy (MoFA 2018).
There exists extensive literature on adoption impacts of individual climate-

smart practices, with divergent findings (e.g. Di Falco and Chavas 2009; Kato
et al. 2011; Di Falco and Veronesi 2013; Abdulai and Huffman 2014;
Zougmore et al. 2014; Ng’ombe et al. 2017). Among the frequently mentioned
pathways include climate-smart agriculture’s ability to increase crop yields,
food and nutrition security, reduction in crop failure (e.g., Kato et al. 2011;
Di Falco and Veronesi 2013; Abdulai and Huffman 2014). Other studies
report lower farm returns from plots treated with certain soil conservations
practices (e.g. stone bunds) in Burkina Faso (World Bank 2009), while Nkala
et al. (2011) find no significant effect of minimum tillage on household
incomes in Mozambique.
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Furthermore, Di Falco and Chavas (2009) find a positive effect of
biodiversity on risk reduction among barley farms in Ethiopia. The study by
Di Falco and Veronesi (2013) also indicates that adaptation to climate change,
through adoption of soil conservation, changing crop varieties, switching from
early to late planting and othermeasures, led to increased yield ofmaize among
farm households in Ethiopia. Other studies have indicated that soil conserva-
tion, crop choice and other practices can increase technical efficiencies among
farmers, as well as minimise on-farm environmental damage (Solis et al. 2007;
Veettil et al. 2017; Sabiha et al. 2017). Although these studies contribute
towards the understanding of the factors driving the adoption of climate-smart
practice and impacts on productivity and risk exposure, there is a gap in the
literature about the potential complementarity or substitutability among
individual and combined climate-smart practices. In addition, the mixed
findings from these studies about adoption impacts on farm performance also
provide motivation for further empirical investigation into the potential
impacts of specific climate-smart agricultural practices on crop revenues and
production risk exposure, with respect to agroecology.
A few studies have evaluated adoption and impacts of multiple climate-

smart practices on smallholder farmers’ productivity and risk exposure,
usually from a monocropping perspective (e.g. maize, rice or wheat) (e.g. Di
Falco and Veronesi 2013; Kassie et al. 2014; Ng’ombe et al. 2017). However,
this approach of analysing farm productivity and risk from a monocropping
perspective might under-estimate or over-estimate the true impacts of
adoption for a number of reasons. First, implementation of climate-smart
practices, like soil and water conservation in a mixed cropping setting, might
offer benefits to other crops including maize or sorghum, which could not be
captured if the analyst considered only maize yield and excluded other crops.
Second, there may also be negative interaction among crops in a mixed-crop
setting, where only yield of one crop increases at the expense of others.
Analysing the benefits of conservation agriculture on productivity of farms in
a mixed-crop setting, Tessema et al. (2015) observed that some crops enhance
the productivity of others. For instance, in maize–cowpea mixed cropping,
maize yields could be enhanced due to atmospheric nitrogen fixation by
cowpea. Hence, it is prudent to analyse productivity by capturing outputs of
all crops rather than that of a single crop.
In this study, we examine joint adoption of climate-smart agricultural

practices and how adoption impacts on crop revenues and exposure to
production risk among mixed-crop farmers in Ghana. We define climate-
smart practice more broadly to include crop choice and soil and water
conservation measures (FAO 2013). Crop choice as climate-smart agricul-
tural practice is defined to include the use of modern varieties, drought-
resistant and early maturing varieties that enable crop farmers to cope with
erratic rainfall or short rainfall season. It also captures changing crops in
response to climate variability, particularly rainfall. A number of studies have
linked adoption of crop choice/switching crops and planting dates to farmers’
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climate change adaptation behaviour (e.g. Deressa et al. 2009; Di Falco and
Veronesi 2013). It is common to intercrop cereals and other crops, especially
in northern Ghana. Soil and water conservation also refers to the use of
erosion control and other measures to prevent soil and nutrient loss and
conserve soil moisture, such as minimum tillage, soil and stone bunds, and
use of za€ı techniques. The za€ı technique is a soil conservation method that
concentrates run-off water and organic manure in small round or square pits
(Zougmore et al. 2014). In Ghana, it is mainly used in the dry Savannah
zones, particularly in the Upper East region. Strategies that seek to minimise
soil loss due to erosive rains, or reduce evaporation of water from the soil due
to high temperatures, are expected to help improve crop performance (see
Kato et al. 2011; Abdulai and Huffman 2014).
We contribute to the empirical literature by employing recent advance-

ments in the impact assessment literature (e. g. Bourguignon et al. 2007;
Teklewold et al. 2013; Wooldridge 2015), particularly the use of multinomial
endogenous switching regression that enables us to account for selection bias
within a multinomial setting. The approach, therefore, enables us to identify
location-specific information on adoptable climate-smart practices, as well as
impacts of adoption on farm performance and exposure to production risk.
To the best of our knowledge, this might be the first of such studies in Ghana
and among a few in sub-Saharan Africa. Specifically, we first examine the
factors that affect farmers’ decisions to adopt crop choice, and soil and water
conservation measures, individually and jointly. Secondly, we determine the
impacts of adoption on crop revenues and risk exposure among mixed-crop
plots. We employ recent survey data and use a multinomial endogenous
switching regression approach (Bourguignon et al. 2007) to achieve our
research objective. Given the fact that our sample is made up of mixed-crop
plots, we capture crop revenue as the value of all crops cultivated by the
household on each plot (see Kato et al. 2011). The procedure by Antle (1983)
is employed to estimate the crop revenue skewness, which is used as a proxy
for downside risk or probability of crop failure. An increase in crop revenue
skewness lowers the probability of crop failure, which implies a decrease in
downside risk (Di Falco and Chavas 2009).
Our study is relevant to the debate on whether farmers should adopt

practices individually or as a package. This study will also contribute to
efforts at identifying Ghana’s Nationally Determined Contributions, through
which developing countries are expected to articulate their climate mitigation
actions and commitment to implementation of the Paris Agreement (United
Nations Framework Convention on Climate Change, 2015; MoFA 2018). To
the extent that climate-smart agriculture overlap with several development
goals, such as poverty reduction and food security, the empirical findings
from this study can have important implications for climate policy in sub-
Saharan Africa (Vale 2016; Tol 2018).
The rest of the paper is organised as follows. In the next section, we present

the conceptual framework and econometric specification, as well as the
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estimation procedures. The description of the data and the variables
employed in the empirical strategy are presented in Section 3. In Sec-
tion 4, the empirical results are discussed, while the final section highlights
the main conclusions and policy implications of the study.

2. Conceptual framework and econometric specification

We examine adoption and impacts of two climate-smart practices on farm
performance. We follow previous studies (Di Falco and Chavas 2009; Kassie
et al. 2014) and calculate crop revenue skewness distribution, that is approxi-
mated using the third central moment of crop revenue distributions. Crop
revenue skewness is a good indicator of farm performance, especially under
climate uncertainty because skewness captures the exposure to downside risk
(Antle 1983; Di Falco and Chavas 2009). Thus, an increase in the crop revenue
skewness implies a reduction in the probability of crop failure (Di Falco and
Chavas 2009). Estimating the moments of crop revenues follows a sequential
estimation procedure by first regressing1 crop revenue per acre on production
inputs and other farm-level variables, after which the residuals are retrieved. The
third moment is calculated by raising the residual to the third power (Di Falco
and Chavas 2009). The estimated third moment of crop revenue is used as
outcome variables in themultinomial endogenous switching regressionmodel to
examine the impact of individual and joint adoption on risk exposure.

2.1 Modelling choice of climate-smart practice

Let us assume that the farmer’s objective to use a combination of climate-
smart practices is to maximise expected benefits. The ith plot’s expected
benefit from application of a combination of practices j is represented as V�

ij.
However, the expected benefits captured by the latent variable V�

ij, cannot be
observed, but can be expressed as a function of observed characteristics (Xi),
as well as unobserved factors (eij) as:

V�
ij ¼ Xijbj þ hjXij þ eij ð1Þ

For the adoption decision, let Vi denote an index that indicates the farmer’s
observed choice of a combination of practices, such that:

Vi ¼
1 iff V�

i1 [
max
k 6¼1ðV�

ikÞ or ei1\0
: : :

M iff V�
iM[max

k 6¼j ðV�
ijÞor eiM\0

8<
: ð2Þ

where max
k 6¼j ðV�

ik � V�
ijÞ\0. Equation 2 indicates that a farmer will apply

climate-smart practice j on plot i to maximise expected benefit, if the chosen

1 The OLS estimates of the crop revenue function are not reported in this paper to save
space.
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practice provides greater expected benefit than any other alternative option
k 6¼ j, that is if eij ¼ max

k 6¼j ðV�
ik � V�

ijÞ\0;8j; k 2 M.
In this study, the adoption of two climate-smart practices, crop choice, and

soil and water conservation, results in four possible combinations from which
the farmer can choose (namely: crop choice only; soil and water conservation
only; joint adoption; or non-adoption).
Assuming that eij in Equation 1 is independently and identically Gumbel

distributed, the probability that practice j will be chosen can be specified by a
multinomial logit (MNL) model as (McFadden 1973).

Pij ¼ P eij\0jXi

� � ¼ exp Xijbj þ Xijdj
� �

PM
k 6¼1 exp Xijbk þ Xijdk

� � ð3Þ

where Xij denotes a vector of average plot-specific variables and dj refers to the
corresponding parameters to be estimated. The estimation of parameters of the
latent model in Equation 3 is done by maximum-likelihood approach. We then
model the chosen strategies within the multinomial endogenous switching
regression framework (MESR) to link the climate-smart practices to the
outcomesof interest, namely croprevenuesanddistributionof revenue skewness.

2.2 Multinomial endogenous switching regression model

The multinomial endogenous switching regression (MESR) model was
proposed by Bourguignon et al. (2007) and has been applied in empirical
studies (e.g. Di Falco and Veronesi 2013; Teklewold et al. 2013; Ng’ombe
et al. 2017). We employ this approach in this study. The base category, non-
adoption is indicated as j = 1. For the remaining practices (j = 2 crop choice,
=3 soil and water conservation only, and j = 4 joint adoption), at least one
climate-smart practice combination is applied on a plot. The outcome
equation for each potential regime j is given as:

Regime 1 : yi1 ¼ Zi1a1 þ Zi1hj þ ui1 if Vi ¼ 1
: : :

RegimeM : yij ¼ Zijaj þ Zijhj þ uij if Vi ¼ J

8<
: ð4Þ

where yij is the outcome variable (crop revenue or risk exposure) of the ith

farm plot in regime M, Zi represents a vector of farm and household
characteristics, and the u’s denote error terms with expected values of zero
and constant variance,Var uijjXi;Zi

� � ¼ r2j , while aj represents a vector of
parameters to be estimated. The variable Zi refers to mean plot-specific
characteristics (e.g. soil fertility, plot slope and drainage level), and hj denotes
the corresponding parameters to be estimated. This is essential in order to
account for unobserved heterogeneity due to plot varying characteristics
being correlated with household level variables when a household cultivates
multiple plots (Mundlak 1978). A Wald test of the null hypothesis that the
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vector hj are jointly equal to zero is conducted to indicate the relevance of
plot-specific heterogeneity (Teklewold et al. 2013).
To ensure that the estimates of aj in Equation 4 are unbiased and

consistent, inclusion of selection correction terms derived from the multino-
mial selection process is required. We follow Bourguignon et al. (2007) and
assume that the error terms (eij) and uij are linearly correlated for every j
option, such that the expected value of uij is stated as
E½u1je1; . . .ej� ¼ r

P
j¼1...M

qjej, where qj is the correlation between uij and eij,

while r is the standard deviation of the error term uij.
Thus, the outcome equation (Equation 4), taking into consideration the

choices made with bias correction, can be restated as in Teklewold et al.
(2013):

Regime 1 : yi1 ¼ Zi1a1 þ r1k̂i1 þ Zihj þ xi1 if Vi ¼ 1
: : : : :

Regime M : yij ¼ Zijaj þ rjk̂ij þ ZihM þ xij if Vi ¼ J

8<
: ð5Þ

where kij ¼
PM
k 6¼j

qj
P̂ikln P̂ikð Þ
1�P̂ik

þ lnP̂ij

� �
refers to the inverse Mills ratios computed

from the estimated probabilities in MNL model in Equation 3, qj is the
correlation coefficient between the error terms eij and uij, with the error terms
xij assumed to have a zero mean, and P̂ij represents the estimated probability
that plot i is treated with practice j.

2.3 Estimation of counterfactual and treatment effects

We estimate expected outcomes in the actual and counterfactual scenarios
following Di Falco and Veronesi (2013) and Ng’ombe et al. (2017).
Specifically, we first derive the expected outcomes of plots that were treated,
which in our study means j ¼ 2; . . .M(j ¼ 1 is the reference category, i.e. non-
adoption). From Equation 5, the conditional expectations for each outcome
variable-based practice are chosen as follows:
Adopters with adoption (actual adoption observed in the sample):

Eðyi2jVi ¼ 2Þ ¼ Zi2a2 þ r2k̂i2 þ Zih2
EðyiJjVi ¼ JÞ ¼ Zijaj þ rjk̂ij þ Zihj

ð6Þ

The counterfactual case that adopters did not adopt is also stated as:

Eðyi1jVi ¼ 2Þ ¼ Zi2a1 þ r1k̂ij þ Zihj

Eðyi1jVi ¼ jÞ ¼ Zija1 þ r1k̂ij þ Zihj
ð7Þ

The impact of adopting practice j is denoted as the average treatment effect
on the treated (ATT), which is calculated by subtracting Equation 6 from 7 to
obtain Equation 8 as follows:
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ATT ¼ Eðy2ijVi ¼ 2Þ � Eðyi1jVi ¼ 2Þ
¼ Zi2 a2 � a1ð Þ þ Zi2 h2 � h1ð Þ þ k̂i2 r2 � r1ð Þ

The term k̂ij :ð Þ, together with the Mundlak device (Zi2), accounts for selection
bias and endogeneity due to unobserved heterogeneity.
The MESR approach enables consistent and efficient estimation of aj and

accounts for a reasonable correction of bias in the outcome equations, even
when the independence of irrelevant alternatives (IIA) assumption is not met
(Bourguignon et al. 2007). Another advantage of using this approach is the
ability to evaluate impact of both individual and combination of climate-smart
practices (Di Falco and Veronesi 2013). Furthermore, it relaxes the restrictive
assumptions of Lee’s (1983)2 selectivity model and provides a complete
description of selectivity impacts on all options considered by farmers.
For proper identification of the MESR model, including some variables in

vectorXi that are not included in vector,Zi is recommended (Bourguignon et al.
2007). We use farmers’ perception of drought, as well as access to climate
information and association membership as identifying instruments. These
variables intuitively influence farmers’ decisions to adopt climate-smart
agricultural practices but might not directly affect farm revenues (Di Falco
andVeronesi 2013).We confirm the validity of these instruments by performing
a falsification test, whereby a variable is considered as a valid instrument if it
affects farmers’ decisions to adopt a practice, but not the outcome variables
among non-adopters (Di Falco and Veronesi 2013). We further performed a
robustness check of our results by employing an alternative approach using
multivariate treatment effects, which also accounts for unobservable factors in
a multinomial choice and impact analysis framework (Deb and Trivedi 2006).
We control for potential endogeneity of some explanatory variables in our

model, particularly off-farm work participation and extension visits. Off-farm
work participation is potentially endogenous because adoption of some
climate-smart practices is labour-intensive and households engaged in off-
farm work may not be able to adopt such practices (labour-loss effect). On
the other hand, income earned from off-farm work may be used to purchase
inputs or invested in climate-smart practices (income-effect). In the case of
extension visits, it is possible that farmers who are adopting may attract more
visits by extension staff than non-adopters. Potential endogeneity of the
variables was addressed using the control function approach (Wooldridge
2015). The approach involves the specification of the potential endogenous
variable (i.e. off-farm work participation or extension visit) as a function of
explanatory variables influencing adoption of each practice, together with a

2 In Lee’s method, a single selectivity term is estimated for all choices (Lee 1983;
Bourguignon et al. 2007).
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set of instruments3 in a first-stage probit regression (in the case of extension
visit, we employed Poisson specification in the first-stage). Instead of using
the predicted values of off-farm participation or extension visit variables, as
in two-stage-least-squares, the observed values of the endogenous variables
and the generalised residuals retrieved from a first-stage regression are
included as covariates in the MESR model. Including the residuals serves as a
control function, enabling the consistent estimation of the potentially
endogenous variables in the MESR model (Wooldridge 2015).

3. Data and descriptive statistics

The data used in this study was obtained from a survey during the 2015/2016
cropping season in 25 communities across five districts and three regions in
Ghana. A multistage sampling procedure was employed to select and
interview 476 households (cultivating 1,001 plots) in Upper East (UE),
Northern (NR) and Brong–Ahafo (BA) regions. Based on agroecology, we
selected five districts from the three regions (Bongo and Talinse in UE, Tolon
and Kumbungu in NR, and Techiman South in BA). Five communities were
randomly selected from each district and 15-20 households from each
community in proportion to the number of farmers in these communities.
Finally, we obtained 203 households for NR cultivating 568 plots located in
the Guinea Savannah, 147 households for UE in the Sudan Savannah, with
277 plots, and for BA in the Transitional zone, 126 households with 156 plots.
As indicated earlier, climate-smart practices include crop choice and soil

and water conservation measures. Crop choice was practiced on about 18.58
per cent of plots. Soil and water conservation in this study refers to plots that
were treated with minimum tillage soil, or stone bunds and organic manure.
Soil and water conservation was practiced on 35.26 per cent of plots. In
addition, 28.67 per cent of plots were treated with both crop choice and soil
and water conservation measures, while 17.50 per cent of plots were
considered as non-adopting plots. The descriptive statistics of all the variables
are presented in Table 1. Since our sample is made up of farmers practicing
mixed cropping, we constructed the crop revenue variable by summing up the
value of all crops on a plot, following the example by Kato et al. (2011). The
average reported crop revenue per plot is about 559 Ghana cedis (GHS).
The crop revenue distributions by choice of practice are presented in Figure 1.
The distributions show indications of negative skewness, with greater
variance, for non-adoption, compared with cases of adopted practices.
Information was also taken on general household characteristics, access to

climate change information, the type of crops cultivated (see Table A1) and
various farming-related activities. Furthermore, farmers’ perceptions on

3 We used distance to district capital as an instrument in an auxiliary equation aimed at
controlling for potential endogeneity of off-farm work participation. Also, distance to nearest
agricultural extension office was used to instrument access to extension variable.
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drought occurrence and access to weather or climate information, and the
practices being implemented to mitigate real or possible effects of drought
and floods were captured. We also took information on farmers’ reported
plot characteristics, such as soil fertility, soil drainage level and slope of land.
We used rainfall and temperature data from the Global Weather Data of

National Centers for Environmental Predictions (NCEP) climate data for the
selected districts in Ghana, covering the period 1979-2014. Details of the
climate data can be found at https://globalweather.tamu.edu/. The long-term

Table 1 Descriptive statistics of plot and household variables

Variables Variable description Mean SD

Crop revenue Total crop revenue per acre (GHS)† 558.86 749.37
Fertiliser Expenditure on fertiliser (organic and inorganic) GHS 225.20 429.48
Herbicide Expenditure on herbicide used GHS 77.40 438.43
Hired labour Expenditure on hired labour GHS 147.63 13.13
Farm size Cultivated farm size in acre 7.16 5.83
Education Years of formal education 5.49 5.02
Household
size

Number of people in a household 5.95 3.08

Age Age of farmer in years 39.64 13.83
Gender Male = 1, female = 0 0.86 0.35
Off-farm Farmer is engaged in off-farm activity = 1, 0 otherwise 0.38 0.49
Livestock Livestock ownership in tropical livestock units (TLU)‡ 1.80 5.60
Extension Number of extension visits 0.89 1.29
Distance-
Capital

Distance to district capital 3.13 7.26

Distance-Ext Distance to nearest extension office 1.39 4.22
Perception-
drought

Perception of drought occurrence = 1, 0 otherwise 0.75 0.43

FBO-mem Farmer belongs to a group/association = 1, 0 otherwise 0.30 0.46
Climate-info Farmer receives current climate information = 1, 0

otherwise
0.57 0.49

Slope Mean plot slope = 1 if farm has portions of steep slopes, 0
otherwise

0.58 0.43

Erosion Mean erosion level = 1 if farmland has portions of
moderate to severe erosion, 0 otherwise

0.90 0.53

Drainage Mean plot drainage = 1 if farmland is well drained, 0
otherwise

0.46 0.42

Fertility Mean fertility = 1 if soil is considered fertile, 0 otherwise 0.14 0.23
Non-
adoption

Percentage of plots without no adoption 17.48 -

Crop choice Percentage of plots with crop choice practice 18.58 -
Soil and
water cons

Percentage of plots with soil & water conservation practice 35.26 -

Joint
adoption

Percentage of plots with joint adoption of crop choice and
soil and water conservation

28.67 -

Number of
plots

1001

Number of
HH

476

†Exchange rate at the time of the survey was USD 1 = GHS 4.26 (Source: WorldRemit).
‡TLU conversion factors are cattle = 0.7, sheep = 0.1, goats = 0.1, pigs = 0.2, chicken = 0.01.
SD refers to standard deviation.
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averages of temperature and rainfall and their coefficients of variations were
calculated and used as explanatory variables in the selection and outcome
equations. The coefficients of variation of the climate variables were used as
proxies for climatic shocks. We employed spatial interpolation techniques to
determine household-specific rainfall and temperature values, using the
household location-specific coordinates (latitude, longitude and elevation)
that were gathered through the survey (Wahba 1990; Di Falco and Veronesi
2013). The interpolated climate data was merged with survey data at the
household level, using the location/household identification variable gener-
ated during the field survey.
Furthermore, we included a number of control variables in our empirical

specification. These include household characteristics (such as age of the
head, education level of the head of the household, household size and
gender), farm inputs (fertiliser, herbicides) and ownership of resources (such
as livestock ownership, farm size). These variables were included in line with
the empirical literature on climate-smart agriculture, technology adoption
and impact assessment (e. g. Di Falco and Veronesi 2013; Kassie et al. 2014).
The means of various variables related to the alternative choices are reported
in Table A2 in the Appendix 1. Although significant differences could be
observed with respect to crop revenues among alternative practices, these
differences do not account for selection bias arising from both observable and
unobservable factors. These difference might also imply that these variables
can influence farm performance differently, based on choice of climate-smart
practice implemented. This further justifies our decision to employ the MESR
in the analyses.

0
0.

1
0.

2
0.

3
0.

4
0.

5

2 4 6 8 10
log crop revenue distributions by practice

Non-adoption Crop choice
Soil water conservation Joint adoption

Figure 1 Kernel density distributions of crop revenue by adoption status.
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4. Results and discussions

4.1 Determinants of adoption of climate-smart practices

The results of the determinants of adoption of climate-smart practices are
presented in Table 2. The reference practice is non-adoption. The MNL
model fits the data well, with the Wald test, v2 ¼ 666:23; p[v2 ¼ 0:000,
rejecting the null hypothesis that all the regression coefficients are jointly
equal to zero. The instruments (perception-drought, FBO-memb and
Climate-info) employed to identify the MESR are also jointly significant. A
falsification test on the excluded instruments also showed that the instru-
ments jointly influenced adoption at all levels, but not crop revenue or risk
exposure of non-adopters (see Table A3 in the Appendix 1).
The results indicate that characteristics of the household head, household

endowments, inputs, climate and plot-specific variables influence the adop-
tion decisions of individual, crop choice only, soil and water conservation
only, and joint adoption. Particularly, erosion and drainage levels (Erosion,
Drainage) positively and significantly influence adoption of individual (crop
choice only, soil and water conservation only) as well as joint adoption.
Similar findings have been reported in Ethiopia by Di Falco and Veronesi
(2013) and by Ng’ombe et al. (2017) in Zambia, underscoring the importance
of capturing farm-level characteristics in designing and implementing
effective farm-level climate-smart practices.
The results show that the coefficient of the age variable is negative and

statistically significant in all practices signifying that an increase in age of the
farmer leads to a decrease in the likelihood of adoption of climate-smart
practices. The results also reveal a positive and significant effect of household
size on adoption of crop choice only, as well as on soil and water
conservation. The stronger effect of household size on adoption of soil and
water conservation is consistent with expectations, considering the labour-
demanding nature of this particular practice. The coefficient of the variable
education is positive and significant for individual and combined strategies, a
finding that is consistent with previous studies (e.g. Abdulai et al. 2011; Di
Falco and Veronesi 2013).
The coefficient of the variable livestock ownership variable (TLU) is

positive and significant for all practice choices, indicating that livestock
ownership could enhance adoption. Among the inputs, herbicides and
fertiliser positively and significantly influence the implementation of individ-
ual and joint adoption choices. The use of herbicide is becoming common
among smallholders in Ghana due to the labour-saving nature of this input,
especially during land preparation and weed control. However, farmers’
engagement in off-farm activity appears to negatively and significantly
influence adoption of all climate-smart practices, alluding to the fact that off-
farm activity engagement and adoption of these practices may be competing
for household labour resulting in the labour-loss effect (Taylor et al. 2003;
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Rakshandrah and Abdulai 2015). As noted earlier, the potential endogeneity
of off-farm work participation was addressed using the control function (CF)
approach and the estimate of the residual term (Resid-Off-farm) from the first
stage of CF regression4 is not significant in all choices, signifying the
exogeneity of off-farm participation in the model (Wooldridge, 2015). The
results also show that extension visits (Extension) positively and significantly
influence adoption of all climate-smart practices, a finding that is in line with

Table 2 Parameter estimates of adoption of climate-smart practices: multinomial logit
selection model†

Variables Crop choice
(n = 186)

Soil and Water
cons (n = 353)

Joint Adoption
(n = 287)

Estimate SE Estimate SE Estimate SE

Constant -76.84 135.36 -61.63 540.40 -559.63 577.73
Age -0.72** 0.31 -0.73** 0.26 -1.13*** 0.28
Gender 19.23** 6.63 41.45*** 6.32 14.90** 5.69
Household size 0.43** 0.18 0.72*** 0.16 0.18 0.15
Education 0.95** 0.39 2.47*** 0.37 0.84** 0.33
Farm size 2.27** 0.98 5.69*** 0.93 1.41* 0.85
Livestock 5.17** 1.96 12.61*** 1.88 4.55** 1.67
Off-farm -8.44*** 2.71 -17.66*** 2.60 -7.09*** 2.33
Fertiliser 1.86** 0.71 4.53*** 0.68 1.63** 0.61
Herbicide 0.82*** 0.26 1.870*** 0.25 0.96*** 0.23
Rainfall -0.06 0.05 0.03 0.05 0.02 0.05
Temp 21.62 13.51 8.04 12.33 1.54 12.34
RFanom 11.66** 4.38 6.88* 3.77 0.13 4.17
Tem-anom 1.01* 0.53 1.12** 0.31 0.65*** 0.22
Tem x RFanom 0.27* 0.14 0.05 0.12 0.52*** 0.13
Extension 0.26** 0.10 0.52** 0.21 0.40* 0.22
Slope -7.56** 2.62 -18.53*** 2.53 -7.65** 2.30
Erosion 18.81*** 7.19 46.12*** 6.86 15.12*** 6.15
Drainage 10.18*** 3.16 21.48*** 3.04 8.39*** 2.74
Fertility 1.13 0.80 4.50*** 0.77 1.82** 0.74
Perception-drought 1.72*** 0.31 1.80*** 0.26 0.391*** 0.12
FBO_memb 0.96*** 0.30 1.22*** 0.28 0.52* 0.28
Climate-info 0.37 0.28 0.44* 0.25 1.08*** 0.26
Resid-Off-farm -1.55 4.04 8.48 5.41 5.28 3.44
Resid-Extension 0.28 0.37 0.09 0.36 0.38 0.35
Joint sig instruments (v2) in
crop revenue equation

42.80*** 65.64*** 23.25***

Joint sig instruments (v2) in
Skewness equation

64.41*** 41.33*** 23.17***

Wald test, v2 (69) 666.23
N 1001

Note: Preliminary estimates with multivariate probit showed a positive significant correlation between crop
choice and soil and water conservation with aRho ¼ 0:327and Likehood Ratio LR ¼ 27:38:
***, **, * represent 1%, 5% and 10% significance level, respectively.
†Reference category is non-adoption.

4 The first-stage estimates of the control function results are available but not reported here
to save space.
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that of Teklewold et al. (2013), who argue that adoption of climate-smart
practices as package is knowledge-intensive and therefore requires skilled
extension staff to facilitate the adoption process.
Interestingly, from the results, rainfall anomalies (RFanom) positively and

statistically influence the adoption of crop choice only and weakly with soil
and water conservation. Also, mean temperature (Temp) positively influences
joint adoption, while temperature anomalies (Tem-anom) positively and
significantly influence adoption of all strategies. We included an interaction
term between temperature and rainfall variability (Tem x RFanom). The
results show that increasing variability in rainfall, combined with rising
temperature would likely influence the adoption of crop choice only and joint
adoption, but not necessarily soil and water conservation only, a finding that
is consistent with the results reported by Moniruzzaman (2015). The positive
effect of temperature and its anomalies on adoption (particularly joint
adoption) probably implies that farmers could be employing soil and water
conservation measures such as stone and soil bunds, together with crop
choice to cope with rising temperature or its fluctuations. Thus, despite the
labour-intensive nature of soil and water conservation practices (World Bank
2009), they can be more useful as climate adaptation measures in areas prone
to erratic rainfall regimes or high temperatures.
Furthermore, the coefficient of the variable representing group membership

(FBO-memb) is positive and significantly different from zero, suggesting that
association membership increases the propensity to adopt crop choice as well
as soil and water conservation strategies. This finding supports the notion
that farmers’ association membership plays a significant role as source of
information on input and innovations (Mutenje et al. 2016). The coefficient of
the variable representing farmers’ perception about drought occurrence
(Perception-drought) is also positive and significantly associated with adop-
tion of individual and combined choices, suggesting that upgrading farmers’
climate change awareness enhances the adoption of climate-smart practices.

4.2 Determinants of crop revenue and skewness: Second-stage MESR model

In Table 3, we present the determinants of crop revenues and skewness
(downside risk exposure) by choice of climate-smart practices. The selectivity
correction terms, denoted as m1, m2, m3 and m4, capture selectivity effects
arising from unobserved factors. The estimated variances are all boot-
strapped with 100 replications to deal with heteroscedasticity as suggested by
Bourguignon et al. (2007). The results show that the selectivity correction
terms are significant in the revenue equations for non-adoption, soil and
water conservation only and joint adoption options, indicating the presence
of sample selectivity effects and using OLS would have produced biased and
inconsistent estimates. Thus, accounting for selectivity effects is essential in
obtaining consistent estimates in the MESR model.
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Turning to the effects of other variables, the results in Table 3 further
demonstrate that herbicide use significantly influences crop revenue among
adopters of soil and water conservation only and joint adopters, but not crop
choice only. This implies that application of herbicide could be a comple-
mentary input in effective adoption of soil and water conservation and result
in high crop revenue. Rainfall anomaly (RFanom) has a negative and
significant effect on crop revenue, with greater magnitude among non-
adopters, suggesting that adoption of climate-smart practices might have
played a role in minimising the negative effect of rainfall anomaly on crop
revenue among adopters. This finding is consistent with Food and Agricul-
ture Organization’s principle of climate-smart agricultural practices that seek
to enhance farmers’ resilience and ability to adapt to climate variability (FAO
2013). The coefficient of plot-level fertility (Fertility) has the expected positive
sign on crop revenue, particularly for adopters of soil and water conservation
and joint adoption. Off-farm work participation (Off-farm) positively
significantly influences crop revenue, implying possible income effect of off-
farm work participation on farm output. The effect of other variables on the
skewness or downside risk exposure by climate-smart practice is reported in
Table A4 in the Appendix 15.

4.3 Impact of adoption of climate-smart practices on crop revenue and risk

exposure

The impacts of adoption of individual and combined climate-smart practices
on crop revenue and skewness (risk exposure) are presented in Table 4. Here,
expected crop revenue (log) under the observed case that the farmer adopted
the strategies, and the counterfactual situation that they did not adopt are
indicated. The results show that the adoption of crop choice and soil and
water conservation practices leads to significant improvement in crop
revenues. The highest log revenue effect (1.149) is obtained from the joint
adoption of crop choice and soil and water conservation strategies (approx-
imately 20.6 per cent), which is greater than the effect of each practice
adopted independently, suggesting complementarity of the two climate-smart
practices. In particular, the impacts of adoption of crop choice only, and soil
and water conservation only are 13 per cent and 12 per cent increase in crop
revenues, respectively. These findings are consistent with the results reported
by Teklewold et al. (2013) for Ethiopia and Ng’ombe et al. (2017) for Zambia.
The results also show that in all the counterfactual cases, adopters would
have had lower crop revenues if they had not adopted.
The results also reveal that the adoption of crop choice and soil and water

conservation individually or jointly significantly increased crop revenue
skewness, which indicates a reduction in the probability of crop failure or
revenue loss. Specifically, adoption of individual options results in increased

5 For brevity, these estimates are not discussed in here.
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skewness by 32 per cent and 35 per cent for crop choice and soil and water
conservation, respectively. The joint adoption of the two practices results in a
40 per cent increase in skewness, indicating complementarity in lowering the
probability of crop failure. These results confirm earlier findings by Kassie
et al. (2014) for farms in Malawi that adoption of on-farm climate-smart
practices decreases farmers’ exposure to downside risk and therefore reduces
the probability of crop failure.
To provide further information about the impacts of individual and

combination of climate-smart practices, we disaggregated the adoption
impacts (ATT) by agro-ecological zones. The results demonstrate that joint
adoption of the two practices has the highest positive and statistically
significant impact on crop revenues for plots in the Sudan Savannah
(ATT = 0.955). However, joint adoption has no significant impact on crop
revenues in the Transitional zone. Interestingly, joint adoption appears to
reduce downside risk in all agro-ecological zones. This location-specific
impact analysis provides important additional information that could be

Table 3 Determinants of log crop revenue by climate-smart practices: second-stage MESR
estimation

Variables Non-adoption
(n = 175)

Crop choice
(n = 186)

Soil and Water
cons (n = 353)

Joint adoption
(n = 287)

Estimate SE Estimate SE Estimate SE Estimate SE

Constant 3.26 3.45 -3.43 4.38 -0.242 1.13 -0.54 3.29
Age 0.19* 0.10 0.22 0.17 -0.067 0.07 0.102 0.07
Gender -0.930* 0.50 -1.14 9.21 3.148 3.76 -4.51 4.17
Household size -0.05 0.14 -0.20 0.24 0.07 0.06 -0.052 0.11
Education 0.63** 0.28 0.70 0.54 1.21** 0.24 0.33 0.23
Farm size -2.15** 0.74 -2.39* 1.28 0.03 0.61 -1.86** 0.64
Livestock 3.30** 1.38 3.56 2.66 1.96** 0.23 1.54** 0.21
Off-farm 4.22** 1.97 4.35* 2.58 1.18** 0.59 3.30* 1.67
Fertiliser 1.17** 0.51 1.32 0.96 1.32* 0.43 0.69*** 0.23
Herbicide 0.53** 0.22 0.506 0.34 1.19** 0.13 1.17** 0.14
Rainfall -0.05 0.04 0.035 0.05 0.01 0.01 0.001 0.04
Temp -9.30 10.75 1.14 1.36 0.68 3.62 -2.16 10.28
RFanom -2.93** 1.11 -1.27** 0.49 -1.99 0.51 -1.16*** 0.14
Tem-anom -5.71* 2.98 -2.98* 1.57 -1.00 1.13 -0.58 0.48
Temp x RFanom 0.11 0.21 0.03 0.10 0.89 0.56 0.54 0.42
Extension 1.72** 0.74 1.85 1.43 5.71** 2.34 8.78** 4.33
Slope -5.68*** 1.80 4.14 3.34 -1.16 1.65 1.958 1.54
Erosion -1.19** 0.45 -1.30 1.02 -4.16 4.25 -5.22** 2.69
Drainage -5.058** 2.23 -5.38 4.36 1.47 1.89 -2.79 1.98
Fertility 1.55** 0.53 1.60 1.06 1.35** 0.48 0.71** 0.33
Selectivity terms
m1 -0.16 0.51 -1.92 1.31 1.58* 0.89 1.43* 0.85
m2 1.68 2.08 0.34 0.51 -1.99** 0.75 0.48 0.50
m3 -1.82* 0.95 2.70 1.66 0.50 0.49 0.25 0.86
m4 -1.68 1.12 -1.27 1.07 -0.89 1.05 0.05 0.38

***, **, *Represent 1%, 5% and 10% significance level, respectively. Bootstrapped standard errors in
parentheses.
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useful in promoting adoption of climate-smart agriculture in Ghana. A
multivariate treatment effect regression (Deb and Trivedi 2006) was estimated
as a robustness check6, and the results which are presented in Table A5 in the
Appendix 1 show positive impact of individual and joint adoption of climate-
smart practices. The results of the multivariate treatment effect regressions
are generally consistent with that of the MESR, except in the case of impact
of soil and water conservation on crop revenue.
One probable explanation why the multivariate treatment effect estimate of

soil and water conservation only is different (not significant) from the
estimate from the multinomial endogenous switching regression model is that
the former estimates population average treatment effect (ATE) while the
later model estimates average treatment effect on the treated (ATT). Thus, if
we were to rely on multivariate treatment effect, soil and water conservation
only, as a climate-smart agricultural practice, we would have found it to have
a statistically insignificant effect on farm revenues. However, with the
multinomial endogenous switching regression model, the effect was positive
and significant, a finding that is consistent with study by Abdulai and
Huffman (2014) about effect of the practice on yield and farm revenues, while
using the endogenous switching regression model. As noted by Clougherty
et al. (2015), while the multivariate treatment effect approach involves only a
shift of the intercept or the endogenous treatment, the multinomial
endogenous switching regression (MESR) method involves the shift of the
intercept, as well as differences in relevant coefficients of other treatments.
Overall, the findings emphasise the importance of adoption of crop choice

and soil and water conservation among farmers as a means of managing ex-
ante production risk, especially under climate uncertainty. The results do not
support the notion that farmers who adopt climate-smart practices to avoid
crop failure end up obtaining lower yields (Adamson et al. 2017). The
findings further demonstrate some complementarity between crop choice and
soil and water conservation practices as shown by the greater effect of joint
adoption on both crop revenue and skewness of crop output. This finding
would not have been possible if we had examined these climate-smart
practices individually without considering the joint adoption effect.

5. Conclusions and policy implications

In this paper, we used farm-level data from three agro-ecological regions in
Ghana to examine the determinants and impacts of adoption of two climate-
smart practices (crop choice and soil and water conservation) on crop

6 Following an anonymous reviewer’s comment, we decided to do this analysis to compare
the estimates of the multivariate treatment effects approach to the MESR method adopted in
this study. While in the MESR approach, impact is determined by predicting outcomes and
testing the differences between adopters of various choices and non-adopters, the marginal
effects of the individual choices (relative to non-adoption) represent impacts in the multivariate
treatment effects model.
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revenues and production risk exposure, measured as crop revenue skewness.
We employed a multinomial endogenous switching regression (MESR) model
to account for selectivity bias due to observable and unobservable factors.
The empirical results showed that the highest crop revenue effect is obtained
from the joint adoption of crop choice and soil and water conservation
practices, suggesting complementarity in benefits. In addition, joint adoption
of the two strategies significantly increased crop revenue skewness, implying
that adoption lowers the probability of crop failure and therefore decreases
the exposure to expected downside risk. A disaggregation of the adoption
impacts based on agro-ecological zones revealed that plots in the dry
savannah zones experienced higher impacts of joint adoption, compared to
plots in the transitional zone. The findings also revealed that extension access,
farmer education, climate anomalies and farmers’ perception about drought
and access to weather information are key determinants of adoption of crop
choice and soil and water conservation measures.
Thus, policy interventions to increase agricultural productivity and reduce

farmers’ risk exposure should consider alleviating farmers’ difficulties to
adoption. For instance, government ministries (e.g. Ministry of Food and
Agriculture) in collaboration with private agri-input dealers associations
could facilitate the distribution of inputs, such as drought-tolerant seeds and
herbicides, through certified agro-input outlets in farming communities, to
enhance adoption. In addition, making quality climate information accessible
to farmers will ease their adoption challenges including the right combination
of practices to adopt. In view of the fact that effective adoption of climate-
smart practices requires some knowledge and skills, enhancing farmer
education and access to extension services should be among the policy
measures that will facilitate adoption. This study particularly demonstrated
that package adoption of crop choice, and soil and water conservation
practices will enable farmers to benefit from the positive synergistic effects of
joint adoption on farm performance and reduction in risk exposure.
The findings of this study should be considered with some caveats since we

relied mainly on cross-sectional survey data. First, analysis of panel data
would have enabled us to capture the dynamic effects of climate-smart
practices on crop revenues and risk exposure. For instance, some climate-
smart agronomic measures such as soil and water conservation measures (e.g.
stone bunds and minimum tillage) take time to produce effects, and the effects
of climate-smart practices may last over several cropping seasons. Second, an
experiment to determine farmers’ risk preferences would have been a more
appropriate proxy for measuring and estimating risk exposure, but data on
these measures are not available. Despite these caveats, we do not expect
systematic bias in our assessment. Thus, this study contributes to the growing
body of literature on climate-smart agriculture and how the adoption of
specific farm practices affects farm performance in an area where there is
limited access to formal risk reduction measures, such as agricultural
insurance.
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Appendix

Table A2 Means of variables by choice of climate-smart practices and pooled sample

Variables Non-
adoption

Crops
choice only

Soil and water
conservation only

Joint
adoption

Pooled
sample

SD

Crop
revenue

473.77 606.74* 625.42** 665.02*** 562.79 24.52

Off-farm 0.31 0.54 0.38 0.29 0.36 0.02
Age 38.10 40.40 40.04 36.27 38.91 0.42
Gender 0.75 0.83** 0.88*** 0.93*** 0.86 0.01
HH_size 6.17 5.96 6.59 7.72*** 6.58 0.11
Education 4.18 5.99*** 3.93 4.07 4.47 0.17
Farm size 5.99 7.18** 6.35*** 8.63** 7.16 0.18
Fertiliser 254.28 236.91 249.97 337.17** 259.66 18.76
Hiredlabour 173.90 97.23* 125.46 190.72 147.63 13.13
Herbicide 131.71 38.13** 40.10** 130.30 77.40 13.86
Livestock 1.04 2.06** 1.77* 1.10** 1.80 5.60
Extension 0.51 1.01** 0.93*** 1.19*** 0.89 0.04
Perception-
drought

0.59 0.86*** 0.66** 0.87*** 0.75 0.01

Climate-info 0.44 0.35* 0.22*** 0.21*** 0.29 0.25
FBO-mem 0.12 0.46*** 0.45* 0.43** 0.30 0.46
Slope 0.58 0.43 0.70* 0.53 0.58 0.43
Erosion 0.82 0.53* 0.46 0.42 0.54 0.42
Drainage 0.56 0.32 0.90** 0.53 0.46 0.42
Fertility 0.24 0.33 0.46 0.42 0.14 0.23
N 175 186 353 287 1001

*, **, *** denotes significance level at 10%, 5% and 1%, respectively.

Table A1 The distribution of crops on plot of respondent farmers

Crop % of plots

Maize 28.57
Rice† 14.38
Millet 11.24
Sorghum 7.37
Groundnut 14.19
Yam 2.94
Cassava 4.33
Vegetables 15.85
Number of plots 1,001

†Apart from rice, the rest of the crops were mostly intercropped.
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Table A3 Test of validity of instruments used to identify the MESR model

Variables Crop revenue of non-adopters Revenue skewness of non-adopters

Perception-drought -0.149 (0.237) 0.273 (0.901)
Climate-info -0.112 (0.170) -1.020 (0.646)
FBO-memb 0.004 (0.172) 0.577 (0.654)
Constant 6.259*** (0.642) 1.198 (2.438)
F-tests on instruments 1.202 [p = 0.234] 1.160 [p = 0.327]

Note: Standard errors in parentheses. The values in the square bracket indicate the p-values of the F-test
indicating the validity of the instruments used to identify the MESR model.

Table A4 Determinants of downside risk by climate-smart practices: second-stage MESR
estimation (dep. variable: revenue skewness)

Variables Non-adoption
(n = 175)

Crop choice
(n = 186)

Soil and water
cons (n = 353)

Joint adoption
(n = 287)

Estimate SE Estimate SE Estimate SE Estimate SE

Constant 0.89 2.08 -2.41 1.52 0.98 1.11 0.62 0.82
Gender -0.41* 0.23 -0.72** 0.33 0.22 0.17 -0.20 0.14
HH_size -0.44 0.58 -1.27* 0.71 0.42 0.36 -0.14 0.25
Education 2.82* 1.51 4.41** 1.97 -1.38 1.02 1.51 0.93
Farm size -6.73* 2.78 -1.29** 0.52 2.32 2.63 -5.53** 2.70
Livestock 1.47 0.82 2.21** 0.99 6.49*** 2.14 0.84* 0.48
Off-farm -2.06* 1.12 -2.77** 1.37 0.90** 0.31 0.92** 0.45
Fertiliser 4.96* 2.70 8.11** 3.68 -2.43 1.90 2.80 1.71
Herbicide -2.30 1.12 -3.09** 1.37 1.07 0.71 -1.09 0.73
Rainfall -0.14 0.26 0.23 0.16 -0.10 0.13 -0.11 0.11
Temp -0.25 0.64 0.77 0.48 -0.31 0.34 -0.18 0.25
RFanom -0.07 0.11 -0.56** 0.21 0.16 0.15 0.60 0.97
Tem-anom -0.39 0.33 -0.50 0.49 0.24 0.45 0.98 0.76
Extension 0.72 0.39 1.12** 0.53 -0.35 0.28 0.41 0.25
Slope 0.24 0.15 0.27** 0.12 -0.08 0.71 0.10 0.72
Erosion-level -0.46 0.25 -0.84** 0.37 0.26 0.19 -0.25 0.16
Drainage -0.23 0.12 -0.35** 0.16 0.11 0.86 -0.12 0.74
Fertility 0.66 0.44 0.84** 0.38 -0.15 0.21 0.35 0.20
Selectivity terms
m1 -0.31 0.22 -1.08** 0.49 -0.82 0.67 -1.05 0.83
m2 0.29 1.02 0.20 0.22 0.01 0.61 0.65 0.58
m3 -0.63 0.65 -1.62*** 0.22 0.01 0.40 -0.97 0.819
m4 -1.47** 0.58 -0.34 0.45 0.68 0.50 0.19 0.34

***, **, * represent 1%, 5% and 10% significance level, respectively. Bootstrapped standard errors in
parentheses
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Table A5 Treatment effects of adoption on log crop revenues and downside risk:
Multivariate treatment effect regression (Robustness check)†

Practice Estimate Standard errors

Log crop revenues
Crop choice only 0.433** 0.222
Soil and water conservation only 0.151 0.171
Joint adoption 0.520** 0.204

Skewness (downside risk)
Crop choice only 0.917*** 0.254
Soil and water conservation only 0.327** 0.121
Joint adoption 0.963** 0.367

**, *** significant at 5% and 1%, respectively. Reference category is non-adoption.
†The entire results of the multivariate treatment effects regression are available on request.
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