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ABSTRACT 

Unmanned aerial systems (UAS)-based remote sensing technology is used in 

precision agriculture due to its ability to monitor individual crop growth, health etc. 

which was previously unlikely on a wide scale. In this study, UAS technology was 

used in three zones of the Tono Irrigation Scheme (TIS) in the Upper East region 

of Ghana to assess the effect of urea deep placement (UDP) compared to non-UDP 

Nitrogen (N) management systems on rice grain yields. The goal of the study was 

to capture multispectral images on a fixed wing (eBee) platform at the midseason 

rice crop stage and develop vegetation indices (VI’s) to study in-field variations in 

rice yields as a function of N management system. These images were processed 

through the eMotion 3 software and transferred into Pix4D to create high resolution 

seamless orthomosaics. Four different vegetation indices (NDVI, NDRE, OSAVI, 

and GNDVI) were produced. Normal difference vegetation index (NDVI) was used 

to identify high, medium and low crop health zones.  End of season rice grain yields 

in the health zones were in the order high > medium > low. Rice grain yields had 

the highest correlation with OSAVI (r = 0.50). Two approaches were used to assess 

the impact of non-UDP compared to UDP. In the plot scale evaluation, estimated 

grain yields in non-UDP and UDP fields were 6.14 MT/ha and 6.74 MT/ha, 

respectively and were statistically different. Variability was high in non-UDP fields 

compared to UDP fields. In the geospatial approach based on Jenks classified 

OSAVI maps, similar relationships were obtained. Results showed that UAS 

technology can be efficient in estimating end of season rice grain yields and their 

variability in fields based on mid-season multispectral data. 
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CHAPTER ONE 

1.0 INTRODUCTION 

1.1 Background 

Rice is regarded as the second most important staple grain food in Ghana, next to 

maize (Danso-Abbeam et al., 2014). The per capita consumption of rice in Ghana 

was estimated at 35 kg/year in 2016/2017, while annual consumption in 2017/2018, 

was estimated at 1.0 million MT. Government of Ghana sources indicate that 

annual per capita rice consumption is expected to reach 40 kg by 2020 (Bannor, 

2015). The growth in rice consumption in Ghana has also been attributed to the 

change in consumer behavior, population growth and urbanization (Tomlins et al., 

2007). Rapid increase in rice consumption was recorded from 1960 to 2018 with 

rice importation exceeding local production over these years (Figure 1.1). 

Rice production in Sub-Saharan Africa (SSA) faces a variety of challenges that 

contribute to low yields such as inadequate fertilizer input and poor soils 

(Tsujimoto et al., 2019). As a result, SSA spends about $1.5 billion annually on 

rice imports (Moldenauer et al., 2005). According to Nwanze et al. (2006), 20 

million farmers grow rice in SSA with about 100 million as consumers. Rice 

accounts for almost 15% of the Gross Domestic Product of Ghana, making it 

important to its economy and agriculture. However, Ghana depends mostly on rice 

import to complement the shortage in local rice production and uses about an 

average of $450 million annually to augment local demand (MOFA, 2010). This 

import bill invariably consumes a substantial portion of the country’s foreign 



www.udsspace.uds.edu.gh

2 
 

exchange (Ragasa et al., 2013) and causes severe and unfair competition on the part 

of local producers; most of whom see negative returns in the process. 

Production systems in SSA include irrigated lowlands, rain-fed lowlands and rain-

fed uplands, with low importance of deep-water and mangrove-swamp rice (Tanaka 

et al., 2017). According to Ragasa et al. (2013), the Northern (37%), Upper East 

(27%) and Volta (15%) regions are the leading domestic rice producing regions in 

Ghana. The rice production zone accounts for about 45% of the total cereal planted 

area in Ghana, although it occupies roughly 4 percent of the total crop harvested 

area (MoFA, 2009). This serves as an important provider of rural employment 

(Danquah and Egyir, 2014). Increasing domestic rice production further remains an 

important challenge for SSA. Assessing the current dynamics of farm yields is 

important for identifying low-yield areas or areas where yield improvement is 

possible (Tanaka et al., 2017). A study by Seck et al. (2013) shows that, the annual 

growth rate of rice production in the SSA rose from 3.2% before the rice crisis 

(2000–2007) to 8.4% after the rice crisis (2007–2012). Over the period 2007–2012, 

71% of the increase in the production of paddy rice can be explained by yield 

increases and 29% by area expansion, while before the rice crisis (2000–2007), only 

24% of the increase in production could be attributed to yield increases, with 76% 

attributable to increases in the harvested region. 

Although productivity of Ghanaian paddies has improved in recent years, the deficit 

between consumption and local production still persists. Some of the factors 

accounting for the 70% deficit in rice output in Ghana include low yield, high 

production cost (the cost of credit, farm inputs, improved seed) and inefficient 
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processing facilities as well as result low demand for locally produced rice 

(Balasubramanian et al., 2007). Research work by Olaf and Emmanuel (2009), and 

Aker et al. (2010), showed that application of some policy measures can bridge the 

gap between domestic production and foreign imports. With projected rapid 

population growth, urbanization and infrastructural development in the near future 

(Adu-Gyamfi, 2012), much pressure will be exerted on available land for 

alternative uses at the expense of crop production. According to (Tiamiyu et al., 

2015) and Al-hassan, (2012), technical efficiency will be a key factor in improving 

productivity. Technical efficiency tests to what degree performance can be 

increased without the increased use of inputs under a given production technology. 

The efficiency of the use of nitrogen fertilizers (NUE) in rice cultivation is 

extremely poor. The plant 's recovery of broadcast applied N is generally between 

30 and 50% (Savant and Stangel, 1990). The low NUE may be due to volatilization 

of the ammonia, denitrification, leaching, and surface runoff. The N loss as 

volatilization of ammonia from a flooded rice field can be as high as 50% of the N 

applied (Dong et al., 2012; Rochette et al., 2013). Deep placement of fertilizers, 

especially urea (UDP), in lowland rice fields has been proven as an effective 

management practice for transplanted rice, which increases productivity and 

reduces fertilizer usage (Savant and Stangel, 1990; Gregory et al., 2010; Bandaogo 

et al., 2015). 

UDP technology is designed to improve the efficiency of nitrogen usage in rice 

production, which is expected to increase the rice yield. Two key components form 

the UDP technology. First, it is a fertilizer ‘briquette’ that weighs about 3 grams 
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produced by compacting urea fertilizer (Azumah et al., 2017). The second step is 

the application of this technology, by placing the briquette below the root zone. The 

briquettes are centered among four rice plants at a spacing of 20 cm x 20 cm and at 

a depth of about 7 cm to 10 cm. It is applied within two weeks after transplanting 

the rice. Placement can be done by hand or by mechanical process. The briquette 

slowly releases nitrogen, satisfying the requirements of the crop throughout the 

growing season (Rahman and Barmon, 2015). 

Deep urea placement increases NUE by as much as 50 to 70%, increases grain yield 

by 15 to 20% and reduces fertilizer N use by 30 to 40% (Savant and Stangel, 1990; 

Alam et al., 2013). In addition to having a positive agronomic effect, deep nutrient 

placement also has an environmental advantage by reducing the nutrient load in 

runoff water and reducing both volatilization and denitrification losses (Savant and 

Stangel, 1990). Urea deep placement (UDP) has proven to be a viable management 

strategy that could assist in the closing of the yield gap in rice production in Ghana. 

In spite of the benefits of the UDP technology, rice farmers in northern Ghana are 

yet to fully embrace the technology as farmers still broadcast N fertilizer, sulfate of 

ammonia and urea (Non-UDP). Broadcasting of urea causes volatilization of 

nutrients due to exposure and increases nutrient load in runoff water, especially 

when there are heavy rains after application which results in financial loss to the 

farmer. The runoff water can find its way and leave nitrate residues in river bodies 

causing diseases such as blue baby syndrome. 

Recently, in Ghana, projects like the Agriculture Technology Transfer (ATT) 

Project of IFDC, the Alliance for a Green Revolution in Africa (AGRA) and the 
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Rice Sector Support Project (RSSP) have embarked on a scaling up campaign of 

the UDP technology that is expected to transform rice production in northern 

Ghana. This largescale endeavor requires the necessary technological tool that can 

provide cost-effective, up-to-the-minute data that are critical for monitoring and 

evaluation. 

This study addresses the infield variability within and between the UDP fertilizer 

management practice and the non UDP using unmanned aerial system (UAS) 

remote sensing techniques to deliver useful data for management decision making 

in the future. 

Remote sensing (RS) is the method of collecting information about objects without 

the object being directly in contact. Remote sensing techniques are suitable for 

assessing crop status based on the relation between optical properties of plants (and 

canopy) and bio-physiological parameters (Stroppiana et al., 2015). Remote 

sensing based on unmanned aerial vehicle (UAV) allows user-controlled image 

acquisition and bridges the gap in scale and resolution between ground observations 

and images acquired from conventional manned aircraft and satellite sensors. It 

presents a cost-effective method which allows the image characteristics to be 

adapted to the size of the objects observed, to the processes monitored and to the 

speed of change within a landscape. 

Remote sensing based on UAV gives the best spatial and temporal resolutions 

possible for answering research questions or applications (Cress et al., 2011), and 

has great potential to help in crop management, in particular, in the study of crop 

performance and subsequent yield variability within the field. During the last two 
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decades , numerous researchers have demonstrated the appropriateness of RS for 

precision viticulture purposes (Hall et al., 2002). This technique was used to 

determine the spatial variability of the water status of the vineyards (Acevedo-

Opazo et al. , 2008; Baluja et al., 2012), the content of chlorophyll (Martin et al., 

2007), the content of grapes and phenols (Lamb et al., 2004), as well as the quality 

of grapes (Martin et al., 2007). 

 

Figure 1. 1: Rice production, imports and domestic consumption in Ghana 

(1960-2018) (Source: Gain Report - United States Foreign Agricultural 

Service. 2018). 
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1.2 Problem statement 

With increasing area under cultivation, monitoring rice growth and on-farm 

performance on the ground, especially on a broad landscape level, can be difficult. 

Using boots on the ground approach always begs the question “where are my 

targets?”. Decisions on farm management have historically been made on the basis 

that the fields are uniform and that farmers measure crop growth by visual 

inspection on the ground. The human eye however is limited to a small portion of 

the total electromagnetic spectrum i.e. around 400 to 700 nm. Not only are crop 

scouting and sampling measurements difficult and time-consuming, in the best 

possible way, it offers just the status of a sample of the crops on the farm plot. Due 

to these factors, parts of the field are mostly left unattended and causes yield losses 

at the end of the season. 

 

1.3 Justification 

One important goal of agricultural production is to achieve maximum crop yield at 

minimum cost. Early identification and problem management by tracking crop 

growth and yield can help improve yield (Dahikar and Rode, 2014). Production 

forecasting is essential for the state, national and even international agricultural and 

economic departments. Precise and timely crop performance and quality 

information is vital for policy makers, farmers, hedgers and investors (Xijie LV, 

2013). Due to clear limitations of the human eye to monitor crop growth on a large 

scale, different ways of monitoring crop growth appear, such as those based on 

satellite RS images. Imagery from remote sensing platforms such as those from 
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UAS have been used to locate individual plant patches, gaps, unhealthy regions, 

etc. on the land surface over a large scale, something that has previously been 

impossible. Data acquired sequentially over time on agricultural lands help in 

identification and mapping of crops and also in assessing crop vigor at a varied 

range of spatial scales (Atzberger, 2013). Remote sensing can be used to assess 

automatic and continuous measurements, which are easily enforced with data 

transmission systems such that the user has virtual real time access to data obtained 

from a remote device, mobile etc. (Fernández, 2014). 

Use of remote sensing of canopy reflectance in sampling a plant population is vital 

instead of individual plants to quickly assess the spatial heterogeneity of a crop 

field (Wang et al., 2008). With the use of Unmanned Aerial Systems (UAS), data 

are acquired in real time and with efficient data manipulation system, remedial 

solutions to crop production  problems can be implemented within a short 

timeframe (Sarkar et al., 2018). 

 

1.4 Objectives 

1.4.1 Main objective 

This study was carried out to evaluate the use of UAS technology, coupled with 

extensive field survey, to do a comparative assessment of UDP and non-UDP 

technologies under farmer management. 

 

1.4.2 Specific objectives 

Specific objectives of this study are to: 
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• To capture and produce multispectral images at the midseason stage of the rice 

crop and use them to develop vegetation indices. 

• To determine and compare crop health under UDP and non-UDP treatments. 

• To access the relationship between in-field variation in rice yields and N-

management system. 
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CHAPTER TWO 

2.0 LITERATURE REVIEW 

2.1 Yield variability problem in African agriculture 

A critical challenge facing mankind in the 21st Century is that of feeding the world 

which is projected to reach 10 billion by 2050 (Wahab et al., 2018). Despite rice 

becoming an important grain and a basic food crop in Madagascar, West, East, 

Central and Southern Africa, rice production in Africa is still the lowest in the world 

and cannot satisfy the increasing requirement for rice in many African countries 

(Balasubramanian et al., 2007). Variability in crop growth generally depends on 

various factors that can either be time-independent (e.g. substrate, topography, soil 

type and depth) or time-dependent (e.g. irregularities in weather conditions, 

planting and emergence, weed developments etc.) (Bégué et al., 2008; Kumhálová 

and Matějková, 2017). Spatial variability in yield consists of both permanent and 

transitory components. The permanent patterns are usually regulated by native soil 

properties or endogenous factors, while the transient patterns are influenced by 

exogenous factors such as climate, pests and disease (Simmonds et al., 2013). 

Some yield variability studies in rice systems have studied a single mechanism 

hypothesized to drive variability in in-field yield, such as land-level or water 

temperature, and/or a set of soil attributes assumed to be involved in yield 

variabilities. In addition, several of the studies have been performed in fields 

ranging from 0.5 to 3.6 ha (Yanai et al., 2001; Dobermann, 1994; Casanova et al., 

1999), while fewer studies have been conducted in larger fields containing multiple 

basins. In West Africa, irrigated rice yields in the wet season were projected to 
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change by 21 or +7% (without / without adaptation). Without adaptation, irrigated 

rice yields in dry season in West Africa would drop by 45 percent, while they would 

drop significantly less (15%) with adaptation. Most farmers recognize spatial 

variability in yield after harvesting. Variability in crop yields can result in crop 

production fluctuations, crop price instability and, in turn, a higher market risk. 

Government agricultural policies and risk management are closely related to 

unpredictable crop price and market risk (Kim, 2009). 

One of the steps toward achieving the self-sufficiency goal for rice in most 

developed countries is to encourage yield-enhancing technologies such as remote 

sensing. Remote sensing has played a variety of roles in assessing the cause of 

spatial and temporal variability of crops and soils and is one of the instruments that 

has demonstrated its ability to assist in crop management and, more precisely, in 

the study of variability within the field (Kumhálová and Matějková, 2017). It also 

provides yield monitoring and mapping technology capable of measuring, 

georeferencing and recording grain yields, enabling a spatial accuracy of meters to 

document the location and magnitude of yield variability. Therefore, this method 

provides a viable alternative for evaluating the status of crops due to its potential to 

simultaneously capture large areas (Chapman et al., 2014). 

 

2.2 Urea deep placement (UDP) 

The International Fertilizer Development Centre (IFDC) developed the UDP 

technology while working with farmers for several years in Bangladesh (Rahman 

and Barmon 2015). This technique has been used over the years to tackle yield 
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variability in rice by decreasing losses up to 40% and increasing urea efficiency to 

50%. It  also increases yield by 25% with an average decrease of urea use by 25% 

(Meybeck et al., 2012). With the introduction of innovative soil management 

techniques like the urea deep placement notwithstanding, yield variability remains 

a challenge. This is because modern management in sustainable agriculture needs 

immediate information on the condition of cultivated plants and quick response to 

unwanted phenomena such as pest presence and crop growth monitoring (Berner 

and Chojnacki, 2017). 

Nitrogen (N) plays a key role in the production of rice, and is required in large 

quantities. It is also limited in rice production and suffers from heavy system losses 

when applied to puddle field as inorganic sources (Rahman and Barmon, 2015). 

Few studies have assessed the N loss of UDP in fields of paddy rice, especially by 

volatilization of NH3. Ammonium is the dominant form of available N, in flooded 

and saturated anaerobic soils. Most of the nitrogen fertilizer losses occur through 

ammonia volatilization immediately after application into the floodwater. Urea 

Deep Placement (UDP) has already been found to be an important and effective 

plant nutrient management practice for rice (Gregory et al., 2010; Bandaogo et al., 

2015). Traditional N-fertilizer surface broadcasting suggested for rice production 

is often ineffective (Mohanty et al., 1999; Nkebiwe et al., 2016), whiles simplified 

one-time deep urea placement (UDP) (5–15 cm deep) may be a promising approach 

to resolving the trade-off between reducing N-loss whilst also improving crop 

output (Savant and Stangel, 1990; Afroz et al., 2014; Huda et al., 2016; Nkebiwe 

et al., 2016). 
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There are growing interests in UDP compared to broadcasting due to benefits such 

as reducing the NH4 + concentration of floodwater (Kapoor et al., 2008; Afroz et 

al., 2014; Huda et al., 2016). Studies have identified this technology 's potential for 

an increase in productivity. For example, studies in Nigeria (Tarfa and Kiger, 2013; 

Liverpool-Tasie et al., 2015) show that the use of deep-placement urea technology 

increased rice productivity by 20-30%, with nitrogen use efficiency rising by about 

40% over conventional broadcasting methods. Pasandaran et al. (1998), reported 

that UDP showed a 25% savings in N fertilizer rates leading to an average 400 

kg/ha increase in rice yield in Indonesia. Bulbule et al. (2002), announced that the 

USG briquette applied at a rate of 56 kg N / ha yielded 25 per cent higher than the 

recommended dose of 100 kg N / ha using traditional urea in Indian rice crops. 

Tarfa and Kiger (2013), recorded that in Niger State, Nigeria, UDP technology 

increased N consumption output by 40% and irrigated rice yield by 20-30% in 

2012.  

 

2.3 Remote sensing technology 

Remote sensing is the art and science of measuring the earth by means of sensors 

on aircraft or satellites (aerial photo). These sensors capture image data and have 

advanced capabilities to interpret, analyze, and visualize those images (Eliceiri et 

al., 2012). In remote sensing, electromagnetic radiation from an object is measured 

and translated into information about the object or into processes related to the 

object in the case of earth observation. Remote sensing systems are designed to 

distinguish specific wavelengths of the electromagnetic spectrum referred to as a 



www.udsspace.uds.edu.gh

14 
 

“band” or “channel”. The various combinations between these channels are known 

as vegetation indices. Each instrument is distinguished by a particular number and 

range of wavelengths detected; some instruments detect distinct bands, while others 

detect fairly small wavelengths or wider bands (multispectral, visible and near-

infrared wavelengths, microwaves, thermal sensing systems) (Shaw et al., 2003). 

Remote sensing is capable of recognizing spectral signatures of all objects and 

surfaces. Sensors may detect targets with a limited spatial resolution of image data 

identified by the smallest sampled or viewed spatial area. Digital images are 

composed of pixels, each of which is distinguished by different spectral and spatial 

attributes (Shia et al., 2014), as the reflectance strength or emittance measured by 

a sensor (Jawak et al., 2015). Spatial resolution refers to the area of space of each 

pixel reflected or printed. Remote sensing plays a unique and essential role, 

provided that remote sensing measurements can be reliably and operationally 

related to biophysical and biochemical parameters on Earth's surfaces. 

Nevertheless, the relationship between surface measurement and satellite data is 

highly dependent on the study region and the reflectance acquisition’s experimental 

conditions. 

Remote sensing systems used in applying the technology include satellites, 

unmanned aerial vehicles (UAVs), aircraft, balloons and a range of sensors such as 

optical and near-infrared, and RADAR (Radio Detection and Ranging). Diagnostic 

information extracted from images obtained from these on-board sensors, such as 

biomass, the Leaf Area Index (LAI), disease, water stress and plant lodging, can 

assist in crop management, yield forecasting and environmental protection. The 
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latest drone design, also known as Unmanned Aerial Vehicles (UAV), is divided 

into drones with electric drives, where electric batteries are the source of energy, 

and drones powered by the use of internal combustion engines. Depending on the 

programmed path, they are operated remotely by the operator using a transmitter, 

or independently. 

 

2.4 History of remote sensing 

The invention of photography started with remote sensing. Photograph is derived 

from the two Greek words 'photo' meaning 'light' and 'graphing' meaning 'writing'. 

The term, "remote sensing," was first introduced in the 1950's by Evelyn L. Pruitt 

of the U.S. Office of Naval Research. In his early work in 1666, Newton discovered 

that a prism transmitted light into a spectrum of red, orange, yellow, green, blue, 

indigo and violet and recombined the spectrum into white light. In 1800, for the 

first time in the world, Sir William Herschel explored thermal infrared 

electromagnetic radiation by measuring the temperature of light that a prism had 

split into the visible color spectrum (Zhu et al., 2018). Aerial photography began 

to develop in the 1950s out of the research started during World War II and the 

Korean War. Color-infrared became important in identifying various types of 

vegetation and in detecting diseased and damaged vegetation. In 1975, 1978, 1982 

and 1984, Landsat 2, 3, 4 and 5 were launched respectively. European Radar 

Satellite ERS-1 was launched in 1991, this was the first satellite with an altimeter 

capable of measuring the earth's surface to within 5 cm. India created IRS (Indian 

Remote Sensing) in 1995. That same year there was the launch of OrbView-1, the 
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first commercial imaging satellite in the world, ERS-2, Radarsat1 and Ofeq-3 

crashed the same year. 

In agriculture, Yamaha developed the first UAV model (Giles and Billing, 2015). 

Unmanned Yamaha RMAX helicopter was introduced for use in agricultural pest 

control and crop monitoring. RapidEye was released in 2008. It is a constellation 

of five high resolution interlinked satellites (Tyc et al., 2005). RISAT 1 and SPOT 

6 was launched in 2012. Landsat 8 was launched in 2013 by NASA - USA. Sentinel 

-1A, SPOT 7 and WorldView-3 were launched in 2014. ESA launched Sentinel-2 

in 2014. 

 

2.5 Remote sensing platforms 

A platform is a vehicle, from which a sensor can be operated (Lillesand et al., 

2015). There are three main remote sensing platforms: airborne (aerial), ground 

based, and space borne. Ground based platforms are those that are used on the 

ground although they need support. These platforms can be close to the ground or 

a few meters above ground and includes hand held cameras, tripods, towers, cranes 

etc. They are mostly used to study properties of a single plant or a small patch of 

grass (Imam, 2019), have a higher resolution since small areas are captured, and 

requires multiple photographs if a large area is to be studied. Non-imaging portable 

sensors such as CropScan, and Greenseeker are used on ground based platforms 

(Peteinatos et al., 2014). 

Airborne platforms, also known as aerial platforms, are primarily operated at higher 

altitudes. They include helicopters, aerial cameras mounted on aircrafts, drones etc. 
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Generally, aircrafts are used to collect very detailed images while helicopters are 

used to pinpoint locations due to vibration and lack of stability. These provide a 

larger area coverage than ground based platforms and can be categorized into low 

(drones) and high (aeroplanes) altitude aircrafts (Imam, 2019). Some of the 

applications of airborne remote sensing platforms include aerial surveys, 

reconnaissance surveys etc. 

Space borne platforms include satellites and shuttles and operate at a much higher 

altitude than ground based and airborne platforms. Space-borne vehicles, such as 

satellites, can occupy far more ground than aircraft, and can track areas regularly 

(Imam, 2019). Space based remote sensing can classify individual vegetation types 

and plant species through the use of high spectral and spatial resolution imagery 

(Fuller, 2005; He et al., 2011). While spatially borne hyperspectral and high spatial 

resolution visible sensors (QuickBird and WorldView-2) have a number of 

important uses in specific regions, the Landsat series of satellites appear to be the 

most suitable for assessing global spatial vegetation classifications (Gillespie et al., 

2015). Space borne platforms are the most stable carrier compared to airborne and 

ground based platforms (Zhu et al., 2018) though it faces considerable number of 

challenges including prevention of data collection by clouds, reflectance value 

distortion by the atmosphere, and a probable long revisit time. Data captured using 

space borne platforms have been applied in climate, agriculture, weather studies 

etc. 
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2.6 Satellite remote sensing Vs UAV 

Satellites may be classified based on altitude, orbital geometry (geostationary, 

equatorial and sun synchronous) and timing. The first remote sensing satellite 

emerged in 1960 for meteorological purposes (Alvino and Marino, 2017). 

UAVs are compact and made of a wireframe-like carbon body, which is difficult to 

see in distances of more than 200 meters. This is also why fixed wing UAVs are 

more effective to operate because they are visible further away, e.g. > 1.5 km, and 

therefore cover much greater areas in one flight mission. 

In the recent past, satellites were distinguished by low spatial resolution and used 

over large geographic areas for many purposes, but were unable to determine 

variability in crop yield within a field (Lee et al., 2010). Spatial resolution of the 

satellite data is measured in pixels; this is the smallest measuring unit on the ground 

which the sensor covers. Some satellite sensors are available which record data at 

or below meter level. Higher spatial resolution, however, ultimately imposes more 

costs in regards to data collection and image processing (Stow et al., 2004). 

Satellite missions, labelled Sentinel 1 - 5, were set up for monitoring the 

environmental (van der Werff and van der Meer, 2015). Sentinel-2 's arrival in 2015 

kicked off a new age in remote sensing. The mission guarantees continuity of 

previous missions (Landsat and SPOT) and produces geochemical and physical 

variables, maps of land cover and maps for land change detection. Its spatial 

resolution (from 60 m to 10 m) enables several small water bodies to be monitored 

as reported by Toming et al. (2016), and Sentinel-2 was able to map the water 

quality. It may also track chlorophyll as an indicator of phytoplankton, 
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chromophoric (or colored) dissolved organic materials and concentrations of 

dissolved organic materials. A recent research on Sentinel-2 shows that band 5 and 

band 3 are the most effective algorithms for obtaining the highest reflectance from 

dissolved organic matter (DOMs). Bands 4 and 5 were used to build a model for 

detecting chlorophyll with low-mean square error. 

Sentinel-2 has several advantages including the following: (1) a wide area 

coverage, approximately 290 km (20.6° field-of-view from an altitude of 786 km) 

(Malenovský et al., 2012); (2) a high resolution of up to 10 m; (3) three red-edge 

bands that have special applications for vegetation analysis (4) short revisit 

frequency which permits a global coverage every five days; and (5) free data 

accessibility. Sentinel 2A has 13 spectral bands that span from the visible (VIS) 

and the near infrared (NIR) to the short-wave infrared (SWIR) (433–2190 nm) as 

shown in Table 2.1. 
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Table 2.1: Bands and image resolution for Sentinel 2A Satellite 

Setinel-2 Bands Central Wavelength (µm) Resolution (m) 

Band 1-Coastal Aerosol 0.443 60 

Band 2-Blue 0.490 10 

Band 3-Green 0.560 10 

Band 4-Red 0.665 10 

Band 5-Near infrared 0.705 20 

Band 6-Near infrared 0.740 20 

Band 7-Near infrared 0.783 20 

Band 8-Near infrared 0.842 10 

Band 8A-Near infrared 0.865 20 

Band 9-Water vapour 0.945 60 

Band 10-shortwave infrared 

(Cirrus) 

1.375 60 

Band 11-shortwave infrared 1.610 20 

Band 12-shortwave infrared 2.190 20 
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However, when it comes to precision agricultural applications, there are two main 

problems with these platforms, which are related to per pixel resolution and orbit 

time. The second problem is the average 16-day re-visitation time, which makes its 

agricultural applications somewhat difficult, particularly those related to water and 

nutrient management. 

Over the last five years, UAV platforms have become almost abundant due to 

inexpensive aircraft with camera payloads ranging from visible, near and thermal 

infrared to 3D LIDAR, the combination of which is known as Unmanned Aerial 

System (UAS) (Xue and Su, 2017). Developed countries have already begun using 

UAV's in their precision farming. 

UAV Remote Sensing has very high resolution. It gives fast and low cost data, and 

cloud cover does not prevent acquisition, making it a useful aircraft tool for 

monitoring and managing crops in the growing season (Zhang and Kovacs, 2012; 

Nebiker et al., 2008). A major advantage over satellite imagery is cloud 

independence and revisit time and quick real-time data acquisition capability (Berni 

et al., 2009; Eisenbeiss, 2009). Additionally, high temporal resolution is achieved 

by high data acquisition versatility (Shahbazi et al., 2016). These features make 

UAVs highly suitable for many agricultural applications (Jensen, 2009; Swain and 

Zaman, 2012). In addition, UAVs outdo manned aircraft in terms of flexibility and 

expense, and even sharper spatial resolutions (Matese et al., 2015). Fine-resolution 

digital elevation models (DEMS) are also derived with UAVs, through post-

processing stereo imagery and the ability to follow a very precise flight path (using 
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a programmable autopilot), allowing simple repeatability, low noise and low carbon 

footprint. 

 

2.6.1 UAV platforms: fixed wings and rotary wings (advantages and 

disadvantages) 

The UAVs can be divided into two key top-level, fixed-wing, and rotary-wing 

configurations. These styles pose different advantages and challenges regarding the 

system of control and guidance. (Alvarenga et al., 2015). The fixed-wing UAV 

features rigid wings with an airfoil allowing for flying based on the lift provided by 

the forward airspeed. Regulation of navigation is obtained by means of control 

surfaces in wings (aileron, elevator and rudder). The Aerodynamics help longer 

endurance and loitering flights, and also enable high-speed movement. Similar to 

rotary-wing aircraft, these aircraft can carry heavier payloads, too. These platforms 

however require a runway for taking off and landing (Kanellakis and 

Nikolakopoulos, 2017). 

The rotary-wing presents maneuverability advantages. Such platforms are capable 

of accomplishing vertical take-off and landing (VTOL), low-altitude flights, and 

tasks of hovering. The use of rotary blades produces aerodynamic thrust forces and 

requires no relative speed (Alvarenga et al., 2015). It can also be classified into 

single-rotor (helicopter) and multi-rotor (quadcopter and hexacopter). Quadcopters 

with 4 rotors are most commonly used. Various designs are available with 3, 4, 6, 

8 and even more rotors and various rotor configurations. Quadcopters have 

definitely increased the popularity of multicopters, and their required flight control 
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electronics make it very easy to maneuver them in a very short time, often within 

half a day (Mayr, 2015). Multi-rotors are fast and agile platforms, capable of 

executing demanding maneuvers. Also, they are able to hover or travel along a 

target. These platforms however have limited pay load capacity and endurance. 

Mechanical and electrical complexity is fairly small as these elements are 

abstracted within the flight and motor controls (Kanellakis and Nikolakopoulos 

2017).  A quadrotor UAV can be highly maneuverable, can hover, take off, fly, and 

land in small areas and can have simple control mechanisms (Altug et al., 2002; 

Pounds et al., 2002). A quadrotor can also fly closer to an obstacle than traditional 

configurations of a helicopter that have a large single rotor without fear of a rotor 

strike (Pounds et al., 2002). The dynamics of the vehicle are good for agility, and 

its four rotors can permit increased payload (Altug et al., 2002). But quadrotor 

dynamics will make it difficult to control the vehicle (Altug et al.,2002). For a 

small, low cost quadrotor, the task of controlling the vehicle can be even more 

difficult (Pounds et al., 2002). 

The single-rotor has two rotors, the primary navigation rotor and the tail one for 

heading control. Usually these vehicles can take off and land vertically, and do not 

require airflow over the blades to move forward. Instead, the blades create the 

required airflow themselves. A single motor enables even longer flights with 

endurance compared to multi-rotors This type of vehicle can also carry high 

payloads in outdoor missions, such as sensors and manipulators while performing 

hovering tasks and long-term flights These platforms are however mechanically 

complex and costly (Kanellakis and Nikolakopoulos 2017). 
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Rotary wing UAVs have the upper hand of learning how to operate them easily. 

Their vertical ability to take off and land makes them perfect for narrow ways of 

the environment, e.g. urban. Their flight controllers are experienced and they are 

easy to fly and take off, it's no problem to land as well as to fly autonomously. They 

don't need a landing strip which is a huge advantage in the field, forests or urban 

environments. Their copter design also makes them suitable for tasks of inspection 

and observation. Because of their property of having to operate many motors to 

stay in the air, their energy consumption is considerably higher than that of UAVs 

with fixed wings. Thus, the result could be shorter travel times (about 20 to 30 

minutes) and more frequent changes in battery power. Because multi-copters have 

to actively create their lift during the entire flight, their stamina and operating speed 

are restricted. Generally speaking, they have a flight time of 12 min-30 min, which 

means they can reach only small areas (Eisenbeiss, 2009; Cai et al., 2014) and have 

poor wind endurance. 

 

2.7 Solar radiation and Spectral Bands 

Reflected light measurements have often been used in the natural vegetation or 

agricultural plants for remote assessments of green biomass or physiological stress 

(Fernandez et al., 1994; Peñuelas et al., 1994). Red light is absorbed into 

photosynthetically active tissue by the green chlorophyll pigments, and thus the 

proportion reflected varies inversely with the amount of plant material or biomass 

present. However, the intensity of reflected red light in the field will depend not 

only on the absorbed proportion but also on its incident intensity, which varies 
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depending on location and time of day. Research has shown that the use of red and 

near infrared sensor channels on board satellites is particularly apt for vegetation 

study. Such bands are usually found on meteorological and earth observation 

satellites and frequently comprise more than 90% of vegetation information (Baret 

et al., 1989). 

The spectral distribution of extraterrestrial radiation is such that the visible part of 

the electromagnetic spectrum accounts for about half of that. Spectral complexity 

defines the number of spectral bands for each pixel of information collected. Many 

sections are in the Near-Infrared and UV ranges. This spectral range is changed as 

the radiation goes downwards into the atmosphere; changes are primarily due to 

gases and aerosols (Wald, 2007). Light that has a relatively narrow range of 

wavelengths appears colored whiles the normal sunlight that contains the entire 

spectrum is usually described as white light. 

From an eco-physiological point of view, visible radiation between the wavelengths 

of 400 and 700 nm is the most important type, since it relates to photosynthetically 

active radiation (PAR). The plant uses just 50 percent of the incident radiation to 

conduct photosynthesis (Varlet-Grancher et al., 1995). The amount of radiation 

intercepted by the plant cover is influenced by a number of factors such as the leaf 

angle, the properties of the leaf surface affecting light reflection, the thickness and 

chlorophyll concentration affecting the transmission of light, the size and shape of 

the leaf phyllotaxis and vertical stratification, the elevation of the sun and the 

distribution of direct and diffuse solar radiation. Of the 100 % total energy that the 

leaf receives, just 5% is later transformed into carbohydrates for biomass 



www.udsspace.uds.edu.gh

26 
 

processing (Campillo et al., 2012). Essentially the whole visible light is able to 

encourage photosynthesis, but the regions between 400 and 500 and 600 to 700 nm 

are the most successful. Moreover, pure chlorophyll has very weak absorption, 

between 500 and 600 nm wavelength. Accessory pigments complement light 

absorption in this area, contributing to the chlorophylls, 620-700 nm (red): Higher 

chlorophyll absorption ranges: 510-620 nm (orange, yellow-green); low 

photosynthetic activity: 380-510 nm (purple, blue and green) is the most energetic, 

strong chlorophyll absorption: < 380 nm (ultraviolet) and germicidal effects, even 

lethal < 260 nm (Campillo et al., 2012). Leaf is the key photosynthetic functional 

unit and its effectiveness in absorbing and using solar energy defines the 

productivity of vegetables. The region and foliage structure (the design of the 

canopy), assess the reception of solar radiation (LI) by a crop and the distribution 

of irradiance between individual leaves (Connor et al., 2011). Leaf area and 

arrangement change over the course of a crop life and, by leaf movement, even over 

a single day. Maximum production of crops requires complete capture of incident 

solar radiation which can only be accomplished by supporting water and nutrient 

levels (Connor et al., 2011). Most production strategies are geared to maximizing 

solar radiation interception. In the case of crops, this implies adapting agricultural 

practices in such a way that full canopy cover is obtained as soon as possible. Water 

and nutrient input deficiencies may reduce leaf growth rates, reducing yields below 

optimum levels due to insufficient energy capture (Gardner et al., 1985). The 

performance of canopy interception corresponds to the plant population 's ability to 
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intercept the incident solar radiation, which is the key factor affecting the 

photosynthesis and transpiration processes (Leuning et al., 1995). 

 

2.8 Electromagnetic radiation 

The source of remote sensing is electromagnetic radiation which travels in vacuum 

in the form of waves of different lengths at the speed of light. The most useful 

wavelengths in remote sensing cover visible light (VIS), and extend to thermal 

infrared (TIR) and microwave bands through the near (NIR) and shortwave (SWIR) 

infrared. We restrict ourselves in remote sensing to the use of electromagnetic 

radiation as a characteristic of numerous physical processes. All products with a 

temperature above 0oK have the electromagnetic capacity to emit. Objects on or 

near the surface of the earth are capable of reflecting or dispersing incident 

electromagnetic radiation emitted by a source that may be artificial, such as flash 

light, laser or microwave radiation, or natural, such as sun. Solar radiation reflected 

by objects at the Earth's surface is measured in the visible, near-infrared (NIR) and 

middle-infrared (MIR) portion of the electromagnetic spectrum. 

In the region of thermal-infrared (TIR), especially in the atmospheric window, 

measurements are taken on the surface of the earth by objects emitting radiation, 

be it that this radiation originates from the sun. Vegetation shows a reflectance 

curve which is very characteristic. There is hardly any absorption in the NIR region, 

and the amount of transitions between cell walls and air vacuoles in the leaf tissue 

determines the reflectance. As a result, green vegetation NIR reflectance is high, 

and a steep slope occurs at about 700 nm in the curve, the so-called red-edge area 
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(Clevers and Jongschaap, 2002). The cells in the plant leaves are very effective in 

light dispersal due to the high contrast in the refraction index between the water-

rich cell content and the intercellular air spaces. The reflectance of light spectra 

from plants is well known to vary with plant size, tissue water content, and other 

intrinsic factors. 

The various vegetative coverings can be differentiated in relation to overall ground 

elements according to their particular spectral behavior (Tucker, 1979). Visible red 

radiation (630-690 nm) is absorbed by chlorophyll while the near infrared radiation 

(760-900 nm) is strongly reflected by the cellular structures of the leaves. 

 

2.9 Vegetation indices and their importance 

An index is a number which counts the strength of a phenomenon that is too 

complex to be broken down into known parameters. While the portion of impact of 

several variables can be calculated when in a well-documented and well-controlled 

environment, this decomposition is generally difficult for signals detected on 

remote sensing images. The concept of vegetation index is well adapted to qualify 

vegetation over large areas, e.g. over areas that cover many pixels of an image 

(Bannari et al., 1995). Healthy crops are characterized by strong red energy 

absorption and strong NIR energy reflection. The extreme contrast of red and near-

infrared band absorption and scattering can be integrated into various quantitative 

indices of vegetation conditions. Those quantitative mathematical combinations are 

called vegetation indices. 
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The creation and use of different remote sensed vegetation indices was based on 

the basic assumption that certain algebraic combinations of remote sensed spectral 

bands can reveal useful information such as vegetation structure, vegetation cover 

status, photosynthetic ability, leaf density and distribution, leaf water content, 

mineral deficiencies and parasitic shocks or attacks (Liang, 2005). They 

demonstrate greater ability to detect biomass than individual spectral bands (Asrar 

et al., 1984). When studying the general vegetation reflectance curve, a feature, 

sensitive to the presence of green vegetation is the difference found between the 

red and near infrared. The spectral response of the vegetation in the red is strongly 

correlated with the concentration of chlorophyll while the spectral response in the 

near infrared is influenced by the index of the leaf area and the density of green 

vegetation (Major et al., 1990). The combination of these two spectral domains 

allows for the separation of vegetation from soil and the determination of 

photosynthetically active biomass by vegetative density cover. Various factors such 

as the number of leaves, their biochemical composition, the canopy structure at a 

particular growth phase, illumination conditions (state of atmosphere and solar 

angle), and background (soil) reflectance generate a reflectance signal of a canopy 

(Zou et al., 2018), therefore a strong vegetation index should be less prone to the 

above factors. 

Vegetation indices have seen a more common use because of their computational 

ease. Spectral vegetation indices are statistical combinations of various spectral 

bands mainly in the visible and near infrared regions of the electromagnetic 

spectrum by combining low reflectivity in the visible portion of the spectrum with 
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high reflectivity in the near-infrared (Rondeaux et al., 1996). These numerical 

transformations have shown widespread variability not only with the seasonal 

variability of green foliage but also across space, making them suitable for detecting 

spatial variability within the field. Spectral vegetation indices are an easy and 

convenient way of extracting information from remotely sensed data, due to their 

ease of use, which facilitates the processing and analysis of large volumes of data 

collected by satellite platforms (Govaerts et al., 1999; Myneni et al., 1995). 

Vegetation indices (VIs), simple reflectance functions in two or more spectral 

bands (Zou et al., 2014; Zou and Mõttus 2015) are designed to amplify the effect 

of specific vegetation properties while minimizing soil background and solar angle 

properties (Huete et al., 2002). In terms of their development rationale, all these 

indices, whether in ratio-based or in the form of a linear combination, were 

formulated on the basis of the strong contrast between the near infrared ( NIR) and 

red (R) bands as vegetation strongly reflects the incident radiation in the NIR band 

while strongly absorbing in the R band (Tucker, 1979; Gitelson, 2004). Vegetation 

indices are also designed to provide a measure of the overall amount and quality of 

photosynthetic material in the vegetation, which is essential for many purposes to 

understand the state of the vegetation. 

 

2.9.1 Types of vegetation indices 

Pearson (1972), is a pioneer of vegetation indices literature. The first, two indices 

were developed in the form of ratios: the "Ratio Vegetation Index" (RVI) and the 

"Vegetation Index Number" (VIN) for vegetative cover estimation and monitoring. 
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RVI = R/NIR 

VIN = NIR/R 

Where R is the mean red channel reflectance, whiles NIR is the mean near infrared 

channel reflectance. Since then, a lot of vegetative indices have been developed 

including the Normalized Difference Vegetation Index (NDVI) (Rouse et al., 

1974), the Soil Adjusted Vegetation Index (SAVI) (Huete, 1988), Normalized 

Difference Red Edge (NDRE), Optimized Soil Adjusted Vegetation Index 

(OSAVI), the Green Normalized Difference Vegetation Index (GNDVI) (Gitelson 

et al., 1996) and the Chlorophyll Index green (CIg). 

 

2.9.1.1 Normalized Difference Vegetation Index (NDVI) 

The most widely used and well-known vegetation index is the Normalized 

Difference Vegetation Index (NDVI), developed by Rouse et al. (1974). The idea 

behind NDVI is that the chlorophyll of a plant absorbs sunlight, which is captured 

by the electromagnetic spectrum's red-light region, while the spongy mesophyll leaf 

structure of a plant produces significant reflection in the spectrum's near-infrared 

area (Tucker, 1979; Jackson et al., 1983). Greener and denser vegetation thus has 

low red-light reflectance and high near-infrared reflectance, and thus high NDVI 

values. NDVI is the ratio between the near-infrared band (NIR) and the red band 

(R) and the sum of these two bands (Rouse et al., 1974) (Equation 1). 

NDVI =      
NIR−Red

NIR+Red
 

where NIR is reflectance in the near-infrared band and RED is reflectance in the 

visible red band.  The spectrum of the obtained values is between −1 and +1. Only 
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positive values equate with vegetated zones; the higher the index, the greater the 

target's chlorophyll content. Near zero and negative values show unvegetated 

surface characteristics such as rock, soil, water, ice and clouds. 

The NDVI algorithm exploits the fact that green vegetation reflects less visible light 

and more NIR, while scattered or less green vegetation represents a greater portion 

of the visible and less NIR. NDVI incorporates these reflectance characteristics in 

a ratio so it's a photosynthetic capacity-related index. Despite its intensive use, 

NDVI saturates on a thick and multi-layered canopy and shows a non-linear 

relationship with biophysical parameters like LAI (Baret and Guyot, 1991; 

Lillesaeter, 1982). 

 

2.9.1.2 Adjusted-soil vegetation index (SAVI) 

NDVI 's sensitivity to soil context and atmospheric effects has created a growing 

interest in the creation of new indices, including SAVI, transformed soil-adjusted 

vegetation index (TSAVI), atmospherically resistant vegetation index (ARVI), 

optimized soil-adjusted vegetation index (OSAVI), etc., which are less sensitive to 

these external effects. These indices are potentially more accurate than NDVI, but 

not yet commonly used with data derived from satellites (Rondeaux et al., 1996). 

Richardson and Wieg (1997), originally suggested the distinction of vegetation 

from the soil context by examining the soil line, which can be viewed as a linear 

relationship between the NIR and R on the 2D plane of the soil spectral reflectance 

values. It can therefore be seen as a detailed description of a vast amount of soil 
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spectral knowledge from a variety of environments (Baret et al., 1993). SAVI is 

calculated as; 

SAVI =      
NIR−Red

(NIR+Red+L)
∗ (1 + 𝐿) 

where NIR represents reflectance values in the near-infrared band and red 

represents reflectance values from the red band. The L value is a function of 

vegetation density. This can either be early growth stage (0.1) or mid growth stage 

(0.25) (Huete, 1988). Qi et al. (1994), noted the reduction of the dynamic range of 

SAVI after the adjustment factor (L) was added, which makes it unfavorable for 

studying in sparsely vegetated areas. 

 

2.9.1.3 Green normalized vegetation index (GNDVI) 

Instead of using the NIR and red bands which are the traditional NDVI extraction 

band combination, the NIR and the green band may be used to derive the Green 

Normalized Vegetation Difference Index (GNDVI). There is no substantial 

dispersion of shorter wavelength light at lower altitudes and therefore the green 

band performs equally well (Agribotix 2018). GNDVI is calculated with the 

formula below: 

GNDVI = 
   NIR−Green

NIR+Green
 

Where NIR represents Near-infrared band reflectance values and G represents 

green band reflectance values. The variances in the reflectance properties of the 

NIR and green bands allow for an assessment of vegetation density and intensity 

using solar radiation reflectivity. GNDVI is an indicator of chlorophyll 

concentration in the vegetation. Gitelson and Merzlyak, (1994), recommended the 
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use of the reflectance in the green range (540 to 570 nm) of the spectrum for an 

assessment of chlorophyll concentration. 

 

2.9.1.4 Normalized difference red edge index (NDRE) 

NDRE is very similar to NDVI index, but instead of the near infrared, it uses the 

red edge band. The formulae for calculating NDRE is; 

NDRE = 
      NIR−Red Edge

NIR+Red Edge
 

Since the reflectance of the red edge band is related to the content of chlorophyll 

and nitrogen, this index is used to estimate the content of chlorophyll in the 

vegetation, whereas the NDVI is more appropriate for estimating biomass. 

Nonetheless, accumulation over dense vegetation does not affect NDRE and can 

thus detect broader variations in the forest cover or health. Like the NDVI, NDRE 

ranges from -1 to +1, but commonly observed vegetation values range from 0 to 

0.75(Wang et al., 2005). 

 

2.9.1.5 Optimized soil adjustment vegetation index (OSAVI) 

OSAVI is another form of the soil adjustment vegetation index. The advantage of 

OSAVI over the other SAVI is that knowledge on soil line parameters is not 

required to calculate the former (Rondeaux et al., 1996). OSAVI is calculated as: 

OSAVI = 
NIR−Red

NIR+Red+0.16
 

where NIR represents reflectance values in the near-infrared band and red 

represents reflectance values from the red band. The 0.16 represents a canopy 
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background adjustment factor to account for visible soil during survey. Like NDVI 

it also varies from -1 to +1 (Rondeaux et al., 1996). 

 

2.10 Use of UAS to assess crop performance 

Analyzing their applicability in agricultural operations such as crop monitoring 

(Bendig et al., 2012), crop height estimates (Anthony et al., 2014), pesticide 

spraying (Huang et al., 2009) and soil and field analysis (Primicerio et al., 2012) is 

important in the use of UAVs in precision agriculture. The positive relationships 

between UAS imagery and leaf greenness and crop canopy status has shown the 

possibility to use crop canopy and leaves remotely sensed reflectance 

measurements to assess crop nitrogen needs (Shanahan et al., 2008).  Borhan et al. 

(2004), in a controlled setting, employed numerous spectral and color imaging 

techniques to assess the nitrate and chlorophyll content of potato leaves, and 

recorded a linear correlation of 0.84 between multi-spectral band features and 

nitrate. Jongschaap and Booij (2004), measured potato nitrogen content in the 

canopy through remote sensing. The authors reported an exponential relationship 

with a strong correlation of 0.82 between the organic nitrogen content in canopy 

and the red edge location derived from reflection. 

Depending on the crop phenology and crop type the spectral response from a crop 

can be well controlled using different spectral and spatial resolution. Several 

experiments have shown that plant safety can be measured very well by using bands 

of near infrared and red wavelengths. Scientists around the world use Vegetation 

Indices, namely GNDVI and ENDVI, to assess the status of healthy vegetation and 
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to differentiate between land use shifts. Crop growth and final yield estimate can 

be achieved by studying the change in land cover that occurs during and throughout 

the growing season. Seasonal change in crop growth provides information on 

agricultural management, and the annual changes provide information on crop area 

or land cover change (Mookherjee, 2016). 

UAVs use cameras to capture images and sensors to compile a collection of data to 

help track and take on-farm decision-making. Multispectral cameras used on UAVs 

allow farmers to identify crop health, mitigate risk, and even identify soil health, 

whereas the new hyperspectral cameras may be used in the future to identify 

different types of vegetation. Airborne cameras are capable of taking multispectral 

pictures, and capturing infrared and visual spectrum data. Both can be combined to 

provide descriptions of plants that are safe and distressed. 

Sugiura et al. (2005), flew over a sugar beet field and a corn field using an 

unmanned helicopter. They implemented a real-time kinematic global positioning 

system, an inertial sensor (INS) and a geomagnetic direction sensor (GDS) to obtain 

the index of the leaf region (LAI). Jannoura et al. (2015), conducted study to assess 

the productivity of crops over a field of peas and oats. A remote-operated 

hexacopter was connected to an RGB digital camera. The Normalized Green-Red 

Difference Index (NGRDI) was determined on the basis of the aerial pictures 

captured and was related to the above ground biomass and Leaf Area Index (LAI). 

UAV-mounted multispectral and hyperspectral cameras have been commonly used 

to track plant growth and biochemical indicators for many vegetation indices 

options (Zhou et al., 2017). 
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CHAPTER THREE 

3.0 MATERIALS AND METHODS 

3.1 Study site 

This project was conducted during the 2018 growing season at the Tono irrigation 

scheme (TIS) located on latitude 10o 52’N and longitude 1o 11’W in the Kassena-

Nankana District of the Upper East Region (Figure 3.1). The TIS is a government 

of Ghana executed project that is run through the Irrigation Company of the Upper 

Region (ICOUR). It is a reservoir or storage-based, gravity fed irrigation scheme 

with a total capacity of 93 million m3 and a catchment area of 650 km2. It currently 

supplies irrigation to 2490 ha out of a possible 3840 ha of irrigable land which is 

devoted primarily to rice production. There are 4,000 smallholder farmers who farm 

under the reservoir with allocated plot sizes between 0.2 and 0.6 ha. (Kemeze et al., 

2016) 

 

 

 

 

 



www.udsspace.uds.edu.gh

38 
 

 

Figure 3. 1: Schematic View of the Tono Irrigation Project (Source: ICOUR 

UER, 2012). 

 

3.2 Field sizes and management 

With the objective to study comparative impacts of UDP and non-UDP N 

management systems, farmer volunteers were identified in three zones (H, I, and J) 

out of the 24 zones in the TIS. Farmer volunteers from zones H, I, and J (Figure 3) 

were selected based on their preferences for N management systems. The first 

group, referred to as UDP farmers was willing to test the emerging UDP 

technology. A second group, non-UDP volunteers, was an independent group of 

farmers who had plots within the perimeter but did not adopt the UDP technology.  
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Farmer farm sizes were determined through a ground survey in which boundary 

coordinates of rice fields were determined with hand held Garmin SDSMAP 64sc 

global positioning system (GPS). 

To estimate the field size from the GPS data firstly, the longitude values were given 

a column header labeled x and latitude values given a column header y in an excel 

spreadsheet. The add XY data tool was then used after setting the geographic 

coordinate system of the data frame to the desired coordinate system. The excel 

spreadsheet was used as the input table and the longitude and latitude columns 

named x and y respectively were used as the x and y fields in the tool. The resulting 

point shapefile was an outline of the field. Then the feature to polygon tool was 

used to convert the point shapefile to a polygon shapefile. Area of the field was 

calculated using the measure tool to trace the boundary of the field while using the 

area setting of the tool. These field size estimates were compared to those estimated 

by the ATT project. 

Field plots were prepared mechanically through a pay-for- service arrangement 

with ICOUR. In the interim, farmers raised seedlings in field nurseries on the TIS 

which they transplanted after a period of 2 - 4 weeks. Farmers transplanted an 

average of 2 seedlings per hill in the paddies. Half of the farmers in the study did 

no thinning out after transplanting. ICOUR provided counsel and inputs with 

regards to other soil amendments, weed and pest control and harvesting of the rice 

crop at the end of the season. 



www.udsspace.uds.edu.gh

40 
 

3.3 Remote Sensing using Unmanned Aerial Systems technology 

Fields were flown on a fixed wing platform using the eBee Ag manufactured by 

senseFly corporation (Sensefly, 2016).  The three zones of intervention were flown 

as individual units for this study 

Figure 3. 2: The eBee fixed winged unmanned aerial vehicle 

 

3.4 Data collection 

The process began by importing zone boundary coordinates obtained from ground 

survey into emotion (sensefly, 2016). Fields were flown using the multispectral 

sequoia (Figure 3.3) and the Sensor Optimized for Drone Applications (SODA) 

(Figure 3.4) cameras. The sequoia camera consists of five different wavelength 

bands; NIR, Red edge, RGB, Red and Green. The sequoia was flown at 127.4 m 
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altitude giving a ground resolution of 12.0 cm/pixel with 60% forelap and 80% 

sidelap. The SODA camera was flown at 69 m altitude to obtain 1.6 cm/pixel 

ground resolution with image 65% forelap and 70% side lap.  Images were captured 

during the period of May 16 – 20, 2018, close to booting of the rice crop. Drone 

flights were done in the mornings when the sky was clear to when the sun begins 

to intensify which was normally around noon. Flights begin again once temperature 

becomes more favorable. 

Figure 3. 3: Multispectral sequoia camera 



www.udsspace.uds.edu.gh

42 
 

 

Figure 3. 4:  Sensor Optimized for Drone Applications (SODA) camera 

The cameras were calibrated prior to each flight. Images captured were stored on a 

scandisk and eventually downloaded onto the hard drive of the desktop computer 

for analysis. 
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3.5 Image Processing 

Images were processed through eMotion 3 software. This software aligned, 

georeferenced and stitched the images together. Images were then transferred into 

Pix4D, another senseFly product, which generated high resolution seamless 

orthomosaics. Using the standard Ag Multispectral processing options in Pix4D, 

four vegetation indices, NDVI, NDRE, GNDVI and OSAVI were generated (Table 

3.1) After the index was generated, zone boundaries were drawn by using the 

regions tool to generate the index values for only areas within the zone of study 

 

Table 3. 1: Vegetation indices 

 

 

 

Vegetation Index Ratio Reference 

Normalized Difference 

Vegetation Index (NDVI) 

NDVI =      
NIR−Red

NIR+Red
 Rouse et al. 1974 

Normalized Difference Red 

Edge Index (NDRE) 

NDRE = 
      NIR−Red Edge

NIR+Red Edge
 Barnes et al. 2000 

Green Normalized Difference 

Vegetation Index (GNDVI) 

GNDVI = 
   NIR−Green

NIR+Green
 Gitelson et al. 1996 

Optimized Soil Adjusted 

Vegetation Index (OSAVI)** 

OSAVI = 
NIR−Red

NIR+Red+0.16
 Rondeaux et al. 1996 
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3.6 Mapping of yield assessment sites based on NDVI 

The process begun with isolation of each individual field based on the coordinates 

collected during the ground survey in zones H, I and J as shown in Figures 3.5, 3.6 

and 3.7 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 5: Individual farmer fields showing ID’s and boundaries in zone H. 



www.udsspace.uds.edu.gh

45 
 

 

Figure 3. 6: Individual farmer fields showing ID’s and boundaries in zone I. 
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Figure 3. 7: Individual farmer fields showing ID’s and boundaries in zone J. 

 

The rational behind isolating each plot was to generate a single NDVI map across 

all fields in the same zone and identifying sampling locations can confound the 

analysis due to several factors, critical among whom is the N management effect 
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which is being investigated in this study. It was therefore decided to isolate 

individual farmer fields and analyze them separately within their own boundaries. 

This step was followed by the use of a classification method in Pix4D which 

permitted the grouping of contiguous pixels to identify areas of “high”, “medium” 

and “low” health in each field based on NDVI values. The different health areas 

were mapped on the NDVI maps by recording coordinates of four corners of the 

high, medium and low health regions in each farmer’s field. 

 

3.7 Rice grain yield assessment in the field 

A hand held GPS device was used to navigate to the midpoint of each of the three 

health areas identified on the NDVI maps. A net plot of 2 m x 2 m around this 

central point was delineated in the field and flagged as the sampling area for the 

health grouping. Using a hand held sickle, rice paddy in this 4 m2 area was 

quantitatively harvested  and put into jute sacks. Paddy was threshed by hand and 

winnowed  and the grain was  weighed. The grain was air dried for about a day and 

grain moisture content was  determined using the M3GTM (Dickey-john) mositure 

meter. Grain yield/ha was determined using the following formula; 

Grain yield (kg/ha) =  
(Grain yield (kg/net plot )*(10000 /net plot)*(100- measured grain mc%)

(100 - 14% standard grain mc)
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3.8 Evaluation of the soil resource 

3.8.1 Soil sampling 

Disturbed soil samples for laboratory analysis were taken at a depth of 0 – 25cm 

from all net plots from which yield data was also collected. The samples were air 

dried and sieved through a 2 mm sieve. 

 

3.8.2 Laboratory analysis 

Physical and chemical analyses of 2mm sieved disturbed soil samples was done in 

the soil and plant analysis laboratory of the department of the agronomy at Iowa 

State University. 

 

3.8.3 Particle size distribution 

This was determined by the pipette method (Walter et al., 1978). 

 

3.8.4 Soil pH 

This was measured in water extractions with a glass electrode at a soil to water ratio 

of 1:1. 

 

3.8.5 Organic matter and total nitrogen 

These were determined by dry combustion using a Leco Truspec CN analyser. 

(Combs and Nathan 1998). 
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3.8.6 Soil phosphorous (P) 

This was extracted by a solution consisting of 0.025 normal HCl and 0.03 normal 

NH4F (Bray-1 extractant) and measured by Hach DR 3900 spectrophotometer 

(Frank et al., 1998) 

 

3.8.7 Cation Exchange Capacity and Exchangeable cations (Ca, Mg, K, Na) 

These were extracted with ammonium acetate (NH4OAc) solution (Warncke and 

Brown, 1998) and measured by ICP – AES (Spectro Ciros CCRD). 

 

3.9 Statistical analysis 

Analysis of variance (ANOVA) was used to test differences in yields using the SAS 

software as a function of treatment (SAS Institute, Cary, NC 2018). All tests of 

significance were assessed using an alpha of 0.05. The STATISTIX software was 

used to correlate yield to OSAVI. 

 

 

 

 

 

 

 

 



www.udsspace.uds.edu.gh

50 
 

CHAPTER FOUR 

4.0 RESULTS 

4.1 Farmer volunteers and field sizes 

A total of 50 volunteers participated in the study, 25 each in non-UDP and UDP N 

management systems (Table 4.1). Zone J had 28 participants (12 non-UDP and 16 

UDP), and there were 13 and 9 volunteers from zones H and I, respectively. Farm 

sizes range from 0.17 to 2.8 hectares among zones (Table 4.1). Zone J recorded the 

highest mean farm size of 8.9 ha, followed by Mean farm sizes for the three zones 

were 0.82 ha for zone J, 0.53 ha for zone I and 0.36 ha for zone H. Average farm 

sizes for non-UDP and UDP fields are 0.53 ha and 0.83 ha, respectively. The total 

number of farmer fields for the entire study was 85 with 44 UDP fields and 41 Non-

UDP fields (Table 4.2). 
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Table 4.1 Farmer volunteers and average land holdings in zones H, I, and J 

Zone Number of 

farmer 

volunteers 

Farm size 

(hectares) 

Number of 

farmers 

volunteers 

Farm size 

(hectares) 

 Non-UDP UDP 

H 9 3.2 4 1.5 

I 4 1.6 5 3.2 

J 12 8.9 16 15.7 

Study area 25 13.7 25 20.4 
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Table 4.2: Sizes of farms in the three zones and in non-UDP and UDP fields 

 

Zone/N-

Management 

Number of 

farmer fields 

Minimum Maximum Mean 

Field size (ha) 

Zones 

H 19 0.17 1.02 0.36 

I 14 0.21 1.16 0.53 

J 52 0.22 2.8 0.82 

Total 85 0.17 2.8 0.66 

N-Management system 

Non-UDP 41 0.17 1.34 0.53 

UDP 44 0.17 2.8 0.83 
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4.2 Physicochemical properties of the soil 

The soils in the entire study site at a depth of 0 to 25 cm were light textured, 

predominantly sandy loams. Zone H had the highest clay content of 18.5 %, 

followed by zone J with 14.2 % and 13% in zone I (Table 4.3). Silt content in the 

soil is in the order zone J >zone H>zone I. The highest sand content of 70.30 % 

was obtained in zone I, 55.30 % in zone H and 57.2 % in zone J. The UDP fields 

had the highest clay and sand contents. However, non-UDP fields had the highest 

silt content of 28.05 % while UDP had the lowest (21.45 %). The study also found 

that areas of high crop health had the highest clay (17.07 %) and silt (25.40 %) 

contents while low health areas recorded the highest sand content (63.28 %). Clay 

and silt contents in medium health areas were higher than those in low health areas 

(Table 4.3). 

The pH of the soil’s ranges from 5.4 to 5.7 in the three zones. Zone H has the lowest 

pH of 5.4 whiles zone I had the highest of 5.7. Zone H recorded the highest value 

for bray P (0.14 mg kg-1), OM (1.92 % ), K (2.4 cmol(+) kg-1), Ca (6.0 cmol(+) kg-

1), Mg (2.4 cmol(+) kg-1) and CEC (12.11 cmol(+) kg-1) whiles zone J recorded the 

least for all except bray P (12 mg kg-1). Zone J had the highest value of total N (0.08 

%) with zone I and H recording 0.07 % and 0.06 % respectively. 

The pH for both Non-UDP and UDP fields was the same (5.6). Fields under Non-

UDP N- management practice recorded slightly higher values for all chemical 

properties except pH, than those under the UDP management practice. However, 

there were no significant differences among them. 
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High crop health areas had the lowest pH (5.4). However, these areas had the 

highest organic matter content (1.57 %) and CEC (9.70 mg kg-1). Some chemical 

properties including OM, pH, CEC, K, Mg and Ca, were high in high crop health 

areas but decreased in the medium and low crop health areas. Total N was same in 

the high and low health areas (0.9 %) but differed from medium health areas (0.8 

%) whiles phosphorous levels were higher in low health areas (5.08 mgkg-1) than 

high (4.82 mgkg-1) and medium areas (4.44 mgkg-1) (Table 4.3).
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Table 4.3: Physiochemical properties of soil in the site of study (0 – 25 cm) 

N-management systems 

Crop health 

Zone  Sand Silt Clay Textural class  OM Total   N 

 

pH Bray               

P 

 CEC NH4OAc Extractable 

CEC K Mg Ca 

 %   %  (mg/kg)  (cmol (+) kg) 

H  55.3 26.2 18.5 Sandy loam  1.92 0.06 5.4 14  12.11 2.4 2.4 6.0 

I  70.30 16.40 13.3 Sandy loam  1.22 0.07 5.7 10  7.98 1.6 1.6 4.5 

J 

 

 57.2 28.6 14.2 Sandy loam  

 

 

1.18 0.08 5.6 12  7.61 1.3 1.3 4.3 

H (high)  56.4 25.40 17.07 Sandy loam 1.57 0.09 5.4 4.82 9.70  0.13 1.82 4.92 

M (medium)  58.5 

 

25.09 16.16 Sandy loam 1.42 0.08 5.6 4.44 9.48  0.12 1.82 5.07 

L (low)  63.28 22.5 14.25 Sandy loam 1.29 0.09 5.7 5.08 8.27  0.12 1.66 4.60 

Non-UDP  54.73 28.05 12.22 Sandy loam 1.56 0.08 5.6 13  10.22 2.0 2.0 5.4 

UDP  64.98 21.45 13.57 Sandy loam 1.32 0.06 5.6 11  8.25 1.5 1.5 4.4 
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4.3 Correlation between physicochemical properties of the soil and rice grain 

yield 

Pearson correlation was run among the physicochemical properties and grain yield 

(Table 4.4). BrayP was the only soil property that showed a high correlation with 

grain yield (r = 0.63). Organic matter correlated highly with CEC (r = 0.79), K (r = 

0.68), Mg (r = 0.57), Ca (r = 0.62) and N (r = 0.61). Clay content showed a high 

correlation with OM (r = 0.77), CEC (r = 0.90), K (r = 0.88), Mg (r = 0.87), and Ca 

(r = 0.91). The CEC of the soil also correlated highly with K (r = 0.82), Mg (r = 

0.91) and Ca (r = 0.91). The three basic cations K, Ca and Mg, correlated highly 

with each other.   
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Table 4.4: Pearson correlation matrix of physicochemical properties of the soil and grain yield 

Sand Clay Silt OM BrayP pH CEC K Mg Ca N Yield

1.00 -0.78 -0.89 -0.65 0.29 -0.13 -0.76 -0.71 -0.71 -0.71 -0.47 0.10

<.0001 <.0001 0.00 0.17 0.54 <.0001 <.0001 0.00 0.00 0.02 0.65

-0.78 1.00 0.41 0.77 -0.37 0.27 0.90 0.88 0.87 0.91 0.47 -0.21

<.0001 0.05 <.0001 0.08 0.21 <.0001 <.0001 <.0001 <.0001 0.02 0.32

-0.89 0.41 1.00 0.38 -0.15 0.00 0.44 0.39 0.40 0.36 0.34 0.01

<.0001 0.05 0.07 0.47 0.99 0.03 0.06 0.06 0.08 0.10 0.95

-0.65 0.77 0.38 1.00 -0.13 -0.23 0.79 0.68 0.57 0.62 0.61 -0.06

0.00 <.0001 0.07 0.53 0.29 <.0001 0.00 0.00 0.00 0.00 0.79

0.29 -0.37 -0.15 -0.13 1.00 -0.09 -0.46 -0.18 -0.51 -0.39 -0.16 0.63

0.17 0.08 0.47 0.53 0.67 0.02 0.39 0.01 0.06 0.44 0.00

-0.13 0.27 0.00 -0.23 -0.09 1.00 0.14 0.40 0.45 0.49 -0.26 -0.04

0.54 0.21 0.99 0.29 0.67 0.52 0.05 0.03 0.02 0.21 0.84

-0.76 0.90 0.44 0.79 -0.46 0.14 1.00 0.82 0.91 0.91 0.48 -0.12

<.0001 <.0001 0.03 <.0001 0.02 0.52 <.0001 <.0001 <.0001 0.02 0.56

-0.71 0.88 0.39 0.68 -0.18 0.40 0.82 1.00 0.81 0.90 0.42 0.00

<.0001 <.0001 0.06 0.00 0.39 0.05 <.0001 <.0001 <.0001 0.04 1.00

-0.71 0.87 0.40 0.57 -0.51 0.45 0.91 0.81 1.00 0.95 0.29 -0.19

0.00 <.0001 0.06 0.00 0.01 0.03 <.0001 <.0001 <.0001 0.17 0.38

-0.71 0.91 0.36 0.62 -0.39 0.49 0.91 0.90 0.95 1.00 0.33 -0.12

0.00 <.0001 0.08 0.00 0.06 0.02 <.0001 <.0001 <.0001 0.12 0.59

-0.47 0.47 0.34 0.61 -0.16 -0.26 0.48 0.42 0.29 0.33 1.00 -0.04

0.02 0.02 0.10 0.00 0.44 0.21 0.02 0.04 0.17 0.12 0.87

0.10 -0.21 0.01 -0.06 0.63 -0.04 -0.12 0.00 -0.19 -0.12 -0.04 1.00
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4.4 Remote sensing imagery 

The RGB images captured using the SODA camera were orthorectified and stitched together to 

produce high resolution orthomosaics of natural color images of the rice crop as shown in Figures 

4.1, 4.2, and  4.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 1: Orthomosaic RGB images of zone H at heading stage of the rice crop. 
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Figure 4. 2:  Orthomosaic RGB images of zone I at heading stage of the rice crop. 
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Figure 4. 3:  Orthomosaic RGB images of zone H at heading stage of the rice crop. 

These orthomosaiced images represent the spatial natural color expression of the health of the rice 

crop at the stage at which images were captured. These images provide information on crop health 
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at the moment in time and provide a basis to compare and contrast crop health status of individual 

fields  within each zone and between zones. Brown areas in the images show noncultivated or bare 

areas,  while the green areas show the direct natural color expression of the health of the rice. 

Bunds which  serve as boundaries between fields in most cases, are clearly discernible in the 

othomosaics. These bunds also show delineations in fields for water and nutrient management. 

 

4.5 Vegetation Indices 

Four vegetation indices, NDVI, NDRE, OSAVI and GNDVI, were generated from images 

captured on May 16, and May 18, 2018. Mean and ranges of these indices are presented in Table 

4.5. 
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Table 4.5: Ranges of vegetation indices on the different dates of drone flight 

 

 

 

 

 

 

 

Index Mean SD SE Mean Minimum Maximum 

16-May 

NDVI 0.8787 0.0497 4.14E-03 0.654 0.941 

NDRE 0.3271 0.052 4.33E-03 0.155 0.442 

GNDVI 0.7494 0.0598 4.98E-03 0.551 0.846 

OSAVI 0.6412 0.0656 5.47E-03 0.413 0.871 

18-May 

NDVI 0.8529 0.0777 6.47E-03 0.518 0.934 

NDRE 0.3185 0.0689 5.74E-03 0.146 0.555 

GNDVI 0.7225 0.0702 5.85E-03 0.426 0.818 

OSAVI 0.6192 0.0796 6.63E-03 0.314 0.74 

May 22 

NDVI from Sentinel 2A 

data 0.4028 0.0300 2.498E-03 0.328 0.482 
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It is generally observed that images collected on May 16, 2018 produced higher vegetation index 

values and trailed off on May 18. It was therefore decided to use May 16 data as a basis for any 

comparative crop health assessment in this study. 

To compare the efficacy of remote sensing platforms to characterize rice growth and performance, 

Sentinel 2A data of the same study area were obtained from the United States Geological Survey 

(USGS) Earth Explorer website at (https://earthexplorer.usgs.gov/).  Due to the limitation with 

long revisit times of the satellite, imagery obtained on May 22, 2018 from sentinel 2A, 2018 was 

the closest date to the UAV flight of May 16. The false color infrared (bands 8, 4, and 3) is shown 

in Figure 4.4. Compared to the UAV imagery, the satellite image has a bigger footprint, and pixels 

completely included the boundaries of TIR, including the Tono reservoir. 
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Figure 4.4: False color infrared (bands 8,4, and 3) of the full extent of Tono Irrigation 

Scheme captured by the Sentinel 2A satellite on May 22, 2018. 

However, the resolution of the satellite imagery is far lower than that of the UAS as shown in 

Figure 4.4. 
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Using the same spatial band ratios, NDVI map was generated from the Sentinel 2A data as was 

done with the UAV-captured imagery (Table.4.5).  Again, the low resolution of the satellite 

imagery resulted in NDVI values that are almost half of what was obtained from the UAS-

generated imagery. 

4.6 Comparative assessment of non-UDP vs. UDP using UAS technology 

The goal of this section of the thesis is to use UAS technology to evaluate the impact of N 

management on rice grain yield. Specifically, this study compares the effect of UDP technology 

with any other N placement technologies used by farmers in the Tono Irrigation Scheme. The null 

hypothesis (H0) is that there is no difference in rice grain yields when farmers use the UDP 

technology compared to any other form of N management. Alternatively, it is hypothesized that 

there are significant differences in rice grain yields under UDP and non-UDP N management 

systems (H1). These hypotheses were tested using plot and spatial scale yield assessment 

methodologies. 

 

4.6.1 Plot Scale Assessment 

Rice grain yields were estimated from three 2m x 2m plots in each participating farmer field as 

stated earlier. These plots were generated from UAS imagery in low, medium, and high health 

areas. Ranges of NDVI values used in delineating the three health zones of the entire study are 

presented in Table 4.6. Figures 4.5 to 4.7 show the spatial distribution of relative grain yields on 

plots identified using crop health assessment in non-UDP and UDP fields in zones H, I, J, 

respectively. Rice grain yield data were tested for normality using the Shapiro-Wilk test with a 

threshold of 0.05. The W and P values of the test were 0.9934 and 0.7663, respectively. 
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Table 4.6: Ranges of NDVI used for assigning crop health categories 

*n – number of observations 

Health n* Mean Minimum Maximum 

High 45 0.906 0.847 0.934 

Medium 48 0.868 0.584 0.910 

Low 45 0.586 0.586 0.881 
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Figure 4.5: Spatial distribution of relative grain yields based on crop health classified plots 

in non-UDP and UDP in zone H. Green, yellow and red colors represent high, medium and 

low health areas, respectively 
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Figure 4.6: Spatial distribution of relative grain yields based on crop health classified plots 

in non-UDP and UDP in zone I. Green, yellow and red colors represent high, medium and 

low health areas, respectively 
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Figure 4.7: Spatial distribution of relative grain yields based on crop health classified plots 

in non-UDP and UDP in zone J. Green, yellow and red colors represent high, medium and 

low health areas, respectively 
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The p - value is significantly higher than the threshold of 0.05. This led to the rejection of the 

alternative hypothesis, H1 and acceptance the null hypothesis, Ho, that our sample is normally 

distributed. Analysis of variance of the data showed significant effects of N management (P= 0.04) 

and midseason crop health on end of season rice grain yield. Zone  and treatment x  zone interaction 

did not influence grain yield with p values of 0.30 and 0.65, respectively. 

Figure 4.8 shows the relationship between midseason crop health and end of season grain yields 

for the entire study area. Rice grain yield in the delineated high zone area was found to be higher, 

but not statistically different, from those in the medium zone. However, these two zones produced 

significantly higher rice grain yields compared to the low health area. The same relationships were 

obtained when data was analyzed as a function of non-UDP vs. UDP fields in the study area (Figure 

4.9). 
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Figure 4.8: Average rice grain yield in high, medium and low zones in entire study area 
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Figure 4.9: Average rice grain yield in high, medium and low zones as a function of N 

management technology 
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4.6.1.1 Grain yield in UDP and Non-UDP fields 

In testing the null hypothesis of no difference in yields irrespective of N management system used 

by farmers, a comparative assessment of average grain yield under UDP and non-UDP was carried 

out. This began with the assessment of yield variability using the Box-Whisker plot in Figure 4.10. 

 

 

Figure 4.10: Box and whisker plot of average grain yield for the entire study site. 
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There was more variation in yield in non-UDP system compared to UDP. Rice grain yields varied 

from 1.92 – 9.91 MT/ha in non-UDP fields compared to 3.37 – 10.84 MT/ha in UDP. Median yields 

in non-UDP and UDP are 6.03 and 6.77 MT/ha, respectively.  The middle 50% of the yield in non-

UDP is between 4.98 and 7.84 MT/ha with a difference of 2.86 MT/ha. The UDP fields has a 

narrower middle 50% yield range of 2.36 MT/ha. This could partially account for the yield disparity 

between non-UDP and UDP. Average yield in UDP fields is 6.81 MT/ha compared to 6.19 MT/ha 

in non-UDP fields (Figure 4.11). 

 

Figure 4.11: Grain yield in non-UDP and UDP fields 
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4.7 In-field midseason geospatial spectral variability and end of season grain yield 

The purpose of this section is to use UAV data collected midseason to estimate end of season rice 

grain yields as a function of N management. This process began with identification of the best 

predictive spectral index by creating a correlation matrix of plot scale estimated grain yields and 

VI’s. (Table 4.7). 

Table 4.7: Correlation matrix of rice grain yield and vegetation indices 

Vegetation Index Grain Yield 

NDVI 0.48 

NDRE 0.46 

GNDVI 0.50 

OSAVI 0.50 

All correlations are significant at p<0.05 

Although GNDVI and OSAVI had the strongest correlation with grain yield, it was decided to use 

OSAVI as the optimal spectral index on a spatial scale.  Developed by Rondeaux et al. (1996), 

OSAVI has a soil adjustment coefficient (0.16) which was introduced to minimize variations in 

soil background. This index does not also have the problem of saturation at high reflectance like 

NDVI. Field maps using OSAVI were generated for each zone at booting of rice crop (Figure 

4.12,4.13 and 4.14). 

Rice grain data collected from crop health (high, medium and low) were partitioned into two 

groups as a function of the two N management systems, UDP and non-UDP. 
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Figure 4.12: OSAVI map of zone H at booting of rice crop 
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Figure 4.13: OSAVI map of zone I at booting of rice crop 
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Figure 4.14: OSAVI map of zone J at booting of rice crop 
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In each of these groups, empirical relationships were established between OSAVI and rice grain 

yields through linear regressions as shown in Figures 4.15 and 4.16. 

The OSAVI vs. rice grain yield prediction equation for the UDP group is: 

Grain yield = 14.278*OSAVI with an R2 value of 0.3633. 

For the non-UDP group, the prediction equation is: 

Grain yield = 14.004*OSAVI – 2.5994 and R2 is 0.3254. 

Accompanying the prediction curves are prediction intervals which express the uncertainty in the 

forecasts when using these prediction curves.  A 95% prediction interval was used for both curves 

which indicates that one has a 95% chance that any new observation is actually contained within 

the lower and upper prediction bounds of 5 and 95%. 

 

Figure 4.15: Rice grain yield as a function of OSAVI: UDP 
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Figure 4.16:  Rice grain yield as a function of OSAVI: Non-UDP 

The predicted values have low “unusualness” for both non-UDP and UDP volunteers suggesting 

that the independent data points generated are close to the rest of the data. 
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4.8 Jenks Classification and estimation of whole field yields 

4.8.1 Jenks classification of OSAVI imagery 

The Jenks natural breaks algorithm was used as a standard method to divide the OSAVI developed 

imagery for each farmer’s field into 4 homogenous classes using ArcGIS. Examples of Jenk’s 

classified field are presented in Figures 4.17 (high yielding field) and 4.18 (low yielding field). 

The outputs of this classification include the minimum, maximum and mean OSAVI values for 

different classes.  Examples of these parameters are presented in Tables 4.8 (high yielding field) 

and 4.9 (low yielding field). It also gives the area coverage of each group (in hectares) and the 

percent of the total area field occupied by the class. 

Mean OSAVI values of each class were used to estimate grain yield in kg/ha from the OSAVI-

grain yield plots for both the non- UDP and UDP groups. The predicted value was multiplied by 

the number of hectares in that particular group to estimate the number of kilograms of rice grain 

(Table 4.10). The sum of kilograms of rice grain in a field divided by the total number hectares 

gives the estimate per ha rice grain for the field. Crop yield maps were developed for each zone as 

a function of N management system generated from Jenks classified OSAVI (Figure 4.19, 4.20 

and 4.21). 
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Figure 4.17: Jenks classified OSAVI image of field 2 of zone H (considered high yielding) 
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Figure 4.18: Jenks classified OSAVI image of field 18 of zone H (observed as low yielding) 
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Table 4.8: Parameters of classified OSAVI image of field 2 of zone H (considered high 

yielding) 

 

 

 

 

 

 

Table 4.9: Parameters of classified OSAVI image of field 18 of zone H (considered low 

yielding) 

 

 

 

 

 

 

 

 

 

 

 

 

Minimum Maximum Mean Area (Ha) Area (%) 

0.63 0.71 0.75 0.42 45.61 

0.57 0.63 0.69 0.37 40.54 

0.52 0.57 0.64 0.09 9.44 

0.46 0.52 0.57 0.04 4.42 

Minimum Maximum Mean Area (Ha) Area (%) 

0.63 0.71 0.67 0.05 22.5 

0.58 0.63 0.605 0.13 65.13 

0.53 0.58 0.555 0.02 10.34 

0.46 0.53 0.495 0 2.02 
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Table 4.10: Jenks classification of non-UDP and UDP fields under the different 

management zones. 

non-UDP UDP 

Zone 

 

Field 

size (ha) 

Total grain 

yield (kg) 

Grain yield 

(kg/ha) 

Field 

size (ha) 

Total grain 

yield (kg) 

Grain yield 

(kg/ha) 

H 4.3 25.17 5.95 2.62 17.42 6.63 

I 2.60 14.77 5.68 2.64 16.45 6.32 

J 14.57 94.24 6.47 44.44 188.52 7.42 

 

 

 

 

 

. 



www.udsspace.uds.edu.gh

86 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.19: Total grain yields in producer fields of Zone H as a function of N 

management system generated from Jenk’s classified OSAVI 
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Figure 4.20: Total grain yields in producer fields of Zone I as a function of N management 

system generated from Jenk’s classified OSAVI 
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Figure 4.21: Total grain yields in producer fields of Zone j as a function of N management 

system generated from Jenk’s classified OSAVI 
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4.9 Transplanting Dates 

Figure 4.22 represents the dates on which farmers transplanted seedling from nurseries and the 

number of collaborating farmers for each day for non-UDP farmers whiles Figure 4.23 

represents those for UDP farmers. Majority of non-UDP farmers transplanted as early as 

February 18, 2018 with just three (3) farmers transplanting on March 27, 2018. Few of the 

UDP farmers started transplanting as early as February 16th with majority transplanting on the 

4th of March. Transplanting ended on March 22nd on UDP farms, five days earlier than their 

non-UDP counterparts. 

 

 

Figure 4.22: Date and number of non-UDP farmers who transplanted on those dates 
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Figure 4.23 Date and number of non-UDP farmers who transplanted on those dates 
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4.10 Test for normality 

Data generated from the spatial yield evaluation were tested for normality by applying the 

Shapiro-Wilk test to the residuals of the linear regression analysis. The normal probability plot 

as well as the W statistic of 0.9776 suggest that the data are normally distributed. 

Results of subsequent analysis of variance of estimated rice grain yield suggest that N 

management and zone, both with P<0.0001, significantly impact rice grain yield. With respect 

to zone, the highest yield of 6.7 MT/ha was obtained in zone J which was significantly higher 

than the 6.33 and 6.02 MT/ha in zones H and I respectively (Figure 4.24). 

Fig 4.24: Grain yield in the different zones 
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The box and whisker plot of grain yields as a function of N management technology is 

presented in Figure 4.25. In the non-UDP fields, rice grain yield varied from 5.30 to 7.56 

MT/ha with a mean of 6.20 MT/ha. In the UDP fields, grain yield varied from 4.85 – 8.00 

MT/ha and the mean yield was 6.89 MT/ha. Median yields for the two management systems 

were 6.08 and 6.92 MT for non-UDP and UDP fields, respectively. The UDP field yields had 

a higher variance of 0.46 compared to 0.37 for non-UDP. The middle 50% of the yield in non-

UDP management system ranged from 5.50 – 7.51 MT/ha and it ranges from 5.63 -8.00 MT/ha 

for UDP. Overall, the UDP fields out yielded the non UDP fields by 0.64 MT/ha and this 

difference is statistically significant (Figure 4.26). 
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Figure 4.25: Box whisker plot of rice grain yields in study zone 
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Figure 4.26: Rice grain yield estimated on a spatial basis as a function N-management 
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4.11 Plot Scale vs. Spatial Scale Assessment 

A comparative assessment of results of two approaches of yield assessment is presented in 

Table 4.11. 

Table 4.11: Descriptive statistics of results from plot and spatial based assessments of rice 

grain yield 

Statistic Plot Scale Spatial Scale 

 Non-UDP UDP Non-UDP UDP 

N 72 68 40 42 

 MT/ha 

Mean 6.19 6. 81 6.20 6.89** 

Range 1.92 – 9.07 3.27 – 10.84 5.3.0- 7.75 4.85 – 8.00 

Median 6.03 6.77 6.08 6.92 

Middle 50% Yield 2.86 2.37 0.79 0.82 

Variance 3.30 2.72 0.37 0.46 

** Significant differences in yields between non-UDP and UDP 

Essentially there are no significant differences in a lot of the yield descriptive statistics when 

using one approach or the other. However, the table clearly shows a clear difference in the two 

approaches in the variance of yields estimated. Using the spatially-based approach clearly 

decreases variance in estimated yields. This could be a good reason to adopt the spatial 
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assessment of yields when operating on wide territorial or regional scales. In the plot scale 

yield estimation was limited to 4m2 areas and results can be influenced by conditions of the 

close environment. On the other hand, areas of yield estimation in this study varied from 0.07 

– 2.7 ha. This helps spread any errors over wider areas, thus reducing the variability in results. 
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CHAPTER FIVE 

5.0 DISCUSSION 

5.1 Physicochemical properties of the soil 

Physical properties 

In terms of Zones, H recorded the highest clay content whiles zone I had the highest sand content. 

There are larger pore spaces between sand particles which leads to high drainage and less holding 

capacity for both water and nutrients. The low yields in zone I could be attributed to its high sand 

content. Dou et al. (2016), reported higher rice yields in clay soils as compared to sandy soils. He 

attributed the lower rice yield to the larger pore spaces and low water retaining capacity of sandy 

soils. 

Chemical properties 

The lowest pH of 5.4 was recorded in zone H and can be termed as strongly acidic whiles the pH 

of zone I and J were moderately acidic. However, yields were low in zone H compared to zone J. 

Rice is reported to tolerate a pH range of 4 to 8, and pH changes within this range does not appear 

to influence yield (Fan et al., 2016). Zone H recorded the highest value of organic matter but not 

the highest yield. Although high CEC (Lal, 2014) and OM could indicate good soils with 

corresponding high yields, lower yields were recorded in zone H as compared to zone J. In general, 

increases in OM are seen by many farmers as beneficial, because higher rates are seen as directly 

linked to better plant nutrition, improved water retention capacity, enhanced porosity etc. (Carter 

and Stewart, 1996; Lal, 2002). Janzen et al. (1992), found out that the relationship between soil 

quality indicators (e.g. organic soil carbon (SOC)) and soil functions does not always lead to an 

increasingly linear simple relationship with the magnitude of the indicator and that therefore higher 

values of these soil quality indicators does not necessarily mean higher yields. Baldock and 
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Skjemstad (1999) and Skjemstad (2002) have noted that total SOC might not be a reasonable 

predictor of how well a specific soil feature is likely to perform; primarily because the different 

pools that make up the bulk SOC differ greatly in their physical and chemical properties. Although 

zone I had the highest sand content its total nitrogen was higher than that of zone H. This shows 

that low values of N cannot always be attributed to high sand content as reported by (Ge et al., 

2013). Bray P was the only soil chemical property that had a significant influence on rice yield. 

Available P is the most limiting nutrient in the lowland soils of Ghana, but under hydromorphic 

conditions P utilization and availability is enhanced (Buri et al., 2012). Similarly, Cao et al. (2004), 

reported an increase in available P in paddy rice fields. 

Although not statistically significant, Non-UDP fields had higher values for all chemical properties 

of the soil but had the lowest yield. This could be that, the broadcast of fertilizer (Non-UDP 

practice) does not allow the crop to make good use of N, as some are readily dissolved and leached 

beyond plant roots whiles others are lost through volatilization (Urea fertilizer) unlike the UDP 

technology in which nutrients takes time to dissolve (Poggi-Varaldo and Estrada-Vazquez, 1997). 

In terms of crop health zones, there was a general decline in most chemical properties (OM, pH, 

CEC, K, Mg and Ca) as crop health declined, and this is reflected in grain yield. This observed 

relationship reflects the importance of soil nutrients to crop health. 

 

5.2 Best date image selection for the study 

Vegetative indices peaked on May 16th (mid-season) indicating crops attained maximum greenery 

on this date. The indices obtained on this date also correlated with yield and showed the potential 

of mid-season VIs to predict yield with reasonable precision. The importance of mid-season 

vegetative index in predicting grain yield has been underscored by other studies. Panda et al. 
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(2010), stated that mid cropping season of corn best correlated with grain yield. Similarly, Ali et 

al. (2019), also stated that, the peak greenness stage has the best correlation coefficient for yield 

prediction models. Similarly, studies which used mid-season crop information for N management,  

(Cammarano et al., 2014), water management, weed and other problems (Mckinnon, 2016), was 

also used to predict end of season grain yield.  

 

5.3 Comparative assessment of crop health zones under plot scale assessment 

There was significant difference between high and low crop health status which reflected in the 

average yield at the end of the study in both UDP and Non-UDP fields. This means that mid-season 

crop health status can be used to predict end of season crop yield. Yields in medium and high 

health areas were not significantly different from each other across all zones but both were 

significantly different from the low health areas as identified using NDVI. High mid-season NDVI 

values imply healthier denser vegetation whiles low values indicate areas with less vigor. These 

findings are similar to the findings of Brummel (2019), who also established a relationship between 

mid-season health of maize and grain yield. 

 

5.4 Yield comparison between UDP and NON-UDP fields under plot scale assessment 

The difference in yield between UDP and Non-UDP of 0.62 MT/ha was statistically significant 

which shows the UDP technology is better for maximum rice growth yields. The difference in yield 

can be attributed to the fact that the UDP technology allows N to be released slowly into the soil 

for plant uptake unlike the Non-UDP technology where N could be readily dissolved for plant use. 

The rate of leaching is low under the UDP technology, with its slow release of nutrients and thus 

ensuring the continuous supply of N to plants which increases N-use efficiency (Cao et al., 1984). 
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This corroborates previous findings that UDP technology significantly increases rice yields over 

other N management practices used in flooded rice production systems (Savant and Stangel, 1990). 

Furthermore, (Mazid et al., 2016) also recorded significant increase (22 %) in yield with deep 

placement of urea briquettes compared to prilled urea in their research to prove that fertilizer deep 

placement increases rice production in southern Bangladesh. Increase in yield with UDP have also 

been documented by several researchers (Alam et al., 2013; Bandaogo et al., 2015; Gregory et al., 

2010; Mohanty et al., 1999). 

 

5.5 In-field midseason geospatial spectral variability and end of season grain yield 

Remote sensing has been used to predict crop yields mainly based on the relationship between 

yield and vegetation indices (Wójtowicz et al., 2016). Even the relation between yield and VIs are 

affected by spatial and temporal constraints, as reported by many researchers (Schwalbert et al., 

2018) but it could be used for identifying management zones (Blackmore (2003); Patil et al., 2014), 

evaluating within-field variability and subsequently, the need for precision agriculture practices. 

As highlighted by Yang et al. (2012), utilization of in-season remote sensing imagery has a 

tremendous potential to produce an “on-the-go” impact on the farming operation. In this study, 

OSAVI showed the highest correlation with yield which is in contrast with the findings of Rey et 

al. (2013), who recorded a correlation coefficient of 0.50 between NDVI and yield and 0.44 for 

OSAVI, indicating that NDVI is the best vegetation index to use for yield forecasting. 

Additionally, the results from this study is in contrast to the finding of Kayad et al. (2019), who 

reported the GNDVI as the most correlated VI with corn grain yield at the field scale. The OSAVI 

performed better because it has a soil correction factor taking into account bare land and water 

bodies whiles the other vegetation indices do not. Also, NDVI has saturation problem (Gao et al., 
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2000) whiles OSAVI does not. This is mostly because the amount of red-light absorption by leaves 

reaches a peak when canopy cover is 100% (Tucker, 1977) with NIR reflectance increasing since 

addition of leaf number results in multiple scattering. This imbalance results in a slight change in 

the NDVI ratio which then correlates poorly with biomass. 

5.6 Effects of transplanting date on yield 

The results showed the decrease in yield as transplanting of seedlings delayed among both UDP 

and Non-UDP farmers. Several investigations have been done on the importance of transplanting 

date in rice growth and yield (Islam et al., 2015; Mahmood et al., 1995). Decrease in yield with 

delayed transplanting date could be that seedlings which stay longer in nursery beds tend to have 

their primary tillers degenerated which lead to reduced growth and tiller production (Mobasser et 

al., 2007). Aghamolki et al. (2015), reported in his research that rice crop transplanted on the 21st 

of May recorded higher number of effective tillers and grain yield as compared to those 

transplanted on the 10th of June. Islam et al. (2015), also recorded highest grain yield in seedlings 

transplanted on the 20th of January followed by those transplanted on the 1st of February and lastly 

20th February.  This might be because seedlings transplanted earlier have full time to reach maturity 

under favorable weather conditions (Chaudhary et al., 2011) whiles the delayed transplanted 

seedlings may have been affected by harsh temperatures during the growing period (Mahajan et 

al., 2009). This also follows the findings of Mahmood et al. (1995), who reported a gradual 

decrease in plant height, flag leaf area, days to maturity, number of filled grains per panicle, weight 

of 1000 paddy and yield of paddy per hill with delayed transplantation date. Vishwakarma et al. 

(2016), recorded a reduction of grain yield by 7.82% in hybrid rice planted on 7th July as compared 

to those transplanted on 27th June. This show how essential the date of seedling transplant is crucial 

to rice growth and yield. 
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CHAPTER SIX:  

6.0 CONCLUSION AND RECOMMENDATION 

6.1 Conclusion 

Results from this study indicate the following findings: 

1 The UAS technology using the eBee platform proved to be a useful tool in capturing 

multispectral images used in producing vegetative indices that correlate end of season crop 

yields. 

2 Rice crop health values were not different in high and medium zones however, both zones 

significantly out yielded the low health zones under both non-UDP and UDP N-

management systems. 

3 Yield assessment on the spatial scale also confirmed the superiority of UDP technology 

over non-UDP in enhancing rice productivity as observed using plot scale analysis. 

4 The study also showed that OSAVI is the best predictive spectral index to use in estimating 

end of season rice grain yields as a function of N management. 

5 The Jenks natural breaks algorithm proved a useful tool to be used as a standard method to 

divide farmer’s field into homogenous classes using ArcGIS. 

6 In terms of in-field spatial variation, yield in fields under the non-UDP N-management 

system showed greater variations compared to UDP system. 

7 The UDP technology proved to be the best N-management system under this study. 
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6.2 Recommendation 

The study recommends that, the OSAVI vegetation index should be frequently used as it 

proved to be a better vegetation index than the most commonly used vegetation index (NDVI). 

The use of the urea deep placement technology should also be encouraged in order to achieve 

higher rice yields. 

Also, the local and national administrations should explore the use of the UAS technology as 

a decision support tool for early detection and management of problems associated with crop 

production. 
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APPENDIX 

Appendix 1: Analysis of variance of rice grain yield estimated on plot scale 

 

 

 

 

 

 

Appendix 2: Analysis of Variance of rice grin yield from spatial based estimation 

Source DF SS MS F P 

N-Management 1 5.9483 5.94826 18.31 0.0001 

Zone 2 7.3112 3.65562 11.25 0.0001 

N-Mgt * Zone 2 0.3214 0.16069 0.49 0.6117 

Error 76 24.6861 0.32482   

Total 81     

 

 

 

 

 

 

 

Source DF SS MS F P 

Zone 2 5.74 2.872 1.22 0.298 

Health 2 98.974 49.487 21.03 0.000 

Treatment 1 10.16 10.165 4.32 0.039 

Zone*Treatment 2 2.00 1.003 0.43 0.654 

Error 132 310.67 2.353   

Total 139     
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Field 

Number 

Estimated grain yield 

from classified OSAVI 

imagery (kg) 

Total Farm 

Size (ha) 

Rice grain 

Yield 

(kg/ha) 

Estimated grain yield 

from classified 

OSAVI imagery (kg) 

Total Farm Size 

(ha) 

Rice grain 

Yield 

(kg/ha) 

 Zone J: Non UDP   Zone J: UDP  

 

1 

 

6.68 0.93 7.19 8.01 1 8.01 

2 7.34 0.98 7.51 8.99 1.26 7.13 

3 9.76 1.41 6.92 6.51 0.84 7.75 

4 4.86 0.69 7.05 6.48 0.93 6.97 

5 1.51 0.26 5.79 4.77 0.6 7.96 

6 6.76 0.95 7.12 7.13 0.92 7.75 

7 3.29 0.53 6.21 12.00 1.61 7.45 

8 2.62 0.40 6.55 5.23 0.68 7.69 

9 1.51 0.23 6.55 0.91 0.13 7.02 

10 1.64 0.26 6.31 0.49 0.07 6.94 

11 1.59 0.27 5.88 2.03 0.27 7.53 

12 2.67 0.40 6.70 9.33 1.31 7.12 

13 2.40 0.34 7.01 8.78 6.71 6.71 

14 2.35 0.36 6.51 6.32 7.21 7.21 

15 2.37 0.34 6.97 1.58 6.58 6.58 

Appendix 3: Estimated rice grain yields based on Jenks classification of OSAVI imagery and extrapolation of yields per 

unit hectare of the fields: Zone J. 
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Appendix 3 (continue): Estimated rice grain yields based on Jenks classification of OSAVI imagery and extrapolation of yields 

per unit hectare of the fields: Zone J. 

Field 

Number 

Estimated grain yield 

from classified OSAVI 

imagery (kg) 

Total Farm Size 

(ha) 

Rice grain Yield 

(kg/ha) 

Estimated grain yield from 

classified OSAVI imagery 

(kg) 

Total Farm 

Size (ha) 

Rice grain 

Yield 

(kg/ha) 

 Zone J: Non UDP   Zone J: UDP  

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

4.98 

2.22 

7.11 

2.71 

6.64 

7.10 

3.06 

3.07 

 

 

 

 

 

 

0.97 

0.35 

1.17 

0.51 

0.98 

1.28 

0.48 

0.48 

 

 

 

 

 

 

5.72 

6.36 

6.07 

5.30 

6.78 

5.55 

7.51 

6.40 

 

 

 

 

 

 

3.45 

3.24 

18.64 

6.40 

8.34 

3.81 

10.40 

11.63 

5.14 

6.75 

6.22 

5.58 

4.20 

6.16 

0.6 

0.47 

2.7 

0.9 

1.09 

0.51 

1.44 

1.93 

0.69 

0.93 

0.95 

0.72 

0.56 

0.83 

5.75 

6.89 

6.90 

7.07 

7.65 

7.47 

7.22 

6.02 

7.46 

7.26 

6.55 

7.75 

7.18 

7.42 

Mean 4.10 0.63 6.52 6.50 1.53 7.08 
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Appendix 4: Estimated rice grain yields in zone H based on Jenks classification of OSAVI imagery 

 

Field 

Number 

Estimated grain yield 

from classified OSAVI 

imagery (kg) 

Farm Size (ha) Rice grain yield 

of field 

(kg/ha) 

Estimated grain yield 

from classified 

OSAVI imagery (kg) 

Farm Size 

(ha) 

Rice grain 

Yield 

(kg/ha) 

Zone H: Non-UDP    Zone H: UDP 

1 5.66 1.02 5.55 6.13 0.92 6.66 

2 1.36 0.21 6.48 1.80 0.26 6.91 

3 2.22 0.37 6.01 1.14 0.18 6.35 

4 2.82 0.50 5.65 1.09 0.18 6.08 

5 2.19 0.36 6.09 3.39 0.53 6.40 

6 1.22 0.20 6.09 1.57 0.23 6.82 

7 1.30 0.22 5.91 2.30 0.32 7.20 

8 2.54 0.43 5.90    

9 1.25 0.20 6.27    

10 2.54 0.43 5.90    

11 0.87 0.15 5.78    

12 1.20 0.21 5.72    

Mean 2.1 0.36 5.95 2.49 0.37 6.63 
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Appendix 5: Estimated rice grain yields based on Jenks classification of OSAVI imagery and extrapolation of yields per unit 

hectare of the fields: Zone I 

Field 

Number 

Estimated 

grain yield 

from classified 

OSAVI 

imagery (kg) 

 

Farm size (ha) Rice grain Yield 

(kg/ha) 

Estimated 

grain yield 

from classified 

OSAVI 

imagery (kg) 

Farm size (ha) Rice grain 

Yield 

(kg/ha) 

 Zone I: Non UDP   Zone I: UDP  

1 3.75 0.76 4.94 3.07 0.51 6.01 

2 2.46 0.44 5.58 7.80 1.16 6.72 

3 2.21 0.38 5.82 6.65 1.00 6.65 

4 2.35 0.37 6.35 3.18 0.47 6.77 

5 3.18 0.53 6.35 1.53 0.20 7.28 

6 0.82 0.15 5.45 1.70 0.30 5.68 

7    2.09 0.43 4.85 

8    1.30 0.23 5.63 

Mean 0.433 2.46 5.75 0.54 3.42 6.20 

 

 


