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Abstract
The accident risks of drivers and the factors affecting the risks were analyzed using survival
models. The data consisted detailed records of fatal accidents in the years 2007 - 20009,
generated by the Motor Traffic and Transport Unit (MTTU) of the Ghana Police Service,
Northern region. The data on fatal accidents contained 398 drivers. The objectives of the
study included both analysis and explanation of driver accident risk factors and investigation
of how survival modeling method can be used in traffic accident analysis. The research
questions that were addressed include: can driver involvement in accidents and exposure be
examined with survival models? Are age and sex major risk factors? Do vehicle
characteristics contribute to accident risk? Does the use of unworn out tyres reduce accident
risks? The analysis of the data using the SAS package confirmed that the most significant
variables to the risks of accident were driver characteristics (age, driver behaviour,
kilometerage driven, speed and use of safety belt), drivers’ state (driving under influence of
alcohol) and vehicle characteristics (vehicle age and weight, and condition of tyres). Young
and inexperienced on one hand, or old and experience drivers on the other hand, had the
highest fatal accident risks. Drivers using worn out tyres had a somewhat greater accident risk
than drivers using unworn out tyres, but the difference was not statistically significant.
Survival modeling was used to analyze the data, and it was concluded that survival modeling

promises to be a useful tool for road safety analysis.
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Summary

The study examined the effects of human factors, kilometerage driven, vehicle
characteristics and roadway factors on amount of accidents and risks of accident associated
with driving. The study was based on accident data from the MTTU regional office of
Ghana Police Service. This data included information on 398 drivers who had been involved

in fatal accidents during the period under consideration.

Drivers’ accident risks and their dependence on various factors were examined using
survival accident models. Survival modeling is commonly applied in medicine to the study
of serious diseases and treatment methods. The present study tries to assess the development

needs of survival models in the area of traffic accident analysis.

Several factors have bearing on driver’s accident risks. This can be explained by driver’s age
and sex, annual kilometerage driven, age of vehicle, driving under influence of alcohol, the
use of safety belt, speed at the site of the accident, the weight of the vehicle and the tyre
treated depth.

More specifically, the analysis confirmed the following answers to the main questions of the
study;

e The kilometerage driven was negatively related to hazard of accident. The more
kilometers are driven, the lower the probability of being involved in an accident. This
particular outcome needs further probing.

e Driver age proved to be a statistically significant accident risk factor, however there
was no clear sex-related differences between accident risks of male and female
drivers.

e Some vehicles characteristics can be separated into own individual risk factors but
they are strongly interrelated to many other risk factors.

e Drivers of worn out tyres had a somewhat larger accident risk than the users of

unworn out tyres, but the obtained differences were not statistically significant.
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The effects of driver’s motives and attitudes were not directly modeled in this study, but
some of their influence can be assumed to underlay the effects of driver age, sex or
experience, as well as determine their choosing speed, drive under influence of alcohol, or

not use of safety belt.

The survival modeling analysis included model formulation, parameter estimation and
validation. The main survival model type used was Cox Proportional model. It however
revealed that some explanatory power is lost when survival models are based on random time
period. The results proved that better exposure data e.g. time spent in traffic used in the

analysis could improve the models.

Generally, the application of survival models to the accident data appears to be a promising

approach but still needs further development.
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CHAPTER 1
INTRODUCTION

1.1 Background of the study

Drivers are faced with risky situations and potential accidents every time they are on the road.
Counter measures are actions taken by society to prevent accidents or moderate their
consequences. Such measures are based on ideas regarding why and how dangerous situations

and accidents evolve.

The occurrence of traffic accidents can be explained only to a limited extent by a deterministic
causal relationship, in which the occurrence of certain conditions will always lead to accident
consequences. Due to this, the occurrence of accidents is often explained with a probabilistic
causal relationship, in which the occurrence of the cause will increase the probability of the

occurrence of the effect (Elvik and Vaa 1990).

This research project will focus on the person-vehicle-traffic environment system. According to
(Hakkinen 1978), the successful functioning of the system requires that its parts- the person, the
vehicle and the traffic environment, as well as the “functions” which connect them- should
remain within certain limits of variation. According to the theory, accidents happen when road
users cannot adapt their actions to the varying demands of the traffic environment.
Consequently, the risk of accident can be lowered by improving road users’ performance in
traffic or by reducing system demands on road users (Elvik 1996). Put another way, humans
inevitably make errors but by altering the circumstances in which they operate one can minimize

the frequency of errors or moderate their consequences (Elvik and Vaa 1990).
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Road traffic accidents, for the most part, have been examined from the standpoint of either
traffic environment, weather conditions or the behavior of individual drivers. Such studies
have not sufficiently taken into consideration the impact of possible differences between driver
groups or interactions between factors. This present study will examine which characteristics
are connected with drivers and vehicles, together with the prevalent road way conditions,

influence the occurrence of road traffic accidents.

1.2 Traffic accident risk factors

Factors may be considered accident causes if they either increase or decrease the probability of
accident occurrence. Therefore, in order to prevent accident, one must know which of the
numerous traffic risk factors have a real strong influence on the number and probability of
accidents. The risk factors that will be considered in this study will be human factors and
mobility, vehicle factors and traffic environment factors. In the following, an overview of the
risk characteristics of each sub-group of factors is provided. However, literature review will
describe in more detail previous findings about the risks of several of the factors mentioned

here.

1.3 Human factors

According to studies in the 1970°s and 1980°s, factors associated with the road users were the
direct cause of about 95% of accidents investigated. Factors associated with the traffic
environment were the direct cause of 28 - 34%, and factors associated with the vehicle directly
caused only 8-12% of accidents (Elvik 1996). The factors are overlapping which explains that
the total exceeds 100%. All of the studies also acknowledged the contribution of background
or indirect factors to the causation of accidents.

Regardless of which evaluation model was used to assess the causes of accidents, human
factors have been given a prominent position in it. Human factors relevant to driving behavior
can be classified in different ways. One classification, suggested by (Elvik and Vaa 1990),

divides the factors into four groups (Table 1.1).
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Table 1.1: Human psychological and physiological factors that have been studied as
possible accident risk factors (Elvik and Van 1990)

Permanent or slowly | Permanent or slowly | Temporary Temporary

changing physiological | changing physiological factors | psychological

factors psychological factors factors

Age Intelligence Fatigue

Sex Personality factors Stress Emotional state

Vision Attitudes Alcohol Breakdown in
concentration

Hearing View of own skills Drugs

Reaction time Recognition of | Acute illness

dangerous situations
Physical disorders and | Mental illness The menstrual cycle

deficiencies

A heart condition

Diabetes

Epilepsy

Pregnancy

Elvik and Vaa (1990) further reports on the relative impact of the above human factors on

accident that the impact of driver’s age, vision, reaction time, knowledge of traffic regulations,

actual skills, fatigue and use of alcohol on traffic accidents have been proven by research.

However, the impacts of driver’s sex, personality, and use of drugs are less conclusive.

1.3.1 Traffic and road way factors

Traffic environment can support and promote safe behavior, but it can also encourage or lead

to risky behavior, the possible accident risk and exposure factors associated with traffic and its

environment are:

e Amount of traffic

e Characteristics of the traffic
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e Road networks and land use
e Roadway conditions and
e Management and control of traffic.

The amount of traffic relates to the amount of mobility and therefore, represents exposure to
accidents. Accident risks are dependent on the amount of traffic. Various studies (e.g.
Kulmala 1995) have ascertained that accident type distribution depends on the amount of
traffic. The amount of traffic affects other traffic characteristics such as speed, headway
distribution and the amount of overtaking, all of which can influence accident risks.

Roadway networks are made up of various types of junctions and sections, which have
different risks associated with them. Traffic control and management are needed to make
sure that traffic is as fluent and safe as possible on the network. Control devices and
management procedures regulate drivers’ mobility and behaviour in traffic. Therefore, they

directly influence exposure as well as accident risks.

1.3.2 Vehicle factors

Case studies of traffic accidents have found that in a small proportion of vehicle factors (such
as mechanical failures) were direct and primary causes of the accidents. Sudden failures
associated with vehicles were just 1 % of the “key events” in accidents investigated by
Finnish teams. This is compared to 70% to 80% of the events attributed to drivers' errors in
vehicle control and operation, anticipation and judgment (Koomstra, 1992).

The role of vehicle factors appears to be larger in fatal accidents. In fatal collisions
investigated by the teams, 22- 26% of the “key events” evaluated were associated with the
vehicle, 15-28% with the traffic environment, 43-56% with human factors and about 1% with
traffic regulations. The most cited vehicle factors were unsuitable or worn out tyres (20 -
42%), misuse or malfunction of safety belts (11 - 27%), poor crashworthiness (27-43%), and

defective steering (Koomstra, 1992).
1.3.3 Environmental conditions factors

Up to 20% of all the risks events analysed by accident teams in Finland (Koomstra, 1992)
were related to characteristics of the traffic environment - mainly road surface, weather and
lighting conditions.

Accident risk is usually 1 - 2 times as great in the dark as it is in the light (Kulmala and

Peltola
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1985). Darkness is often associated with weather and road surface conditions and with the

amount of traffic as these factors may vary with time of day. The accident rate on wet roads

MW ER ST T % FOarE T2 S EIT . 0P TlETa T S T LTI T E <

is usually higher than on dry roads.

1.4 Road Traffic Accident Situation in Ghana

Road safety has become a major national issue receiving front-page coverage in the press
and National TV news on a regular basis. Road accidents are common in this country to
the extent that in 1995, Ghana ranked 2nd to Mexico in terms of road fatalities
worldwide. In 1997, it ranked 2nd to Nigeria in West Africa as far as road accidents are
concerned.

Ghana has lost 602 lives through road accidents in the first quarter of 2009, almost
double the figure recorded within the same period in 2008. The National Road Safety
Commission (NRSC) said the first quarter of 2008 saw 339 deaths and over 60 percent of

the fatalities were caused by speeding.

According to the National Road Safety Commission annual report for 2005, road crashes
kill an average of four persons daily in Ghana. The regions Ashanti, Eastern, Gt. Accra,
Central and Brong Ahafo Regions accounted for more than 70% of the total number of
crash fatalities. 70% of crashes occur on flat and straight roads. Speeding is a major
cause of crashes, accounting for over 50% of reported crashes. Road users between 16-45
years are the most vulnerable group and account for 58% of total road crash fatalities
from 2002-2005. 70% of persons killed in road crashes are males. The age groups from
0-5, 46-65 and over 65 years also accounted for a 20.8%, 16.7% and 4.6% respectively of
the total fatalities during the same period. 18% of the accidents occur between 6 and
8pm; Saturday is the most accident prone day; April is the most accident-prone month.
The statistics are alarming despite the interventions made by governments. What we
experience is the equivalent of the population of an average-sized town in Ghana being
killed every year in road accidents. Despite occasional outrage, little seems to be done to
ensure safety on Ghanaian roads. The statistics should even be viewed with caution as the
quality of the national data is affected by under-reporting.

Every day we lose our friends, colleagues and relatives by what we call road accidents

even though
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most of these so-called accidents are preventable and cannot be called accidents in the strictest
sense of the word. “Accident” is defined as a happening that is not expected, foreseen or
intended. Our roads have become slaughterhouses where we are butchered in great numbers.
We all know that most of these accidents can be prevented with very little effort, discipline and

respect for other road users.

Ghana is one of the countries where road signs and speed limits are not respected at all. An in-
dependent urban speed study was conducted by GRSP Ghana in November 2006. The results
indicate that drivers are exceeding posted limits (50kph) by as much as 50kph and that
vulnerable road users are at extreme risk of severe injuries from high urban speeds.

The issue of badly worn tyres and other dangerous tyre products needs to be looked at. We
usually import tyres that have been discarded by users in other countries, in the name of home-
used products. We need a strong system of regulation at our ports to ensure that importation of
used tyres and other categories of used car parts attract taxes that would discourage cheap and
dangerous imports by unscrupulous businessmen.

Sometimes the accidents are caused by a vehicle’s mechanical problems. However, a high
proportion of accidents are directly blamable on human factors. The clearest example includes
drunken drivers, intoxication with drugs and alcohol, speeding and fatigue. Drink driving cases
usually increase during festive times, Easter and Christmas.

Many roads in Ghana have become death traps with potholes dotted along the length and
breadth of the roads. Broken-down vehicles could be seen blocking roads. Road building
equipment are left on roads without warning signs. Road signs, on the very few occasions they
are present, are often unhelpful if not deceptive. Some of the new roads are very poorly built

and soon lapse into disrepair, posing danger to road users.

There are too many unlicensed/unqualified drivers with little or no knowledge of road rules in
Ghana. Some people even get their licenses without having even taken that flawed driving test.
This means the wrong people are acquiring licenses for which they are not qualified to hold.
There are a number of drivers on the roads with very poor eyesight or an insufficient field of

vision e.g. poor vision for night driving, and there is no mechanism to check this.



MW ER ST T % FOarE T2 S EIT . 0P TlETa T S T LTI T E <

www.udsspace.uds.edu.gh

ineffective vehicle examination and enforcement of road rules. The attitude of traffic
policemen has not changed. Road offenders go free by a simple payment of bribes to the
policeman. Many drivers have eye problems but are holding driving licenses. They can
neither see what is happening around them nor drive in darkness. In the fear of losing their
jobs they continue to drive even though they have very poor eye-sights. This problem has

also contributed to many accidents on our roads.

The DVLA or GHA or Ministry of Transport should sponsor more research into the causes of
road accidents. The aim of this study therefore is to further describe the determinants of
accident risks of vehicle drivers in the country using survival analysis. The findings can serve
as a basis for health care professionals and policy makers to create preventive measures for

traffic accidents.

To solve this problem of extra-Poisson variation, several authors such as Miaou (1994)
developed Bernardo and Ivan (1997) studied the prediction of the number of crashes versus
the crash rate using Poisson regression. They suggested that the Poisson distribution allows
for the relationship between exposure and crashes to be more accurately modeled as opposed
to the linear relationship assumed in crash rate prediction.

Predictive models for accidents have been researched intensively in the world. For example,
Oppe (1989) used multiple linear regression models. In these models the dependent variable
(either number of accidents or accident rate) is a function of a series of independent variables
such as speed or traffic volume. Accident occurrence in these models is assumed to be
normally distributed. These models generally lack the distributional property that is necessary
to describe adequately the random and discrete vehicle accident events on the road and they
are inappropriate for making probabilistic statements about accident occurrence.

Saccomanno and Buyco (1988) and Blower et al (1993) used a Poisson loglinear model to
explain variations in accident rates. This Poisson regression model is especially suitable for
handling data with large numbers of zero counts. However, this model could be inappropriate
for road accident counts, since it fails to account for extra-Poisson variation (the value of the

variation could exceed the value of the mean) in the observed accidents counts.



MW ER ST T % FOarE T2 S EIT . 0P TlETa T S T LTI T E <

www.udsspace.uds.edu.gh

two types of negative binomial models, one using a maximum likelihood method and one
using a method of moments. The maximum likelihood model was found to be more reliable
than the Poisson regression model in predicting accidents where over dispersion is present. In
1949, R. J. Smeed also developed a regression model (log-linear model) and he found an in-
verse (or negative) relationship between the traffic risk (fatality per motor vehicle) and the
level of motorisation (number of vehicles per inhabitant). This regression represented the best
estimates of the mean values of traffic risk for each given value of motorisation (what is called
least square). This shows that with annually increasing traffic volume, fatalities per vehicle
decrease. Smeed concluded that fatalities (F) in any country in a given year are related to the

number of registered vehicles (V) and population (P) of that country by the following equation.

V)7 (1.2)

Where

F = number of fatalities in road accidents in the country
V = number of vehicles in the country

P = population

0=0.003, p=2/3

This formula became popular and has been used in many studies. It is often called as Smeed’s
formula. This nonlinear relationship can be translated to a linear one by taking the logarithms
of the two sides: logY = loga — BlogX, where Y is F/V and X is V/P.

The number of fatalities can be derived Smeed’s formula as: F = ¢.V*P, where c, o, B are
parameters and they are estimated from data by using the least square method.

Some authors followed the equation of estimating the regression parameter (a, ) of the data
by calculating the country road safety performance in comparison to other countries; Jacobs
and Hutchinson (1973). They found that Smeed’s formula can give a close estimation of the
actual data and it can be applied to different sample sizes of countries and years with the use of
different values of alpha and . Some authors have tried to develop Smeed’s formula and its
accuracy further by including several socio-economic variables in the model. Fieldwick (1987)

has included speed
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limits in the same model. The number of registered vehicles has been replaced by the total
vehicle kilometre driven in many studies (e.g. Silvak, 1983). This measure (vehicle kilometre

driven) was not available at the time of Smeed’s study.

At the same time, many studies have criticised Smeed’s model because it only concentrates on
the motorisation level of country and ignores the impact of other variables, (e.g. Broughton,
1988), where according to Smeed’s model, population and vehicles are the only country
values, road fatalities can simply be predicted from population and vehicle numbers in any
country and any year. Adams, J. (1987) criticised the model’s accuracy because there would
always be a decline in traffic risk for any increase in the number of vehicles, but generally in
non-linear way. These models are not able to incorporate the effect of risk factors on accident
involvement.

Oppe (1989) assumes that fatality rates follow a negative exponential learning function in
relation to the number of vehicle kilometers and time. This method has been found to be most
effective when the components describing the time series behave slowly over time as follows:

In(F) = In(Ry = at + B (1.2)
Vi

or equivalently Ri = ¢*#” Where the In function is the natural logarithm, F: is the number of
fatalities for some country in a year t,V: the number of vehicle kilometers traveled in that year.
Rt is Frand a, § are constants. This means that the logarithm of the fatality rate decreases (sign
of improvement) if a: is negative proportional with time. This model is called the negative
exponential learning model, where? is supposed to be less than zero. Both o and f are the
parameters to fit. This formula shows that countries with a large? should have a fast growth in
traffic. The traffic volume will increase quickly first and at the end it will reach its saturation
level, which differs from country to country.

Adams (1987) has stated a similar relation between fatalities (F) and vehicle kilometers (V),

which was present: Log(F/V) = a + f * y, where y = year - 1985
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1.6 Problem Statement/Motivation

When | started reviewing what people have done on accident prediction models, | realized
that the on data on individual behavior. | found some articles on accident prediction models
but all of them assume the occurrence of accidents to follow a distribution and therefore, use
the classical approach in their analysis and modeling. This study intends to apply survival
theory models, since this approach has not been widely adopted by other researchers in this
field. These models will be used to explain the impact of different factors on driver's
conditional accident risk (hazard function). The conditional accident risk refers to the
probability of a vehicle being involved in an accident at time t given that the vehicle had
survived until that time. The essence is to see how survival modeling can be developed and
used in explaining also the normal accident process based on accident data. Therefore, the
study seeks to examine driver’s accident risks and their dependence on various factors using
statistical accident (survival) models. Survival modeling is commonly applied in medicine to
the study of serious diseases and treatment methods. This study will assess the development

needs of survival models in the area of traffic accident analysis.

1.7 Research Objectives
The objectives of the research will be to investigate the following issues;
e Which factors influence accident risks of drivers.
e How do principles of survival modeling apply to investigating accidents and accident
risks.
e What are the data requirements in using survival models.
e How can accident risks be evaluated by survival models when only basic information

on the parties involved in an accident is available.

1.8 Research Questions

The main problems that are formulated according to the objectives of this research
emphasized the accident risk factors. They are based on previous research results that traffic
accident risks vary with driver characteristics, vehicle attributes, and the time and place of
driving.

The main questions of this study are;

10
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1. Can driver involvement in road traffic accident be examined with survival models on the
basis of exposure over time?

2. Do age and sex major factors?

3. Do vehicle characteristics contribute to accident risk beyond their interaction with
exposure and speed?

4. Can driver involvement in accident be examined with survival models?

5. Does the use of unworn out tyres reduce accident risks?

The research objectives are not formulated as main problems. They will be discussed in the

context of data analysis and interpretation.

11
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CHAPTER 2
DETAILED REVIEW OF PREVIOUS RESEARCH RESULTS

The purpose of this literature review is to give a literature survey of the most important risk
factors and concepts in road accidents. The literature for this study will be focused on the
principal risk factors that influence traffic accidents globally, although there are other
possible risk factors that are not included in this literature review, variables that were

measured in this study have been specifically focused upon.

2.1 Concepts of accident risk

Many factors affect driver accident involvement. Nevertheless, at any given time, driver
accident risk is affected by personal risk factors (e.g., hours of sleep the previous night),
vehicle risk factors (e.g., brake adjustment), environmental factors (e.g., weather and
roadway features), and, perhaps most important, risks created by other drivers and traffic.
Driver errors can be violations of rules, mistakes of judgment, inattention errors, or
inexperience errors. Common driver errors resulting in accidents include recognition errors
(failure to perceive a crash threat) and decision errors (risky driving behavior such as
tailgating), or poor decision-making in dynamic traffic situations (such as trying to cross a

stream of traffic). (Michael S. et al, 2004).

Another common classification for driver errors resulting in accident is as follows (Dewer
and Olson 2002): Rule-based (failure to obey rules or regulations), Knowledge-based (failure
to understand required safe behavior), Skill-based (lack of proper skills to perform the task).
Drivers can also make mistakes without obvious misbehaviors, such as failure to see another
vehicle or misjudgment of a gap in the traffic stream. Red-light running may be regarded as a
rule based misbehavior if it is intentional, a skill-based mistake if it is not. (Michael S. et al,

2004).

12
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Reason (1990) proposed three error categories: violations (deliberate deviation), mistakes
(intended action with unintended consequences), and lapses/slips (execution of unintended
action). Rimmo (2002) has expanded this by splitting the lapses/slips category into
inattention errors (unintended action resulting from recognition failure) and inexperience
errors (unintended action resulting from lack of knowledge or skill). Rimmo’s classification,

with examples, follows:

Violations (Deciding to drive when known to be very fatigued, Deliberately exceeding speed
limits, Accelerating at green-to-yellow signal change.

Mistakes (Misjudging gap when crossing traffic, misjudging speed of oncoming vehicle, and
misjudging stopping distance).

Inattention Errors (Failing to notice red light at intersection, Failing to see that vehicle has

stopped in lane ahead, and Failing to notice sign).

Inexperience Errors (Having to check gear with hand, Driving in too low a gear and

Switching on wrong appliance in truck).

Figure 2.1: Schematic drawing of the four error types contributing to driver risk

Violations

Inattention
Errors

Inexperience
Errors

2.1.1 Risk and Road User Behaviour

Different studies indicate that the human factor (road users) is the major contributory factor
to accidents. At the same, any error in the system and on roads will lead to unsafe road user
behavior:

13
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2.1.1.1 Speed and risk of accident involvement

Speed has been identified as a highly important influencing factor concerning road safety risk
and consequences. An increase in average speed results in a higher risk of involvement in an
accident and greater severity. In many countries, speed contributes to a significant percentage of
all deaths on the roads. Leaf and Preusser (1999), for example, concluded that reducing vehicle
speeds could have a highly significant influence on pedestrian accidents and injuries. Garber and

Gadiraju (1988) determined that accident rates increased with increasing variance of speed.
2.1.1.2 Alcohol and risk of accident involvement

Drivers with high BAC (Blood Alcohol Content) in their blood have more chance of being
killed than those with zero BAC (sober drivers). Hakkert and Braimaister (2002) provided a
review of many studies and reported that the risk in traffic will increase rapidly with BAC. Such
results have given the basis for setting BAC limits in many countries (e.g. 0.8 g/dl).

Evans (1991) has estimated that in 1982 about 53% of traffic accident fatalities in the USA had
alcohol in their blood. This means that the total elimination of alcohol use would have decreased
the amount of fatalities by over 50%.

Elvik and Vaa (1990) state as a summary of many studies that no other single human factor
affects the occurrence of accidents as dramatically as alcohol. The risk of a fatal accident is over
100 times as high for drivers under the influence of alcohol, as it is for sober drivers. Drivers'
accident risk grows exponentially as blood alcohol level increases.

Studies have shown that alcohol can increase the seriousness of injuries in traffic crashes as well
as the chance of being involved in a crash (Segui-Gomez et al., 2007). In 2005, about 39% of all
traffic fatalities and 254,000 injuries were attributed to crashes in the United States in which
alcohol was involved (NHTSA, 2007).

2.1.1.3 Age of drivers and risk of accident involvement

Road accidents are the leading cause of death for young drivers and motorbike riders. The risk
by age group per kilometer traveled and per hour exposed to traffic is higher among young
people (15-24) and old (65+). However the exposure for young is higher than old people. Evans
(1991) reported that young male drivers are overrepresented in accidents in the US. Page (2001)
concluded from a survey in OECD countries that the higher the proportion of young people in

the population,

14
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the higher the number of road accident fatalities.
For the overall driver population, age is one of the strongest personal factors affecting crash in-

volvement (NHTSA, 2000). Teenage drivers, especially males, have crash involvement rates per
mile traveled that are several times higher than those of the adult population. Driver errors seen in

teenage drivers include both risk-taking behaviors and misjudgments (Mayhew and Simpson 2003).

Hanowski et al. (2000) analyzed factors (including both personal driver factors and situational
factors) predicting truck driver involvement in critical incidents (caused by the truck driver). They
evaluated driver age, ambient illumination, prior night’s sleep, current drowsiness rating, physical
work requirements for the day, and several other factors. They found that driver age was the

strongest predictor of critical incident involvement.

In Finland one study showed that there were differences amongst drivers, depending on their age.
Driving for fun or leisure as well as driving during evenings, at night, and with passengers was
more typical for young drivers than for middle-aged drivers. The most typical driving for middle

aged drivers was going to and from work.

Also, a European study (Lynam and Twisk 1995) listed the special factors that may underlie the
association between young age and accidents. They include: psycho-biological immaturity, a lim-
ited recognition of danger, the acceptance of risk, an excessive belief in one's own abilities, lack of

experience, driving culture, and lifestyle induced risky type of exposure such as night driving.
2.1.1.4 Gender of drivers and risk of accident involvement

A study from the United Kingdom reported that male drivers between the ages of 17-20 are in-
volved in over 4 times as many injury crashes as males overall and almost twice as many accidents
as girls their own age (Clarke et al., 2006). In the United States, fatal crashes for young male
drivers between the ages of 15 to 20 years of age increased by 5% between 1995 and 2005, while
15 to 20 year old females involved in a fatal crash decreased by 1% during the same time period
(NHTSA, 2007).

As the number of female drivers and their amount of driving has increased in many western
countries the number of accidents by female drivers has increased (Laapotti and Keskinen, 2003)

even
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among the high risk 18-24 year old group. One study showed that males and females
have approximately the same amount of involvement in injury crashes per million miles
traveled. The number of males involved in fatal crashes per million miles traveled,
however, far outnumbered females (Williams, 2003). Therefore, when taking into
account exposure (miles traveled), young males and females have almost the same
amount of involvement in overall driver crashes with males being more likely to be
involved in serious crashes.

Many studies have concentrated on some of the possible reasons for the differences that
exist among male and female drivers. Meadows and Stradling (1999) concluded that
females are more safety oriented drivers and Wells-Parker et al. (1996) concluded that
women tend to have lower risk profiles. A study from Sweden compared young female
and males learning how to drive and found that females study more theory than males
and that females practice more driving skills in different environments during supervised
training than males (Nyberg and Gregersen, 2007).

In the Singh (2003) study of driver attributes and rear-end crash involvement mentioned
above, both young males and young females 18 to 24 years old were more likely than
older drivers to be involved in rear-end crashes. Comparing genders, young males and
young females had about the same risk of involvement in the struck vehicle role. For the
striking vehicle role, however, young males had about a 50% higher risk of involvement

than did young females.

2.1.1.5 Use of seat belts
Road accident research has found that seat belts reduce the fatal injuries significantly and
it can reduce the risk of fatal injury to front-seat passengers. The use of seatbelts varies
from country to country. In high-income countries, the usage rate tends to be high. In
Sweden for instance, seatbelt usage exceeds 90% (K.oomstra et al., 2002). The use of
seat belts reduces the probability of being killed by 40-50% for drivers and front-seat
passengers and by 25% for passengers in the back seats as shown in (Elvik and Vaa,
2004). Regarding the use of safety seats for children and infants studies (WHO, 2004)
have shown that reduce infant deaths in cars by 70% and deaths of small children by
50%. Mandatory seat belt use proves to provide strong protection against fatalities in
accidents in different countries according to various studies.
The effectiveness of seat belts has been established in various studies (e.g. Rivara et al.,
2000). Seat belts are estimated to reduce serious injuries from motor vehicle crashes by
55% and fatalities

16
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by 50% (Forjuoh, 2003). In the United States the use of safety belts has increased by 65%
since the early 1980s (National Highway Traffic Safety Administration, 2004). Various
studies have attributed this large increase in seat belt usage to seat belt enforcement laws,
principally primary enforcement laws that allow for enforcement officers to issue a citation
whenever they observe an unbelted passenger or driver (Eby et al., 2003). Such a large
increase in lower income countries would be very difficult to obtain because of the lack of
resources that lower income countries have. It is believed that over half of vehicles in many
lower income countries do not have functional seat belts and that some vehicles imported
from high income countries lack functional seat belts as well (Forjuoh, 2003). In this
environment, legislation to require the use of seat belts would be ineffective.

However, there is also evidence among the general population of drivers that non-safety belt
use is associated with various risky driver attitudes and behaviors. Lancaster and Ward
(2002) reviewed studies indicating that driver non-safety belt use is associated with speeding,
short headways (tailgating), alcohol use, red light running, more previous traffic violations,
and sensation-seeking personalities. Eby et al. (2003) observed that safety belt use among
drivers using hand-held cell phones was lower in every age group studied than among
comparable non-cell phone users. Thus, non-belt use by a driver should probably be regarded

as a safety “red flag”.

2.1.1.6 Vulnerable Road Users

A vulnerable road user is considered to be anyone using a bicycle or a motorcycle, as well as
all pedestrians. Several studies have shown that these groups tend to be over-represented
among crash victims (Peden et al., 2004) and are also at high risk of disability resulting from
traffic crashes (Mayou and Bryant, 2003). Much of the burden of vulnerable road user traffic
crashes is within the low and middle income countries with pedestrians being the most
frequently injured road users in Latin America and the Caribbean (Hijar et al., 2004).

An example of the types of vulnerable road users that are most affected by traffic crashes
comes from a study in Mexico. This study found that none of the pedestrians injured in the
study had insurance, which typically left payment responsibilities up to the family because
the injured person was most often the bread winner of the family (Hijar et al., 2004). Under
these circumstances, family members of the victim only stop paying for treatments when all

of their assets are gone,

17



MW ER ST T % FOarE T2 S EIT . 0P TlETa T S T LTI T E <

www.udsspace.uds.edu.gh

consequentially leading the entire family into long-term debt. The individual injured could
also lose their job and continually suffer from health problems because of the inability to

continue their treatments (Over et al., 1992).

2.1.1.7 Driver fatigue

Drivers who are sleep deprived have significant deficits in vigilance and other cognitive
abilities related to driving. McCartt et al. (2000) identified factors associated with why long-
distance truck drivers reported falling asleep at the wheel. They found six underlying,
independent factors, including (1) greater daytime sleepiness, (2) more arduous schedules,
with more hours of work and fewer hours’ off-duty, (3) older, more experienced drivers, (4)
shorter, poorer sleep on the road, (5) symptoms of sleep disorder, and (6) greater tendency to
nighttime drowsy driving.

The authors also suggest that if these six factors were to be ranked, a tendency toward
daytime sleepiness was most highly predictive of falling asleep at the wheel, followed by an
arduous work schedule and older, long-time drivers. Michael S. et al, (2004) found similar
findings in an analysis they conducted on 567 professional drivers that included five different
commercial driver types (long-haul drivers, short-haul drivers, bus drivers, drivers
transporting wood, and drivers transporting dangerous goods). They found that regardless of
the commercial driver type, sleepiness-related problems was strongly related to prolonged
driving, sleep deficit, and driver’s health status. Sagberg (1999) conducted a study of crashes
caused by drivers falling asleep. The study showed that fatigue was a strong contributing
factor in nighttime accidents, run-off-road accidents, and accidents after driving more than
150 km on one trip. Although his study was conducted on non-commercial drivers, many
findings were consistent with McCartt et al.’s study. In addition, Sagberg found that more
males than females were involved in sleep-related accidents. Sagberg also suggests that
drivers’ lack of awareness of important precursors of falling asleep in addition to the

reluctance to discontinue driving despite feeling tired contributed to sleep-related accidents.
2.1.2 Risk and Road Conditions

Motorways have the lowest risk on injury accidents compared to other types of roads because
of the separation between vehicle movements according to their speed (no high speed
variance). (Elvik and Vaa, 2004) show that the rate of injury accidents per million vehicle
kilometers of travel on motorways is about 25% of the average for all the public roads. Road
surface conditions, poor road
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surface, defects in road design and maintenance contribute to an increase in the risk of
accidents. Bester (2001) reported that countries with more paved roads will lead to lower

fatality rates.
2.1.3 Risk and vehicle related factors

New cars tend to have more safety and protection features, such as air bags, anti-brake
system (ABS), etc. There is relation between vehicle age and risk of a car crash. One study
(in WHO, 2004) showed that occupants in cars manufactured before 1984 have almost
three times the risk of new cars. Many developed countries improved vehicle crash
worthiness and safety, which means the protection that a vehicle gives its passengers (and
to the Vulnerable Road Users) from a crash. Many countries in the European Union (EU)
as well as USA have set out legislation for safety standards in motor vehicles, for instance
the New Car Assessment Program (NCAP), where vehicle crash performance is evaluated
by rating the vehicles models according to their safety level for occupant protection, child
protection and pedestrian protection. Vehicle defects increase the risk of accident. The size
of vehicle is crucial; the greater the mass of the vehicle (e.g. heavy trucks), the more
protection people have inside the vehicle (their occupants) and the more involved in fatal
accidents to others. It is known that poor vehicle maintenance and technical conditions can
also contribute to accidents. In terms of periodic vehicle inspection, different research
shows different results. (Elvik and Vaa, 2004) concluded in the review of macro-studies
that there is no clear evidence that periodic vehicle inspection has an effect on the number
of accidents, while (Hakim et al. 1991) presented in another review of macro-studies that

the periodic inspection of motor vehicles reduces the number of road fatalities.
2.14 Risk and post-crash injury outcome

Different studies have shown that fatality rates are correlated with the level of medical
facilities available in the country expressed in terms of population per physician and
population per hospital bed, (Jacobs and Fouracre, 1977). A review of a European study,
in (WHO, 2004), showed that about half of deaths from road accidents occurred at the spot
of the accident or on the way to the hospital. Noland (2003) concludes that medical care
has led to reductions in traffic-related fatalities in developed countries over time (1970-
1996).
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2.1.5 Socio-Economic Factors and Risks
There are many socioeconomic factors that contribute to the causes of accidents. Some of

the major factors are the following;

2.1.5.1 Gross National Product (GNP).

It is widely known that the motorisation rate (vehicle per population) increases with income
(GNP per capita). This may affect both exposure and the risk of fatal accidents. Many
studies (e.g. World Bank, 2003) have shown that the fatalities per vehicle appear to decline
rapidly with income. Maybe this reflects the shift from vehicles with high risk (motorbikes,
foot) to safer and protected vehicles (e.g. four-wheelers) or it may show more funds and
expenditure being spent by the country on its road safety measures. There is a negative
relationship between income growth and the number of road accidents in the long term
(Hakim et al. 1991). The increase in income leads to safer vehicles and more investment in
road infrastructure, which leads to fewer road accidents and casualties. However, it should
be clear that the improvement of income could also increase the travel distance (higher

exposure) and more alcohol consumption (higher risk).

2.1.5.2 Unemployment

Few studies have used the unemployment factor as a risk factor for accidents. It appears to
be negatively related to accidents and casualties. Hakim et al. (1991) has shown in the
literature review he made that an increased unemployment rate in country might reflect on
the ability to pay for a single journey and a reduced exposure to the whole journey. Page
(2001) included employment (percentage of population in employment) into his model in
the study conducted for the OECD countries. The higher employment figures showed an
increase in the number of fatalities.

2.1.5.3 Urban population

Urban roads will have more accidents and fewer fatalities or severity per kilometer traveled
than rural roads, because of the density of vehicles and the lower speeds of travel. Hakkert
and Braimaister (2002) have shown in one macro-study that countries with a high level of
urbanisation will have higher population densities and they may experience lower levels of

fatalities and serious injuries.
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Page (2001) has found that the population who live in urban areas have fewer road accident fatal-
ities than other places. Bester (2001) also reported similar results that countries with higher road
densities will have fewer fatality rates. Shorter distances to medical services can explain this.

In 2006, the fatality rate per 100 million vehicle miles traveled was reported as being 2.4 times
higher in rural areas of the United States as compared to urban areas (NHTSA, 2008). Investi-
gations that were carried out in the 1980s in several different states found that rural traffic injury
fatality rates were higher than urban rates. Studies from other countries have documented higher
occurrences of traffic crash fatalities in urban areas as well. A study in Ghana reported that the
majority of traffic fatalities and injuries occurred in rural areas and that the crashes that occurred
on rural roads were generally more severe (Afukaar et al., 2003) and a study in Quebec, Canada
found that severe crashes are more common in rural areas (Thouez et al., 1991).

Many different explanations are available in the literature as to why such differences between ur-
ban and rural areas occur. One such explanation is that rural crash victims may not receive medical
attention as quickly as their urban counterparts because the crashes often occur in remote areas
(Clark, 2003). Another explanation is that rural roads may not be as safe as urban roads, with some
lacking guardrails, traffic control devices, and traffic law enforcement. Combining the lack of
sufficient traffic law enforcement with higher speed limits often times means that traffic crashes in

rural areas are more severe than those in urban areas (Zwerling, 2005).

2.1.5.4 llliteracy

Bester (2001) has analysed socio-economic factors in different countries and he found that the
illiteracy percentage has a statistically significant effect on the national fatalities rate. He explained
that a country that can read and write is expected to influence the ability of road users to

understand rules of the road and road signs.
2.1.5.5 Technology level

Few studies have described the decline in the number of fatalities in all industralised countries as a

result of the increase of technology use in level and road infrastructure (i.e. Evans, 1991).
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2.1.6 Risk and other factors

Different macro studies have shown that the risk of crash will increase by other factors such
as: poor visibility, using hand-held mobile telephones, dark conditions, wet roads and roads
that are covered with snow or ice (Elvik and Vaa, 2004), (Evans, 1991). There is an inverse
relationship between accidents and the average gasoline prices (Hakim et al., 1991). It seems
that an increase in the price of gasoline reduces the number of trips and the exposure.
Similarly, there is an inverse relationship between number of accidents and the number of
driving licenses delivered (Van and Wets, 2003). Moreover, the road safety audit process is
shown to have a clear impact on the number of accidents (Proctor et al., 2001). However, there

is lack of data concerning all these factors and they are not available in many countries.

2.1.6.1 Stress

Stress is generally seen as a human response to an aversive or threatening situation.
Heightened stress has been implicated in increasing the risk of vehicle crashes. Brown and
Bohnert (1968) reported that 80% of drivers involved in fatal crashes, but only 18% of
controls, were under serious stress involving interpersonal, marital, vocational, or financial

areas prior to the crash. Finch and Smith (1970) reported similar findings.
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CHAPTER 3

RESEARCH METHODOLOGY

3.1 Source of data

The data for this project were solely secondary data which was taken from Motor Traffic

and Transport Unit of the Ghana Police Service, Northern regional office, Tamale.

3.2 Population

Three years of data, containing detailed information on accident — involved drivers for
the period of 2007 to 2009, was used in this study. The data contained those fatal

accidents that had occurred in the region within the period under consideration.

3.3 Study Variables

The Traffic Accident Form of the unit collects data surrounding the occurrence of the
traffic fatality. The following data is collected data on the form: Name, Sex, Age, Date,
Time, and Address where the event occurred, Number of fatal victims in the same event;
Type of traffic accident (including but not limited to a collision with a fixed or moving
object, pedestrian struck, or a overturned vehicle); Role of the victim during the event
(Including but not limited to: Driver of the vehicle, passenger, pedestrian); Use of safety
equipment; Type of vehicles, bicycle, motorcycle, pedestrian); and Alcohol level of the
victim. Other variables include conditions, consequences, traffic and specific information
about each “party” to the accident, age and type of driving and vehicle characteristics. All

these variables were considered in the study.
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3.4 Statistical Analysis

Drivers’ accident risks and their dependence on various factors were examined using
statistical (survival) accident models. SAS software package was used in the analysis. The
analysis included model formulation, parameter estimation and model evaluation. The
main survival model type used was the Cox type distribution - free proportional model.
Statistical hypothesis testing was used as a tool for testing the various hypotheses. The
statistical decisions were based on the developed survival models and the estimated

parameters.

3.5 MODELING APPROACH
3.5.1 Overview of the approach
Survival analysis is a class of statistical methods for studying the occurrence and timing of
events. These methods are most often applied to the study of deaths. In fact, they were
originally designed for that purpose, which explains the name survival analysis. That name
is somewhat unfortunate, because it encourages a highly restricted view of the potential
applications of these methods. Survival analysis is extremely useful for studying many
different kinds of events in both social and natural sciences (Paul D. Allison, 2008).
Survival can simply be defined as time-to-event. Examples: time to die from disease say
cancer. time to first marriage, time to promotion to next position, time to earthquake, time
to first arrest after release from prison, time to birth after first marriage, time to divorce
after first marriage, etc. Survival analysis was originally designed for
prospective/longitudinal data on the occurrence of events. Longitudinal data are generated
when you begin observing a set of individuals at some well - defined point in time, and you
follow them for some substantial period of time, recording the times at which the events of
interest occur. It is not necessary that every individual experience the event. Apart from
recording the time of occurrence of events, you might also record other events related to
time.
One can perform survival analysis when the data consist only of the times of events, but a
common aim of survival analysis is to estimate causal or predictive models in which the
risk of an event depends on auxiliary variables or covariates. If this is the goal, the data set
must obviously contain measurements of the covariates. Some of these covariates like
tribe, sex, religion may be constant
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over time. Others, like income, marital status, or blood pressure, may vary with time. For
time - varying covariates, the data set should include as much detail as possible on their
variation across time.
Survival analysis is frequently also used with retrospective data. These are data in which
a group of individuals are, instead of being followed in time as described above, asked to
recall the dates of events like marriages, births, promotions, etc. In using methods of
survival analysis for retrospective data, one should recognise the potential limitations.
For one thing, people may make substantial errors in recalling times of events and they
may forget some events entirely. They may also have difficulty providing accurate
information on time - dependent covariates. A more difficult problem is that the sample
of people who are actually interviewed may be different from those who actually were at
the risk of the event. For example, people who have died or moved away will not be
included. Nevertheless, although prospective (longitudinal) data are certainly preferable,
much can be learnt from retrospective. Survival data have two common features that are
difficult to handle with conventional statistical methods: censoring and time - varying
covariates. Therefore, an important issue in survival research is how to deal with cases
whose survival cannot be followed during the entire research period. Such individuals are
called censored individuals (observations). There are generally three reasons why
censoring may occur:
(1) A person does not experience the event before the study ends;
(2) A person is lost to follow-up during the study period;
(3) A person withdraws from the study because of death (if death is not the event of
interest) or some other reason.

Censoring can happen in the following three ways;

e Type I: the duration of the study is fixed to a chosen period. The study includes
cases that are monitored from a set starting point for as long as the phenomenon
under examination occurs, or until the individuals are lost to the monitoring, or the
entire monitoring period has passed. Individuals whose monitoring does not provide
information about the occurrence of the phenomenon under examination until they

drop out, or at the end of the study period, are censored observations.
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e Type II: The length of the monitoring period depends on the desired number or
proportion of uncensored observations. The length of the period is the same as the
survival of the individual with the longest life span. Individuals, who are removed
from the study for various reasons or survive less than the monitoring period, are
censored observations.

e Type Ill: The duration of monitoring is fixed. However, individuals may enter the
study at different starting points. Censored observations are the ones whose survival
period continues after the overall monitoring period has ended.

Survival studies can be divided into the following two groups:

e Monitoring censored to the right: the investigation has begun at a certain selected
moment when the individuals entering the examination are exposed to the
phenomenon under investigation, e.g. a medicine or treatment, the investigation is
continued from that moment on for a certain length of time.

e Monitoring censored to the left: the investigation has begun at a certain selected
moment, but includes individuals whose exposure to the phenomenon under

investigation has begun before the examination period started (as in the present study).

Survival analysis can be based either on an assumption about survival following a certain
distribution or on direct observation based on the actual data. Both procedures require
dealing with censored and uncensored observations. The most commonly used survival
distributions are the negative exponential distribution, the Weibull distribution, the Gumbel
distribution, the Logarithmic normal distribution or their combinations. Which type of
function is best at describing the survival distribution is mainly dependent on the data and

can be carried out with the Kaplan-Meier method (Bunday, 1991).

3.5.2 Principles of Survival Modeling

In survival analysis, we usually refer to the time variable as survival time, because it gives
the time that an individual has “survived” over some follow up period. We also typically
refer to the event as a failure, because the event of interest usually is death, disease
incidence, or some other negative individual experience. Time = survival time and Event =
failure

In survival analysis, the basic mathematical terminology and notation is the random variable
(T) which represents the person’s survival time. Since T denotes time, its possible values

include all
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nonnegative numbers; that is, T can be any number equal to or greater than zero. Now a
small letter t denotes any specific value of interest for the random variable T. We also
have the probability density function which gives the probability of an individual
experiencing the event of interest at time t denoted by f(t). Other important functions in
survival analysis, besides the density function, are the survival function denoted by S(t),
and hazard function also denoted by h (t). The survival function S(t) gives the probability
that a person survives longer than some specified time t, that is, S(t) gives the probability
that the random variable T exceeds the specified time t. The survivor function is
fundamental to a survival analysis, because obtaining survival probabilities for different
values oft provides crucial summary information from survival data. For instance, at time
t=0,S(t)=S(0) =1, thatis, at the start of the study, since no one has gotten the event
yet, the probability of surviving past time 0 is one; at time t = oo, S(t) = S( ) = 0; that is,
theoretically, if the study period increased without limit, eventually nobody would
survive, so the survivor curve must eventually fall to zero. The hazard function h(t), on
the other hand , gives the instantaneous potential per unit time for the event to occur,
given that the individual has survived up to time t. In contrast to the survivor function,
which focuses on not failing, the hazard function focuses on not failing, the hazard
function focuses on failing, that is, on the event occurring. Thus, in some sense, the
hazard function can be considered as giving the opposite side of the information given by
the survivor function. In other words, the hazard function can also represent the
probability of an occurrence to end survival at point t on the condition that the individual

or other object of examination has been “alive” until point t.
The following relationship exists between these functions:

h(t) = f()

S()

t
Ht) = [oh(t)dt
S(t) = exp[-H(V)]
Where h (t) is hazard function, H(t) is cumulative hazard function and S(t) is survival
function. Finally, the Greek letter delta (&) denotes a {0, 1} random variable indicating
either failure or censorship. That is 6 = 1 for failure if the event occurs during the study

period, or ¢ = 0 if the survival time is censored by the end of the study period.
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3.6 The Cox Proportional Model and Its Characteristics

This study intends to apply the Cox proportional hazards models. Proportional survival models
assume that survival t has its density, hazard and survival functions. There are no special starting
assumptions made on the form of the density function of survival t.
The Cox PH model is usually written in terms of the hazard model formula shown below;
h(t, X) = ho(d)exp(Xp)
where h(t, X) is the hazard function, ho(t) is the base level of the hazard function and
exp(Xp) is linear function formed by the variables and their parameters. This model gives
an expression for the hazard at time t for an individual with a given specification of a set of
explanatory variables denoted by X. That is, the X represents a collection of predictor variables
that is being modeled to predict an individual’s hazard.
The Cox model formula says that the hazard at time t is the product of two quantities. The first of
these, ho(t), is called the baseline hazard function. The second quantity is the exponential
expression e to the linear sum of piXi, where the sum is over the p explanatory X
variables. An important feature of this formula, which concerns the proportional hazards
(PH) assumption, is that the baseline hazard is a function of t, but does not involve the
X’s. In contrast, the exponential expression shown here, involves the X’s, but does not
involve t. The X’s here are called time-independent X’s.
It is possible, to consider X’s which do not involve t. Such X’s are called time-dependent
variables. If time-dependent variables are considered, the Cox model form may still be
used, but such a model no longer satisfies the PH assumption, and is called the extended
Cox model. This study will consider time-independent X’s only.
The Cox model formula has the property that if the X’s entire are equal to zero, the
formula reduces to the baseline hazard function. That is, the exponential part of the
formula becomes e to the zero, which is 1. This property of the Cox model is the reason
why ho(t), is called the baseline function. Or, from a slightly different perspective, the
Cox model reduces to the baseline hazard when no X’s are in the model. Thus, ho(t) may
be considered as a starting or ‘“baseline” version of the hazard function, prior to
considering any of the X’s.
Another important property of the Cox model is the baseline hazard, ho(t), is an
unspecified
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function. It is this property that makes the Cox model a semiparametric model.
In contrast, a parametric model is one whose functional form is completely specified, except for

the values of the unknown parameters. A key reason for the popularity of the Cox model is that,
even though the baseline hazard is not specified, reasonably good estimates of regression
coefficients, hazard ratios of interest, and adjusted survival curves can be obtained for a wide
variety of data situations. Another way of saying this is that the Cox Proportional Hazard model is
a “robust” model, so that the results from using the Cox model will closely approximate the results
for the correct parametric model.

The parametric model is preferred if we are sure of the correct model, but if we are not completely
certain that a given parametric model is appropriate, thus, when in doubt, as is typically the case,
the Cox model will give reliable enough results so that it is a “safe” choice of model, and the user
does not need to worry about whether the wrong parametric model is chosen.

Another appealing property of the Cox model is that, even though the baseline hazard part of the
model is unspecified, it is still possible to estimate the #’s in the exponential part of the model. All
we need are estimates of the #’s to assess the effect of explanatory variables of interest. The
measure of effect, which is called a hazard ratio, is calculated without having to estimate the
baseline hazard function.

One point about the popularity of the Cox model is that it is preferred over the logistic model when
survival time information is available and there is censoring. That is, the Cox model uses more
information — the surviving times — than the logistic model, which considers a (0,1) outcome and
ignores survival times and censoring.

The hazard function h(t,X) and its corresponding survival curves S(t,X) can be estimated for the
Cox model even though the baseline hazard function is not specified. Thus, with the Cox model,
using a minimum of assumptions, we can obtain the primary information desired from a survival
analysis, namely, a hazard ratio and a survival curve.

3.7 Estimation of the Cox Proportional Hazard Model

We now describe how estimates are obtained for the parameters of the Cox model. The parameters

are the f’s in the general Cox model formula shown above. The corresponding estimates of these
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parameters are called maximum likelihood (ML) estimates and are denoted as S
The formula for the Cox model likelihood function is actually called a “partial” likelihood func-

tion rather than a (complete) likelihood function. The term “partial” likelihood is used because
the likelihood formula considers probabilities only for those subjects who fail, and does not
explicitly consider probabilities for those subjects who are censored. Thus the likelihood for the
Cox model does not consider probabilities for all subjects, and so it is called a “partial”
likelihood. The Cox Survival model can be further written for calculations into the form:

St X) = [5: ()] %%

Where in this study S (t, X) is estimate of the share of drivers not involved in accidents until
time t, So(t) is base level of the survival function formed on the basis of data,

exp(X f) = exp(Bx1 +Paxo+ ... +fnXn). The B is the coefficients of the variables x; (parameters)
When drawing up proportional survival or hazard models, stratification can also be used as an
examination method (not considered in this study). The different basic hazards ho(t), are
estimated with the model for the different values of the stratifying variable. The survival model
explains the effect of the variables on these different base levels of the hazard function.

In this study, the survival, or accident time, will be defined as the number of days counted from
the start of the analysis period. The starting point for the accident data will be 1/112007 to
31/12/2009 for the 2007 accidents; 1/11/2008 to 31/1/2009 for the 2008 accidents and 1/1/2009
to 31/12/2009 for the 2009 accidents. Accident time will be the time from the starting time until
the moment accident occurs.

The “survival” of drivers who got into accidents will be the number of days from the beginning
of the examination period until the day a driver was involved in an accident. If a driver had
been involved in more than one accident, the days between the two accidents will be considered
the survival days.

One important feature in survival analysis is the idea of censored observations that generate
great difficulty when trying to analyze such data using traditional statistical models such as

multiple
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linear regression.

The accident data taken from the MTTU contains, definition only drivers involved in
accidents, this means that they have all experienced the event of interest. Therefore, in
order to analyze the data using survival models, drivers that were involved in accidents
within the first 244 days of each year were considered as “primary party” (uncensored
drivers) and those that were involved after the 244 days were considered as “other
involved party” (censored drivers). This approach enabled a distinction among the
involved drivers who to be classified as uncensored and hence data was analyzed using

survival approach. This situation is depicted in the figure below.

>
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244 365
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Figure 3.1: Theoretical display of survival time in the accident data

It is assumed that all the drivers entered the study at the first day of the year and are
followed for twelve months. The study end was set to (244 days) about eight months. The
horizontal axis represents time (Duration in days). Each of the horizontal lines labeled A
through F represents a single driver. An X indicates that the accident occurred at the point
in time. The vertical line at 2444 is a point at which we stop following the driver. Any
accident that occurred at 244 days or earlier was considered uncensored, and hence, those
accidents times are censored at time 244 days. Therefore, drivers A, C, D and E have

uncensored accident times while drivers B and C have censored accident times.
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Individual potential variables were selected and included into the models with the help of Kaplan-
Meier estimates directly from the data. Next, the similarities of the survival functions obtained
were also tested with the Log Rank test. The Log Rank test score used in the comparisons of the
survival functions is asymptotically normally distributed. When there is a distinct differences
between the survival functions, the variable’s significance in the model will be tested the rest of

the variables.

The evaluation of the proportional models’ explanatory power and statistical significance was
based on the size of the residuals and the DfBeta estimates of coefficients.

Because the variables in survival models can strongly correlate with each other, their impact on
the characteristics of the most important models were examined by alternately removing variables

from the models.
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CHAPTER 4

DATA PRESENTATION AND ANALYSIS
4.1 Motor Traffic and Transport Union (MTTU) Data

4.1.1 Nature of the data

The Motor Traffic and Transport Union (MTTU) of the Ghana Police Service, Tamale
gathers extensive and detailed information from each accident they investigate. Details of the
information that is always taken can be found in appendix A. the whole data available during
the beginning of the study contained information on 398 fatal accidents for the period of
2007 — 2009. Therefore, the interpretation of the findings of the study is limited to the
Northern Region.

4.1.2 Driver and accident characteristics

The table 4.1 presents the ages of the involved drivers and the consequences to drivers (every
accident had at least one fatality who could be driver or another occupant). Out of the 398
drivers, 91 (22.9%) had survived without injury, 186 (46.7%) had died and 121 (30.4%) had
been seriously injured. Most (68%) drivers were 26 — 56 years old, 93 (23%) were younger,
and 17 (4%) older.

Only 21 were female drivers.
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Table 4.1: Distribution of drivers by injury severity and age according to the accident data

Severity of injury
Fatalities | No/minor | Serious Total
< 25 years 41 19 33 93
Age 26 -50 128 62 82 272
50+ 17 10 6 33
Total 186 91 121 398
Percentage of Total | 46.70% 22.90% | 30.40% | 100.00%

Table 4.2 presents the yearly and monthly distribution of the accidents.There are clear fluctua-
tions in the number of cases over years and months. It can be seen that out of the total number of

398 cases for the entire period of 3 years, 62 (15.6%) occurred in December alone.

Table 4.2: The number of drivers involved in accident by year and month

Month

Jan | Feb | Mar | April | May | June | July | Aug | Sept | Oct | Nov | Dec Total

2007 | 10 8 6 12 6 8 S 3 10 8 15 17 | 108

2008 | 12| 15 17 10 11 9 12 9 13 20 22 | 158

o0

Year | 5009 10| 11 8 10 g | 2 10| 12| 11| 17| 23| 132

i
:
E
E
5
;
:
:
)
!
E

Total 32| 34 29 39 24 29 16 25 31| 32 52 62 | 398
Percentage | 8.0 | 85| 5.5 98| 60| 73| 40| 63| 7.8| 80 13.1 | 15.6 | 100.0
of Total

4.2 Preliminary Analysis: Kaplan - Meier estimates of the

accident data variables

In any data analysis it is always a great idea to do some univariate analysis before proceeding to
more complicated models. In survival analysis it is highly recommended to look at the Kaplan-
Meier curves for all the categorical predictors/variables. This will provide insight into the shape of
the survival function for each group and give an idea of whether or not the groups are proportional
(i.e. the survival functions are approximately parallel). Tests of equality across strata were used to

explore whether or not to include the predictor in the final model. A variable was considered for
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inclusion in to the model as a predictor if the test has a p-value of 0.05 or less. This elimination
scheme criterion is used because all the predictors in the data set are variables that could be relevant
to the model. If the predictor has a p-value greater than 0.05 in a univariate analysis it is highly
unlikely that it will contribute anything to the model which includes other predictors.

Detailed information on the Kaplan-Meier estimates of all the variables under consideration can
be found in appendix C.

Driver Age

Driver age was categorized into three groups: those aged less than or equal to 25 years constituted
the first group, the second group was aged between 26 to 50 years and the last group aged above
50 years. However, the log-rank test of equality across these age groups (strata) realized a p-value
of 0.0001 indicating that the variable driver age had a significant effect on accident time, thus age
was included as potential candidate for the final model. From the graph it can be seen that those
drivers aged between 26 and 50 had higher share of accidents, followed by those above 50 years
and lastly followed by those up to or less than 25. In general, the pattern of one survivorship
function lying above another means that the group defined by the upper curved live longer or had

a more favourable survival experience than the group defined by the lower curve.
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Figure 4.1: Survival distribution of age groups of drivers
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Figure 4.3: Survival distribution of the alcohol status of drivers
Use of safety belt

Drivers who used safety belts were labeled 1 and 0 for those who did not use. The log-rank test of
equality across strata for the predictor usebelt realized a p-value of 0.0001 indicating that usebelt
had a significant effect on the accident time distribution. Thus usebelt was included as potential
candidate for the final model. From the graph it can see that drivers who used safety belts had
higher survival experience than those who did not. Aside its significant effect on accidents time it

also increases the severity and consequences of the accident.
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Figure 4.4: Survival distribution of the use of seat belts status of drivers
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Annual Vehicle Kilometerage

Annual vehicle kilometerage was used to measure the exposure of drivers to traffic. This variable
was categorized in to three groups: less than 5,000km/a, this category of drivers were given 1, 2 for
those who traveled between 5,000 to 14,999km/a and 3 for those that traveled at least 15,000km/a.
The log-rank test of equality across strata for the predictor annukil had a p-value of 0.4016 indi-
cating that annukil had no significant effect on the accident time distribution. Thus annukil should

not be included as a potential candidate for the final model.
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Figure 4.5: Survival distribution of the annual kilometers traveled by drivers

Road Section/Scene of Accidents

Accident locations were separated into links (labeled as 1) and junctions (labeled as 2). The log-
rank test of equality across strata for the predictor scene has a p-value of 0.08017 indicating that
scene had no significant effect on the accident time distribution. Thus scene was not included as a

potential candidate for the final model, since the p-value is greater than the cut-off point.
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Figure 4.6: Survival distribution of Scene of accidents among drivers

Estimated Speed of Vehicle at the time of accident
Speed was categorized in to two classes: up to 80km/h (which represented 1) and over 80km/h
(which represented 2). Speed remained a statistically significant variable (P = 0.0001). Thus
speedveh was included as potential candidate for the final model. From the graph it can be seen

that drivers whose speeds exceeded 80km/h had lower survival experience than those who did not.
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Figure 4.7: Survival distribution of the speed of drivers
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Weight of Vehicle

The weight of vehicle was categorized into two groups: less than or equal to 1,000Kg
(labeled as 1) and over 1,000Kg (labeled as 2). The log-rank test of equality across strata for
the predictor wghtveh had a p-value of 0.4483 indicating that wghtveh had no significant
effect on the accident time distribution. Thus wghtveh should not be included as a potential
candidate for the final model, since the p-value is greater than our cut-off of 0.05.

= en b

T SR R OR R e

4] 1 e 150 L] Ees] B E K 20 @

- e gl ¢ O T Oaremor o0 gt vemt
e G T €5 T Qmpwmor W OOt e

Figure 4.8: Survival distribution of the weight of vehicle
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Tyres Condition/tyres tread depth
The tyres tread depth had two levels: 0 for vehicles whose tyres tread were less than or equal

to 4mm and 1 for those with over 4mm. the log-rank test of equality across strata for the

predictor tyrescon realized a p-value of 0.3897 indicating the tyrescon had no significant
effect on the accident time distribution. Thus tyrescon should not be included as a potential
candidate for the final model, since the p-value is greater than our cut-off of 0.05.
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Figure 4.9: Survival distribution of the tyres condition of the vehicles

Driving experience (years since licensing)
The age of driving license had two levels: 1 for those with at least 5 years since licensing and 2
for drivers with under 5 years. The log-rank test of equality across strata for the predictor agelic
realized a p-value of 0.0001, indicating that agelic had a significant effect on the accident time
distribution. Thus agelic was included as a potential candidate for the final model, since the p-

value is less than the cut-off of 0.05.
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Figure 4.10: Survival distribution of the license duration of drivers

Route familiarity

Route familiarity had two levels: O for those drivers who seldom pass the scene of accident more
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test of equality across strata for the predictor rutfam had a p-value of 0.8079. Thus rutfam was not

included as a potential candidate for the final model, since the p-value is greater than the cut-off of

0.05.
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Figure 4.11: Survival distribution of familiarity of route of drivers
Road Surface Condition

Road surface condition had two levels: 1 for dry surface and 0 for wet surface. The log-rank test
of equality across strata had a p-value of 0.5470 for the predictor rdsurf, thus rdsurf must not be

included in the final model.
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Figure 4.12: Survival distribution of the road surface condition at scene of accident
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Ownership

The ownership of the vehicle was categorized into two levels: 1 for own vehicle and 0 for
not own vehicle. The log-rank of equality across strata for the predictor owner had a p-
value of 0.1280, thus owner was not included as a potential candidate for the final model
because this p-value is greater than the cut-off of 0.05. Therefore, ownership of the

vehicle did not have a significant effect on drivers’ accident time distribution.
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Figure 4.13: Survival distribution of vehicles ownership

Age of vehicle

Age of vehicle was categorized into two classes: up to 10 years. Age of vehicle remained
a statistically variable significant variable (P = 0.0001). Thus ageveh was included as
potential candidate for the final model. From the graph one can see that drivers whose
vehicle aged over 10 years had lower survival experience than those with vehicle less

than 10 years.
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Figure 4.14: Survival distribution of ages of vehicles

Type of vehicle and weather condition
These two variables proved statistically insignificant and hence were excluded from the final
model.
Summary of the effects of the variables with the Kaplan-Meier Estimate
Kaplan- Meier estimates identified variables that had major effects on accident time distribution.

These included driver age, sex, use of safety belt, use of alcohol, speed of vehicle, age of driving

license and age of vehicle.

4.3 Models for the MTTU data

4.3.1 Models and their compilation principles

The Kaplan-Meier suggested which of the many variables should be included in the models (that is
predictors that had a p-value of less than 0.05. Some of these variables represented characteristics
associated with the driver and the vehicle. The other variables referred specifically to the accident
situation.

The variables were first divided into two groups:

1) The most important variables from the point of view of Kaplan-Meier estimate and

2) Other interesting variables though the Kaplan-Meier analysis did not support the inclusion of

those variables in the final model, but they are associated with the research objectives. These
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Variables include: annual vehicle kilometreage, tyres condition, weight of vehicle and
route familiarity.
Model 1: The model was estimated using the first group of variables to obtain model 1 A.

the significant variables in model 1 A were selected out and re-run to obtain 1 B. Next,

AE= =

interactions were added to the model 1 B to obtain the final model 1C.
Model 2: The model was estimated on the basis of both the first and second group of
variables to obtain model 2A. The significant variables in model 2A were selected and re-

run to obtain the final model 2B. There was no interaction effect in this model.

Table 4.3: List of the most important variables, categories, values and reference levels used

for the development of the proportional hazards models of the MTTU data
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Variables Name | Content Categorisation Reference level
1. < 5000km/a
Annual vehicle
annukil 2. 5000-14000km/a < 5000km/a
kilometerage
3. 15000km/a
1. < 25 years < 25 years
driver_agp Age of driver 2. 26-50 years
3. 50 +
0. No
alcohol Use of alcohol No
1. Yes
1. Male
sex Sex of driver female
2. Female
1. > 1000kg
wghtveh Vehicle weight >1000kg
2. > 1000kg

Estimated speed 1. <80Km/h

speedveh of vehicle at time | 2. >80Km/h > 80Km/h
of accident
1. < 10 years
ageveh vehicle Age < 10 years
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Table 4.3: continued

Variables Name | Content Categorisation Reference level
2. >10 years
1. >4mm
tyrescon Tyres tread depth > 4mm
2. < 4mm
0. Scene of acci- | 0. scene of acci-
rutfam Familiarity of route
dent passed more sel- | dent
dom than once in a
month.
1. scene of accident
passed more often than
once in a month
Age of 1. > 5 years 1. > 5 years
agelic driving 2. <5 years
license
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4.3.1.1 Development of Models 1
The categorical predictor driver_agp has three levels and therefore it was included using dummy
variables with the group driver_agp=1 as the reference group. The proc phreg yielded the follow-

ing output;

Table 4.4: Cox model 1A: which includes the most important variables from the point of view of Kaplan Meier estimate

Output 1: Model 1A

The PHREG Procedure
Analysis of Maximum Likelihood Estimates
Variable DF Parameter Estimate Standard Error Chi-Square Pr>ChiSq Hazard Ratio 95% Hazard Ratio Confidence limits
sex 1 127725 0.28114 20.6395 <.0001 3.587 2.067 6.223
usebelt 1 -0.73455 0.23413 9.8426 0.0017 0.480 0.303 0.759
alcohol 1 0.87965 0.20132 19.0921 <.0001 2410 1.624 3.576
ageveh 1 0.25537 0.20106 1.6132 0.2040 1.291 0.870 1914
agelic 1 0.33735 0.24374 1.9156 0.1663 1.401 0.869 2259
speedveh 1 1.02858 0.22639 20.6414 <.0001 2797 1.795 4.359
driver_agp2  § 0.66861 0.22999 84513 0.0036 1.952 1.243 3.063
driver_agp3 1 0.52192 0.39461 1.7493 0.1860 1.685 0.778 3.652

Linear Hypotheses Testing Results
Label Wald Chi-Square ~ DF  Pr>ChiSq
driver_agp 8.5020 2 00143

Interpretation of the above output (Model 1A)

The output in table 4.4 provides the coefficient estimates and their associated statistics. It is noted
that there is no intercept estimate - a characteristic feature of partial likelihood estimation. The
column labeled Hazard Ratio is ¢? . For indicator or (dummy) variables with values 1 and 0O, one
can interpret the hazard/risk ratio as the ratio of the estimated hazard for those with a value of 1 to
the estimated hazard for those with a value of zero (controlling for other covariates). For example,
the estimated hazard ratio for the variable usebelt (use of safety belt) is 0.480. This means that the
hazard of accident for those drivers who did not use safety belt is only about 48% higher than the
hazard for those who did use safety belt (controlling for other covariates).

For quantitative covariates, a more helpful statistic is obtained by subtracting 1.0 from the hazard
ratio and multiplying by 100. This gives the estimated percentage change in the hazard for each
one unit increase in the covariate. For example, the variable ageveh, the hazard ratio is 1.291 which
yields 100 (1.291 - 1) = 29.1. Therefore for each one-year increase in the age of the vehicle the
hazard of accident goes up by an estimated 29.1%.

Also looking at the individual coefficients of the two groups of the variable driver_agp and their
associated chi-square statistics, we see that both of the dummy variables are statistically significant.

However, each of these coefficients is a comparison with the omitted category of driver_agpl (which
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corresponding to those drives aged less than or equal 25 years). More useful is the global
test reported for driver_agp at the bottom part of the output, which has a Wald chi-square
of 8.5920 with 2 degrees of freedom, again significant at the 0.05 level.

Overall, the highly significant variables include sex, use of safety belt, use of alcohol,
speed of vehicle, and age of driver. Therefore, the final model of main effects will
include all the aforementioned significant variables. These significant variables were re-

runned to obtain the output of model 1B.
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Table 4.5: Cox model 1B: which includes the most important variables from Model 1A

Output 2: Model 1B

The PHREG Procedure
Analysis of Maximum Likelihood Estimates
Variable DF P: e i andard Error Chi-Square Pr>ChiSq Hazard Ratio 95% Hazard Ratio Confidence limits
sex 1 1.20582 0.25893 21.6865 <.0001 3.339 2.010 5.547
usebelt 1 -0.70347 0.21491 10.7150 0.0011 0.495 0.325 0.754
alcohol 1 0.90190 0.18941 22.6721 <.0001 2.464 1.700 3.572
speedveh 1 1.18898 0.21875 29.5426 <.0001 3.284 2.139 5.042
driver_agp 1 0.36236 0.15427 55174 0.0188 1.437 1.062 1.944
.
Interactions

All possible interactions of these five significant variables were also conducted to ascertain in-
teractions effects that should be included in the model. All the interactions proved statistically
insignificant except the interactions of driver sex and use of safety belt and hence was included to

arrive at the final model (Model 1C).

Tablc 4.6: Cox model 1C: which includcs the significant intcraction of scx and safcty belt use

Output 3: Final Model 1C
The PHREG Procedure

Analysis of Maximum Likelihood Estimates
Variable DF Parameter Esti Error Chi-Square Pr>ChiSq Hazard Ratio 95% Hazard Ratio Confidence limits
sex 1 0.82338 0.33798 59351 0.0148 2278 1.175 4.419
usebelt 1 -2.17920 0.68889 10.0068 0.0016 0.113 0.029 0.436
alcohol 1 0.83028 0.19066 18.9651 <.0001 2.294 1.579 3333
speedveh 1 1.22874 0.22195 30.6496 <.0001 3.417 2212 5279
driver_agp 1 0.36533 0.15422 56113 0.0178 1.441 1.065 1.950
sexbelt 1 1.25998 0.54301 5.3840 0.0203 3.525 1.216 10.219

4.3.1.2 Development of Models 2

This model is developed using both the first and the second group of variables. All these variables
were included (to obtain model 2A) and those that were not statistically significant were eliminated
from the model, and the significant ones were re-runned to arrive at the final model 2B. The vari-
ables included driver age and sex, use of safety belt, use of alcohol, speed of vehicle, age of driving
license, age of vehicle, annual vehicle kilometreage, vehicle tyres condition, weight of vehicle and
route familiarity.

Also, the categorical predictor annukil has three levels and therefore the annukil =1 was used as
the reference group and hence was created inside the proc phreg. This yielded the output in table

4.7

Overall, there are highly significant effects of driver age, annual vehicle kilometreage, use of alco-

hol, use of safety belt, speed of vehicle, tyres condition and a marginally significant effect of age
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Table 4.7: Cox model 2A: which includes variables used in model 1A and some other interesting variables

Output 4: Model 2A

The PHREG Procedure
Analysis of Maximum Likelihood Estimates
Variable DF Parameter Estimate Error Chi-Square Pr>ChiSq Hazard Ratio 95% Hazard Ratio Confid: limits
sex 1 0.59775 0.34221 3.0510 0.0807 1.818 0.930 3.555
usebelt 1 -0.85539 0.25954 10.8622 0.0010 0.425 0.256 0.707
alcohol 1 1.10444 0.23274 22.5194 <.0001 3.018 1912 4.762
ageveh 1 0.21207 0.23830 0.7920 0.3735 1.236 0.775 1.972
agelic 1 0.51500 0.27747 3.4448 0.0635 1.674 0.972 2.883
speedveh 1 1.18762 0.25391 21.8768 <.0001 3.279 1.994 5.394
tyrescon 1 0.48967 0.20705 5.5932 0.0180 1.632 1.087 2.448
wghtveh 1 -0.02177 0.18038 0.0146 0.9039 0.978 0.687 1.393
rutfam 1 -0.44185 0.25370 3.0332 0.0816 0.643 0.391 1.057
driver_agp2 1 0.61749 0.24996 6.1025 0.0135 1.854 1.136 3.027
driver_agp3 1 0.77469 0.42432 33332 0.0679 2.170 0.945 4.985
annukil2 1 -0.54953 0.25281 4.7249 0.0297 0.577 0.352 0.947
annukil3 1 -0.80285 0.32834 5.9788 0.0145 0.448 0.235 0.853
Linear Hypotheses Testing Results

Label Wald Chi-Square DF Pr> ChiSq

driver_agp 6.4771 2 0.0392

annukil 6.5258 2] 0.0383

of license. The predictor sex is also not significant but from prior research we know that it is a
very important variable to have in the final model and therefore it was included in the final model

(model 2B). However, of the interactions of these variables proved statistically insignificant.

Table 4.8: Cox model 2B: which includes the most important variables from model 2A

Output 5: Model 2B
The PHREG Procedure
Analysis of Maximum Likelihood Estimates
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Variable DF Parameter Fstimate Standard Frror Chi-Square Pr>ChiSq Tlazard Ratio 95% Hazard Ratio Confidence limits
sex 1 0.60565 0.29601 4.1862 0.0408 1.832 1.026 32713
usebelt 1 -0.79550 0.22300 12.7254 0.0004 0451 0.292 0.699
alcohol 1 091737 0.19118 23.0260 <.0001 2.503 1.721 3.640
speedveh 1 1.29852 0.22201 34.2100 <.0001 3.664 2371 5.661
tyrescon 1 0.33968 0.18380 3.4153 0.0646 1.404 0.980 2.014
driver_agp )| 0.38741 0.15863 5.9641 0.0146 1.473 1.079 2010
annukil 1 -0.43520 0.16507 6.9511 0.0084 0.647 0.468 0.894

4.3.2 Hazard ratios/Relative risks to drivers

All the models in the above outputs displayed the hazard ratios/relative risks along with their 95%
confidence interval in the last three columns.

Driver age

Drivers age proved to be a significant accident risk factor in all the models. In model 1A for
instance which indicated the individual contribution of each category of the age groups (the age
group < 25 serves as reference level). It can be seen that drivers aged between 26 to 50 years had
1.952 times (with 95% confidence interval: 1.243 - 3.063) greater at risk than drivers aged 25 and
those who were older than 50 years had 1.685 times greater at risk than those in their early 20s.

Also, the final model IC gave the overall contribution of driver age (p=0.0178) with a hazard ratio
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of 1.441 which means that for any one year increase in the age of the driver, The hazard of accident

increases by 44.1 %.

Driver Sex

According to the Kaplan Meier estimate sex had a strong effect on accidents time, which actually
proved to be a significant variable in several of the models. In model 1 C for instance, indicates that
male drivers had 2.278 (1.175 - 4.419 with 95% confidence interval) times greater than the risk of
female drivers. However when the second group of variables were added, which included annual
vehicle kilometreage, route familiarity, tyres condition and weight of the vehicle, the effect of sex had a

moderate influence.

Driver’s use of alcohol

Driving under the influence of alcohol significantly increased drivers accident risks. Alcohol use was a
significant variable in all the models. According to model 2B, the relative risks of drivers under the
influence of alcohol, was 2.5031 times (1.721 - 3.640 with 95% confidence interval) greater than that of

sober drivers.

Use of Safety Belt
Use of safety belt had a very strong explanatory power in all the models. According to model 2B, the
hazard ratio for use of belt is 0.451, indicating that if a driver changes from not use of belt to use of belt,

whiles holding other covariates constant the hazard of accident decreases by ( 100% - 45.1 % ) = 54.9%.

Annual Vehicle Kilometreage

Drivers’ annual vehicle kilometreage had a strong explanatory power in all the models it featured. In
model 2A for instance, it can be seen that drivers that had traveled between 5,000km/a, to 14,000krn/a,
had 42.3% lower than those that had travelled less than 5,000krn/a (the reference group). Also those that
had travelled for at least 15,000km/a had (100% - 44.8%) = 55.2% lower than those that had travelled
less than 5,000km/a. In the final model 2B gave the overall contribution of drivers’ annual kilometreage
(p=0.0084), the hazard ratio of 0.647 which means that for any one year increased in driver’s exposure
to traffic, it is associated with (100% - 64.7%) = 35.3% decrease in expected time to accident holding
all other covariates constant.

This result indicates that drivers’ accident risks decreases as annual kilometerage increases. It
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can be seen in the model that annual vehicle kilometerage is negatively related to the hazard of
accidents and hence, positively related to survival. But it is generally known that higher exposure to
traffic is associated with higher risk, but this result and for that matter this research is in opposition
to this believe. This perhaps might be due to accumulated experience on the part of these drivers.
That is to say drivers who had a high annual kilometreage had also more driving experience and

hence lower involvement in accidents. However this might need further probing.

Route Familiarity
The route familiarity variable was not a significant variable as indicated in model 2A (p = 0.0816).
The hazard ratio is 0.643 indicating that, the accident risks was about 35.7% lower for drivers who

were familiar with the site of the accident compared to other drivers.

Vehicle Weight

Vehicle weight proved to be a discriminating factor although its statistical significance in model 2A
was very weak (p = 0.9039). According to model 2A, the estimated risk ratio is 0.978. This means
that the hazard of accident for drivers using light vehicles had 97.8% of the hazard for those drivers

who used the larger weight vehicles.

Vehicle age

Vehicle age had no significant effect on accident risk, in the models though it proved to be a sig-
nificant variable in the Kaplan-Meier estimate. However, in model 2A, the hazard ratio is 1.236,
indicating that vehicles older than 10 years had 1.2 times the risk of vehicles that are less or equal to

10 years.

Tyres condition treads depth
Tyres condition/tread depth proved to be statistically significant (p =0.018) in model 2A. According
to this model, drivers with very worn out tyres vehicles had 1.632 times that of drivers who used less

worn out tyres (>4mm).

Speed of vehicle
Speed is a statistical significant variable in predicting the hazard of accidents as confirmed in the
models. According to model 2A, the hazard of accidents for drivers who drove over 80km/h is 3.279

times (with a 95% confidence interval: 1.994 - 5.394) that of those who drove less than 80km/h.
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Age of license
This variable was used as a proxy to assess the level of experience of the driver. Age of license was

a moderate significant variable in model 2A. However, the hazard ratio is 1.674, indicating that
those drivers with duration of license less than 5 years had 1. 7 times the risk of those with license

duration of at least 5 years.

4.4 Evaluation of the models and methods

The goal of statistical model development is to obtain the model which best describes the data.
That is to say, the fitted model must provide an adequate summary of the data upon which it is
based. Therefore, a complete and thorough examination of the model's fit and adherence to the
model’s assumption is of great importance and concern. There are several methods for assessment
of a fitted proportional hazards model which include;

1. Testing for the assumption of proportionality of the models.

2. Overall summary measures of goodness of fit.

3. Identification of influential and poorly fit subjects/individuals.

4.4.1 Testing for the assumption of proportionality of the developed models

The Cox proportional hazard assumes that the hazard of one individual is proportional to the haz-
ard of any other individual, where the proportionality constant is independent of time. This means
that the ratio of the risk of dying (if death is the event of interest) of two individuals is the same no

matter how long they survive.

This requires that covariates not be time-dependent. If any of the covariates varies with time, the
Proportional hazards assumption is violated. This fact can be used to test the assumption by in-
cluding a time-covariate interaction terms in the model and testing if the coefficient for interaction
is significantly different from zero. The proportional hazards assumption is vital to the interpreta-
tion and use of a fitted proportional hazards model.

Though, there are several methods for verifying that a model satisfies the assumption of propor-
tionality, we will, in this project, check proportionality by including time-dependent covariates in
the model. In proc phreg it is very easy and convenient to include data step programming inside the

procedure. Time dependent covariates are interactions of the predictors with time. In this analysis
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the interactions with log (time) was used because this is the most common function of time used
in time-dependent covariates but any function of time could be used. If a time-dependent covariate
is significant this indicates a violation of the proportionality assumption for that specific predictor.
We use a test statement to test all the time dependent covariates together in one collective test.

Testing for proportionality of model 1B yields the following output;

Table 4.9: Testing for assumption of proportionality of model 1B using ti covariate

Output 6: Model 1B

The PHREG Procedure
Analysis of Maximum Likelihood Estimates
Variable DF Paramcter Estimate Standard Error Chi-Square Pr>ChiSq Hazard Ratio 95% Hazard Ratio Confidence limits
sex 1 -1.74057 1.62511 1.1471 0.2841 0.175 0.007 4.240
usebelt 1 0.30600 0.97340 0.0988 0.7532 1.358 0.202 9.151
alcohol 1 0.17103 0.89018 0.0369 0.8476 1.187 0.207 6.792
speedveh 1 0.47408 1.01201 0.2194 0.6395 1.607 0.221 11.677
driver_agp 1 1.25640 0.73653 2.9099 0.0880 3513 0.829 14.879
sext 1 0.67410 0.35283 3.6503 0.0561 1.962 0.983 3918
usebeltt 1 -0.22095 0.21520 1.0541 0.3046 0.802 0.526 1.222
alcoholt 1 0.17613 0.19710 0.7985 0.3715 1.193 0.810 1.755
speedveht 1 0.16255 0.22184 0.5369 0.4637 1177 0.762 1.817
driver_agpt 1 -0.20129 0.16140 1.5554 02123 0818 0.596 1122
Linear Hypotheses Testing Results
Label Wald Chi-Square DF Pr> ChiSq
test_proportionality 7.9568 5 0.1586

It can be seen in the above output of testing of proportionality for model 1B that tests of all the
time-dependent variables were not significant either individually or collectively so we do not have
enough evidence to reject proportionality and will assume that we have satisfied the assumption of
proportionality for this model. Since all the covariates in this model proved to be time indepen-
dent, we conclude that Cox Proportionality assumption is satisfied for model 1B, and hence best
describes the MTTU data.

However, for model 1C which included the interaction term between sex and belt, the variable sex
proved not to satisfy the proportional assumption. The output for the testing of proportionality of

model 1C is seen as follows;
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Table 4.10: Testing for assumption of proportionality of model 1C using time-dependent covariate interaction

Output 7
The PHREG Procedure
Analysis of Maximum Likelihood Estimates
Variable DF Parameter Estimate Standardd Error Chi-Square Pr>ChiSq Hazard Ratio
sex 1 -2.67039 1.72167 2.4057 0.1209 0.069
usebelt 1 -1.22318 1.18350 1.0682 0.3014 0.294
alcohol 1 0.20301 0.88497 0.0526 0.8186 1.225
speedveh 1 0.34893 1.01451 0.1183 0.7309 1.418
driver_agp 1 1.22159 0.73613 27538 0.0970 3.393
sexbelt 1 1.38475 0.56009 6.1126 0.0134 3.994
sext 1 0.78382 0.36146 4.7024 0.0301 2,190
usebeltt 1 -0.23834 0.22487 1.1233 0.2892 0.788
alcoholt 1 0.14947 0.19572 0.5833 0.4450 1.161
speedveht 1 0.20414 0.22373 0.8325 0.3615 1.226
driver_agpt 1 -0.19142 0.16130 1.4083 0.2353 0.826
Linear Hypotheses Testing Results
Label Wald Chi-Square ~ DF  Pr> ChiSq
test_proportionality 8.5163 5 0.1300

The conclusion is that all of the time-dependent variables are not significant supporting the
assumption of proportional hazard except sex when the interaction term was included in the model.

Testing for assumption of proportionality of model 2B with time-varying covariate.

Table 4.11: Testing for assumption of proportionality of model 2B using time-dependent covariate interaction

Output 8
The PHREG Procedure
Analysis of Maximum Likelihood Estimates
Variable DF  Parameter Estimate  Standard Eror  Chi-Square  Pr>ChiSq  Hazard Ratio
sex 1 -3.35264 173038 3.7540 0.0527 0.035
usebelt 1 -0.34508 0.99697 0.1198 0.7292 0.708
alcohol 1 0.27916 0.88813 0.0988 0.7533 1322
speedveh 1 0.98160 1.00662 09509 03295 2669
tyrescon 1 0.22133 0.85419 0.0671 0.7955 1.248
driver_agp 1 1.47413 0.77195 3.6467 0.0562 4.367
annukil 1 -1.77499 0.76301 54117 0.0200 0.169
sext 1 0.91063 037918 57676 00163 2486
usebeltt 1 -0.09454 022115 0.1828 0.6690 0910
alcoholt 1 0.15504 0.19716 06184 04316 1.168
speedveht 1 0.07510 022145 0.1150 0.7345 1.078
tyrescont 1 0.03108 0.19239 0.0261 08717 1.032
driver_agpt 1 -0.24352 0.16889 20792 0.1493 0.784
annukilt 1 0.30722 0.17027 3.2556 00712 1.360

Linear Hypotheses Testing Results
Label ‘Wald Chi-Square DF Pr> ChiSq
test_proportionality 10.8699 i 0.1444

It can be seen in the above output of testing of proportionality for model 2B that tests of all the

time-dependent variables were not significant either individually (except sex) or collectively so we

do not have enough evidence to reject proportionality and will assume that we have satisfied the

assumption of proportionality for this model.

4.4.2 Assessing Goodness of Fit of the models using Residuals

There are several graphical methods available for assessing the goodness of fit of a proportional
hazards model. These graphical methods are based on residuals and are often used as diagnos-

tic tools. In multiple regression methods, residuals are referred to as the difference between the
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observed and the predicted values (based on the regression model) of the dependent variable.
However, when censored observations are present and only a partial likelihood function is
used in the proportional hazards model, the usual concept of residuals is not applicable. In the
following we introduce three different types of individual residuals: Cox-Snell, martingale
and deviance residuals. Martingale residuals are obtained by transforming Cox-Snell
residuals, and deviance residuals are a further transformation of martingale residuals.
However, these three different residual statistics are computed for each individual in the

sample.

These individual residuals can be plotted versus the survival time or a covariate. The pattern
of the graph provides some information about the appropriateness of the proportional hazards
model. It also provides information about outliers and other patterns. Similar to other

graphical methods, interpretation of the residual plots may be subjective.

While Cox-Snell residual method is useful in assessing the goodness of fit of parametric
models, they are not/ so desirable for a Cox proportional hazards model where a partial
likelihood function is used and the survivorship function is estimated by nonparametric

methods. The martingale residuals hare a skewed distribution with mean zero.

The deviance residuals behave much like residuals from Ordinary Least Square regression:
They have a mean of zero and an approximated standard deviation of 1.0, for that matter they
are symmetrically distributed about zero when the fitted model is adequate. They are negative
for observations that have longer survival times than expected and positive for observations
with survival times that are smaller than expected. In other words deviance residuals are
positive for persons who survivor for shorter time than expected and negative for those who
survive longer. The deviance often used in assessing the goodness of fit of a proportional
hazards model. They can be used like residuals from OLS. Very high or very low values

suggest that the observation may be an outlier in need of special attention.

The graph of deviance residuals against survival time or a covariate can be used to check the
ad-equacy of the proportional hazards model. The presence of certain patterns in these graphs
may indicate departures from the proportional hazards assumption, while extreme departures
from the main cluster indicate possible outliers or potential stability problems of the model.
The plot of deviance residuals against the survival time (Dur) using model 1C vyields the
following
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figure;

Figure 4.15: Plot of Deviance residuals of Model 1C against the survival time
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The figure above plots the deviance residuals against survival time (Dur). Roughly speaking, the
residuals are distributed symmetrically around zero between -3 and 3 with peculiar patterns. Larger
positive (negative) residuals are associated with smaller (larger) t values. The deviance residuals
suggest that the proportional hazards model provides a reasonable fit to the data.

Covariate-wise residuals

Apart from these individuals residuals mentioned above, we also have covariate-wise residuals
statistics which include Schoenfeld residuals, weighted Schoenfeld residuals and Score residuals.
All these three share a rather unusual property: instead of a single residual for each individual, as it
is in the case of the individual residuals category, there is a separate residual for each covariate for
each individual. They sum to O (approximately) in the sample i.e. the sum of say, the Schoenfeld
residuals for a covariate is zero A major difference among them is that the Score residuals are
defined for all observations, while the Schoenfeld residuals (both weighted and unweighted) are
not defined for censored observations (they are missing in the output data set). The examinations
of graphs of these three residuals behave much the same. Both graphical and statistical testing
approach of Schoenfeld residuals were used to evaluate the models.

The main function of residuals is to detect possible departures from the proportional hazards as-

sumption. Since Schoenfeld residuals are, in principle, independent of time, a plot that shows a
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18 4 1 1 1 1 40 ; 7 ; . ; " ;
9 4 1 1 0 0 2 3 0 0127139 013650  -0.82560 0.10645 -0.4740 -0.19461
0 4 1 1 0 1 2 30 0 011624 -0.12584 0.18106 0.11220 -1.5086 -0.16905
2 60 1 1 1 1 2 u 1 010951 0.87820 0.17716 0.11699 -4.6030 0.84024
@
E Table 4.13: Assessing the goodness of fit of Model 2B using Schoenfeld residuals data set
Output 10
Obs] Dur] Statuy sex| usebelt | alcohol| Speedvel] agedriver | annukil | tyrescon schsex Schusebell | schalconol | schspeedveh | schagedriver [ schannukil | schtyrescon
R 110 1 : 30 2 0 ; ; ‘ 3 } s .
23 |1 110 1 ] 2 3 0 013536 | 012693 | 0.18455 | 0.11165 -2.6661 114877 -0.3179%
I 110 1 2 K] 2 0 003179 | 012277 0.18949 | 0.1176 24818 0.15471 -0.33021
A“ 418 [1 1]0 1 2 29 3 0 010834 | -0.12416 | 0.18860 | 013791 -2.2659 109494 -031387
O S0l 110 1 1 2 2 0 001578 | -0.12931 019307 | -085599 -4.2035 0.11232 -0.32039
6] 105] ! 12l 1 2 29 3 0 i i ; ; . . ;
71 12] 1 110 1 2 26 2 0 000167 | 003454 | 0.19557 [ 0.14404 -5.3065 007835 -0.33756
8 | 18] 1 1]0 1 2 2 2 1 007443 | -0.14215 020518 | 0.15231 -4.5654 0.04952 067514
m 916 |1 1]0 1 2 26 2 0 0.12590 | -0.13373 017160 | 0.10627 -5.9759 0.15007 -033374
Q 10] 12 |1 110 1 2 2 2 1 002884 | 013335 | 017090 [ 0.10875 -3.8851 (.14894 0.66317
T A i ¥ 0 2 30 3 0 ; . : " ; \ ;
M Y1 1]1 1 2 45 1 1 .13195 [ 086344 0.17502 | 011137 12.9813 -0.84380 0.66998
O 132 ]1 1]0 1 2 40 2 0 013358 | 013256 | 0.1749%0 | 0.10839 8.1068 (.14963 -0.32840
I 14] 23 | 1 1[0 1 2 2 2 1 013544 | -0.13441 0.17734 0.1091 -3.8740 015172 067486
1502 [ 1 1[0 1 1 2 1 1 013803 | -0.13698 | 0.18073 | -0.88799 -2.9978 -0.84538 067663
P 1 o L P i 33 T 0 : : A 4 ; :
17] 34 |1 1[0 1 2 4 2 0 0.13331 | 0.12501 0.18410 | 0.10996 10.2779 0.14652 031315
h 18] 40 [ 1 5| e 1 1 40 2 0 ; s ) ; ;i 3 :
) 19] 4 |1 1]0 0 2 31 2 0 03484 | 002627 | 081760 [ 0.11351 -0.5364 0.15258 -0.32326
ﬁ 0047 ]1 1[0 1 2 30 2 0 -0.13067 | -0.12173 0.18788 | 0.11852 -1.5111 0.15339 032741
E 2060 |1 1[1 1 2 7 1 1 <.12638 | 088112 0.18503 | 0.12507 -4.5926 -0.86747 0.67508

The outputs in tables 4.12 and 4.13 display 21 observations for each of the two models with the

lowest accident time in the data sets.

Consider a driver who was involved in accident on the 60th day (according to table 4.12), was a

male of 27 years old which according to the Schoenfeld residuals was 4.6 years younger than the
model predicts. He had used safety belt, although the model predicts a probability of only 0.22
that a driver involved in an accident on the 60th day will be using safety belt, (schbelt=0.88), he

had used alcohol and the model predicts a probability of 0.92 that a driver involved in accident in
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60 days would be using alcohol (schalco=0.18), his speed was over 80km/h and the model actu-
ally predicts a probability of 0.87 that a driver involved in accident at that time would have been
moving at a speed that is over 80km/h (schspd=0.13).

Almost a similar result can be seen on that same individual predicted by model 2B in table 4.13.
The driver had used a vehicle whose tyre’s tread depth was above 4mm, although the model pre-
dicts a probability of only 0.32 that a driver involved in accident in 60 days would have been using
a vehicle whose tyres tread will be over 4mm (schtyrescon= 0.68).

Next step is to plot the residuals of each covariate against the survival time (Dur), and if the plot
shows a relationship with time, it is evidence against the assumption of proportionality. The un-
derlying idea behind the statistical test and the graphical approach is that if the PH assumption
holds for a particular covariate then the Schoenfeld residuals for that covariate will not be related

to survival time. The SAS codes produced the graphs in figures 4.16 and 4.17.

Figure 4.16: Plots of Schoenfeld residuals for each of the predictors in model 1C against survival
time
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Figure 4.17: Plots of Schoenfeld residuals for model 1C against survival time
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The graphs for the Sex, alcohol, usebelt, sexbelt and speed residuals are not very informative,
which is typical of graphs for dichotomous covariates. For driver age, the residuals have a fairly
random scatter. It can be concluded therefore that there is no evidence against the assumption
of proportionality and hence the model adequately fits the data since the plots do not show any
relationship with time.

Now, for the implementation of the Schoenfeld statistical test approach can be thought of as a

three-step process.

Step 1. Obtain Schoenfeld residuals for each predictor variable in the model as seen above

Step 2. Create a variable that ranks the order of failures. The subject who had the first (earliest)
event gets a value of 1; the next gets a value of 2, and so on.

Step 3. Test the correlation between the variables created in the first and second steps. The null
hypothesis is that the correlation between the Schoenfeld residuals and ranked failure time

is zero. Rejection of the null hypothesis leads to a conclusion that the PH assumption is

violated.
The statistical test approach offers a more objective approach for assessing the PH assumption
compared to the subjectivity of the graphical approach. However, the graphical approach enables
one to detect specific kinds of departures from the PH assumption; the researcher can see what is
going on from the graph. Consequently, it is recommended that when assessing the PH assumption,
the investigator use both graphical procedures and statistical testing before making a final decision.

The correlation output for model 1C is as follows;
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Table 4.14: Assessing the proportional hazard assumption of model 1C using Schoenfeld statistical test approach

Output 11
Pearson Correlation Coefficicnts
Prob > |r| underHg : p = 0
Number of Observations

h schagedriver schsexbelt

schsex

timerank 0.15307 -0.07405 0.10811 0.{)8157 -0.09264 -0.02832
Rank for Dur 0.0386 03191 0.1452 0.2723 0.2123 0.7035
183 183 183 183 183 183

The sample correlations with their corresponding p-values printed underneath are shown above.
The p-values for Sex, usebelt, alcohol, speedveh, agedriver and sexbelt are 0.0386,0.3191, 0.1452,
0.2723, 0.2123 and 0.7035 respectively, suggesting that the PH assumption is violated for Sex, but
reasonable for usebelt, alcohol, speedveh, agedriver and sexbelt. This p-value is used for evaluat-
ing the PH assumption for the covariates. A nonsignificant (i.e., large) p-value, say greater than
0.10, suggest that the PH assumption is reasonable, whereas a small p-value, say less than 0.05,
suggests that the variable being tested does not satisfy this assumption.

For model 2B, the correlation output is as follows;

Table 4.15: Assessing the proportional hazard assumption of model 2B using Schoenfeld statistical test approach

Output 12
Pearson Correlation Coefficients
Prob > |r|under Hp : p =0
Number of Observations

schsex bel peedveh schagedriver schannukil schtyrescon
timerank 0.15216 -0.09784 0.10813 0.07124 -0.10632 0.04124 0.06193
Rank for Variable Dur 0.0444 0.1977 0.1543 0.3488 0.1614 0.5879 0.4156
175 175 175 175 175 175 175

The sample correlations with their corresponding p-values printed underneath are shown above.
The p-values for Sex, usebelt, alcohol, speedveh, agedriver, annukil and tyrescon are 0.0444,
0.1977, 0.1543, 0.3488, 0.1614, 0.5879 and 0.4156 respectively, suggesting that the PH assump-
tion is violated for Sex again in this model, but reasonable for usebelt, alcohol, speedveh, agedriver,

annukil and tyrescon. This is the reason why the effect of sex on accident time is less conclusive.

4.43 Identification of influential and poorly fit subjects

Another important aspect of evaluation is a thorough examination of regression diagnostic statis-
tics to identify which if any subjects: have an unusual configuration of covariates, exert an undue
influence on the estimates of the parameters and/or have an undue influence on the fit of the model.
Leverage is a diagnostic statistic that measures how "unusual" the values of the covariates are for

an individual. In other words, it measures how far an independent variable deviates from its mean.
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These leverage points can have an effect on the estimate of regression coefficient. Therefore how
high leverage contributes to a measure of the influence that a covariate value has on the estimate
of a coefficient is of concern in proportional hazards model.

An observation is said to be influential if removing the observation substantially changes the esti-
mate of the coefficients. Most OLS regression packages can compute various influence statistics
that measure how much would change if a particular observation is removed from the analysis.
Such statistics can also be computed for Cox regression models. The Likelihood Displacement
(LD) statistic measures influence on the model as a whole. This statistic tells one (approximately)

how much the log-likelihood (multiplied by 2) will change if the individual is removed from the

sample.
Table 4.16: Identification ofobservations that have leverage in model 2B using the DfBeta coefficient estimates
Output 13. Data set C: statistics ol model 2B

obs| Dur| Stalu§ sex| usebelt | alcohol | Speedvely tyrescon driver_agp | annukil | dsex dusebelt dalcohol dspeedveh dtyrescon ddriver_agp dannukil
1 35 1 1 0 1 : 0 2 2 : : . B A 3 .

2 36 1 1 [ 1 2 0 2 3 0.012141 0.001596 0.003132 -0.001888 0.001891 -0.000773 0.020836
3 51 1 1 0 1 2 0 2 2 -0.003374 -0.002846 0.002970 0.001920 -0.005749 0.000558 -0.002157
4 83 1 1 0 1 2 0 2 3 0.011250 0.001679 0.002897 0.000025 0.001193 0.000154 0.016048
5 102 1 1 0 1 1 0 2 2 -0.002860 -0.011235 0.007426 -0.037988 -0.009936 -0.002045 0.000163
6 105] 1 ! 0 1 2 0 2 3 E " : : o .

75 1my 1 1 0 1 2 0 2 2 -0.000401 -0.001800 0.001805 0.002220 -0.003833 0.001072 -0.002574
8 18| 1 1 0 1 2 1 2 2 0.002781 -0.000429 0.000673 0.001172 -0.001904 0.000436 -0.001596
9 6 1 1 0 1 2 0 2 2 -0.005225 -0.005328 0.003429 0.001740 -0.008330 -0.000824 -0.003104
10] 12 1 1 0 1 2 1 2 2 -0.010517 -0.002869 0.004401 0.005014 0.023395 0.001371 0.006249
1] 15 1 1 4 0 2 0 2 3 G . 3 A . ¢ .

12| 19 1 1 1 1 2 1 2 1 -0.022978 0.036582 0.008396 0.017079 0.016261 0.006785 -0.012530
13| 21 1 1 0 1 2 0 2 2 -0.005470 -0.004847 0.003208 0.001747 -0.007522 -0.000584 -0.003031
14| 23 1 1 0 1 2 1 2 2 -0.010135 -0.002646 0.004186 0.004614 0.021784 0.001229 0.005722
15( 26 1 1 0 1 1 1 2 1 -0.028411 -0.017256 0.009033 -0.036386 0.011288 -0.001437 -0.014849
16| 31 1 1 : 1 1 0 2 1 . . . 5 B N 5

17| 34 1 1 0 1 2 0 2 2 -0.004707 -0.003824 0.003259 0.001760 -0.006226 -0.000107 -0.002565
18| 40 1 1 2 1 1 0 2 2 . 5 ’ = 3 % .

19| 42 1 1 0 0 2 0 2 2 -0.013473 -0.007866 -0.029537 0.006110 -0.008439 0.001386 -0.002555
20| 47 1 1 0 1 2 0 2 2 -0.003473 -0.002912 0.003039 0.002061 -0.005899 0.000574 -0.002224
21| 60 1 1 1 1 2 1 2 1 -0.015668 0.026717 0.006300 0.012945 0.011399 0.005719 -0.009193
21 72 1 1 0 1 2 0 2 E g P : ‘ e g )

23| 77 1 1 1 1 2 1 2 5

24| 69 1 1 0 1 2 0 2 .

25| 91 1 1 . 1 2 0 2 2 5 - ) 5 . . 5

26| 94 1 1 0 0 2 0 2 2 -0.010835 -0.006641 -0.025588 0.006906 -0.007427 0.001802 -0.003015
27| 103 1 1 0 1 2 0 2 3 0.009523 0.001238 0.002647 -0.000100 0.000871 0.000503 0.014004
28| 106 1 1 0 1 2 0 2 1: -0.000606 -0.000313 0.000549 0.001205 -0.001088 0.000891 -0.001811
29| 14| 1 1 . ) 1 1 2 2 2 ¢ g > 3 5 "

30( 10 1 1 0 1 2 0 3 2 -0.000924 -0.000017 0.002038 0.005150 -0.006219 0.022966 -0.003713
31| 28 1 2 1 1 2 1 2 1 0.045208 0.033748 0.013548 0.012590 0.009208 0.008729 0.004491
32| 59 1 2 0 0 2 1 1 1 0.026815 -0.006971 -0.012306 0.006716 0.003847 -0.009713 0.000049
33| 108| 1 2 0 1 2 0 2 1 -0.048687 0.003980 -0.010258 -0.003753 0.018194 -0.003365 0.007634
34| 119( 1 1 i 1 2 1 2 1 . » B 5 3 s o

35| 120 1 1 0 0 2 0 2 2 -0.007739 -0.006798 -0.021860 0.006877 -0.007676 0.001811 -0.003833
36| 92 1 1 1 1 1 1 2 2 -0.002184 0.035521 0.012881 -0.030291 0.022223 0.004101 0.015555
37| 124 1 1 0 1 2 0 ) 2 -0.00239%4 -0.005544 0.003366 0.001340 -0.005900 -0.011137 -0.002885
38| 125 1 1 0 1 2 0 2 2 0.000930 -0.001771 0.001582 0.002152 -0.002671 0.000458 -0.002164
39| 131 1 1 0 0 2 0 1 3 0.003272 -0.007238 -0.025665 0.001328 -0.002797 -0.020053 0.019385
40| 134 1 1 0 1 2 0 2 5 % 5 o 2 3 2 8

41| 135 1 1 0 1 2 0 2 B 5 s % " 3 § .

42] 142 1 1 1 1 1 1 2 1 -0.015493 0.022896 0.011892 -0.020449 0.010138 0.003974 -0.008564

The DfBeta statistics is what is considered in this research and it tells one how much each coeffi-
cient will change by removal of a single observation. The DfBeta statistics was used to fit model

9B. Model 2B was used because it includes all the significant variables in final model 1C.
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Data set C is displayed in the output shown above for 42 cases; the signs of the DfBeta statistics
are the reverse of what one might expect - a negative sign means that the coefficient increases
when the observation is removed. Almost all the observations have small values for the influence
statistics. For example, the estimated coefficients for the covariates of sex and alcohol in model 2B
were respectively 0.60565 and 0.91737. However, in Data set C, the value 0.012141 for dsex
indicates that if observation 2 is removed, the sex coefficient will decrease to approximately
0.60565-0.012141 = 0.593509, a decrease of 2%. Also for the value 0.0013132 for dalcohol
indicates that if observation 2 is removed, the alcohol coefficient will decrease to approximately
0.91737-0.003132 = 0.914238, a decrease of 0.3%. Further, it can be seen in the set the value -
0.015493 for dsex indicates that if observation 42 is removed, the sex coefficient will increase to
approximately 0.60565+0.015493 = 0.621143, an increase of 1.5%. Overall, it can be seen in the

Data set C that none of the observations did exert an undue influence on the estimated coefficients.

Based on the above discussion in trying to find observations that had leverage by using the DfBeta
coefficient (estimates the influence of each observation on the resultant coefficients of model vari-
ables). It was realized that no deviant observations were found in any of the variables. That is to
say that, largest changes were not found in the overall estimated coefficients and hence would not
much affect the effects of the coefficients. This means that no observation had exerted an undue

influence on the estimates of the parameters and hence the fit of the model.

In summary, the evaluation based on the residuals and the DfBeta indicated that the models struc-
tural supposition and proportionality, was acceptable. Elimination of deviant observations from the
models will cause minor changes to the coefficients of the variables in the models. The practical
conclusion is that removal of variables from the models will result in no or minor changes in the

overall coefficients of all the covariates considered and hence have not distorted the models.
In conclusion, the sensitivity testing of the MTTU data models, suggested that it was not
necessary to eliminate observations or alter the structure of the models. The calculated relative risk

will still remain within the 95% confidence intervals.

However, the explanatory power of the models is not very high, for example consider a driver who
was involved in accident on the 60th day (according to table 4.12) of model IC, was a male of 27
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years old which according to the Schoenfeld residuals was 4.6 years younger than the model pre-
dicts. He had used safety belt, although the model predicts a probability of only 0.22 that a driver
involved in an accident on the 60th day will be using safety belt (schbelt=0.88). This suggests a need

to further improve the modeling methods.
4.4.4 Methodological Issues considered in developing the accident Models

The following issues to be considered in the process of developing the survival models for the data

in this study.

Issue of Multi-Co-linearity

The variables in the models were correlated with each other to various degrees. The so called multi-
co-linearity produced by correlations can cause problems in the estimation and interpretation of the
models. The central problem of multi-co-linearity is that parameter estimates or variable coefficients
cannot be estimated exactly, because the correlations increase the variable’s standard errors. The
variables’ effects may be distorted and their coefficients may reflect the effects of other variables.
Some of the estimation problems observed in the study could be attributed, in part, to multi-co-
linearity. Small changes in the set of observations (following DfBeta-tests for deviant observations)
caused some insignificant changes in parameter estimates, although the model as a whole was
statistical significant since none of the coefficients showed unreasonably large.

Missing Data

Missing data was a general problem. The amount of missing data varies from one variable to another
but because of the small number of observations (particularly accident cases) it was not justified to
remove all cases with some missing data. This resulted in different number of observations in each
model. The models included all the observations that did not have missing data concerning the

variables included in the model.
Specific causes of missing data were drivers who had died in the accidents and could not be captured
in the registry. Some killed drivers were omitted from the MTTU data due to large missing

information about them.
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4.5 Solving the main questions of the research
The approach for solving the four main questions for this research was based on the following research
methods and data sources.
1. Previous research results.
2. Analysis with Kaplan-Meier Method.
3. The compiled accident models
The four specified main question are;
e Can a drive involvement in accident be examined with survival models on the basis of
exposure over time?
e Do age and Sex capture differences in accident risk at a general level, as background
factors?
e Do vehicle characteristics contribute to accident risks?
e Do unworn out tyres reduces drivers’ accident risk?
Hypothesis testing
Statistical hypothesis testing was used in defining solutions to the four questions of the study. The
statistical decisions were based on the estimated parameters of the developed survival models. The Ho
is the null hypothesis and Hz is the alternative or research hypothesis. The purpose of the testing is
to decide whether the evidence tends to refute the null hypothesis. Since the research hypothesis is Hz,
it is hoped that evidence leads to reject Ho and thereby accept Hi.
When values of the test statistics, here models and their estimated parameters, are in the critical region
specified by «, the chosen level of significance, we reject Ho. We have specified o to be about 0.05,
meaning that there is about 5% risk to reject Ho when it is actually true (Type I error). It is possible to
make another type of error (Type Il error), to fail to reject Ho when the alternative Hj is true.

Generally, we test at the significance level o = 0.05 as follows;

Ho:p1 = p2 = ... = pn = 0. e.g. all parameters of the models are 0O, i.e. none of the variables is
significant
Hy:p#0 foratleastonei, i==1,2,....k

Therefore, the estimated hazard (accident) models for the research are model IC and model 2B is

shown below;
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The Cox PH model is usually written in terms of the hazard model formula shown below;

h(t, X) = ho(t) x exp(X 5)

Where h(x, X) is the hazard function, ho(t) is the base level of the hazard function and

exp(X ) = exp(Br X1 + f2 X2 + ... + B Xn)- The p1 is the coefficients of the variables x; ( variables)

Model 1C:

h(t X) = ho (t)eO.BZSex — 2.18usebelt + 1.23speedveh + 0.37driverage + 1.26sexbelt
1

Model2B:

h(t X) = ho (t)e0.16sex — 0.8usebelt + 130speedveh + 0.34typcron + 0.39driverage - 0.44annhlkil
1

In the next section we first presented a summary of driver’s accident risk factors and relative
risks based on the analysis and survival models discussed. Then hypothesis is set for each of
the research questions and finally a summary is presented on either acceptance or rejection of

the hypothesis based on the developed models.

4.5.1 Driver risk factors and relative risks

The probability of drivers to be involved in an accident was influenced by driver
characteristics (age, gender, experience), their behaviour in traffic (speed, use of alcohol, use
of safety belt), the nature of exposure (annual kilometreage, road surface condition) and by
vehicle characteristics (vehicle age, weight, tyre condition). The use of safety belt, which was

only supposed to influence the seriousness of injuries, proved to be also a strong risk factor.

The developed models estimated the coefficients of the variables which enabled calculation of
relative risks associated with each factor. The time in the models referred to the number of
days counted from the beginning of the period under consideration until the day of the
accident. The models of the MTTU data gave many of the risks factors. Table 4.17 gives the

interesting and most important factors.

In the MTTU accident data, survival models compare “primary parties” and “other involved
parties”. The obtained results do not necessarily describe the accident risk, the probability of
being involved in a fatal accident, but the probability of being an accident primary involved

party on the condition that a fatal accident has occurred.
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Variable Remark

Driver Age The relative risk was high for both the young and and the
middle aged and lowest for the old

Driver Sex Male drives had a higher relative risk than female drivers.

Use of alcohol Significantly increased drivers’ relative risk

Not using the | Significantly increased drivers’ relative risk

safety belt

Speed Higher relative risk for drivers with speed over 80km/h

Familiarity of | Drivers’ familiar with route had a lower relative risk

route

Annual _ vehicle | Relative risk decreased with increase in kilometerage

kilomreage

Vehicle Age Users of new vehicles had somewhat lower risk, (though not

statistically significant variable).

Vehicle weight Users of light vehicles had a higher relative risk, (though
not statistically significant variable).

Tyres tread depth | Small tread depth increases relative risk (though not statis-
tically significant variable)

Age of license Drivers with lessthan 5 years of license duration had higher
relative risk.

4.5.2 Can driver involvement in accidents be examined with Survival Models on the basis
of exposure over time?

The first main question was that can driver involvement in accident be examined on the basis of

exposure over time using survival models and is amount and nature of exposure to traffic a major

risk factor?

In the preliminary analysis (Kaplan-Meier estimates) we have seen that there are many factors

i
:
E
E
%
u
:
:
)
!
E

having a statistically significant effect on the accident probability. Here, we first test if we can find
any significant predictor variables by using the survival models.
In order to get the answer to the question concerning the amount of traffic exposure as a major risk

factor, we set the following hypothesis to be tested at the significance level a = 0.05;

From model 2B, we can write
Hy:p:=0

Hy:B:#0

In other words, it can be stated as:

H,: The coefficients of driver annual kilometerage does not differ from zero in the model. i.e, the
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variable does not significantly contribute to accident occurrence Hi: The coefficients of driver
annual kilometerage differ from zero. i.e. The variable does not significantly contribute to

accident occurrence.

The p-value for this variable in model 2B is 0.0084, which is less than the pre-assigned
significant level of 0.05 indicating that the variable is statistically significant risk factor.

Therefore, the hypothesis Ho is rejected.

In the MTTU data, exposure was described by the annual vehicle kilomreage. According to the
MTTU data models, the probability to be a primary party in a fatal accident decreased as the
annual vehicle kilomerage increased, which is in contrary to what other researchers finding that
the probability of accident increased with increasing kilometreage. This conflicting result might
be due to the fact that, in the MTTU data, all drivers were already involved in accident and
therefore, annual vehicle kilometerage represented driving experience. It distinguished between
those with little experience who got involved as “primary parties” and the more experienced
whose involvement was as “others”. It is likely that more detailed and accurate information on

actual traffic exposure might improve the models.

One can conclude that driver involvement in accident can be examined with survival models
based on exposure over time. The amounts of travel are specific risk factors. With better

exposure data more accurate models can be specified.

4.5.3 Are driver age and sex major risk factors?
The second main question of the study was that are driver age and sex major background risk
factors for differences in accident probability. Several other factors are expressed through age
and sex.
We test the nature of driver age and sex a major risk factor at the significant level ¢ = 0.05 as
follows;
Ho: The coefficients of driver age do not differ from zero in the models 1C and 2B.
Hq: the coefficients of driver age differ from the zero in models 1C and 2B.
The p-value for this covariate in each of the models 1C and 2B are respectively 0.0178 and
0.0146, both values are less than the specified significance level. This indicates that the
coefficients of driver age differ from zero in both models. Therefore, HO is rejected; driver age
is a statistically
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significant risk factor.
We can also test the sex variable as follows;

Ho: the coefficients of driver sex do not differ from zero in the two models

H1: the coefficients of driver sex differ from zero in the two models.

Similarly, the p-values for this covariate in each of the models IC and 2B are respectively 0.0148
and 0.0408, both values are less than the specified significance level. This indicates that the co-
efficients of driver sex differ from zero in both models. Therefore Ho is rejected; driver sex is a

statistically significant risk factor.

4.5.4 Do vehicle characteristics contribute to accident risks?

The third main question of the study was that specific characteristics of vehicles can contribute
to accident risk probabilities. In the MTTU data, vehicle age and weight were the main
characteristics.

We therefore, test the nature of vehicle age and weight as major risk factors at the significance
level & = 0.05 as follows;

Ho: The coefficients of vehicle age do not differ from zero in the models.

H1: The coefficients of vehicle age differ from zero in the models.

The p-value for this covariate in model 2A is 0.3735 which is greater than the specified
significance level. This indicates that the coefficient of vehicle age do not differ from zero. We
conclude that Ho is failed to be rejected; vehicle age is not a statistically significant accident risk
factor.

Then for vehicle weight, we test it as follows;

Ho: The coefficient of vehicles weight do not differ from zero in the models.

H1 : The coefficient of vehicles weight differ from zero in the models.

In the model 2A, the p-value for this covariate is 0.9039 which is greater than the specified sig-
nificance level. This indicates that the coefficient of vehicles weight do not differ from zero. We
conclude that Ho is failed to be rejected; vehicles weight is not a statistically significant accident

risk factor.

4.5.5 Do unworn out Tyres Reduces Drivers’ Accident Risk?

The fourth and final main question of the study was that does the use of good tyres reduce

drivers accident risk?
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The p-values for this covariate in models 2A and 2B are respectively 0.0180 and 0.0646. It can
be seen in model 2A that the tyres condition differs from zero, rejecting the Ho, indicating that
worst tyre’s depth is a statistically significant risk factor. This same variable did not have a
large contribution to the occurrence of accident in model 2B after vehicle age and other
variables were excluded in the same model. Nevertheless, tyre condition appears to be a better
explanatory factor than vehicle age. Poor tyre condition is more likely, of course, with old

vehicles.
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CHAPTER 5

CONCLUSION AND SUGGESTIONS FOR FUTURE WORK

5.1 Conclusion

The following conclusions can be drawn from the analysis of the Northern regional MITU

accident data;

In the models, it indicated that young and middle aged drivers are at the higher risk. This may
reflect lack of experience (and perhaps riskier driving style) of young drivers, for the old
drivers it can be attributed to reduced capabilities on their part. Traffic conditions set greater
demands on all drivers; the young and very old may have a harder time meeting the greater
demands.

It is usually difficult to separate the effects of driver age and driving experience due to strong
correlation between them. The results suggest that as the driver age and driving experience
increase, the risk of mild accident decreases, but the risk factors for the most serious accidents
accumulate with both young and old drivers (Elvik and VVaa 1990). In the models, dealing with
fatal accidents, experience was better represented by annual kilometerage and less linked to
age.

Driver sex did not have a clear impact on accident probability, once exposure and experience
were taken into account. There were significant differences between female and male drivers
in age distribution, mobility, driving experience, the type of cars used, and in driving related
behaviour. Females generally drove less than males and those females involved in accidents

lacked driving experience.

Females however, had a higher relative risk across all age groups. Previous studies
demonstrated that differences in risks between sexes could be explained by differences in
mobility.

Also, female drivers drove fewer kilometers, were less often under the influence of alcohol,

used
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safety belt more often than male drivers. Female drivers had fewer accidents and committed fewer
offences.

To sum up, the statistical testing and other variable information support the conclusion that driver
age is a major risk factor. The role of sex as a risk factor is less conclusive, as in model 2A the
effect of driver sex was significantly minimised when other factors correlated with it were con-
sidered in the model. These included amount of mobility, specific driving experience, access to
different types of vehicles and certain behaviours. The sex of drivers may remain a practically
useful explanatory variable.

Not use of safety belt, which was only supposed to influence the seriousness of injuries, proved to
be also a strong risk factor.

The analysis of the MTTU data indicated that driving under the influence of alcohol doubled
drivers' relative risk. According to other previous studies, driving under the influence of alcohol
has a significant effect on drivers’ accidents risk (Elvik and Vaa 1990). Drivers under the influence
of alcohol are 3 times greater at risk than that of non-alcohol users. The use of alcohol is often
associated with young drivers’ lifestyle and other risk factor related to it.

According to the models, Speed proved to be a statistically significant variable in predicting the
hazard of accidents. The hazard of accidents for drivers who drove over 80km/h is 3 times that of
those who drove less than 80km/h.

Annual vehicle kilometerage was used to measure the exposure of drivers to traffic, it was however
indicated in the models that for any one year increased in driver’s exposure to traffic, it is asso-
ciated with 35.3% decrease in expected time to accident (hazard). This result is indicating that
drivers’ accident risks decreases as annual kilometerage increases. This perhaps might be due to
accumulated experience on the part of these drivers. However this might need further probing. Age
of license of drivers was used as a proxy to assess the level of experience of the driver. Age of
license was a moderate significant variable in model 2A with p =0.0635. However, the hazard ratio
indicated that drivers with duration of license less than 5 years had 1.7 times the risk of those with
license duration of at least 5 years.

Route familiarity of drivers was not a significant variable, it however, did indicate that the accident

risks was lower for drivers who were familiar with the site of the accident compared to other
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drivers.
In the models, vehicles age was not a clear risk factor, perhaps because of the strong

correlations with alcohol and safety belt use. Users of old vehicles included many alcohol
users, young drivers, and non-user of belt.

Vehicle weight was related inversely to risk, and so was vehicle age. However, these
variables were strongly related to driver and exposure factors, such that the unique effect of
these vehicle factors was rather small and it depended on the exact combinations of other
factors. For example, although it was generally safer for large and older vehicles, the most
risky combination was of young drivers using old vehicles. The Models based on the fatal
accidents database included a strong influence of driver behaviour - use of alcohol, non-use
of safety belt, and excessive speed all of which added to the probability of causing an
accident.

It was also realised in the MTTU data that young drivers tended to drive older vehicles.
More of drivers of newer vehicles were involved in speeding over 80km/h prior to the
accident. Light weight vehicles were more likely to be primary party in a fatal accident.
Vehicle characteristics were highly correlated with driver age and sex with vehicle
kilometreage. The analysis of the third main question of the study pointed out that the
features of a vehicle, it accessories, the manner of driving and the nature of exposure are all
interrelated. However, some vehicle characteristics can be separated into their own
individual risk factors but they seemed not to have strong explanatory power in these
survival models.

In addition, tyre condition proved to be as important factor in determining the overall risk
associated with tyres. Norwegian accident studied in the early 90’s proved that the condition
of tyres, especially their tread depth, is at least as important as having studs. A similar
conclusion was derived here from the survival models of the MTTU data. The Norwegian
study estimated that a 1mm decrease in the tyre’s tread depth increased the accident
probability by about 4%, which is totally consistent with the result obtained in the present
study (3%-6%). In summary, according to all the estimated models, driving with much worn
out tyres was more consistently risky than driving with unworn out tyres.

In conclusion, the application of survival models to the accident data appeared to be a
promising approach. The models apply well to the examination of risk factors. These models

can however
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Be improved further. Improving the models will require better information on drivers’
exposure times. Information on the date the driver got his driving license to his first

involvement of accident can help improve the models.

5.2 Suggestions for Future Work

The accident survival models is still in progress and it is necessary to test it further and

examine it more thoroughly in future work. The following suggestions are made on how this

research can be developed further and strengthen the obtained results;

1. The major limitation of this study is that it focused on only one year driving, meanwhile,
the driver might have been driving for so many years before the accident occurred. It is
therefore strongly suggested that any further work on this should be focused on the date
the drivers got their driving license to his first involvement of accident. Results obtained
from such a data would be more reliable.

2. The new edition of accident survival models may seek more comprehensive data for a
larger number of predictors. There are several covariates such as the date when vehicle
was first taken into use, how long the driver had been on the trip when accident occurred,
employment status of the driver, criminal records of the driver, driver’s history of
involvement of accident, medical condition and health of drivers, marital status and
family situation and economic status of drivers. This information may play an essential
role to the development of the models, but unfortunately these indicators are currently not
available. In the future it is hoped to develop a set of covariates that will be widely useful,
regularly updated, available and can cover future data needs.

3. The model developed in this study is only limited to Northern region and not the whole
country of Ghana. Therefore in order to obtain a generalised model for the entire country,
there is the need to have a comprehensive database of accidents in the country. This
database should contain detailed information about the involved drivers, which should
include all the variables considered in this study and those that have been proposed. The
information in the database should be able to solve the shortcomings encountered in this

study.
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4. It is necessary to improve the accuracy and reduce the uncertainty of the survival model results
by taking into consideration the above mentioned recommendations. There is also the need to
investigate new applications and alternatives to the methods whether they can provide better
results. This may include: better assessment and selection of variables and data. Extended Cox
survival approach can be used to take care of time - varying covariates, since the values of the
covariates of drivers may change over the follow- up period. Also, other parametric regression
models such as log-normal, the exponential model, Weibull model and log-logistic can also be
carried out to be able to make comparisons of the all model types and hence determine the best

model.

Finally it can be said that the outcomes from this study are very encouraging. The Survival acci-
dent models is very promising and worth further applications to all regions of the country. This
survival models developed for the northern region has the potential to become a major measure
of road safety situation in the Northern region in particular and the country at large and hence
enable stakeholders in road safety management to put up better measures to reduce the occur-
rence of accidents in the region. However, more extensive analysis and applications need to be
conducted in the future before making any strong conclusions for now. This makes me conclude
this thesis work which concentrates on the concept of “Survival accident model development” is
a broad and complex concept. This requires deeper processes, integrated programs and much
more cooperation between all the key national and international bodies. | will therefore suggest

for more improvements of these models in future projects.
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APPENDIX A

FATALITY FORM OF THE UNIT

The following information is what is required of any accident involved driver;

[a—

. Sex of driver

Age of driver

Name of driver:

Date of accident

Use of alcohol when accident occurred. a) Yes b) No
Use of safety belt when accident occurred. a) Yes b) No

Vehicle ownership————
Type of vehicle

e e N g W B W R

Age of vehicle

-
(=)

. Weight of vehicle

p—
[om—y

. Vehicles tyres condition

i
:
E
E
5
;
:
:
)
!
E

a) New or good as new b) Somewhat worn d) Quite worn e) Very worn
12. Estimated Speed of vehicle when accident occurred

13. Posted speed limit at the site of accident

14. Estimated annual vehicle kilometers driven
15. Consequences of the accident

a) Number of minor injuries——————b) Number of serious injuries ——— ¢) Number of

fatalities

16. Road surface condition when accident occurred
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17. Weather condition when accident occurred
18. Traffic lighting condition when accident occurred
19. Drivers familiarity of route. a) Pass scene of accident at least once a month. b) more seldom
pass than once in a month
20. Type of driving license
21. Age of driving license
22. Scene of accident. a) Junction b) link c) other
23. cause of accident
a) Excessive speeding
b) Inattention, confusion of lack of judgment of driver
¢) Drivers careless at road junction and cutting corners
d) Improperly overtaking or cutting in
e) Inexperience of driver
f) Intoxication
g) Other recklessness or negligence by drivers
h) Over loading
i) Mechanical defects
j) Defective lights
k) Dazzling lights

1) Skid and road surface defects

i
:
E
E
5
;
:
:
)
!
E

m) Other road defects
n) Obstructions
o) Level erosions

p) Children

q) Adults crossing road carelessly

r) Adults boarding or alighting from vehicles
s) Other pedestrian faults

t) Passengers faults

u) Animals not under control
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v) Recklessness or negligence caused by peddle cyclist

w) Recklessness or negligence caused by drivers of horse - driven vehicles

i
:
E
E
%
u
:
:
)
!
E
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APPENDIX B

SAS CODES FOR ALL THE FIGURES AND OUTPUTS

B.1 DEMONSTRATING PROC LIFETEST TO OBTAIN

KAPLAN-MEIER AND LIFE TABLE SURVIVAL

ESTIMATES AND PLOTS

PROC LIFETEST produces Kaplan-Meier survival estimates with the METHOD=KM option. The
PLOTS=(S) option plots the estimated survival function. The TIME statement defines the time-to-
event variable (Dur) and the value for censorship (STATUS = 0). The STRATA statement is used
to compare survival estimates for different groups (e.g., strata speedveh). The STRATA statement
also provides the log rank test and Wilcoxon test statistics. The SYMBOL statements are optional,
it is to distinguish the two survival curves by colour.

The codes are as follows;

For figure 4.1

proc lifetest data=sasuser.thesisdatald4 plots=(s) graphics;
time Durxstatus (0);
strata driver_agp;
symboll v=none color=black line=1l;

symbol2 v=none color=red line=2;
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symbol3 v=none color=blue line=3;

runy;

For figure 4.2
proc lifetest data=sasuser.thesisdatald4 plots=(s) graphics;
time Dur=xstatus(0);
strata sex;
symboll v=none color=black line=1l;
symbol2 v=none color=red line=2;
run;
For Figure 4.3
proc lifetest data=sasuser.thesisdatal4 plots=(s) graphics;
time Dur=*status (0);
strata alcohol;
symboll v=none color=black line=1l;

symbol2 v=none color=red line=2;

MITTE N T
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run;
) Figure 4.4

proc lifetest data=sasuser.thesisdatal4 plots=(s) graphics;

time Dur=*status (0);

strata usebelt;

symboll v=none color=black line=l;
symbol2 v=none color=red line=2;

run;

For Figure 4.5
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proc lifetest data=sasuser.thesisdatal4 plots=(s) graphics;
time Dur*status(0);
strata annukil;
symboll v=none color=black line=1;
symbol2 v=none color=red line=2;
symbol3 v=none color=blue line=3;

run;

For figure 4.6
proc lifetest data=sasuser.thesisdatal4 plots=(s) graphics;
time Durx*status(0);
strata scene;
symboll v=none color=black line=l;
symbol2 wv=none color=red line=2;

run;

For figure 4.7
proc lifetest data=sasuser.thesisdatald4 plots=(s) graphics;
time Durxstatus (0);
strata speedveh;
symboll v=none color=black line=1;
symbol2 v=none color=red line=2;

run;

For figure 4.8
proc lifetest data=sasuser.thesisdatald4 plots=(s) graphics;

time Durxstatus(0);
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strata wghtveh;
symboll v=none color=black line=1l;
symbol2 v=none color=red line=2;
run;
For figure 4.9
proc: lifetest data=sasuser.thesisdatald4 plots=(s) graphics;
time Durxstatus (0);
strata tyrescon;
symboll v=none color=black line=1l;
symbol2 wv=none color=red line=2;
run;

For figure 4.10
proc lifetest data=sasuser.thesisdatalé plots=(s) graphics;

time Durxstatus (0);

strata agelic;

symboll v=none color=black line=1l;

symbol2 wv=none color=red line=2;

run;
For figure 4.11
proc lifetest data=sasuser.thesisdatal4 plots=(s) graphics;
time Dur*status (0);
strata rutfam;
symboll v=none color=black line=1;

symbol2 v=none color=red line=2;

88



i
:
E
E
5
;
:
:
)
!
E

www.udsspace.uds.edu.gh

symboll v=none color=black line=1l;

symbol2 v=none color=red line=2;

run;

For Figure 4.13

proc lifetest data=sasuser.thesisdatal4 plots=(s) graphics;

time Durxstatus(0);

strata owner;
symboll wv=none color=black line=1l;

symbol2 v=none color=red line=2;

run;

For figure 4.14
proc lifetest data=sasuser.thesisdatal4 plots=(s)
time Durxstatus (0);

strata ageveh;

symboll v=none color=black line=1l;

symbol2 v=none color=red line=2;

run;
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B.2 RUNNING A COX PROPORTIONAL HAZARD

MODEL WITH PROC PHREG

PROC PHREG is used to request a Cox proportional hazards model. The statement Dur*status(0)
in the MODEL statement specifies the time-to-event variable (Dur) and the value for censorship
(STATUS = 0). The predictors are then included in the model. The option RL in the MODEL
statement provides 95% confidence intervals for the hazard ratio estimates. When we wish to as-
sess interaction effects between variables, we define two interaction terms in a new temporary SAS

dataset and then run a model containing those terms. The codes are as follows;

Output 1

proc phreg data=sasuser.thesisdatald;

model Dursstatus (0)=sex usebelt alcohol ageveh agelic speedveh...
driver_agp2 driver_agp3/rl;

driver_agp2=(driver_agp=2);

driver_agp3=(driver_agp=3);

i
:
E
E
5
;
:
:
)
!
E

driver_agp:test driver_agp2,driver_agp3;

run;

Output 2

proc phreg data=sasuser.thesisdatal4;
model Durxstatus (0)=sex usebelt alcohol speedveh driver_agp /rl;

run;

Output 3

proc phreg data=sasuser.thesisdatal4;
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model Durxstatus (0)=sex usebelt alcohol speedveh agedriver sexbelt/rl;

sexbelt=sex*usebelt;

run;

Output 4

proc phreg data=sasuser.thesisdatal4;

model Dur*status (0)=sex usebelt alcohol ageveh agelic speedveh tyrescon..

wghtveh rutfam driver_agp2 driver_agp3 annukil2 annukil3/rl;

driver_agp2=(driver_agp=2);
driver_agp3=(driver_agp=3);
driver_agp:test driver_agp2,driver_agp3;
annukil2= (annukil=2);
annukil3=(annukil=3);

annukil:test annukil?2, annukil3;

run;

Output 5
proc phreg data=sasuser.thesisdata14;
model Dursstatus (0)=sex usebelt alcohol speedveh tyrescon...
driver_agp annukil/rl;
run;

ittty odis . = "
DS LIBRARY
Output 6

proc phreg data=sasuser.thesisdatal4;
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model Dursstatus (0)=sex usebelt alcohol speedveh driver_agp sext usebeltt
alcoholt speedveht driver_agpt;

sext=sex*log (Dur) ;

usebeltt=usebeltxlog (Dur) ;

alcoholt=alcoholxlog (Dur) ;

speedveht=speedveh*log (Dur) ;

driver_agpt=driver_agp*log (Dur);

test_proportionality:test sext,usebeltt,alcoholt,speedveht,driver_agpt;

run;

Output 7

proc phreg data=sasuser.thesisdatal4;

model Durxstatus (0)=sex usebelt alcohol speedveh driver_agp sexbelt sext.
usebeltt alcoholt speedveht driver_agpt;

sexbelt=sex*usebelt;

sext=sex*log (Dur);

usebeltt=usebeltxlog (Dur);

alcoholt=alcoholxlog(Dur) ;

speedveht=speedveh*log (Dur) ;

driver_agpt=driver_agp*log (Dur);

test_proportionality:test sext,usebeltt,alcoholt,speedveht,driver_agpt;

run;

Output 8
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proc phreg data=sasuser.thesisdatal4;

model Dur*status (0)=sex usebelt alcohol speedveh tyrescon driver_agp..
annukil sext usebeltt alcoholt speedveht tyrescont driver_agpt annukilt;
sext=sex*log (Dur) ;

usebeltt=usebelt*log (Dur) ;

alcoholt=alcohol*log (Dur);

speedveht=speedveh*log (Dur) ;

tyrescont=tyresconxlog (Dur) ;

driver_agpt=driver_agpxlog (Dur) ;

annukilt=annukil=*log (Dur) ;

test_proportionality:test sext,usebeltt,alcoholt, speedveht, tyrescont, ...
driver_agpt,annukilt;

run;

For figure 4.15

proc phreg data=sasuser.thesisdatal4;

model Dursstatus (0)=sex usebelt alcohol speedveh driver_agp sexbelt;
sexbelt=sex*usebelt;

output out=c resdev=dev;

run;

proc gplot data=c;
symboll value=dot h=.2;
plot devxDur;

run;
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Output 9
proc phreg data=sasuser.thesisdatali4;

model Dur*status (0)=sex usebelt alcohol speedveh agedriver/rl;

output out=b ressch=schsex schusebelt schalcohol schspeedveh schagedriver

run;

proc print data=b;

run;

Output 10
proc phreg data=sasuser.thesisdatal4;

model Dur+status (0)=annukil alcohol usebelt tyrescon sex...

agedriver/ties=efron;

output out=b ressch=schannukil schalcohol schusebelt schtyrescon...

schsex schagedriver;

run;

proc print data=b;
run;

For figures 4.17

proc gplot data=b;

plot schsexxDur schusebelt*Dur schalcoholxDur schspeedvehxDur. ..

schagedriver*Dur;

94



www.udsspace.uds.edu.gh

symboll value=dot h=.2;

run;

B.3 ASSESSING THE PH ASSUMPTION WITH A

STATISTICAL TEST

This is accomplished by finding the correlation between the Schoenfeld residuals for a particular
covariate and the ranking of individual failure times. The p-value for testing this correlation can

be obtained from PROC CORR. The Schoenfeld residuals for a given model can be saved in a

dataset using PROC PHREG. The ranking of events by failure time is saved in a dataset using
PROC RANKED. First the full model is runned. The output statement creates a SAS dataset, the
OUT=option defines an output dataset, and the RESSCH=statement is followed by the variables
names so that the output dataset contains the Schoenfeld residuals of these variables. The order of
the names corresponds to the order of the independent variables in the model statement. The actual
variable names are arbitrary which should contain the Schoenfeld residuals for all the variables.

Next, create a dataset that deletes censored observations (i.e., only contains observations that fail).
PROC RANK is used to create a dataset containing a variable that ranks the order of failure times.
The variable to be ranked is Dur (the survival time variable). The RANKS statement precedes

a defined variable name for the rankings of failure times called TIMERANK. PROC CORR is

MO E W IEFR ST T W FaaEL T

used to get the correlations between the ranked failure time variable (called TIMERANK ) and the
variables containing the Schoenfeld residuals. The NOSIMPLE option suppresses the printing of
| summary statistics. If the proportional hazard assumption is met for a particular covariate, then the
correlation should be near zero. The p-value obtained from PROC CORR which tests whether this

correlation is zero is the p-value for testing the proportional hazard assumption. The code follows;

Output 11
proc phreg data=sasuser.thesisdatal4;
model Dur*status (0)=sex usebelt alcohol speedveh agedriver sexbelt;

sexbelt=sexxusebelt;
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output out=b ressch=schsex schusebelt schalcohol schspeedveh...
schagedriver schsexbelt;

run;

proc print data=b;

run;

data state;

set b;

if status=1;

run;

MW ER ST T % FOarE T2 S EIT . 0P TlETa T S T LTI T E <

proc rank data=state out=ranked ties=mean;
\ var Dur;
ranks timerank;

run;

proc print data=ranked;

run;

proc corr data=ranked nosimple;
var schsex schusebelt schalcohol schspeedveh schagedriver schsexbelt;

with timerank;
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run;

Output 12

proc corr data=ranked nosimple;
var schsex schusebelt schalcohol schspeedveh schagedriver. ..
schannukil schtyrescon;

with timerank;

run;

Output 13

proc phreg data=sasuser.thesisdatal4;

model Dursstatus (0)=sex usebelt alcohol speedveh tyrescon...
driver_agp annukil;

output out=c dfbet
ddriver_agp dannukil;
run;

proc print data=c;

run;
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APPENDIX C
@
E Table C.1: Detailed description of the Kaplan-Meier Estimates of variables captured in the accident
w dat
ata
Variable Categories Total | Uncensored | p-value
< 25 years 93 28
! Driver age 26 U 50 years 272 | 179 <0.0001
0 50 + 33 | 14
- Male 377 | 203
g Driver sex Fernals i 13 0.0049
! No 160 | 50
5 ' Use of alcohol Var 330 163 <0.0001
No 233 | 162
E Use of safety belt e 100 1729 <0.0001
) < 5000km/a 88 53
h Vehicle annual kilometereage | 5000 U 14,000km/a | 237 | 128 0.4016
i > 15000km/a 64 33
i . ; Link 304 | 159
Road section/scene of accident G e = a7 0.0807
. < 80km/h 143 | 37
Speed when accident occurred >80Kkm/h 51 1178 <0.0001
. . < 1,000kg 212 | 115
Vehicle weight >T,000kg 94 199 0.4483
< 4mm 278 152
\ Tyres tread depth o 17 T63 0.3897
T > Syears 295 | 180
Age of driving license e 30 30 <0.0001
G Seldom pass scene | 61 33
Route familiarity Troquent 295 1163 0.8079
s Dry 324 | 177
Road surface condition Wet o3 10 0.547
] I Own 297 | 154
Vehicle ownership Not own 7 a5 0.128
) < 10 years 142 | 58
Vehicle age =10 years 528 1160 <0.0001
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