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ABSTRACT 

The no-slip boundary condition at a solid-liquid interface is primarily to 

understanding fluid mechanics. However, this condition is an assumption that cannot 

be derived from first principles and could, in theory, be violated. In this work, we 

investigate numerically and theoretically the subject involving partial slip boundary 

conditions. The physical imagery that emerges is that of a complex behaviour at an 

unsteady hydromagnetic stretching solid interface, with stagnation point flow 

involving an interplay of many physico-chemical parameters of practical importance, 

including buoyancy forces informed by the orientation of the stretching sheet, 

unsteadiness of the flow, radiation effects, viscous dissipation , the partial slip effects, 

chemical reaction, mass diffusion, momentum diffusion,Lorentz force induced by the 

magnetic field and the velocity ratio.It is concluded that for this particular flow, the 

combined effects of these physico-chemical parameters are major determinants of the 

flow properties and must be carefully controlled to achieve desired results in practice. 
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CHAPTER ONE 

INTRODUCTION 

Heat transfer continues to receive considerable attention from the scientific research 

community because of its numerous industrial applications in many fields of 

engineering such as mechanical, chemical and process engineering. In addition, civil 

engineers, construction engineers and environmental control engineers need 

considerable knowledge of the subject of heat transfer to design systems that are not 

only conducive for habitation but resilient over a period of time.  

In thermal power plants, boilers and condensers are designed in such a way that the 

desired rate of heat transfer can be achieved. A Bessemer converter for making steel 

from pig iron must be designed so that it provides sufficient opportunity for the 

carbon to be oxidized quickly enough for the process to be economical (Mitchell 

1950). An artificial kidney must have sufficient capacity to remove the toxins from 

the blood. Furthermore, knowledge of heat transfer processes is required in the design 

of electronic components to ensure that the incidence of overheating is curtailed 

(SathyanarayananandRamprabhu, 2005). 

.  
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1.1. Modes of Heat Transfer 

There are three basic modes by which heat can be transferred. These include 

conduction, radiation, and convection. 

 

Figure1.1 Modes of Heat Transfer (www.spectrose.com) 

Conduction 

Conduction is an exchange of energy by direct interaction between molecules of a 

substance having temperature difference (See Figure 1.1). It occurs in gases, liquids, 

or solids and has astrong basis in the molecular kinetic theory of Physics.  

 

Radiation 

Radiation is a transfer of thermalenergy in the form of electromagnetic waves. 

Liquids containing gases, such ascarbon dioxide, water vapour, and glasses transmit 

only a portion of incidentradiation, while most of solids are essentially opaque to 

radiation.  
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Convection 

Convection is the process of heat transfer from one location to the next by the 

movement of fluid molecules. Fluid flows from high pressure location to points of 

low pressure. Convection is the mode of heat transfer between a solid surface and the 

adjacent fluid that is in motion (See Figure 1.1) 

1.2. Classification of Flow Pattern 

There are different forms in which fluid flow can be classified, usually characterized 

by time and distance:  

Time: A flow is steady if the parameters describing it (such as velocity, pressure,et 

cetera) do not change with time otherwise the flow is unsteady(Stonecypher, 

2009)(Fluid Dynamics Figure 1.2).  

 

Figure 1.2 (a) Steady Flow (b) Unsteady Flow 
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Figure 1.3 Uniform and Non-uniform Flows 

(riverrestoration.wikispace.com/hydraulics) 

Distance: A flow is uniform if the parameters describing the flow do not change with 

distance. In non-uniform flow, the parameters change from point to point along the 

flow (See Figure 1.3).  

From these definitions, almost all flows can be a combination such as steady uniform 

flow, steady non-uniform flow, unsteady non-uniform flow and unsteady uniform 

flow. Many researches in the field of fluid dynamics have resorted to the steady flow 

conditions in which time effects are neglected resulting in great simplifications of the 

analysis of the boundary layer equations. This research considers both theunsteady 

uniform flow condition and the partial slip conditions.  

1.3. Viscosity and No-Slip Effect 

When two fluid layers move relative to each other, frictional forces develop between 

them with the slower layer tending to slow down the faster layer. This internal  
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resistance  to  flow  is  quantified  by  the  fluid  property  viscosity, which is a 

measure of internal stickiness of the fluid.  

 

Figure 1.4 No-slip boundary effect of fluid flow 

Viscosity is caused by cohesive forces between the molecules in liquids and by 

molecular collisions in gases. There is no known fluid with zero viscosity, thus all 

fluid flows involve viscous effects to some degree. Flows in which the frictional 

effects are significant are called viscous flows.  

Due to viscosity, many experiments have concluded that fluid molecules in motion 

are halted at the surface and assume a zero velocity relative to the surface. This means 

that, a fluid in direct contact with a solid ―sticks‖ to the surface due to viscous effects. 

This is known as the no-slip condition (Engineering Archives). However, in many 

flows of practical relevance, there  are  regions where  viscous  forces  are  negligibly  

small  compared  to  inertial  or  pressure forces.  The assumption that the flow field 

obeys the conventional no-slip condition at the boundary is no longer valid as partial 

slip boundary condition has become dominant in most situations (Andersson, 2002). 
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With a slip at the wall boundary, the shear stress in the fluid is quite different from 

those in the no-slip cases. 

Furthermore, it is desired to design shapes of cast-iron components to provide for 

uniform cooling, and for fabrication processes of semi-conductors (Gupta,2008). Due 

to its diverse applications in thermodynamics, material science, diffusion theory, fluid 

mechanics, and radiation theory, heat transfer is termed the ―heart‖ of thermal 

engineering.  

1.4. Problem Statement 

The combined effects of thermo physical properties of fluid on stagnation-point flow 

due to a stretching surface is a major concern to the scientific research community due 

to its importance and practical relevance. The introduction of this flow by 

Hiemenz(1911) in the early twentieth century attracted the interest of many 

researchers to stagnation-point flow. The available literature admits the well-known 

no-slip boundary conditions. The assumption of no slip at the boundary, though 

simplifies complicated fluid flow regimes for analysis, is ideal in the case of 

stretching sheet and will rarely apply in practical engineering systems. With a slip at 

the wall boundary, the flow behaviour and the shear stress in the fluid are quite 

different from that of no-slip case. Motivated by this, the research aims to study the 

behaviour of unsteady stagnation-point flow towards a stretching sheet with slip effect 

at the boundary.  
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1.5 Research Objectives 

1.5.1 Main Objective 

The main objective of the study is to analyse the time-dependent stagnation-point 

flow over a vertical surface with partial slip effects. 

1.5.2 Specific Objectives 

i. To develop a mathematicalrepresentation of unsteady stagnation point flow 

with partial slip at the surface.  

ii. To apply similarity techniques to transform the modelled partial differential 

equations to ordinary differential equations which are amendable to numerical 

techniques. 

iii. To determine which parameters are critical in the control of unsteady 

stagnation point flow with partial slip.  

 

1.6. Significance of the Research 

This study is significant in manyrespects including but not limited to: 

i. Engineers in the design of effective and efficient heat exchanger components. 

ii. Biomedical engineers to produce lasers for medical applications in which the 

cooling rate can be controlled to avoid irreversible damages to cells. 

iii. Manufacturing industries to cool their finished products efficiently. 

iv. Adds up to existing literature and serves as a reference material for other 

future researchers. 
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1.7. Computational Approach 

The differential equations describing the unsteady stagnation point boundary layer 

flow interaction with partial slip constitute a nonlinear problem in an unbounded 

computational domain. Nonlinear differential equations can adequately model 

practical engineering problems whose solutions are amendable to numerical 

techniques. The most common numerical methods employed by researchers include: 

the Runge-Kutta Method, Finite Difference Method, Perturbation Method, the 

Shooting Method, and the Keller Box method. All these methods provide solutions to 

the accuracy required for most engineering applications. In this study, the Runge-

Kutta method alongside the Newton Raphson shooting techniques shall be applied. 

This is because they are easy to implement and are very stable. The model shall be 

run on Maple 16 software to generate numerical and graphical results for analysis. 

1.8 Organisation of Report 

This dissertation is organised into five chapters. Chapter one presents the 

introduction. The problem is stated and the research methodology outlined. In Chapter 

Two, related literature is reviewed.  Chapter Three applies the formulae to solving the 

problem. Chapter Four presents the results and discussions whilstChapter Five 

concludes the report with some recommendations for future researchers. 
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CHAPTER TWO 

LITERATURE REVIEW 

Heat transfer is energy in transit, which occurs as a result of temperature gradient or 

differences. This temperature difference is thought of as a driving force that causes 

heat to flow. The three basic mechanisms of heat transfer are convection, conduction 

and radiation, which may occur separately, or simultaneously. The subject matter of 

this research is solely based on the individual mechanism of free convection and 

radiation. 

Free convective heat transfer is an inevitable phenomenon in engineering systems due 

to its diverse applications in electronic cooling, heat exchanger designs and thermal 

systems. Studies pertaining to coupled heat and mass transfer due to free convection 

have wide applications in different realms, such as, mechanical, geothermal, chemical 

sciences, etc. Many industrial and technological setups such as nuclear reactors, food 

processing, and polymer production experience not only temperature difference but 

concentration. The chemical concentration variation ultimately affects the rate of heat 

transfer.  

2.1 MHD Boundary layer flows 

Chamkha (2004) investigated unsteady MHD convective heat and mass transfer past a 

semi-infinite vertical permeable moving plate with heat absorption. He solved the 

dimensionless governing equations using two-term harmonic and non-harmonic 

functions and observed that when the solutalGrashof number was increased, the 

concentration buoyancy effects were enhanced and thus, the fluid velocity increased. 
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He further observed the correlation between the Nusselt number, the heat absorption 

coefficient as well as Sherwood number and the Schmidt number.Makinde (2010) 

produced similarity solutions of hydromagnetic heat and mass transfer over a vertical 

plate with convective surface boundary conditions. He observed that the local skin-

friction coefficient, as well as the local heat and mass transfer rate at the plate surface 

increase with increasing intensity of the magnetic field, buoyancy forces and 

convective heat exchange parameters. 

Abdel-Khalek (2009) examined MHD free convection flow with mass transfer from a 

moving permeable vertical surface and produced interesting results using the 

perturbation techniques. Mohd.et al(2015) investigated the MHD stagnation-point 

flow and heat transfer with effects of viscous dissipation, joule heating and partial 

velocity. Auraug (2015) studied theslip effect of an unsteady MHD stagnation-point 

flow of a micropolarfluid towards a shrinking sheet with thermophoresiseffect and 

observed that the concentration boundary layer thickness decreased with increasing 

values of the thermophoresis parameter.Auranget al. (2016) investigated the effect of 

partial slip on an unsteady MHD mixed convection stagnation-point flow of a 

micropolar fluid towards a permeable shrinking sheet.Hayat and Nawaz(2016)then 

investigatedthe MHD stagnation-point flow of an upper-convected Maxwell fluid 

over a stretching surface. 

 

www.udsspace.uds.edu.gh 

 

 



  11 

 

2.2 Stagnation Point Flows 

The problem of stagnation-point flow of fluid due to a stretching sheet is a major 

concern for researchers because of its practical applications in metallurgy and 

chemical engineering fields. Extrusions of polymers, glass fibre, the cooling of 

metallic plate are some specific applications in practice. Hiemenz (1911) examined 

the two-dimensional stagnation flow in his first work by using similarity 

transformations to reduce the Navier–Stokes equations to non-linear ordinary 

differential equations.The result was later extended to the axisymmetric case by 

Homann (1936) and improved by Howarth (1938). Following these works, various 

aspects of stagnation-point flow and heat transfer have been studied as available in 

literature. (see Chiam, 1994; Mahapatra and Gupta, 2002; Layeket al., 2007; Ishaket 

al., 2008; Bhattacharyya et al., 2012, Bhattacharyya and Vajravelu, 2012; and Arthur 

and Seini, 2014). The flow becomes time dependent in certain aspects, but the 

physical situation described in the above studies is under the condition of a steady 

state.Fauziet al. (2015) analysed the stagnation point flow and heat transfers over a 

nonlinear shrinking sheet with slip effects. It was observed that the slip - velocity 

delays the boundary layer separation whereas the temperature slip does not affect the 

boundary layer separation.Khairy and Anuar(2016) investigated the stagnation-point 

flow towards a Stretching Vertical Sheet with Slip Effects. It is found that dual 

solutions exist in a certain range of slip and buoyancy parameters.  
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2.3Unsteady Stagnation Point Flows on Flat Surfaces 

Few researchers have attempted the investigations into the unsteadiness of flow 

problems. Nazaret al.(2004) studied the unsteady boundary layer flow in the region of 

stagnation points on a stretching sheet, while Bhattacharyya (2011) investigated the 

unsteady stagnation point flow over a shrinking sheet. Sharma and Singh (2008) 

analysed the unsteady flow near a stagnation point on a stretching sheet in the 

presence of a time-dependent free stream. Some important properties of unsteady 

flows on a stretching sheet were described in the works ofBachoket al. (2011), Ishaket 

al. (2009), and Hayat et al. (2010). Slip Mixed convection in stagnation point flow is 

of significance in fluid mechanics when the buoyancy forces due to the temperature 

difference between the surface and the free stream become large, in the sense that 

both the flow and thermal fields are greatly affected by the buoyancy forces. Devi et 

al. (1991) studied the unsteady laminar mixed convection in two-dimensional 

stagnation-point flows around heated surfaces by taking both cases of an arbitrary 

wall temperature and arbitrary surface heat flux variations. The unsteady mixed 

convection flow of a micro polar fluid was studied by Loket al. (2006) who found the 

smooth transition from the initial unsteady-state flow to the final steady-state flow. 

Ishaket al. (2010) reported the existence of dual solutions for both assisting and 

opposing flows of an electrically conducting fluid past a vertical permeable flat 

plate.Hayat et al. (2012) investigated the effects of mixed convection unsteady 

stagnationpoint flowover a stretching sheet with heat transfer in the  presence of 

variable free stream.Kohilavaniet al. (2015) studied the unsteady stagnationpoint flow 

and heat transfer of a special third grade fluid past a permeablestretching/shrinking 
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sheet.Results from the stability analysis depict that the first solution (upper branch) is 

stable and physically realizable, while the second solution(lower branch) is 

unstable.Hui(2015) investigatedthe mixed convection unsteady stagnation-point flow 

towards a stretching sheet with slip effects. The numerical results show that the 

increase of unsteadiness parameter and the slip effectscause increment in the 

existence range of similarity solution. The effects of unsteadiness parameter, the 

velocity ratio parameter, and the velocity and thermal slip parameters on the velocity 

and temperature distributions are analysed and discussed. 

Niket al.(2016) investigated the unsteady stagnation point flow and heat transfer over 

a stretching/shrinking sheet and concluded that dual solutions exist for the shrinking 

case while for the stretching case, the solution was unique. Moreover, it is found that 

the heat transfer rate at the surface increases as the stretching/shrinking parameter as 

well as the unsteadiness parameter increases. Khalid et al. (2016) investigatedthe 

multiple solutions of an unsteady stagnation-point flow with melting heat transfer in a 

Darcy–Brinkman porous medium whilst Fotini and Daiming(2016)considered the 

unsteady stagnation-point flow of a second-grade fluid and observed that the 

effect of the Weissenberg number was to decrease the velocity near the wall as it 

increases.Malvandiet al. (2016) also investigated the slip effects on unsteady 

stagnation point flow of a nanofluid over a stretching sheet. 

2.4 Boundary Layer Flow with Surface Slip 

All the studies referred to in the foregone sections made assumptions of the flow field 

obeying the conventional no-slip condition at the boundary. Wang (2002) gave an 
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exact solution of the Navier-Stokes equations for the flow due to a stretching 

boundary with slip. He later considered the effect of stagnation slip flow on the heat 

transfer from a moving plate,Wang (2006). Ariel (2008) studied the effects of slip on 

the flow of an elastic-viscous fluid with some other physical features. Many 

researchers have contributed to the investigations of slip flows in different 

configurations (see Fang et al., 2009; Bhattacharyya et al., 2011; Mukhopadhyay and 

Gorla, 2012; Mukhopadhyayet al., 2012; and Bhattacharyya et al., 2013).  

Cao and Baker (2009) considered the slip effects on the mixed convective flow and 

heat transfer from a vertical plate and reported the local non similarity solutions. 

Mukhopadhyay (2011) investigated effects of slip on unsteady mixed convective flow 

and heat transfer past a stretching and a porous stretching surface. Bhattacharyya et 

al. (2013) studied the mixed convective flow adjacent to a vertical permeable 

stretching sheet in porous media with slip effects. The similarity solution of the mixed 

convection boundary layer flow near the stagnation-point on a vertical surface with 

slip effect was studied by Amanet al. (2011). Niket al. (2013) studied mixed 

convection boundary layer caused by time-dependent velocity and the surface 

temperature in the two-dimensional unsteady stagnation-point flow over a stretching 

vertical sheet with the no-slip boundary condition. Chen (2014) studied mixed 

convection unsteady stagnation-point flow towards a stretching sheet with slip 

effects.Noret al. (2015) investigated the boundary layer stagnation-point slip flow and 

heat transfer towards a shrinking, stretching cylinder over a permeable 

surface.Tapas and Samir(2016) investigatedslip effects on unsteady stagnation-point 

flow and heat transfer over a shrinking sheet.  
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This study therefore investigates the unsteady stagnation point flow with partial slip 

as it approximates closely with real practice in industry. 
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CHAPTER THREE 

UNSTEADY STAGNATION POINT FLOW WITH PARTIAL SLIP ON A 

VERTICAL SURFACE 

Inthis chapter, the unsteady stagnation point flow with partial slip on a vertical surface 

is modeled. The equations are then transformed from partial differential equations to 

ordinary differential equations. These equations are then reduced to first order system 

of ordinary differential equations and solved usingthe Runge-Kutta method alongside 

the Newton Raphason shooting techniques. 

3.1 Mathematical formulation of unsteady stagnation point flow 

 
Figure 3.1Schematic Diagram of Problem 

Consider an unsteady two-dimensional stagnation point flow of an incompressible 

viscous dissipative fluid towards a vertical stretching sheet (see figure 3.1). Let the x-
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axis be taken along the direction of the sheet and y-axis normal to it. The flow is 

subjected to a transverse magnetic field of strength B which is assumed to be applied 

in the positive y -direction, normal to the surface. The tangential velocity ,sU  due to 

the stretching surface is assumed to vary proportionally to the distance x  so that

 ,1 ctaxU s   where c  is a parameter showing the unsteadiness of the problem and

a  is a constant with 0a  for a stretching sheet. The free stream velocity is 

 ,1 ctbxU  where b>0 is the strength of the stagnation flow. The surface 

temperature sT of the stretching sheet varies with the distance x  as 

  ,1
2

ctxTTT os   where T  is the constant free stream temperature with .00 T  

Also the surface concentration sC  of the stretching sheet varies with the distance x  as 

  ,1
2

ctxCCC os    where C  is the constant free stream concentration with

.00 C  

The particular forms of the above expressions for ,sU ,U sT and sC have been chosen 

in order to transform the governing partial differential equations into a set of ordinary 

differential equations, thereby facilitating the exploration of the effects of the 

controlling parameters. It should be noted that the expressions for ,sU ,U sT and sC

are valid for time 1 ct and ,a ,b ,c have dimension .1t  

If u, v, TandC are the fluid x-component of velocity, y-component of velocity, 

temperature and concentration respectively. With these assumptions, the governing 

equations for the problem can be modeled as shown in the sections following: 
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3.1.1 The Continuity Equation 

The continuity of flow for fluids in motion is derived using the mass conservation 

principles formulated mathematically (See Appendix 1): 

0 V
Dt

D



 (3.1) 

Consider the substantial derivative 

zyxtDt

D



















    (3.2) 

The problem under study is unsteady two- dimensional (no z-axis) so 0




z
. Hence 

(3.2) reduces to 

yxtDt

D














    (3.3) 

The velocity field, kwjviuV ˆˆˆ   and its divergence, k
z

j
y

i
x

ˆˆˆ













  , now 

become: 

jviuV ˆˆ  , j
y

i
x

ˆˆ








 respectively 

𝐷𝜌

𝐷𝑡
= 0 (Incompressibility of the fluid) and dividing through by 𝜌, (3.1) becomes 

𝛻. 𝑉 = 0 

The continuity equation given in Equation 3.1 now simplifies to: 
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0









y

v

x

u
   (3.4) 

3.1.3. The Momentum Equation 

From the Navier-Stokes equation (See Appendix II) 

Vgp
Dt

DV 2      (3.5) 

where  is the density of the fluid, g  is the acceleration due to gravity, p is the 

external pressure and   is the dynamic viscosity of the fluid.  

For a vertical surface, the force of gravity is important as it produces buoyancy effects 

in the flow. In a free stream flow, atmospheric pressure applies and hence can be 

ignored as it is equally distributed in all directions. The Navier – Stokes equation 

become: 

,
2

2

g
y

u

x

p

y

u
v

x

u
u

t

u
 
































(3.6)

 

The presence of the transverse magnetic field produces the Lorenz force which tends 

to impede the velocity of flow. Charged particles moving with the fluid will 

experience an induced electric field, V x B0 which will tend to drive an electric current 

in the direction perpendicular to both V and B0. Neglecting the Hall Effect, the 

magnitude of the current density for a weakly ionized fluid is given by the generalized 

Ohm's law as; 

 0BVj     (3.7) 
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For the purposes of this study, both V  and   are assumed to be uniform. In terms of 

the two dimensional coordinate system: 

uBj 0  (3.8) 

Movements of a conducting material in a magnetic field generate electric currents j, 

which in turn induces a magnetic field. Each unit volume of liquid having j and B0 

experiences MHD force j x B0, known as the ―Lorenz force‖ which retards the motion 

of the flow: 

uBBj 2

00     (3.9) 

Therefore, including the stagnation pressure ,
x

U
U

t

U

x

p














 


 and magnetic 

force into the flow field reduces the momentum of the flow as given in Equation in 

3.6 to: 

    u
B

CCgTTg
y

u

x

U
U

t

U

y

u
v

x

u
u

t

u
ct






2

0

2

2



































 (3.10)                         

Equation 3.10 models the momentum equation for the problem under study. 

 

3.1.3 The Energy Equation 

The energy conservation equation for incompressible viscous fluid flow is derived in 

Appendix III as 

 T
Dt

DT 2    (3.11) 
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Where, 












































































































222222

2

1

2

1

2

1
2

x

w

z

u

y

w

z

v

x

v

y

u

z

w

y

v

x

u


 

The left hand sideof (3.11) represents the convective term whilst the right hand side 

are respectively, the rate of heat diffusion to the fluid particles and the rate of viscous 

dissipation per unit volume.  

Thus, (3.11) can be expanded as 











































)(

2

2

2

2

2

2

z

T

y

T

x

T

z

T
w

y

T
v

x

T
u

t

T
   (3.12) 

For a two dimensional unsteady stagnation point flow with magnetic field and 

radiative heat flux, results (3.12) is modified to become: 

y

q
u

c

B

y

u

cy

T

y

T
v

x

T
u

t

T r

pp 











































 2

22

2

2

(3.13) 

3.1.4The Concentration Equation 

The chemical species concentration equation is derived inAppendix IV as 

 
𝐷𝐶

𝐷𝑡
=  𝒟∇2∁ ± 𝑟 ,    (3.14) 

where C  is the species concentration, 𝒟is the mass diffusivity and r is the rate of 

species generation or destruction.  

Substituting the component forms of species concentration, (3.14) reduces to 
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𝜕𝐶

𝜕𝑡
+ 𝑢

𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝒟

𝜕2𝐶 

𝜕𝑦 2
− 𝛾(𝐶 − 𝐶∞)  (3.15) 

In Equation 3.15, the negative reaction rateparameter ( ) signifies the rate of species 

destruction. 

3.1.5Associated Boundary Conditions 

The associated boundary conditions for the problem are required to enable a complete 

solution. With ctlL  1  as the velocity slip factor; ,1 ctmM   as thermal slip 

factor and ,1 ctnN   as the solutal slip factor, where ,l m and n  are the initial 

values of velocity, thermal and solutal slip factors, respectively, the boundary 

conditions with partial slip are given by: 

 ,,,0,:0
y

C
NCC

y

T
MTTv

y

u
LUuy sss














 

 ,,,:   CCTTUuy (3.16) 

 

3.2Self-Similar Solutions 

The similarity solution is based on the idea that the velocity, temperature and species 

concentration distributions at any point along the plate surface, x, will collapse if they 

are plotted in dimensionless form as a function of an appropriately defined similarity 

variable. The similarity variable is defined as the ratio of the distance from the plate 

surface (y) to the approximate thickness of the momentum boundary layer ( m ): 
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m

y


     (3.17) 

Therefore, the partial differential equations that describe the problem in terms of x and 

y will collapse to ordinary differential equations in   for dimensionless velocity, 

dimensionless temperature and dimensionless species concentration. 

3.3 The Similarity Variable 

The growth of the velocity, thermal and concentration boundary layers in a laminar 

flow occur primarily due to the molecular diffusion of momentum and energy. 

Therefore, the momentum boundary layer thickness ( m ) will grow approximately 

according to: 

tm  2   (3.18) 

where  is the kinematic viscosity and t is time, which is related to the distance from 

the leading edge (x) and the characteristic velocity ( charu ) according to: 

charu

x
t    (3.19) 

For this study, the length is the total length of the plate (which is taken along the x-

axis) while the characteristic velocity is the constant free-stream velocity far away 

from the plate ( U ). 

Substituting (3.18) into (3.19) leads to: 

𝛿𝑚  ≈ 2 
𝑣𝑥

𝑢𝑐ℎ𝑎𝑟
 when𝑢𝑐ℎ𝑎𝑟= 𝑢∞  
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wehave𝛿𝑚  ≈ 2 
𝑣𝑥

𝑢∞
(3.20) 

Substituting (3.20) into (3.17) gives: 

x

Uy


 

2
   (3.21) 

Following the presentation of Ostrach (1953), the constant used to define the 

similarity parameter is adjusted slightly and from the assumptions that

 ,1 ctbxU   (3.21) becomes, 

 


ct

b
y




1
   (3.22) 

Hence (3.22) defines the similarity variable for the problem under investigation. The 

dimensionless velocity, temperature and concentration are obtained from: 




U

u
f    (3.23) 










TT

TT

s

    (3.24) 










CC

CC

s

    (3.25) 

At any position, x will collapse when expressed in terms of (3.22). Therefore,  

   fyxff  ,   (3.26) 
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     yx,   (3.27) 

     yx,   (3.28) 

3.4The Stream Function 

The stream function is defined such that the continuity equation is satisfied 

automatically. That is, 

x
y

u 














and

yx
v 















 (3.29) 

The stream function is related to the volumetric flow Q, between the surface of the 

plate and any position y according to, 

,WQ     (3.30) 

WhereW is the width of the plate. The volumetric flow rate is calculated from the 

velocity according to: 


y

dyuWQ
0

   (3.31) 

Equation 3.31can be expressed in terms of the dimensionless variables ( f   and η)  

 







0

df
U

ux
WUQ   (3.32) 

Substituting (3.32) into (3.30) leads to: 
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  







0

df
U

ux
U   (3.33) 

The integral    


fdf 0 in Equation 3.33 can be thought of as the 

dimensionless form of the stream function and it must be a function of only the 

similarity variable ( ). Simplifying and using  ctbxU  1 from the assumptions, 

Equation 3.33 becomes: 

)(
1

2




 f
ct

bx


   (3.34) 

The stream function in Equation 3.34 can be rewritten as: 

)(
1




 f
ct

b
x


             (3.35) 

3.5Transformation of the Problem 

The similarity variables are now substituted into the governing partial differential 

equations as well as the boundary conditions to obtain three coupled ordinary 

differential equations that can be solved more easily. The continuity equation is 

automatically satisfied using the stream function as defined. The transformation 

process involves taking the problem in terms of x and y and re-stating it in terms of .  

The similarity variable is differentiated with respect to x,y and t as. 

,0




x



 
,

1 ct

b

y 









and  



 b
yctc

t
2

3

1
2

1 





          (3.36) 

www.udsspace.uds.edu.gh 

 

 



  27 

 

The x- component of velocity (u) is expressed in terms of the similarity variables as: 

f
ct

b
xu 












1
                                     (3.37)               

The y- component of velocity ( v ) is expressedin terms of the similarity variables as: 

ct

b
f

x
v









1


             (3.38) 

Simplifying and rearranging (3.38) gives: 

f
ct

b
v




1


                                        (3.39) 

The partial derivatives of u in (3.37) with respect to x , y  and t are respectively: 

f
ct

b

x

u





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
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
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

1

2

2
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
  (3.40) 

    fctbcxfct
b

xy
bc

t

u




  2
2

5

11
2 

 

The partial derivative of v in (3.38) with respect to x , y  and t are respectively 

  f
ct

b

y

v

















1
              (3.41) 

 

3.5.1 The Continuity Equation 

The continuity equation (3.4) is satisfied using (3.40) and (3.41). 
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3.5.2 The Dimensionless Momentum Equation 

For the momentum equation, substituting (3.37), (3.39), (3.40) in (3.10) gives, 

   
     

  
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(3.42)                                                                                 

Expanding brackets, simplifying and rearranging (3.40) gives, 

  0122
2

2  ff
A

GcGtfMffff    (3.43) 

Equation 3.41 represents the dimensionless momentum equation, where
2

0

b

Tg
Gt t

is the thermal Grashof number; 
2

0

b

Cg
Gc c is the solutalGrashof number;

b

B
M



 2

0 is the magnetic field parameter and
b

c
A  is the unsteadiness parameter. 

 

3.5.3 Dimensionless Energy Equation 

The fluid temperature can be expressed as: 

 
  


 T
ct

xT
T o 

2
1

   (3.44) 
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The radiative heat flux term in the energy equation (3.13) is analysed by using the 

Rosseland diffusion approximation (Sparrow and Cess, 1961) for an optically thick 

boundary layer as follows: 

y

T

K
qr








 4

3

4
               (3.45) 

WhereK' and ζ* are the mean absorption coefficient and the Stefan-Boltzmann 

constant respectively. This approximation is valid at points optically far from the 

bounding surface, and it is good only for intensive absorption, that is, for an optically 

thick boundary layer (Hossain et al., 2001).  

We assume that the temperature differences within the flow such as the term T
4
 may 

be expressed as a linear function of temperature. Hence, expanding T
4
 in a Taylor 

series about T∞ and neglecting higher order terms, we get; 

434 34   TTTT       (3.46) 

The first derivative of this with respect y is, 

y

T
T

y

T











3
4

4      (3.47) 

This simplifies (3.45) to: 

y

T
T

K
qr







 


34

3

4
     (3.48) 

Differentiating with respect to y gives, 
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2

2
34

3

4

y

T
T

Ky

qr















    (3.49) 

Thus, substituting all related terms in to the energy equation gives: 

   
   

         

     

22

3

2

3

3

32

2
2

7
3

1113

4

111
.

11

11
1

2

1
12




































































f
ct

bx

ctc

B

ct

xbT
Ra

f
ct

b
x

cct

bxT

ct

b

ct

xT
f

ct

b

ct

T
f

ct

bx
ctc

b
xyTctcxT

p

oo

p

oo

o
oo































(3.50) 

Expanding, simplifying and re-arranging yield 

      .04Pr
2

Pr
3

4
1 22 








 ffMBr

A
ffRa   (3.51) 

Equation 3.49 is the dimensionless thermal boundary layer equation where



Pr is 

the Prandtl number,
K

T
Ra









 34
is the thermal radiation parameter, and 

 






TT

U
Br

w

 2

is the Brinkmann number. 

 

3.5.4 Dimensionless Concentration Equation 

The species concentration in the fluid is expressed as: 

    CCCC s )(     (3.52)   

Thepartial derivative of C with respect to x and y yields,                                
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 









)(

2

1
2

3

CC
U

yx
x

C
s   (3.53) 

 









)(2

1

CC
U

x
y

C
s                                    (3.54) 

 










 )(
1

2

2

CC
xU

y

C
s     (3.55) 

Substituting into the concentration equation gives: 

     

       

       




























































CCCC
xU

D

CC
U

xfUxfyxU

CC
U

yxfU

ss

s

s

1

2
1

2
1

1

2
3

2

1

2

1

2

1

(3.56) 

Expanding, simplifying and rearranging yield, 

    .04
2

  ScSc
A

ffSc  (3.57) 

Equation 3.57 is the dimensionless species concentration boundary layer equation 

where 
D

Sc


 is the Schmidt number and )1( ct
b




 is reaction rate parameter. 

 

3.5.5 Dimensionless Boundary Conditions 

The corresponding boundary conditionsare now: 

 ,1)0(,1)0(),0()0(,0)0(   fff  
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  .0)(,0)(,1  f      (3.58) 

In the above equations, primes denote the order of differentiation with respect to the 

similarity variable. Here
b

a
 is the velocity ratioparameter,  bl is the 

dimensionless velocity slip parameter,



b

m is the dimensionlessthermal slip 

parameter,



b

n is the dimensionlesssolutal slip parameter. 

 

1.6 Dimensionless Fluxes 

3.6.1 The Skin Friction Coefficient 

The fact that the function f (η) gives all information about the flow in the boundary 

layer must be emphasized. The shear stress can be obtained from it, using Newton’s 

law of viscous shear: 

 
000 





































yyy

s
y

f
ufu

yy

u 


  (3.59) 

From (3.36) we can rewrite (3.59) as, 

0

2

2















f

x

u
us     (3.60) 

We rewrite (3.60) as: 

 0f
x

u
us







      (3.61) 
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The local skin friction coefficient or local skin drag coefficient is defined as, 

2

2




u

C s

f



      (3.62) 

Substituting Equation (3.61) into (3.62) we get, 

   0
2

0
2

2
f

x

u

u
f

x

u

u

u
C f
















  (3.63) 

We simplify to get, 

   0Re202 2
1

ff
xu

C xf







     (3.64) 

The constant in (3.64) is adjusted to get the local skin friction as, 

 0Re 2
1

fC fx
       (3.65) 

 

3.6.2. The Rate of Heat Transfer Coefficient 

The rate of conduction of heat transfer coefficients are usually expressed in terms of 

the Nusselt number: 

 
,




TT

qx
Nu

s

s


  (3.66) 

Whereqsis the heat flux at the surface of the plate. In the context of our problem, we 

define it to be the sum of the convective heat flux and radiative heat flux: 
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0

4

0
3

4


















yy

s
y

T

Ky

T
q


    (3.67) 

Simplifying  

 
0

3

0

4
3

4




















yy

s
y

T
T

Ky

T
q


    (3.68) 

By factorization, (3.68) becomes, 

  

















 




3

44
1

3

0
K

T

y

T
q

y

s



   (3.69) 

Further substitution gives 

    












 






3

44
10

3

2
1

K

T
TT

U
xq ss







   (3.70) 

We rearrange to get, 

    












 






3

44
10

3
1

K

T
TT

xU
xq ss







  (3.71) 

Simplifying gives, 

    







 

 RaTTxq sxs
3

4
10Re 12

1

   (3.72) 

Resulting in 
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   

 


















TT

RaTTxx

Nu
s

sx




3

4
10Re 2

11

 (3.73) 

Or  

 0
3

4
1Re 2

1

 







 RaNu x              (3.74) 

Rearranging (3.74)gives, 

 0
3

4
1Re 2

1

 










RaNux    (3.75) 

 

3.6.3 The Rate of Mass Transfer Coefficient 

The coefficient of mass transfer is generally specified by the Sherwood number: 

  
 


CCD

qx
Sh

s

m     (3.76) 

Where mq  is the mass diffusion flux. 

In the context of this problem, the Fick’s law is defined as: 

y

C
Dqm



       (3.77) 

Substituting terms  
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 0)(2
1




 


CC
U

Dxq sm   (3.78) 

We simplify (3.78)to get, 

 0)(Re 2
1

1  

 CCDxq sxm    (3.79) 

On further substitutions, we get;  

 
 










CCD

CCDxx
Sh

s

sx 0)(Re 2
1

1 
   (3.80) 

We simplify (3.80) to get, 

 0Re 2
1

 xSh      (3.81) 

We rearrange (3.81) as 

 0Re 2
1




Shx      (3.83) 
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CHAPTER FOUR 

RESULTS AND DISCUSSIONS 

This chapter explores various findings obtained through the mathematical analysis of 

the dimensionless coupled governing equations in Chapter Three and the associated 

boundary conditions. 

4.1 Numerical Procedure 

The non-linear ordinary differential equations are solved with the aid of the fourth-

order Runge-Kutta integration algorithm alongside the Newton-Raphsontechniques. 

We begin with some initial guess value and solve the problem with some particular 

set of parameters to obtain f ''(0), θ'(0) and ϕ'(0). The solution process is repeated with 

another larger value of η∞ until two successive values off''(0), θ'(0) and ϕ'(0) differ 

only after desired digit signifying the limit of the boundary along η. The last value of 

η∞ is chosen as appropriate value for that particular simultaneous equation of first 

order for seven unknowns following the method of superposition.  

To solve the system of equations 3.43, 3.51 and 3.57 together with the boundary 

conditions, we require seven initial conditions, whilst we have only two initial 

conditions f'(0) and f (0) on f; and one initial condition each on θ and ϕ. This means 

that there are three initial conditionsf ''(0), θ'(0) and ϕ'(0) which are not prescribed. 

Now, we employ numerical shooting technique where these two ending boundary 

conditions are utilized to produce two unknown initial conditions at η= 0. In this 

calculation, the step size ∆η = 0.001 was used while obtaining the numerical solution 
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with ηmax=10 and six-decimal (10
-6

) accuracy as the criterion for convergence. The 

numerical procedure was carried out using a Maple 16 software package. A 

representative set of numerical results are displayed graphically and discussed 

qualitatively to show some interesting aspects of some pertinent controlling 

parameters of the flow on the dimensionless axial velocity profiles, temperature 

profiles, concentration profiles, local skin friction coefficient, rate of heat transfer and 

the rate of mass transfer.  

4.2. NumericalResults 

The results of the study were compared to that of Ishaket al., (2006), Pal (2009) and 

Chen (2014) as in Table 4.1. In the absence of chemical species concentration, 

radiation, viscous dissipation and magnetic field effects, our work reduces to the work 

reported  

Table 4.1: Values of  0f  and  0 for different values of Pr when 

0   and 1tG  

 

Pr 

Pal (2009) Chen (2014) Present Study 

 0f    0    0f    0    0f    0   

0.72 0.36449 1.09331 0.36449 1.09311 0.36449 1.09310 

6.80 0.18042 3.28957 0.18042 3.28957 0.18042 3.28957 

20.0 0.11750 5.62014 0.11750 5.62013 0.11750 5.62013 

40.0 0.08724 7.93831 0.08724 7.93830 0.08724 7.93831 

60.0 0.07284 9.71801 0.07284 9.71800 0.07284 9.71801 

80.0 0.06394 11.21875 0.06394 11.21873 0.06394 11.21874 

100.0 0.05773 12.54113 0.05773 12.54109 0.05773 12.54110 

by Chen (2014); and in the absence of chemical species concentration, radiation, 

viscous dissipation, velocity slip, thermal slip, solutal slip, velocity ratio and magnetic 
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field effects, our work reduces to that of Pal (2009).From the comparison, the results 

were observed to be consistent with published results in literature and thus, validate 

the accuracy of the numerical procedure. 

Table 4.2 shows the numerical results of skin friction coefficient, local Nusselt 

number (Heat transfer rate) and the local Sherwood number (Mass transfer rate) with 

varying values of the Prandtl number (Pr), magnetic parameter (M), reaction rate 

parameter (β), radiation parameter (Ra), Brinkmann number (Br) and Schmidt number 

(Sc). It was observed that the skin friction increases with increasing values of M, Pr, 

Sc and β; and decreases with increasing values of Ra and Br. This means that the 

effect of Lorentz force, momentum diffusion and chemical reaction is to increase the 

local skin friction; whereas the combined effect of radiation and viscous dissipation 

reduce the skin friction at the surface of the plate.  

Meanwhile, the rate of heat transfer increases with increasing values ofPr and 

decreases with increasing values of M, β, Ra, Br and Sc.Moreover, it was observed 

that increasing values of β, Ra, Br and Sc lead to increasing the rate of mass transfer. 

This effect can be explained by the presence of chemical reaction, mass diffusion, 

radiation and viscous dissipation. Also increasing values of Pr and M tend to reduce 

the rate at which mass is transferred at the surface of the plate. 
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Table 4.2 Results of skin friction coefficient, Nusselt and Sherwood numbers for 

various values of Pr, M, β, Ra, Br and Sc 

   Ra      

0.72 0.1 0.1 0.1 0.1 0.24 -0.66020 0.83208 0.57015 

4.00      -0.64566 1.71274 0.56882 

7.10      -0.56416 2.13843 0.56855 

 1.0     -0.25933 0.72248 0.51371 

 1.5     -0.09921 0.68058 0.48905 

  1.0    -0.65692 0.83162 0.70193 

  1.5    -0.65547 0.83142 0.76453 

   1.0   -0.66631 0.60923 0.57090 

   1.5   -0.66837 0.54546 0.57117 

    1.0  -0.66420 0.67815 0.57072 

    1.5  -0.66644 0.59136 0.57103 

     1.78 -0.64299 0.82978 1.34744 

     2.64 -0.63982 0.82944 1.58050 

 

Table 4.3 shows the numerical results of skin friction coefficient, local Nusselt 

number (Heat transfer rate) and the local Sherwood number (Mass transfer rate) with 

varying values of thermal Grashof number (Gt), solutalGrashof number (Gc), 

unsteadiness parameter (A), velocity ratio parameter (ε), velocity slip parameter (δ), 

thermal slip parameter (ς) and solutal slip parameter (ξ). It was observed that the skin 

friction increases with increasing values of δ, ς and ξ; and decreases with increasing 

values of Gt, Gc, A, and ε. This means that the effect of velocity, thermal and solutal 

slips at the surface of the sheet is to increase the local skin friction; whereas the 

combined effect of buoyancy forces (due to thermal and solutaldiffusion); 

Pr M  Br Sc  0f   0   0
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unsteadiness of the flow; and the difference in the velocities upstream and at the 

surface of the sheet, are to reduce the skin friction at the surface of the sheet. 

Meanwhile, it was observed that the rate of heat transfer increases with increasing 

values of Gt, Gc, A, ε and δ; and decreases with increasing values of ς and 

ξ.Furthermore, the rate of mass transfer increases with increasing values of Gt, Gc, A, 

ε and δ; and decrease with increasing values of ς and ξ for obvious reasons. 

Table 4.3 Results of skin friction coefficient, Nusselt and Sherwood numbers for    

various values of Gt, Gc, A, ε, δ, ς and ξ. 

          

0.1 0.1 0.1 0.5 0.1 0.1 0.1 -0.66020 0.83208 0.57015 

   1.0       -0.94992 0.85599 0.58810 

1.5       -1.10336 0.86708 0.59709 

 1.0      -1.01202 0.86340 0.59531 

 1.5      -1.19654 0.87717 0.60756 

  1.0     -0.73419 1.17504 0.78571 

  1.5     -0.77184 1.32111 0.88129 

   1.0    -0.00198 0.93723 0.61884 

   1.5    -0.75365 1.00868 0.66161 

    1.0   -0.30822 0.89471 0.59802 

    1.5   -0.23640 0.90556 0.60315 

     1.0  -0.64622 0.47131 0.56927 

     1.5  -0.64267 0.37991 0.56904 

      1.0 -0.64637 0.83069 0.37635 

      1.5 -0.64209 0.83026 0.31664 

 

 

 

Gt Gc A      0f   0   0
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4.3 Graphical Results 

4.3.1. Velocity Profiles 

The effect of varying the controlling parameters on the velocity boundary layer is 

depicted in Figures 4.1-4.5. From Figure 4.1, a consistent decrease in the longitudinal 

velocity informed by increasing magnetic field intensity (M)with all profiles tending 

asymptotically to the free stream value away from the plate is observed. In practice, 

this phenomenon is due to the fact that increasing the magnetic field strengthincreases 

the Lorenz force which causes a greater opposition to fluid transport. 

It is observed in Figures 4.2 and 4.3 that increasing the thermal and solutalGrashof 

number (Gt, Gc), respectively lead to increasing the velocity profiles due to induced 

buoyancy forces. Also from Figures 4.4 and 4.5, increasing the velocity ratio and the 

unsteadiness parameter tend to increase the thickness of the velocity profile. This is 

obvious due to the fact that an increase in the velocity ratio means increase in velocity 

upstream against that on the surface of the sheet causing the thickening of the velocity 

boundary layer.   

 

www.udsspace.uds.edu.gh 

 

 



  43 

 

 

Figure 4.1 Velocity profiles for varying values of magnetic parameter (M) 

 

Figure 4.2 Velocity profiles for varying values of thermal Grashof number (Gt) 

—    M = 0.1 

ooo   M = 0.2  

…..  M = 0.3 

+++   M = 0.4 

—    Gt = 0.1 

oooGt = 0.5  

…..  Gt = 1.0 

+++   Gt = 1.5 

Pr=0.72, Gt=0.1, Gc=0.1, Ra=0.1,  

Br =0.1, A=0.1, ε=0.1, δ=0.1,  

ς =0.1, ξ=0.1, Sc=0.24, β = 0.1, 

Pr=0.72, M=0.1, Gc=0.1, Ra=0.1, 

Br =0.1, A=0.1, ε=0.1, δ=0.1,  

ς =0.1, ξ=0.1, Sc=0.24, β = 0.1, 

www.udsspace.uds.edu.gh 

 

 



  44 

 

 

Figure 4.3 Velocity profiles for varying values of SolutalGrashof number (Gc) 

 

Figure 4.4 Velocity profiles for varying values of velocity ratio parameter (ε) 

—    Gc = 0.1 

oooGc = 0.5  

…..  Gc = 1.0 

+++   Gc = 1.5 

—    ε = 0.1 

ooo  ε = 0.2 

…..  ε = 0.3 

+++   ε = 0.4 

Pr=0.72, M=0.1, Gt=0.1,Ra=0.1,  

Br =0.1, A=0.1, ε=0.1, δ=0.1,  

ς =0.1, ξ=0.1, Sc=0.24, β = 0.1, 

Pr=0.72, M=0.1, Gt=0.1, Gc=0.1,  

Ra=0.1, Br =0.1, A=0.1, δ=0.1,  

ς =0.1, ξ=0.1, Sc=0.24, β = 0.1, 

www.udsspace.uds.edu.gh 

 

 



  45 

 

 

Figure 4.5 Velocity profiles for varying values of unsteadiness parameter (A) 

 

4.3.2. Temperature Profiles 

Figures 4.6 – 4.15 show the effects of the Magnetic parameter (M), Prandtl number 

(Pr), Radiation parameter (Ra), Brinkmann number (Br), thermal Grashof number 

(Gt), solutalGrashof number (Gc), unsteadiness parameter (A), velocity ratio 

parameter (ε), velocity slip parameter (δ) and thermal slip parameter (ς) respectively 

on the temperature profiles. It is observed that increasing the magnetic field intensity 

increases the fluid temperature which in turn, increases the thermal boundary layer 

(Figure 4.6). This can be attributed to the effect of Ohmic heating on the flow system.  

Meanwhile, increasing Pr decreases the fluid temperature within the boundary layer 

(Figure 4.7). When Pr is high, the fluid velocity decreases, which implies lower 

—    A = 0.1 

ooo  A = 0.5 

…..  A = 1.0 

+++   A = 1.5 

Pr=0.72, M=0.1, Gt=0.1, Gc=0.1,  

Ra=0.1, Br =0.1, ε=0.1, δ=0.1,  

ς =0.1, ξ=0.1, Sc=0.24, β = 0.1, 

www.udsspace.uds.edu.gh 

 

 



  46 

 

thermal diffusivity and hence, decrease in fluid temperature. Increasing the Ra causes 

an increase in the fluid temperature within the boundary layer which in turn, increases 

the thermal boundary layer (Figure 4.8). In Figure 4.9, it was observed that the same 

trend occurs for the Brinkmann number due to viscous dissipation. 

 Moreover, an increase in Gt and Gc as depicted in Figures 4.10 and 4.11 shows a 

corresponding decrease in the thermal boundary layer as a result of the induced 

buoyancy forces. Conversely, increasing values of A tend to shrink the thermal 

boundary layer due to the unsteadiness of the flow (Figure 4.12).  

Lastly, in Figures 4.13, 4.14, and 4.15, it was observed that increasing values of ε, δ 

and ς tend to increase the thermal boundary layer. This means that the combined 

effects of the differences in velocity upstream and on the surface of the sheet(ε), fluid 

slip due to velocity of the flow(δ) and fluid slip associated with thermal distribution of 

the flow (ς)  are to decrease the temperature of the flow. 

 

Figure 4.6 Temperature profiles for varying values of Magnetic parameter (M) 
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Figure 4.7 Temperature profiles for varying values of Prandtl number (Pr) 

 

 

Figure 4.8 Temperature profiles for varying values of radiation parameter (Ra) 

—    Pr = 0.72 

oooPr = 1.00 

…..  Pr = 4.00 

+++   Pr = 7.20 

—    Ra = 0.1 

ooo   Ra = 0.5 

…..  Ra = 1.0 

+++   Ra = 1.5 

M=0.1, Gt=0.1, Gc=0.1, Ra=0.1, 

Br =0.1, A=0.1, ε=0.1, δ=0.1,  

ς =0.1, ξ=0.1, Sc=0.24, β = 0.1, 

Pr=0.72, M=0.1, Gt=0.1, Gc=0.1,  

Br =0.1, A=0.1, ε=0.1, δ=0.1,  

ς =0.1, ξ=0.1, Sc=0.24, β = 0.1, 

www.udsspace.uds.edu.gh 

 

 



  48 

 

 

Figure 4.9 Temperature profiles for varying values of Brinkmann number (Br) 

 

 

Figure 4.10 Temperature profiles for varying thermal Grashof number (Gt) 
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Figure 4.11 Temperature profiles for varying solutalGrashof number (Gc) 

 

Figure 4.12 Temperature profiles for varying values of unsteadiness Parameter (A) 
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Figure 4.13 Temperature profiles for varying values of Velocity Ratio Parameter (ε) 

   

 

Figure 4.14 Temperature profiles for varying values of Velocity slip Parameter (δ) 
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Figure 4.15 Temperature profiles for varying values of thermal slip Ratio Parameter 

(ς) 

4.3.3Concentration Profiles 

Figures 4.16 – 4.24 show the effects of the Magnetic field parameter (M), reaction 

rate parameter (β), Schmidt number (Sc), thermal Grashof number (Gt), 

solutalGrashof number (Gc), unsteadiness parameter (A), velocity ratio parameter (ε), 

velocity slip parameter (δ) and solutal slip parameter (ξ) respectively on the 

concentration boundary layer. It is observed that increasing values of M increases the 

species concentration boundary layer thickness (Figure 4.16). The opposite is true for 

increasing reaction rate parameter (Figure 4.17) and the Schmidt number (Figure 

4.18) since increasing the Schmidt number in particular implies momentum 

diffusivity dominates mass species diffusivity. Though increasing the reaction rate 

parameter implies increasing rate of reaction over momentum, it is interesting to note 

that, the concentration boundary layer reduces. This can be due to the fact that the 
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reaction rate in this study is destructive and hence has adverse effect on the 

concentration boundary layer thickness.  

From Figures 4.19 and 4.20, the buoyancy forces induced by the increasing values Gt 

and Gc tend to reduce the concentration boundary layer thickness. Likewise, from 

Figures 4.21-4.24, the combined effects of A, ε, δ and ξ are to shrink the 

concentration boundary layer thickness. 

 

Figure 4.16 Concentration profiles for varying values of magnetic parameter (M) 
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Figure 4.17 Concentration profiles for varying values of reaction rate parameter (β) 

 

 

Figure 4.18 Concentration profiles for varying values of Schmidt number (Sc) 
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Figure 4.19 Concentration profiles for varying values of thermal Grashof number 

 

 

Figure 4.20  Concentration profiles for varying values of SolutalGrashof number 
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Figure 4.21 Concentration profiles for varying values of unsteadiness parameter (A) 

 

Figure 4.22 Concentration profiles for varying values of velocity ratio parameter (ε) 
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Figure 4.23 Concentration profiles for varying values of velocity slip parameter (δ) 

 

Figure 4.24 Concentration profiles for varying values of solutal slip parameter (ξ) 
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The behaviour of the convection unsteady stagnation-point flow towards a stretching 

sheet with slip has been studied. The skin friction increases with increasing M, Pr, δ, 

ς, ξ, Sc, and β; and decreases with increasingGt, Gc, A, ε, Ra and Br. The rate of heat 

transfer increases with increasing Pr, Gt, Gc, A, ε, δ and decreases with increasing M, 

β, Ra, Br, Sc, ς and ξ. Increasing the values of Gt, Gc, A, ε, δ, β, Ra, Br and Sc 

increases the rate of mass transfer; whereas increasing the values of Pr, M, ς and ξ 

reduces it.The velocity profile increases with increasing Gt, Gc, A and ε; and 

decreases with increasing M.The temperature profile increases with increasing Ra and 

Br; and decreases with increasingGt, Gc, A, ε, δ, and ξ.The concentration profile 

increases with increasing M; and decreases with increasingGt, Gc, A, ε, δ, β, Sc and ξ. 
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An investigation into the combined effects of partial slip at the stagnation point of an 

unsteady hydro magnetic flow over a vertical stretching sheethas been investigated. 

The equations governing the flow were modelled with theirassociated boundary 

conditions. To make the resulting coupled partial differential equations solvable 

numerically, similarity analysis was employed which reduced the problem to a set of 

nonlinear ordinary differential equations. The nonlinear ordinary differential 

equations 3.43, 3.51 and 3.57 together with the boundary conditions were then solved 

by the Runge-Kutta integration method along with the Newton Raphson Algorithm 

using Maple 16 software. 

5.1. Conclusion 

Heat and mass transfer in unsteady hydro-magnetic fluid flow over a vertical surface 

with stagnation point in the presence of radiation and viscous dissipation has been 

studied. The results of the study were compared to those of Ishaket al., (2006), Pal 

(2009) and Chen (2014) and they were consistent with them. 

The main conclusions from this research is that buoyancy forces, radiation effects, 

viscous dissipation, partial slip effects, chemical reaction , mass diffusion, momentum 

diffusion and magnetic fields, highly influence the following parameters: 

i. Fluid velocity; 

ii. Skin friction coefficient; 

iii. The rate of heat and mass transfer; and 

iv. The thickness of both the thermal and concentration boundary layers in 

unsteady hydro-magnetic fluid flow over vertical surfaces 
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5.2. Recommendations 

The following recommendations are made: 

i. Partial slip study should be extended to include non-Newtonian fluidsas 

they are the most common industrial fluids.  

ii. Future research should consider surfaces with varying orientation  

iii. Research in circular conduits under partial slip and unsteady flow as occur 

in start-up processes could be very relevant to process industries.  
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APPENDIX I 

Derivation of Continuity 

The partial differential equations modeling the motion of a parcel of fluid is obtained 

by applying the conservation law of mass to a small volume of fluid flow. Consider 

the mass flux through each face of the fixed infinitesimal control volume shown in 
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Figure A.1. Let the net flux of mass entering the element be equal to the rate of 

change of the mass of the element; that is, 

elementoutin m
t

mm



  (A1.1) 

To perform this mass balance, identify ρu, ρv and ρwat the centre of the element and 

then treat each of these quantities as a single variable. 

Figure A1.1  Mass flux through each of the six faces of a control volume of fluid 

(Çengel and Cimbala, 2006) 

From Figure A.1 which shows the mass flux through each of the six faces; Equation 

(A.1) takes the form 
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Subtracting the appropriate terms and dividing by dzdydx  gives, 
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Expanding and simplifying results in 

0










































z

w

y

v

x

u

z
w

y
v

x
u

t



(A1.4) 

In terms of substantial derivative (A1.4) is written as 
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This is the most general form of the differential continuity equation expressed in 

rectangular coordinates. Introducing the gradient operator, called ―del‖, which, in 

rectangular coordinates, is 

k
z

j
y

i
x

ˆˆˆ



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







  (A1.6) 

The continuity equation can then be written in the form 

0 V
Dt

D



 (A1.7) 
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Where kwjviu ˆˆˆV    and V    is called the divergence of the velocity. This 

form of the continuity equation does not refer to any particular coordinate system. It is 

the form used to express the continuity equation using various coordinate systems. 
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APPENDIX II 

Derivation of Momentum Equation 

General formulation: 

The differential momentum equation is a vector equation and thus provides us with 

three scalar equations. There are nine stress components of the stress tensor ji that act 

in a particular point in a fluid field. These stress tensors can be related to the velocity 

and the vector fields with the appropriate equations. 

 
Figure A2.1 x-directional surface forces due to stress tensor component of a control 

volume (Çengel and Cimbala, 2006) 

The stress components that act at a point are displayed on a two- and three-

dimensional rectangular element in Figure A2.1. This element is considered to be an 
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exaggerated point, a cubical point; the stress components act in the positive direction 

on a positive face (a normal vector point in the positive coordinate direction) and in 

the negative direction on a negative face (a normal vector points in the negative 

coordinate direction). The first subscript on a stress component denotes the face, upon 

which the component acts, and the second subscript denotes the direction in which it 

acts; the component τxy acts in the positive y-direction on a positive x-face. A stress 

component that acts perpendicular to a face is referred to as normal stress; the 

components σxx, σyyand σzz are normal stresses. A stress component that acts tangential 

to a face is called a shear stress; the components τxy, τyxτxzτzxτyzand τzy are the shear 

stress components. There are nine stress components that act at a particular point in a 

fluid. To derive the differential momentum equation, consider the forces acting on the 

infinitesimal fluid particle. Only forces acting on the faces are shown. The stress 

components are assumed to be functions of x, y, z and t; and hence the values of the 

stress components change from face to face since the location of each face is slightly 

different. The body force is shown acting in an arbitrary direction. Newton’s second 

law applied to a fluid particle, for the x-component direction, ∑Fx = max. For the 

particle shown, it takes the form: 
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where the component of the gravity vector g in the x-direction is gx and 
Dt

Du
 is the x-

component acceleration of the fluid particle. Dividing by the volume dxdydz, (A2.1) 

simplifies to 
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                      (A2.2) 

Similarly, for y- and z-directions, we have                           

,y

zyyyxy
g

zyxDt

Dv



 














                      (A2.3)    

.z
zzyzxz g

zyxDt

Dw



 














                      (A2.4) 

We can show by taking moments about the axes passing through the centre of the 

infinitesimal element, that 

,  xyyx   ,xzzx   yzzy                     (A2.5) 

That is, from (A2.5), we say the stress tensor is symmetric; so there are actually six 

independent stress components. The stress tensor may be displayed in the usual way 

as in (A2.6) 

The subscripts i and j take on numerical values 1, 2, or 3. Then η12 represents the 

element τxy in the first row, second column. 
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The Navier – Stokes Equations 

Many fluids exhibit a linear relationship between the stress components and the 

velocity gradients. Such fluids are called Newtonian fluids and include common fluids 

such as water, oil, and air. If in addition to linearity, we require that the fluid be 

isotropic, it is possible to relate the stress components and the velocity gradients using 

only two fluid properties, the viscosity μ and the second coefficient of viscosity λ. The 

stress-velocity gradient relations, often referred to as the constitutive equations, are 

stated as follows: 
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For most gases and for monatomic gases exactly, the second coefficient of viscosity is 

related to the viscosity by 

,
3

2
      (A2.8) 

a condition that is known as Stokes’ hypothesis. With this relationship, the negative 

average of the three normal stresses is equal to the pressure, that is, 

  .
3

1
pzzyyxx   (A2.9) 
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Using (A2.7), this can be shown to always be true for a liquid in which 0 V , and 

with stokes’ hypothesis, it is also true for a gas. If the constitutive equations are 

substituted into the differential momentum equations (A2.2), (A2.3), and (A2.4), give

,
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where a homogeneous fluid is assumed. That is, the fluid properties (for example, the 

viscosity) are independent of position. For an incompressible flow, the continuity 

equation allows the equations above to be reduced to 
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These are the Navier-Stokes Equations, named after Louis M. H. Navier (1785-1836) 

and George Stokes (1819-1903).  

Vgp
Dt

DV 2  (A2.16) 
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APPENDIX III 

Derivation of the Energy Equation 

 

Consider the infinitesimal fluid element, shown in Figure A2.1. The heat transfer rate 

Q  through an area A is given by Fourier’s law of heat transfer, named after Jean 

(1768-1830): 

,
n

T
AQ



                                                                   (A3.1)                      

wheren is the direction normal to the area, T is the temperature, and κ is the thermal 

conductivity, assumed to be constant. The rate of work done by a force is the 

magnitude of the force multiplied by the velocity in the direction of the force, that is, 

,pAVW                                                                     (A3.2) 

whereV is the velocity in the direction of the pressure force pA. The first law of 

thermodynamics applied to a fluid particle can be written as 

,
Dt

DE
WQ    (A3.3) 

whereD/Dt  is used since we are following a fluid particle at the instant shown.  
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whereữis the internal energy, E has included kinetic, potential and internal energy, 

and the z-axis is assumed vertical. Also, since the mass of a fluid particle is constant 

ρdxdydz is outside the D/Dt -operator. Divide both sides by dxdydz. The result is 
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This can be rearranged as follows: 
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The Euler’s equations are applicable for this inviscid flow. Hence, the last three terms 

on the left equal the first four terms on the right if we recognize that 

,w
z

z
w

y

z
v

x

z
u

t

z

Dt

Dz




















 (A3.7) 

sincex, y, z and t are all independent variables. The simplified energy equation then 

takes the form 
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 (A3.8) 

In vector form, this is expressed as 
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VpT
Dt

uD
 2

~
     (A3.9) 

Before simplifying this equation for incompressible gas flow, it could be written in 

terms of enthalpy rather than internal energy. Using 

.~



P
hu      (A3.10) 

The energy equation now becomes 

.2

Dt

Dp
T

Dt

Dh
     (A3.11) 

Two special cases can be considered. First, for a liquid flow, the continuity equation 

requires that 0 V and with ữ = cpT,cp being the specific heat capacity at constant 

pressure. Equation (A3.9) becomes 

T
Dt

DT 2    (A3.12) 

In (A3.12) we have introduced the thermal diffusivity defined by 

pc


    (A3.13) 

If viscous effects are not negligible, the derivation would include the work input due 

to the shear stress components. This would add a term to the right-hand side of all the 

differential energy equations above; this term is called the dissipation function , 

which, in rectangular coordinates, is 
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Therefore, the energy equation for incompressible fluid flow becomes 

 T
Dt

DT 2                                              (A3.15) 

In equation (A3.15), the left hand represents the convective term whilst the right hand 

side are respectively, the rate of heat diffusion to the fluid particles and the rate of 

viscous dissipation per unit volume.  
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APPENDIX IV 

Derivation of the Concentration Equation 

 

The concentration equation is derived on the principles of species conservation in a 

mixture. In addition to accounting for the convection and diffusion of each species, 

we must allow the possibility that a species may be created or destroyed by chemical 

reactions occurring in the bulk medium (homogeneous reactions). Reactions on 

surfaces surrounding the medium (heterogeneous reactions) must be accounted for in 

the boundary conditions 

 

Figure A4.1 A Control volume in a fluid-flow and mass-diffusion field (Lienhard IV 

and Lienhard, 2008) 

Consider, in the usual way, an arbitrary control volume, R, with a boundary, S, as 

shown in Fig A4.1. The control volume is fixed in space, with fluid moving through 
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it. Species i may accumulate in R, it may travel in and out of R by bulk convection or 

by diffusion, and it may be created within R by homogeneous reactions. The rate of 

creation species iis denoted by ir ; and, because chemical reaction conserve mass, the 

net mass reaction is 0 i
rr  . The rate of change of the mass of species i in R is 

then described by the following balance: 

dRrSdndR
dt

d

R
i

S
i

R
i   


.                                               (A4.1)      

dRrSdjSdvdR
dt

d

R
i

S
i

S
i

R
i   


                               (A4.2) 

The term on the left hand side of equation (A4.2) is the rate of increase of the species 

in the control volume and the terms on the right hand side depicts respectively, the 

rate of convection of the species out of the control volume; the diffusion of the 

species out of the control volume; and the rate of creation of the species in the control 

volume. 

This species conservation statement is identical to the energy conservation statement 

except that the mass of the species has taken the place of energy and heat. The surface 

integral may be converted to volume integrals using Gauss’ theorem and rearranged to 

appear as:  

  0












R iii

i rjv
t







                                        (A4.3) 

Since the control volume is selected arbitrarily, the integrand must be identically zero. 

Thus, the general form of the species conservation equation becomes: 
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  iii

i rjv
t











                                                    (A4.4) 

The mass conservation equation for the entire mixture can be obtained by summing 

equation (A4.4) over the species region and apply the requirement that there be no net 

creation of mass: 

    













i

ii

i

i

i rjv
t







                                         (A4.5) 

So that,             0



v

t





                               (A4.6) 

Equation (A4.6) applies to any mixture, including those with varying density. 

Incompressible Mixtures 

For an incompressible mixture, 0 v


and the second term in equation (A4.6) may 

be written as 

  iii vvvv  


         (A4.7) 

Comparing the resulting incompressible species equation to the incompressible 

energy equation: 

iii

i rjv
t











                     (A4.8)                              

qqTv
t

T
c p

















                     (A4.9) 
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the reaction term, ir , is analogous to the heat generation term, q ; the diffusion flux, ij


, is analogous to the heat flux, q


, and dρi is analogous to dTcp . 

The Fick’s Law 

The Fick’s Law states that during mass diffusion, the flux, ij


 of a dilute component, 1, 

into a second fluid, 2, is proportional to the gradient of its mass concentration, m1. 

Thus  

,112 mDji  


                                (A4.10) 

where the constant 
12D  is the binary diffusion coefficient. 

We can use Equation (A4.10) to eliminate ij


in equation (A4.8). The resulting 

equation may be written in different forms depending on what is assumed about the 

variation of the physical properties. If the product imD is spatially uniform, then 

equation (A4.8) becomes: 



i

iimi

r
mDm

Dt

D 
 2                   (A4.11) 

If instead, ρ and imD are both spatially uniform, then, 

iiimi rD
Dt

D
  2

                              (A4.12) 

We now state the equation of species conservation and its particular form in molar 

variables instead of the mass variables as, 
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,2 rCD
Dt

DC
                     (A4.13) 

where C  is the species concentration, D  is the mass diffusivity and r is the rate of 

generation of species. 
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APPENDIX V 

MAPLE CODE FOR NUMERICAL RESULTS 
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APPENDIX VI 

MAPLE CODE FOR GRAPHICAL RESULTS 

>  
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APPENDIX VII 

The Runge-Kutta (RK) Method 

The Runge-Kutta (RK) method is based on the Taylor series expansion formulae, but 

yield in general better algorithms for solutions of an ODE. The basic philosophy is 

that it provides an intermediate step in the computation of yi+1. 

To see this, consider first the following definitions 

 ,,ytf
dt

dy
 (A10.1) 

    ,, dtytfty  (A10.2) 

 





1

1

i

i

t

tii
dtytfyy ., (A10.3) 

To demonstrate the philosophy behind RK methods, let us consider the second-order 

RK method, RK2. The first approximation consists in Taylor expanding f (t, y) around 

the centre of the integration interval tito ti+1, i.e., at ti+h/2, h being the step. Using the 

midpoint formula for an integral, defining y(ti+ h/2) = yi+1/2 and ti+ h/2 = ti+1/2, we 

obtain 

     3

2121

1

hOythfdtytf
i

i

t

t ii





,, (A10.4) 

This means in turn that we have 
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   3

21211
hOythfyy

iiii



, (A10.5) 

However, we do not know the value of yi+1/2. Here comes thus the next approximation, 

namely, we use Euler’s method to approximate yi+1/2. We have then 

     .,
iiiii

ytf
h

ty
dh

dyh
yy

2221



(A10.6) 

This means that we can define the following algorithm for the second-order Runge-

Kutta method, RK2. 

 ,,
ii

ythfk 
1

(A10.7) 

 ,, 2
1212

kythfk
ii



(A10.8) 

 .3

21
hOkyy

ii



(A10.9) 

The difference between the previous one-step methods is that we now need an 

intermediate step in our evaluation, namely ti+h/2 = t(i+1/2) where we evaluate the 

derivative f . This involves more operations, but the gain is a better stability in the 

solution. The fourth-order Runge-Kutta, RK4, which we will employ in the solution 

of various differential equations below, is easily derived. The steps are as follows. We 

start again with (A10.7), but instead of approximating the integral with the midpoint 

rule, we use now Simpson’s rule at ti + h/2, with h being the step. Using Simpson’s 

formula for an integral, defining y(ti + h/2) = yi+1/2 and ti+h/2 = ti+1/2, we obtain    

          .,,,, 5

112121

1

4
6

hOytfytfytf
h

dtytf
i

i

t

t iiiiii





(A10.11) 
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This means; 

        .,,, 5

1121211
4

6
hOytfytfytf

h
yy

iiiiiiii



(A10.12) 

However, we do not know the values of yi+1/2 and yi+1. The fourth-order Runge-Kutta 

method splits the midpoint evaluations in two steps, that is we have 

        ,,,,,
11212121211

22
6 


iiiiiiiiii

ytfytfytfytf
h

yy     (A10.13) 

since we want to approximate the slope at yi+1/2 in two steps. The first two function 

evaluations are as for the second order Runge-Kutta method. Thus, the algorithm 

consists in first calculating k1 with ti, y1 and f as inputs. Thereafter, we increase the 

step size by h/2 and calculate k2, then k3 and finally k4. With this caveat, we can then 

obtain the new value for the variable y. It results in four function evaluations, but the 

accuracy is increased by two orders compared with the second-order Runge-Kutta 

method. The fourth order Runge-Kutta method has a global truncation error which 

goes like O (h
4
). 
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Appendix VIII 

Shooting method 

In many physics applications we encounter differential equations like 

    ,; bxaxFyxk
dx

yd
 2

2

2

(A11.1) 

with boundary conditions 

    .,  byay (A11.2) 

We can interpret F(x) as an inhomogeneous driving force while k(x) is a real function. 

If it is positive the solutions y(x) will be oscillatory functions, and if negative they are 

exponentionally growing or decaying functions. To solve this equation we could start 

with for example the Runge-Kutta method or various improvements to Euler’s 

method, as discussed in the previous chapter. Then we would need to transform this 

equation to a set of coupled first-order equations. We could however start with the 

discretized version for the second derivative. We discretize our equation and 

introduce a step length h = (b−a)/N, with N being the number of equally spaced mesh 

points. Our discretized second derivative reads at a step  xi= a + ihwith i = 0,1, . . . 

 ,2

2

11
2

hO
h

yyy
yy iii

ii



  (A11.3) 

leading to a discretized differential equation: 
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 .2

2

112
2

hO
h

yyy
ykF iii

iii



  (A11.4) 

Recall that the fourth-order Runge-Kutta method has a local error of O(h
4
). Since we 

want to integrate our equation from x0 = a to xN= b, we rewrite it as 

 .
iiiii

Fhkhyyy 222

11
2 


(A11.5) 

Starting at i = 1 we have after one step: 

 .
1

22

1

2

102
2 Fhkhyyy  (A11.6) 

Irrespective of method to approximate the second derivative, this equation uncovers 

our first problem. While y0 = y (a) = 0, our function value y1 is unknown, unless we 

have an analytic expression for y(x) at x = 0. Knowing y1 is equivalent to knowing y' 

at x = 0 since the first derivative is given by 

.
h

yy
y ii

i


 1 (A11.7) 
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