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ABSTRACT 

A new family of distributions, by name generalized odd inverse exponential distribution 

was developed in this study. The new family of distributions were developed using the 

concepts of relative odds. The statistical properties such as quantile function, characteristic 

function, moments, moment generating function, mean residual life, inequality measures 

and order statistics for the new family of distributions were obtained. The maximum 

likelihood, ordinary least squares and Cramér-von Mises procedures were employed to 

develop the estimators for the parameters of the new family of distributions. The study also 

derive some special distributions from the generalized odd inverse exponential family of 

distributions and these are;  Generalized odd inverse exponential Weibull and generalized 

odd inverse exponential Lomax distributions. The hazard rates of these special distributions 

indicates that they can handle datasets that exhibit different kinds of non-monotonic failure 

rates. Again, regression models with cure fraction were developed using the special 

distributions. Monte Carlo simulations were performed to examine the behavior of the 

estimators and the results indicates that the estimators were consistent and that the 

maximum likelihood estimator was the best. The applications of the special distributions 

were demonstrated using eight cancer datasets and their performances were compared to 

other well-known existing distributions. The results showed that the special distributions 

perform better than the other existing distributions in terms of modeling cancer datasets.  
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CHAPTER ONE 

INTRODUCTION 

1.1 Background 

The devastating nature of chronic diseases has made it the leading cause of mortality 

among human population across the globe, and account for about 60% of deaths in the 

world (Jennings, 2014). Deaths associated with chronic diseases was estimated as double 

of that of infectious diseases, with low and middle-income countries recording about 80% 

of chronic disease deaths, half of which were women. Without any remedy actions on the 

prevelance of chronic diseases, the death toll from chronic diseases was therefore estimated 

to increase by 17% between 2005 and 2015 (WHO, 2005). 

In technical terms, a chronic disease is commonly considered an illness that lasts one year 

or more, necessitates ongoing medical attention and/or limits a person’s daily activities 

(Megan, 2013). The most common chronic diseases across the globe include; chronic 

respiratory diseases, heart diseases, stroke, diabetes, arthritis, asthma, cancer and 

hypertension among others (Megan, 2013; Wullianallur and Viju, 2018).  

Among the global recognized chronic diseases, cancer is regarded as the leading cause of 

deaths associated with chronic diseases in the global community. The WHO (2005) 

projected deaths associated with cancer related diseases to be 13% of total cause of 

deaths.This striking projection is mainly attributed to the larger geographical diversity of 

cancer occurrence within countries across the globe. Also, WHO (2018) estimated an 

increase in the global burden of cancer disease  to be 18.1 million new cases, with the death 

toll increasing to 9.6 million.  

www.udsspace.uds.edu.gh 

 

 

 

 



3 
 

Due to the increasing awareness on cancer disease, its risks factors and associated burden 

on human population, it is of great importance to conduct statistical analysis on the 

incidence, prevelance, mortality and survival of cancer disease over a period of time. 

Several researchers therefore employ different statistical techniques to model the behaviour 

of cancer disease incidence, prevelance, mortality and survival across various regions of 

the world.  

The most widely used statistical approach in modeling cancer data is the parametric 

statistical distributions with Exponential, Weibull, Gompertz, Lognormal and Loglogistic 

as the commonly used models (Vallinayagam et al., 2014). However, barrage of these 

statistical models depends on certain distributional assumptions since they are parametric 

in nature. Therefore to provide an accurate fit to a cancer data that have varrying degree of 

skewness and kurtosis or that are characterized by non-monotonic failure rates, the classical 

distributions may not be suitable. Hence, the classical distributions which have essential 

limitations in data modeling, has led statistical researchers to develop new flexible 

distributions by adding one or more parameters to the existing distributions. This current 

study is focus on developing a new odd family of distributions for modeling cancer 

datasets.  

 

1.2 Statement of the Problem 

The increasing incidence of cancer diseases that has claim a lot of lives across various 

regions of the world has triggered myriad of statistical researchers to conduct statistical 

analysis on the incidence, prevalence, mortality and survival of cancer disease over a period 

of time. As a result, different statistical techniques have been employed to model the 
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incidence, prevalence, mortality and survival of the cancer diseases throughout the world. 

The commonly used statistical models are; Exponential, Weibull, Gompertz, Lognormal 

and Log-logistic which are all parametric distributions (Vallinayagam et al., 2014).  

Meanwhile, almost all of these statistical models rely on certain distributional assumptions 

as they are parametric in nature. However, most of these cancer data have varying degree 

of skewness and kurtosis and sometimes characterized by non-monotonic failure rates. 

Therefore modeling with these classical distributions may not be suitable. As a result, 

statistical researchers have developed more flexible distributions by adding more 

parameters to the existing distributions. These flexible distributions have the tendency to 

handle data with non-monotonic failure rates and be able to accurately model datasets that 

are highly skewed or have fat tails (Nasiru, 2018). However, the flexibility of these 

modified distributions depend on the parameters added to the baseline distribution. The 

effect of adding one shape parameter will not be the same as adding two parameters. So to 

develop a generator that will produce both light-tail and heavy-tail distributions and also 

handle skewness and kurtosis at the same time we need to add more than one shape 

parameter to the baseline distribution (Nasiru, 2018). Hence, this current study is focus on 

developing a new odd family of distributions by adding two extra shape parameters to 

baseline distribution to enhance flexibility when modeling cancer datasets. 

 

1.3 General Objective of the Study 

The general objective of the study is to develop and investigate the statistical properties of 

a new odd family of statistical distributions.  
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1.4 Specific Objectives 

The specific objectives of the study are: 

i. To develop the generalized odd family of distributions. 

ii. To derive the statistical properties of the generator. 

iii. To come up with estimators for the parameters of the generator. 

iv. Perform simulation studies to examine the properties of the estimators. 

v. To demonstrate the applications of the new distributions using cancer data. 

 

1.5 Significance of the Study 

The development of generalized class of distributions from existing distributions have 

received an increasing attention in the statistical literature, due to their wider application 

in different fields of studies. These modified distributions have the tendency of improving 

the flexibility as well as the goodness-of-fit when modeling lifetime dataset. Thus, in this 

study a new generator called generalized odd inverse exponential family of distributions 

was developed and studied. 

 

1.6 Scope of the Study 

This study mainly focuses on developing a generator with inverse exponential distribution 

as the baseline model using the concept of relative odd. The study also examined the 

properties of the proposed generator and demonstrating the usefulness of this generator 

using cancer datasets.  
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1.7 Thesis outline 

This thesis is consist of six chapters including this one. Chapter two is focused on literature 

on related works of this study. Chapter three presents the methodology of the study. 

Chapter four presents the theoretical results of the study. Chapter five deals with the 

simulations and applications of the GOIE family of distributions. Finally, chapter six 

presents the summary, conclusions and recommendations of the study.  

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

www.udsspace.uds.edu.gh 

 

 

 

 



7 
 

CHAPTER TWO 

LITERATURE REVIEW 

2.0 Introduction  

This chapter reviews related works done on odd family of distributions, generalized class 

of distributions, cure rate models and inverse exponential distributions. The chapter is 

divided into four main headings namely; review on existing odd family of distributions, 

review on existing generalized class of distributions, empirical researches on cure rate 

models and empirical researches on inverse exponential distributions. 

 

2.1 Review on Existing Odd Family of Distributions 

Some studies that have been done on the odd family of distributions are discussed in this 

section. 

Cordeiro et al. (2019) introduced and studied the mathematical properties of a new 

generator called odd Lomax-G family based on the Lomax distribution. This distribution 

has special cases which includes: odd Lomax Weibull distribution, odd Lomax-Lomax 

distribution, odd Lomax-log-logistic distribution and odd Lomax-Lindley distribution. The 

plots of the PDF of each of the models were generated to illustrate the shapes of these 

distributions. Shapes such as; decreasing, unimodal, right skewed and upside down bathtub 

modified were assumed. The nature of the shapes of the plots of the density function for 

each of the distributions indicates that the proposed distribution was flexible. 

Also, Nasiru (2018) proposed a new class of distribution known as the extended odd 

Fréchet-G family of distributions. He developed two special cases of this distribution and 
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these include; extended odd Fréchet Nadarajah-Haghighi distribution and extended odd 

Fréchet weibull distribution. Based on these two distributions, he generated plots for the 

PDF and the hazard rate function using some selected parameter values in order to examine 

the flexibility of the proposed distribution.  The plots for the PDF of the extended odd 

Fréchet Nadarajah-Haghighi distribution and the extended odd Fréchet Weibull 

distribution assumed different shapes. These shapes include; upside down bathtub, 

unimodal, reverse J-shape, bathtub modified and decreasing. Also, the plot of the hazard 

rate function of the two distribution for some selected parameter values assumed different 

shapes. These include; decreasing, bathtub and upside down. These distributions were 

again compared to other competing distributions in terms of modeling the fatigue time of 

1016061-T6 in order to justify the performance of the proposed distribution. The results 

revealed that EOFNH distribution provides a perfect fit for the data than the other 

distributions.  

More so, Ahsan and Elgarphy (2018) proposed a new generator from Fréchet random 

variable called the odd Fréchet-G family of distributions. Special distributions of the odd 

Frѐchet-G family of distributions were also derived and these include; odd Fréchet-weibull 

distribution, odd Fréchet–Lomax distribution, odd Fréchet-pareto distribution and odd 

Fréchet-Gamma distribution. They considered some scale and shape parameters to drive 

the special distributions of the proposed odd Fréchet-G family of distributions and then 

generate the plots of PDF and hazard rate function for two of the special models; odd 

Fréchet-weibull distribution and odd Fréchet–Lomax distribution. Given the plots 

generated, the PDF of the two distributions exhibited different kinds of shape, thus, 

decreasing, right skewed and unimodal shapes, whereas the hazard rate functions of those 
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distributions exhibited an increasing, decreasing and J- shape. In addition, the odd Frѐchet-

weibull distribution was compared with some existing distributions from the odd family to 

examine the flexibility of the new distribution in terms of modeling life time dataset. The 

results indicates that the new distribution was better in terms of modeling a lifetime data 

than the existing distributions.   

Hosseini et al. (2018) introduced the generalized odd Gamma-G family of distributions. 

The generalized odd Gamma-Uniform distribution and the generalized odd Gamma-

Weibull distribution were also developed as special cases to the generalized odd Gamma-

G family of distributions. When the generalized odd Gamma-Uniform distribution was 

compared to other candidate models in terms of modeling the AG negative data, it did 

better than the existing models. Also, the hazard rate function exhibited and increasing and 

a bathtub shapes when it was plotted. The density function was also found to be decreasing, 

left skewed and symmetric when plotted.   

Further, Alizadeh et al. (2017) propose and derived the mathematical properties of a new 

generator of continuous distributions with three extra parameters called the odd log-logistic 

logarithmic generalized family of distributions. This distribution has special cases which 

includes: odd log-logistic logarithmic Weibull distribution and odd log-logarithmic normal 

distribution. The plot of the odd log-logistic logarithmic Weibull distribution density 

produced a decreasing unimodal and bimodal shapes. On the other hand, the plot of hazard 

rate function of the odd log-logistic logarithmic Weibull distribution generates a 

decreasing, increasing, in, bathtub shaped and upside down bathtub shaped.  
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Again, Alizadeh et al. (2017) proposed the Odd log-logistic Marshall-Olkin Lindley 

(OLLMO-L) distribution, using the Lindley distribution as the baseline distribution. They 

premised that the OLLMO-L distribution is highly flexible than the Lindley distribution, 

and thus allows for greater flexibility of the tails. Also, they generate a plots to examine 

the nature of the density function, as well the survival and hazard rate function of the 

distribution. The plot of the density function displayed several shapes such as unimodal, 

symmetric, right skewed, and monotonically decreasing shapes. In addition, the plot of the 

hazard rate function of the OLLMO-L distribution showed a highly flexible shapes, such 

as increasing, decreasing, and upside-down bathtub. They further illustrate the flexibility 

of the model by comparing its performance to other existing models in terms of modeling 

a real lifetime dataset. The results indicates that the proposed model gives a better fit to the 

dataset than the existing models.  

Cordeiro et al. (2017) introduced and derived the general statistical properties of a new 

generator of continuous distributions with one extra parameter called the generalized odd 

half –Cauchy family. Generalized odd half-Cauchy-Weibull distribution, generalized odd 

half-Cauchy-normal distribution, generalized odd half-Cauchy-log-logistic distribution 

and generalized odd half-Cauchy-Gumbel distribution are special distributions to the 

generalized odd half –Cauchy family.  

Also, Korkmaz et al. (2017) proposed and studied the statistical properties of a new 

generator called the exponential Lindley odd log-logistic-G family. He also developed the 

special distributions of this family and this includes exponential Lindley odd log-logistic-

normal distribution, exponential Lindley odd log-logistic Weibull distribution and 

exponential Lindley odd Lindley-log-Logistic-Lomax distribution.  
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Furthermore, Alizadeh et al. (2017) introduced a new class of distributions called the 

generalized odd generalized exponential family. In their work, they also derive generalized 

odd generalized exponential Weibull distribution, generalized odd generalized Exponential 

Normal distribution and generalized odd generalized Exponential Kumaraswamy 

distribution as special cases to the generalized odd generalized exponential family. They 

went further to provide a plots of the PDF and the hazard rate function of some of the 

distributions. The results of the plots produced different kinds of shapes. For the density 

function, decreasing, bathtub, left skewed and right skewed shapes were recorded. The 

shapes produced by the hazard rate function plots include, bathtub, J-shape and an 

increasing shape.  

Again, Brito et al. (2017) proposed and studied the statistical properties of a new class of 

continuous distributions called the Topp-Leone Odd Log-logistic family. This distribution 

extends the one-parameter distribution introduced by Topp and Leone. The special cases 

of the Topp-Leone Odd Log-logistic family are as follows; Topp-Leone odd log-logistic 

normal distribution, Topp-Leone odd log-logistic Weibull distribution and Topp-Leone 

odd log-logistic generalized half-normal distribution.  

Yousef et al. (2017) worked on a new model for analysis of lifetime data referred to as 

the odd Lindley NH distribution. The strength of the distribution was demonstrated to be 

good. Certain characteristics were also developed and the model was shown to exhibit 

various shapes. 

Tahir et al. (2015) proposed a new family of continuous distributions called the odd 

generalized exponential family whose hazard rate could be increasing, decreasing J, 
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reversed-J, bathtub and upside-down bathtub. This distribution includes as a special case 

of the widely known exponentiated Weibull distribution. The odd generalized 

exponentiated Weibull distribution, odd generalized exponentiated Frѐchet distribution and 

the odd generalized exponentiated normal distributions are the special cases of the odd 

generalized exponential family of distributions.  

 

2.2 Review on Existing Generalized Class of Distributions 

This section presents some current works on generalized class of distributions. Alizadeh et 

al. (2020) introduced and studied a four-parameter lifetime distribution known as the odd 

log-logistic generalized Gompertz model. This model was used to generalize some existing 

distributions and it includes; the generalized Gompertz, exponential, generalized 

exponential distributions and, among others. The method of maximum likelihood 

estimation of parameters is compared by six different methods of estimations with 

simulation study. After further studies, the new model was deemed to be a better fit to the 

real dataset that was provided.  

Ahmad et al. (2020) studied a new family of distributions called the odd generalized N-H. 

Characterizations based on the truncated moments, hazard function and conditional 

expectations are presented for the generated family. Parameter estimates of the family are 

obtained based on maximum likelihood procedure. Two real datasets are employed to show 

the usefulness of the new family.  

Elsayed et al. (2020) introduced a new univariate extension of the Fréchet distribution. A 

simple type Copula based construction using Morgenstern family and via Clayton Copula 
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is employed to derive many bivariate and multivariate extensions of the new model. They 

assessed the performance of the maximum likelihood estimators using a simulation study. 

The importance of the new model is shown by means of two applications to real datasets. 

 

Oluyede et al. (2020) proposed a new generalized family of distributions called the 

exponentiated generalized power series (EGPS) family of distributions. Some sub-models 

of the proposed family were derived and studied. Also, Rényi entropy and some other 

mathematical properties as well as maximum likelihood estimates of the proposed family 

were derived. Simulation study was carried out to examine the bias and the mean square 

error of the maximum likelihood estimators for each of the model’s parameters. The 

usefulness, applicability and flexibility of the proposed distribution were illustrated by 

means of real life datasets. 

 

Raheem (2019) uses three optimality criteria to conclude the optimal allocation of multiple 

accelerated life testing for the generalized half-normal model under type-I censoring. They 

derive the maximum likelihood estimates of the parameters and their Fisher information 

matrix. Numerical and simulations examples are used to demonstrate the effectiveness of 

the optimal allocation. A sensitivity analysis of the optimal allocation to misspecification 

of the model parameters is conducted. 

 

Alizadeh et al. (2019) came up with a three-parameter lifetime model, called the new odd 

log-logistic Lindley distribution. Some structural properties of the new distribution 

including ordinary and incomplete moments, quantile and generating functions and order 
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statistics were obtained. The new density function were expressed as a linear mixture of 

exponentiated Lindley densities. Different methods for the estimation of model parameters 

were discussed. It was shown that the model is quite good and performs better than some 

existing ones.  

 

Hassan et al. (2019) in this article introduced and studied a new four-parameter 

distribution, called the odd generalized exponential power function distribution. The 

proposed model is a particular case from the odd generalized exponential family. The 

characteristics of this new model were expressed. The model parameters were estimated 

via the maximum likelihood and percentiles methods of estimation. A simulation study was 

carried out to evaluate and compare the performance of estimates in terms of their biases, 

standard errors and mean square errors. Eventually, the practical importance and flexibility 

of the proposed distribution in modeling real data application was checked. It can be 

concluded that the new distribution works better than some other known distributions. 

 

Zubair et al. (2019) worked on a new model by name log-odd normal generalized family 

of distributions based on log-odds for the analysis of lifetime data. This new model has 

sub-models including the log-odd normal power-Cauchy distribution. Also, certain 

characteristics of this new distribution were expressed. The usefulness of the proposed 

family is proved empirically by means of a real air pollution dataset.  

 

Afify et al. (2019) introduced a new class of continuous distributions called the generalized 

odd Lindley-G family. Four special models of the new family are provided. The study 
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elaborated and explained expressions for some structural properties and behaviors of the 

new family. The maximum likelihood method is used for estimating the model parameters. 

The flexibility of the generated family is illustrated by means of two applications to real 

datasets. 

 

Khalil et al. (2019) pioneered a new three-parameter lifetime model called the Burr X 

exponentiated Weibull model. The major justification for the practicality of the new 

lifetime model is based on the wider use of the exponentiated Weibull and Weibull models. 

They are motivated to propose this new lifetime model because it exhibits different kinds 

of failure rates. And they prove empirically the importance and flexibility of the new model 

in modeling two types of lifetime data.  

 

Anwar and Bibi (2018) introduced a model named half-logic generalized Weibull 

distribution. This new distribution has sub-models and certain characteristics were 

expressed. Its usefulness and potentiality were demonstrated on two datasets. Their study 

revealed that the recent one out-classed the models it was compared with.  

Again, Muhammad et al. (2018) engineered and study a new family of distributions called 

the Poisson-odd generalized exponential distribution. They derived certain mathematical 

characteristics of the new distribution and some of its behaviors were displayed. They 

presented two special cases of the new family, namely the Poisson odd generalized 

exponential-half logistic and the Poisson odd generalized exponential-uniform 

distributions. Applications to two real datasets showed that the new model out-classed 

several models in terms of performance.  
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Hosseini et al. (2018) proposed a current family of distribution known as the Generalized 

Odd Gamma-G family of distribution. Special cases of this current family of distribution 

were developed and studied. The characteristics of the new distribution were investigated. 

The study also highlighted various shapes of the distribution and the applicability also 

displayed.  

Prataviera et al. (2018) studied a four-parameter model called the generalized odd log-

logistic flexible Weibull distribution. The proposed distribution can handle various forms 

of hazard rate and as a result can be used effectively in reliability analysis. Also, a 

parametric regression model based on the new distribution as an alternative to the location-

scale regression model is presented. Applications in real engineering datasets illustrate the 

flexibility of the proposed models. 

 

Alizadeh et al. (2018) worked on a modern family of continues models by name the 

complementary generalized transmuted Poisson -G family, an extension of the transmuted 

family pioneered by Shaw and Buckley (2007). Special models were provided and some 

general characteristics were expressed. The new model outranked other ones mentioned in 

literature. 

Rahmouni and Orabi (2018) introduced a current distribution by name the exponential-

generalized truncated geometric distribution. Some characteristics of this new model and 

certain shapes were exhibited. The potency of the new model was shown to be very good 

and it fits well to real datasets. 
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Elgarhy et al. (2018) developed and examined the exponential generalized Kumaraswamy 

model. In this study, some mathematical characteristic such as moments were expressed. 

The model parameter estimation was done and the applicability of this model was exhibited 

with real datasets and the results revealed were positive. 

Korkmaz et al. (2018) proposed a new class of lifetime distributions called the generalized 

odd Weibull generated family. Some mathematical properties of the new family are 

derived. The maximum likelihood method was used for estimating the model parameters. 

They study the behaviour of the estimators by means of two Monte Carlo simulations. The 

importance of the family illustrated by means of two applications to real datasets.  

 

Aryal and Yousof (2017) engineered and investigated a current family of distribution by 

the name the exponentiated generalized -G Poisson class of models. They derived certain 

mathematical characteristics of the current distribution and certain behaviors were 

displayed. The model was shown to be very acceptable in terms of performance. 

Nasiru et al. (2017) came up with a new distribution called the exponentiated generalized 

exponential Dagum distribution. Burr III, exponentiated generalized Dagum distribution, 

among others, were the special cases of the proposed distribution. Different kinds of failure 

rates were exhibited by the proposed distribution. Some structural properties of the 

proposed family were also examined. Maximum likelihood estimators of the parameters of 

the distribution were developed and simulation studies performed to assess the properties 

of the estimators. The applications to lifetime datasets indicates that the new family can 

provide better fits than other well-known classes of distributions.  
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Haghbin et al. (2017) developed a new generator of continuous distribution with three extra 

parameters called the new generalized odd log-logistic family of distributions. The study 

presented two special cases of the new generator and discussed some mathematical 

properties of the proposed family. They also present certain characterization of the 

proposed distribution and derive a power series for the quantile function. The importance 

of the new family is illustrated by means of two real datasets. These applications indicate 

that the new family can provide better fits than other well-known classes of distributions. 

Alkarni (2016) proposed a modern class of distribution known as generalized extended 

Weibull power series class of models. He followed the same procedure adopted by 

Adamidis and Loukas (1998). He also worked on some sub-models and established a 

number of the derived model. 

Also, Vatto et al. (2016) pioneered a new distribution called the exponential generalized 

NH model. They studied and derived some of its characteristics exhibited in the shapes of 

its hazard function. They also provided a maximum likelihood procedure for estimating 

the exponential generalized NH distribution parameters. 

Nwezza et al. (2016) introduced a new flexible five parameter lifetime distribution called 

Marshall-Olkin Gumbel-Lomax distribution. Some characterizations of the distribution 

such as the Trimmed L-moments, moment generating function, and order statistics are 

derived. The unknown parameters of the new distribution are estimated using the maximum 

likelihood approach. The potentials of the new distribution are illustrated using two real 

life datasets. 

Okashaa et al. (2015) introduced a new family of Marshall–Olkin extended generalized 

linear exponential distribution. This new family has the advantage of modeling various 
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shapes of aging and failure criteria. Several special cases of the proposed family were also 

discussed. In addition, the asymptotic confidence intervals for the parameters are derived 

from the Fisher information matrix. Finally, the obtained results are validated using some 

real datasets and it is shown that the new family provides a better fit than some other known 

distributions. 

Tahmasebi and Jafari (2015) introduced the generalized Gompertz-power series family of 

models a compound of the power series and generalized Gompertz models. The distribution 

comprised of sub-models which were duly discussed in the study to great effect. Advanced 

studies revealed the potentiality and usefulness of the model. 

Cordeiro et al. (2014) propose a new class of distributions called the Lomax generator with 

two extra positive parameters to generalize any continuous baseline distribution. Some 

special models as well as certain mathematical properties of the new generator were also 

examined. Maximum likelihood estimation procedure was used to estimate the parameters 

of the model. They define a log- Lomax–Weibull regression model for censored data. The 

importance of the new generator is illustrated by means of three real datasets. 

 

Muhammed (2007) introduced another model known as the generalized half-logistic 

Poisson model which exhibits favorable behaviors. The practical importance, applicability 

and tractability were demonstrated using real data and this showed that the generalized 

half-logistic Poisson distribution out-performed certain models.  
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2.3 Empirical Researches on Cure Rate Models 

A barrage of researches have been carried out on cure rate models all over the world. 

Borges (2020) proposed a novel model known as a mixture cure rate model, with the help 

of log-logistic distribution. The model aimed to overcome the challenge of estimating the 

mode of the hazard function of patients in different stages of uterine cervical cancer in the 

midst of longstanding survivors. Thus, parameterization of the new model was conducted 

through the hazard function mode. With the hazard function, it was estimated that cancer 

stages can affect the cured fraction and the mode. Inference of the new model was done 

through the maximum likelihood estimation methods. Also, the properties of the maximum 

likelihood estimators was verified by means of Monte Carlo simulation methods. Finally, 

the effectiveness of this model was assessed by subjecting it to real time uterine cervical 

cancer data.  

 

Boussari et al. (2020) introduced a new model known as excess hazard regression model, 

with the “time-to-cure” as a covariate dependent parameter. The parameters of this model 

was estimated by means of maximum likelihood method. Simulation studies was also 

conducted to assess the performance of the model. To carry out effective simulation, age 

at diagnosis as the only factor was considered as covariate in order to reduce the complexity 

of the model while not compromising generality. Thus, the model; beta-Time-to-Null-

Excess-Hazard was employed. Furthermore, the applicability of the model was assessed 

by subjecting it to three different real time datasets namely; testicular cancer data, women 

pancreatic cancer data and women colon cancer data.  
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Oliveira et al. (2019) studied the mixture and non-mixture cure fraction models through a 

discrete lifetime distribution as a surrogate to the conventional lifetime continuous 

distribution for lifetime data in the midst of cured fraction, censored data and covariate. 

Thus, the objective of the study is to introduce a new model; Weibull cure fraction models 

to examine longstanding lifetimes and risks factors with application priority given to 

lifetimes of patients on treatment for pelvic sarcomas. The inference and residual of the 

new model was determined using a maximum likelihood method and randomized quantile 

residuals method. Also, properties of the model estimates was assessed through an 

extensive simulation procedures. Finally, the application of the discrete Weibull to lifetime 

data indicated that, the new model offers the best simplicity of the likelihood functions as 

compared to the continuous Weibull model, largely used in analysing lifetime data with 

cure fraction, censored data and covariate.  

 

Calsavara et al. (2019) proposed a new cure rate model known as the generalized time-

dependent logistic model. This model has a power variance function frailty term, 

introduced in the hazard function to cater for the unobservable heterogeneity amongst 

patient populations. The model give room for non-proportional hazards as well as survival 

data with longstanding survivors. In addition, the parameter estimates of the model was 

done through the maximum likelihood approach, with Monte Carlo techniques employed 

to conduct an evaluation of the performance of the model. The applicability of the model 

over its competing models in practice, was examined by subjecting the model to a real time 

data from a particular population-based study of incidents cased of melanoma diagnosed. 

The model is flexible and applicable to situation with or without cure fractions. This 
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attribute of the model is as a result of the fact that, it does not make assumptions about any 

existence of the cure rate, as far as the parameter value has led to proper or improper 

distribution. Based on these, the model is adjudged more flexible over other alternative 

models. 

 

Barriga et al. (2018) introduced a new survival model for lifetime data with surviving 

fraction and obtained some of its special properties. The new model is an extension of the 

promotion time cure model with an extra parameter having some control on the 

heterogeneity or dependence of an unobserved number of lifetimes. The effects of the 

covariate in the cure fraction is evaluated by constructing a regression model. Inference of 

the new model was drawn through maximum likelihood approaches. Also, a special 

algorithm, known as expectation maximization algorithm was established to determine the 

maximum likelihood estimates of the model parameters. Further, likelihood ratio test was 

conducted through an empirical analysis in order to compare the promotion time cure and 

the proposed model. The applicability and the flexibility of the model was illustrated 

through a real time colorectal cancer data.  

 

Leão et al. (2018) incorporated frailties into a cure rate regression model, based on the 

Birnbaum-Saunders distribution, to generate an alternative model to the existing models. 

Likelihood-based approaches were used to estimate the new model parameters, and as well 

derived its influence diagnostics. An assessment of some local influence on the parameter 

estimates under different trepidation schemes was carried out. The proposed model offers 

some advantage over its competing models, and this include the possibility to jointly study 
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the heterogeneity among patients by their frailties and the existence of a cured fraction of 

them. The performance and application flexibility of the new was evaluated through Monte 

Carlo simulation techniques and by illustration using melanoma dataset. Finally, as both 

Monte Carlo simulation and the illustration shown better performance and possible 

applications of the new model, the illustration in particular established the significance of 

statistical diagnostics in the modeling.  

A non-mixture cure rate model for right-censored data with Fréchet distribution was 

proposed by Kutal and Qian (2018). Maximum likelihood estimators of the parameters of 

the model were developed and simulation studies performed to assess the properties of the 

estimators. The applications to melanoma and leukemia datasets indicates that the proposed 

model provide a better fits than the other candidate models. 

 

 

Martinez and Achcar (2018) introduced a new distribution known as the defective Dagum 

distribution, as an extension of the Type I Dagum distribution. This new distribution has a 

unique advantage such that the cure fraction can be expressed as a function of a single 

parameter. In order to estimate the model parameters, maximum likelihood and Bayesian 

approaches were employed. The appropriateness of the maximum likelihood and Bayesian 

approaches to estimating the model parameters were evaluated by means of simulation 

approaches. To this end, posterior distributions of the parameters were estimated with the 

help of Markov chain Monte Carlo method, for the Bayesian analysis. An illustration 

involving a real time dataset was made to ascertain the performance and flexibility of the 

new distribution.  Based on the evaluation of the parameters of the new distribution, and 
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the illustration with the real time dataset, the new distribution is adjudged flexible and it is 

better alternative for the analysis of real time-to-event data involving censored information 

and a cure fraction.  

Alizadeh et al. (2017) proposed the heteroscedastic cure rate regression models based on 

the odd log-logistic Topp-Leone G family of distributions. These cure rate models includes 

the log-generalized odd log-logistic Topp-Leone Weibull cure rate heteroscedastic 

regression model. The maximum likelihood estimators of the cure rate models parameters 

were also established. The potentiality of the developed cure rate models were shown by 

means of gastric cancer datasets. 

Ortega et al. (2015) studied a new flexible models, generated by gamma random variables 

for life time modeling  known as; Gamma Nadarajah–Haghighi distribution. This new 

distribution introduced, is three-parameter exponential-type distribution, which is better 

flexible and considered effective in modeling survival data and reliability problems. The 

plots of the hazard rate function of the distribution exhibits some special properties such 

as constant, decreasing, increasing, upside-down bathtub and bathtub-shapes. The 

parameters of the distribution are estimated by means of maximum likelihood methods. 

The model was subjected to AIDS data and melanoma data to test its applicability in 

practice. 

Fachini et al. (2014) worked on a new model known as bivariate regression model with 

cure fraction. In this study, a location-scale model was introduced for bivariate survival 

time’s base on the copula and used to model the dependence of bivariate survival data with 

cure fraction. Inferential procedures with constrained parameters using maximum 
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likelihood was considered. Finally, the importance of this model was displayed using 

diabetic retinopathy dataset.  

Martinez and Achcar (2014) proposed a new model known as bivariate model for survival 

data with a cure fraction, grounded on the three-parameter generalized Lindley distribution. 

Copula functions were employed to obtain a joint distribution of the survival times in the 

new model. In this regard, three type of copula functions were employed, namely; Farlie–

Gumbel–Morgenstern, Gumbel–Barnett and Clayton copulas. The parameters of the model 

were estimated using Markov Chain Monte Carlo methods, under the Bayesian framework. 

The suitability of the application of the model was done by considering a real time dataset 

that concerns invasive cervical cancer. The proposed model provided a much better fit to 

the real time data of invasive cervical cancer than the other alternative models.  

  

Martinez et al. (2013) studied a mixture and non-mixture cure fraction models based on 

the Bayesian analysis of the four-parameter generalized Weibull distribution with cure 

fraction, censored data and covariate. Based on that study, a cure fraction regression model 

was proposed to model censored and uncensored real time dataset. The new model is an 

extension of numerous distributions used extensively in lifetime data analysis to model 

monotone and non-monotone shape hazard rates and it serves as a good alternative for the 

analysis of real datasets with flexibility. Markov Chain Monte Carlo techniques was used 

to evaluate the performance of the model in order to draw inferences. The new regression 

model was subjected to practical application using gastric cancer lifetime data to test its 

flexibility, practical relevance and applicability.   
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Rodrigues et al. (2010) introduced new models by name destructive weighted Poisson cure 

rate models. These models are destructive length-biased Poisson, destructive exponentially 

weighted Poisson, destructive negative binomial and destructive Conway-Maxwell 

Poisson models. The model parameters were estimated using maximum likelihood 

estimation procedure. The potency of the models were also provided through application 

to malenoma dataset. 

 

2.4 Empirical Researches on Inverse Exponential Distributions 

Al Sobhi (2020) proposed a new distribution known as the Inverse Power Logistic 

Exponential (IPLE) distribution. This distribution serves as an extension to well-known 

distributions, namely; the inverse Weibull, inverse logistic exponential, inverse Rayleigh, 

and inverse exponential distributions. The density plots of the distribution depicts shapes 

namely; symmetrical, right-skewed, left-skewed, reversed-J-shape, and J-shape. Also with 

the hazard function, the distribution shows an increasing, decreasing, unimodal, reversed-

J-shape and J-shape plots. Further, the parameters of the new distribution was estimated 

using five estimation approaches, namely; the maximum likelihood, Anderson–Darling, 

least-squares, Cramér–Von Mises, and weighted least-squares estimation approaches. The 

applicability and flexibility of the proposed model was assessed with the help of an 

insurance dataset. The data application indicated the new model as better fit to insurance 

data as compared to the other competing models. 

Kumar et al. (2018) introduced a new distribution known as a Poisson-inverse exponential 

distribution to model a life time data with increasing and decreasing failure rates. The 

statistical properties of the new distribution include; quantile, moments, mean, variance 
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and reliability. The plots of both the probability density function and the hazard rate 

function depict an initially increasing shape, which attained maximum point and then 

decreased. The model parameters were estimated using the maximum likelihood and the 

Bayes estimators. Also, the expectation-maximization algorithm was introduced to handle 

the incomplete data obtained under the progressive type-II censoring with binomial 

removal sample. Finally, the Bayesian procedure is considered as the flexible approach to 

Poisson-inverse exponential distribution parameter estimation under progressive type-II 

censoring with binomial removal sample. 

Oguntunde et al. (2017) pointed out the inability of the exponential distribution to better 

model real lifetime phenomena whose failure rate are not constant. Based on the 

shortcomings of the exponential distribution, the Exponential Inverse Exponential (EIE) 

distribution was proposed, with the help of the exponential generalized family of 

distributions. The reliability analysis of the proposed distribution expressed key statistical 

functions such as; survival function, hazard function, reversed hazard function and the odds 

function. Maximum likelihood approach was employed for the parameter estimation of the 

proposed distribution.  The shapes of the distribution is unimodal and therefore proved as 

better improvement over the other competing distribution in modeling real lifetime data. 

 

Kan and Han (2015) conducted a goodness of fit test of the inverse Weibull distribution. 

The maximum likelihood estimators of some specific parameters such as the scale and 

shape of the inverse Weibull distribution were derived, using multiply type-II censoring 

samples. The inverse Weibull distribution has two special case namely; inverse Rayleigh 
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distribution and inverse exponential distribution. The goodness of fit test was conducted 

using statistics based on the empirical distribution function, and then applied the modified 

normalized sample Lorenz curve to fit the data.  

Oguntunde et al. (2014) proposed an alternative distribution to the generalized inverse 

exponential distribution and the inverse exponential distribution. This new distribution is 

known as a generalization of the inverted exponential distributions.  The proposed 

distribution is characterized by some special cases and properties. The plots for the 

probability density function of the new distribution depicts a decreasing and unimodal 

shapes at various parameter values. Further, the hazard rate function of the proposed 

distribution indicates that, the hazard function initially increased and then start decreasing 

at certain points. Thus, the hazard function has an inverted bathtub shape. Maximum 

likelihood approach was used to estimate the model parameters. The applications to breast 

and bladder cancer datasets indicates that the proposed model provide a better fits than the 

other candidate models. 
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CHAPTER THREE 

METHODOLOGY 

3.0 Introduction 

This chapter focused on the statistical techniques that were used to achieve the objective 

of the study. It was subdivided into eight headings and this include: Inverse exponential, 

Parameter estimation, Confidence interval for parameters, Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm, Goodness-of-fit tests, information criteria, Total time on test 

and Data and source.   

3.1 Inverse Exponential Distribution 

If a random variable Y , has a PDF ( )g y and a CDF ( )G y , then PDF of the inverse 

exponential distribution is represented as: 

2

1 1( ) exp( ), 0,                                               (3.1)
yy

g y y= −   

 and the corresponding CDF is 

1( ) exp( ), y 0.                                                    (3.2)
y

G y = −    

 

3.2 Parameter Estimation 

When estimating parameters, several methods can be used. However, this study have 

employed three different estimation methods to obtain the unknown parameters of the 

proposed generator and this include; ordinary least squares estimation (OLS), maximum 

likelihood estimation (MLE) and Cramér-Von Mises minimum distance estimation 

(CVM).   
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3.2.1 Maximum Likelihood Estimation 

The maximum likelihood estimation method is the most widely used estimation method in 

literature. In this study, the maximum likelihood estimation was employed to estimate the 

unknown parameters of the proposed distribution for both complete and censored datasets.  

3.2.1.1 Maximum Likelihood Estimation for Complete Dataset 

If a set of identically and independently distributed random variables comprises 1 2, ,..., nY Y Y  

with PDF ( );g y  , then the likelihood function is represented as: 

                                                                        ( ) ( )
1

| ; .                                     (3.3)
n

i

i

L y g y
=

=   

The log-likelihood function (denoted as ) is expressed as : 

                                                 ( ) ( )1 2

1

| , ,..., log ; .                                (3.4)
n

n i

i

y y y g y
=

=   

The values of  that maximize the probability of obtaining the random sample is 

determined by:                                                                

                                                
( )1 2| , ,...,

0, 1,2,..., .                                   (3.5)
n

i

y y y
i k


= =






 

3.2.1.2 Maximum Likelihood Estimation for Censored Data 

Given a dataset ( ),i iU x = , where ix  is the observations that corresponds to the censored 

failure times and i  is the censoring indicator. If failure is observed, 1i =  and 1i =  if 

censored. Given that ( ),i iU x = is independent and identically distributed and   is the 

vector of parameters from the GOIE family of distributions, the likelihood of  is given 

by 
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( ) ( )
1

1

; 1 ;
i i

n

i i

i

L f x F x
 

 
−

=

   = −     

( ) ( )
1

1

; ; ,
i i

n

i i

i

f x S x
 


−

=

   =       

where  ( ) ( ); 1 ;i iS x F x= −   is the survival function. The log likelihood function is 

( )( ) ( )( )
1

1

log ; ;
i i

n

i i

i

f x S x
 

 
−

=

 =
    

                                        ( )( ) ( ) ( )( )
1

log ; 1 log ; .           (3.6)
n

i i i i

i

f x S x   
=

 = + −   

Also, the parameters of a regression model with cure fraction can be estimated using this 

estimation method. This is achieved by substituting the population survival function, 

( );pop iS x  and its density function, ( );pop if x   of the distribution into equation (3.6). 

Hence, the total log-likelihood function with non-informative censoring is given as 

                         ( )( ) ( ) ( )( )
1

log ; 1 log ; .                   (3.7)
n

i pop i i pop i

i

f x S x   
=

 = + −
   

 The maximum likelihood estimation is the most widely used method of estimation method 

because of its special properties that are explained below. 

 

3.2.1.3 Consistency 

If a population Y has a density function ( , )g y  and consists of a set of random samples 

which are identical and independently distributed, then n  is a consistent estimator if its 

mean squared error goes to zero as n  approaches infinity.     
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Therefore, for any 0  

                         ( )lim 0.                                        (3.8)n
n

P
→

−  =   

3.2.1.4 Asymptotic Normality 

As sample size increases ( )n → , there is a corresponding convergence of the probability 

distribution of the maximum likelihood estimators to multivariate normal distributions. 

That is, 

( ) ( )( )1, ,Distn N I −− ⎯⎯⎯→ 0    

where 0  is defined as a c -dimensional mean zero vector and ( )1I −  is a c c dimensional 

information matrix of Fisher. Which is given as:                                                          

( )
( ) ( )

( )
2 2| |

.           (3.9)
g y g y

I E g y dy


−

    
= − =   

       


 


   
 

3.2.1.5 Asymptotic Efficiency 

Maximum likelihood estimators are considered asymptotically most efficient since they 

are the estimators with the least variance when compared to other unbiased estimators 

within the same class. 

Mathematically, if there exist an alternative unbiased estimator , such that 

                                                      ( ) ( )( )1, ,                (3.10)Distn N I −− ⎯⎯⎯→ 0   
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then  ( )1I −
is greater than or equal to ( )1I −   always. 

 

3.2.1.6 Invariance Property  

If  is the maximum likelihood estimator of , then ( )g  is the maximum likelihood 

estimator of ( )g  . 

3.2.2 Ordinary Least Squares Estimation 

The ordinary least square (OLS) estimation method is one of the estimation methods that 

estimates the parameters by minimizing the objective function. This method was 

introduced by Swain et al. (1988). If ( ) ( ) ( )1 2
, ,...,

n
x x x  are order statistics of a random sample 

of size n  obtained from the GOIE distribution. The OLS estimates, , ,OLS OLS OLS    for 

the GOIE distribution parameters can be derived by minimizing the function  

( ) ( )( )
2

1

, , | , , ,                                           (3.11)
1

n

i
i

i
F x

n
      

=

 
= − + 
  

with respect to ,  and   . Similarly, the OLS can be derived by solving the non-linear 

equation numerically.  

( )( ) ( )( )
2

1

| , , ; , , 0,           1,2,3,
1

n

ki i
i

i
F x x k

n
    

=

 
−  = = + 

   

where   

( )( ) ( )( )1 ; , , | , , ,
i i

x F x    



 =


 ( )( ) ( )( )2 ; , , | , , ,

i i
x F x    




 =


 and 
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( )( ) ( )( )3 ; , , | , , .
i i

x F x    


 =





 

 

3.2.3 Cramér-Von Mises Minimum Distance Estimation  

The Cramér-Von Mises minimum (CVM) estimation method, also known as goodness-of-

fit estimation method has minimum bias compared to other minimum distance estimation 

methods (MacDonald, 1971). It rely on the difference between the estimates of the CDF 

and the empirical distribution (Luceno, 2006). Let ( ) ( ) ( )1 2
, ,...,

n
x x x  be order statistics of a 

random sample of size n  obtained from the GOIE distribution. The estimators of the CVM 

for the GOIE distribution parameters can be derived by minimizing the function  

( ) ( )( )
2

1

1 2 1
, , | , , ,                (3.12)

12 2

n

i
i

i
V F x

n n
   

=

− 
= + − 

 
   

with respect to ,  and  . Also, the nonlinear equations can be solved numerically to 

obtain the estimates of the CVM. That is 

 

( )( ) ( )( )
2

1

2 1
| , , ; , , 0,           1,2,3,...

2

n

ki i
i

i
F x x k

n
   

=

− 
−  = = 

 
    

where   

( )( ) ( )( )1 ; , , | , , ,
i i

x F x   



 =


  ( )( ) ( )( )2 ; , , | , , ,

i i
x F x   




 =


  and 

( )( ) ( )( )3 ; , , | , , .
i i

x F x   


 =


 

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3.3 Confidence Intervals for Parameters  

If a given distribution consists of the parameters 1 2, ,..., n    and their variances 

11 22, ,..., nn    respectively, then their ( )100 1 %−  confidence intervals can be estimated 

by employing the multivariate normal approximation as seen in the equation below:  

1 21 11 2 22 12 , 2 ,..., 2 ,n nnz z z              and 2z is the upper 
th

percentile of the standard normal distribution. 

 

3.4 Broyden-Fletcher-Goldfarb-Shanno Algorithm  

The Broyden-Fletcher-Goldfarb-Shanno Algorithm (BFGS) method was proposed by 

Broyden (1970), Fletcher (1970), Goldfarb (1970) and Shanno (1970). This was to find 

solutions to a class of equations that have no closed forms. The algorithm for the BFGS is 

an iterative technique for solving unconstrained non-linear optimization problem (Nasiru, 

2018). To optimize a given function, the following steps are express as i converges to the 

solution with an initial presumption of 0 and estimated Hessian matrix 0H . 

 The first step is to solve ( ) 0i i i+ =H u so as to get a direction iu .                                           

1. A one dimensional optimisation is then performed to look for a recommended step 

size i in the direction found in step 1. 

2. Set i i i=c u and update 1i i i+ = +  c  
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3. Let ( ) ( )1i i im +=  −   

4. 1 0
i i i i i i

i

i i i i

m m H c c H

m c c H c
+

 
= + −

 
H H  

The algorithm’s convergence is determined by observing the norm of the gradient, 

( )i . 

Technically, 0H  can be set with the unit matrix , 0 =H I , to make the first step equivalent 

to a gradient descent, but additional procedures are enhanced, using the estimation of the 

Hessian, iH  First step of the algorithm is performed using the inverse of ,iH  which can 

be efficiently obtained by introducing the Sherman-Morrison formula in the fifth step of 

the algorithm. Hence, 

                                      1 1

1                             (3.13)i i

− −

+

     
= − − +   

     

i i i i i i

i i i i i i

c m m c c c
H I H I

m c m c m c
 

Since 
1

1i

−

+H  is symmetric and the terms 
1

i i

−
im H m  and 

i ic m  are scalar, equation (3.13) can 

be estimated more efficiently using the expression 

                                  

( )( )

( )

1 1 1
1 1

1 2
          (3.14)

i i i i i i i i i i i i i
i i

i ii i

c m m m c c m c c m

c mc m

− − −
− −

+

  +  +
= + −



H H H
H H  
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            3.5 Goodness of Fit Test 

The goodness of fit test, which is a statistical hypothesis test, can be used to check how 

well a distribution fits a given data. It enable us determine whether or not our sample data 

is representative of what we expect to see in the real population. In the current study, three 

goodness of fit test will be employed. These are likelihood ratio test, Kolmogorov-Smirnov 

test and Cramér-Von Mises test. 

 

3.5.1 Likelihood Ratio Test (LRT) 

For any two competing nested statistical models, the LRT utilizes the ratio of their 

likelihoods to determine which of them provides the best fit. Suppose that a random 

variable has a PDF expressed as ( );f y   with unknown parameter . Our interest is to test 

the null and alternative hypotheses; 0 0:H    and 1 1:H    . Where 0   and 1  are the 

parameters of the reduced model and full model respectively. The test statistic for the LRT 

test is given by 

                                                                    
( )
( )

0

1

2ln ,                                             (3.15)
L

L






 
 = −
  
 

 

where 0L  and  1L denote the likelihood function for a reduced and full model respectively. 

Under, 0 ,H    will be asymptotically distributed as a Chi-square random variable with 

degrees of freedom equivalent to the difference amongst the number of parameters of the 

reduced and full model. 
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3.5.2 Kolmogorov-Smirnov Test (K-S) 

The Kolmogorov-Smirnov test is a nonparametric test used to determine if a sample comes 

from a given population. The Kolmogorov-Smirnov test calculates the distance from the 

observed distribution function of the given sample to the estimated CDF of the candidate 

distribution. The two hypotheses; null and the alternative hypotheses are expressed as; 

0 :H The sample follows the specific distribution versus 

1 :H The sample does not follow the specific distribution 

Supposed that ( )iG y  is the CDF of the competing distribution at iy  and ( )iG y  represents 

the empirical distribution at .iy  Then the K-S test statistic is given by 

                                     ( ) ( ) ( ) ( ) 1max , ,           (3.16)i i i iK S G y G y G y G y −− = − −  

where  

                                                            ( )
 # :

.
j j i

i

y y y
G y

n


=  

The computed test statistic is then compared with a tabulated K-S at a significance level to 

judge whether the null hypothesis will be accepted or rejected. If there are more than one 

distribution to be compared the distribution with the smaller K-S value is the most 

appropriate to fit the given sample. 
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3.5.3 Cramér-von Mises Test Statistic  

Cramer-von mises test is one of the goodness of fit test that rely on the empirical 

distribution. It makes use of the summed squared differences between observed and 

expected cumulative proportions as test statistic. Suppose ( );iG y  is the CDF such that 

the procedure of G is known but the k -dimensional parameter vector  is not known. The 

test statistic, W   is obtained with the following procedure: 

1. The set of iy ’s should first be organized in increasing order and ( );i iG y u=

should be estimated. 

2. Evaluate ( )1 ,i iz u −= where ( )1 . , −
stands for the quantile of the standard normal 

distribution and ( ). , being CDF. 

3. Calculate 
( )

2

2

1

2 1 1

2 12

n

ii

i
W z

n n=

 −
= − + 

 
   

4. Transform 2W into 
2 0.5

1W W
n

  
= + 

 
to get the test statistic. 

The test statistic W   with the smallest value is chosen during model selection.  

 

3.6 Information Criteria 

The information criteria are considered model selection tools that enable us to compare 

non-nested models. They are basically likelihood-based measures of model fit that include 

a penalty for complexity. The mostly widely used ones are; the Corrected Akaike 
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Information Criterion (AICc), Consistent Akaike Information Criterion (CAIC), Bayesian 

Information Criterion (BIC), and Akaike Information Criterion (AIC). 

 

3.6.1 Akaike Information Criterion (AIC) 

Akaike information criterion serves as a guide for selection of model, that is, it is employed 

to estimate the comparative quality of models for a certain data. The AIC is still the most 

used tool by researchers in selecting and choosing statistical models. To apply AIC, we 

start with some optional models, which are regarded as proper models for certain data. The 

test statistic is represented as: 

( )2log 2  .                                         (3.17)AIC L k= − +  

where k stands for the number of estimated parameters for the model. Model with the least 

AIC relative to the others is the most desirable. For large samples, the AIC introduces good 

model selection. However, there are issues of bias associated with the AIC. The AICc was 

therefore developed to overcome this problem (Sugiura, 1978). Hurvich and Tsai (1989) 

proved that the AICc improved model selections also in small samples. Also, when the 

model parameters are large, then the AICc is preferred. The test statistic of the AICc is 

given by 

                                               
( )2 1

.                                              (3.18)
1

k k
AICc AIC

n k

+
= +

− −
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3.6.2 Bayesian Information Criterion (BIC) 

Bayesian Information Criterion also referred to as the Schwarz Information Criterion (SIC) 

is partly based on the likelihood function. It is a standard used to select the best models 

among a limited set of models and was introduced by Schwarz (1978). The central idea of 

BIC originates from approximating the Bayes factor with the notion that the data is 

independent and identically distributed. The test statistics for the BIC is presented as: 

                                    ( ) ( )2log log ,                                        (3.19)BIC L k n= − +  

where n  denotes the sample size as well as ( )log L   given as the natural logarithm of the 

likelihood function. Like the AIC, the suitable model is the one with the minimum BIC 

compared to others. 

3.7 Total Time on Test 

The total test on time (TTT) is a concept introduced by Barlow and Doksum (1972). It has 

since been developed to identify the reliability of mathematical models and to characterize 

failure rate. The technique was employed by Aarset (1987) to check if a random sample is 

from a family of life distributions with bathtub shaped hazard rate. If G  is the CDF of a 

distribution, the TTT-transform is then given as  

                                    ( ) ( )
( )

  ( )
1

1

0
, 0,1 , 3.20

p
G

H p S u du p
−

− =                                   

where ( ) ( )1S u G u= −  is the survival function. Also, the scaled TTT-transform is 

computed using 
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                                            ( )
( )

( )

1

1
.                                              (3.21)

1

H p
G p

H


−

−
=  

The curve of ( )G p versus 0 1p  is the scaled TTT-transform curve. Barlow and 

Doksum (1972), classified the shape of the hazard rate function using the scaled TTT-

transform curve; 

1. A concave curve of the scaled TTT-transform above the 045 line signifies an 

increasing hazard rate function.  

2. A convex curve of the scaled TTT-transform below the 045 line signifies an 

increasing hazard rate function.  

3. A convex curve of the scaled TTT-transform below the 045 line and a subsequent 

concave curve above the 045 line forms a bathtub shape for the hazard rate 

function. 

4. A concave curve of the scaled TTT-transform above the 045 line and a subsequent 

convex curve below the 045 line forms an upside down bathtub shape for the hazard 

rate function. 

Given an ordered sample 1: 2: :, ,..., ,n n n nY Y Y the total test statistics are calculated using 

( )( ): 1:

1

1 , 1,2,..., (3.22)
j

i j n j n

j

TTT n j y y i n−

=

= − + − = .                                                           

The empirical scaled TTT-transform is represented as: 

                                      (2.23)i

n

TTT
TTT

TTT

 =

,                                                                          
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where 0 1nTTT  . The empirical scaled TTT-transform curve obtained by plotting 
i

n

againstTTT  . 

 

3.8 Data and Source  

The study employed eight secondary cancer datasets (four complete and four censored) to 

demonstrate the applications of the GOIE family of distributions. The first dataset is made 

up of 40 patients suffering from leukemia. The dataset is presented in Table 3.1 and can be 

found in Abouammoh et al. (1994).  

Table 3.1: Data on 40 patients suffering from leukemia 

 

 

 

 

 

The second dataset consist of the remission time (in months) of a random sample of 128 

bladder cancer patients and this is shown in Table 3.2. The dataset can be found in Lee 

and Wang (2003). 

 

 

115 461 807 1062 1251 1408 1578 1696 

181 516 865 1063 1277 1455 1578 1735 

255 739 924 1165 1290 1478 1599 1799 

418 743 983 1191 1357 1222 1603 1815 

441 789 1024 1222 1369 1549 1605 1852 
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Table 3.2: Data on the remission times of 128 bladder cancer patients 

0.08 6.97 2.46 9.74 3.88 15.96 4.26 79.05 11.79 8.37 12.07 

2.09 9.02 3.64 14.76 5.32 36.66 5.41 1.35 18.1 12.02 21.73 

3.48 13.29 5.09 26.31 7.39 1.05 7.63 2.87 1.46 2.02 2.07 

4.87 0.4 7.26 0.81 10.34 2.69 17.12 5.62 4.4 3.31 3.36 

6.94 2.26 9.47 2.62 14.83 4.23 46.12 7.87 5.85 4.51 6.93 

8.66 3.57 14.24 3.82 34.26 5.41 1.26 11.64 8.26 6.54 8.65 

13.11 5.06 25.82 5.32 0.9 7.62 2.83 17.36 11.98 8.53 12.63 

23.63 7.09 0.51 7.32 2.69 10.75 4.33 1.4 19.13 12.03 22.69 

0.2 9.22 2.54 10.06 4.18 16.62 5.49 3.02 1.76 20.28 

 
2.23 13.8 3.7 14.77 5.34 43.01 7.66 4.34 3.25 2.02 

 
3.52 25.74 5.17 32.15 7.59 1.19 11.25 5.71 4.5 3.36 

 
4.98 0.5 7.28 2.64 10.66 2.75 17.14 7.93 6.25 6.76 

 
 

The third dataset is presented in Table 3.3 and it shows the data on the death times (in 

weeks) of patients with cancer of the tongue with aneuploidy DNA profile. This dataset 

can be found in Oguntunde et al. (2016). 
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Table 3.3: Cancer of the tongue with aneuploidy DNA profile 

1 16 41 74* 89* 104* 231* 

3 24 51 77 91 108* 240* 

3 26 61* 79* 93* 109* 400* 

4 27 65 80* 96 120* 

 
10 28 67 81* 97* 131* 

 
13 30 70 87* 100 150* 

 
13 30 72 87* 101* 157 

 
16 32 73 88* 104 167 

 
Asterisks represent censored observation 

 

The fourth dataset is focus on the survival times of a group of patients suffering from Head 

and Neck cancer diseases treated using a combination of radiotherapy and chemotherapy 

(RT + CT). This data can be found in Shanker et al. (2015).  

 

Table 3.4: Head and Neck cancer dataset 

12.2 47.38 81.43 127 173 319 817 

23.56 55.46 84 130 179 339 1776 

23.74 58.36 92 133 194 432 
 

25.87 63.47 94 140 195 469 
 

31.98 68.46 110 146 209 519 
 

37 78.26 112 155 249 633 
 

41.35 74.47 119 159 281 725 
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The fifth dataset is on the survival times of 121 patients with breast cancer obtained from 

a large hospital from 1929 to 1938 is given in Table 3.5. This data can be found in 

Oguntunde et al. (2016) and Ramos et al. (2013). 

Table 3.5: Data on Survival times of 121 patients with Breast cancer 

0.3 11 17.2 24 38 44 56 69 115 

0.3 11.8 17.3 27.9 38 45 57 78 117 

4.0 12.2 17.5 28.2 39 45 58 80 125 

5.0 12.3 17.9 29.1 39 46 59 83 126 

5.6 13.5 19.8 30 40 46 60 88 127 

6.2 14.4 20.4 31 40 47 60 89 129 

6.3 14.4 20.9 31 40 48 60 90 129 

6.6 14.8 21.0 32 41 49 61 93 139 

6.8 15.5 21.0 35 41 51 62 96 154 

7.4 15.7 21.1 35 41 51 65 103 
 

7.5 16.2 23.0 37 42 51 65 105 
 

8.4 16.3 23.4 37 43 52 67 109 
 

8.4 16.5 23.6 37 43 54 67 109 
 

10.3 16.8 24.0 38 43 55 68 111 
 

 

The sixth dataset is focus on Head and neck cancer data with censored observations as 

presented in Table 3.6. This data was first presented by Efron (1988).  
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Table 3.6: Data on head and neck cancer with censored observations 

7 91 140 173 277 523 1349* 

34 108 146 176 279* 523* 1412* 

42 112 149 185* 297 583 1417 

63 129 154 218 319* 594 

 
64 133 157 225 405 1101 

 
74* 133 160 241 417 1116* 

 
83 139 160 248 420 1146 

 
84 140 165 273 440 1226* 

 
Asterisks represent censored observation 

 

The seventh dataset is shown in Table 3.7, which refers to the remission times (in weeks) 

for a group of 30 patients with leukemia receiving similar treatments. This data can be 

found in Lawless (2003).   

Table 3.7: Data on leukemia with censored observations 

1 1 2 4 4 6 6 6 7 

8 9 9 10 12 13 14 18 19 

24 26 29 31* 42 45* 50* 57  
60 71* 85* 91      
Asterisks represent censored observation 

 

Table 3.8 illustrate the eighth dataset and it represent 201 patients with gastric 

adenocarcinoma. This data can be found in Arslan et al. (2018), Ortega et al. (2017) and 

Martinez et al. (2013). 
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Table 3.8: Data on 76 patients receiving adjuvant chemoradiotherapy and 125 

receiving resection alone 

Asterisks represent censored observation 

 

 

Surgery Alone 

0.1 1.61 6.15 10.2 16.09 21.48 25.33* 31.38* 35.3* 

0.2 1.78 6.55* 10.53 16.18 21.84* 25.36* 31.68* 35.59* 

0.23 2.63* 6.91 10.76 16.94 21.88* 26.15* 32.5* 36* 

0.26 2.73 7.17 11.41 16.94* 22.14 26.32 32.8* 36* 

0.3 2.8 7.7 11.88 17.14 22.99* 26.32* 33.09* 36* 

0.33 2.89 7.93* 12.5 17.24 23.39* 26.78* 33.36* 36* 

0.49 2.96 8.32 13.13* 17.43 23.52* 27.37* 33.65* 36* 

0.53 3.32 8.36 13.95 18.62 23.55* 28.93* 33.91* 36* 

0.56 3.49* 8.39 14.01 19.14 23.85* 29.28* 34.08* 36* 

0.63 4.01 8.78 14.05 19.44 24.01* 29.31* 34.21* 36* 

0.66 4.54 8.91 14.34 19.84* 24.57* 29.97* 34.41* 36* 

0.66 4.67 9.28 14.38* 19.93 24.8* 30.16* 35* 36* 

1.18 4.67 9.7 15.43 20.49* 25.26* 30.49* 35.03* 36* 

1.45* 4.93 10.03 15.76* 21.38* 25.3 30.63* 35.2* 
 

Adjuvant Chemoradiotherapy 

5.76 12.83 17.07 21.02 25.23 28.22* 31.84* 36* 36* 

7.89 13.09 17.14 22.86 25.33* 28.59 32.4* 36* 36* 

8.85 13.49 17.34* 23.39* 25.56* 28.65* 32.47* 36* 36* 

8.95 13.78 17.7 23.82* 25.59* 29.08* 32.53* 36* 36* 

9.05 13.82 18.39 24.21 25.76* 29.31* 33.88* 36* 
 

9.47 14.7 19.21 24.21* 25.79 30.26 34.74* 36* 
 

10.72 14.77 19.38* 24.31 25.79* 30.69* 34.9* 36* 
 

11.97 16.38 20.49* 24.28* 26.05 30.95* 35.72* 36* 
 

12.5 16.51 20.76* 24.97* 27.89* 31.64* 35.89* 36* 
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CHAPTER FOUR 

THEORETICAL RESULTS 

4.1 Introduction 

This chapter presents the theoretical results obtained in this study. This includes derivation 

of the proposed family of distributions, the statistical properties of the new family, 

estimators for estimating the parameters of the proposed distribution and the derivation of 

regression models with cure fraction.  

 

4.2 Generalized Odd Inverse Exponential Family of Distributions 

The generalized odd inverse exponential (GOIE) family of distributions is developed in 

this section. Let ( );g x   and ( );G x   be the PDF and CDF of a random variable X

respectively, and  be a 1p vector of parameters. The CDF of the GOIE family of 

distribution is defined as: 

( )

( )
1

;

2
1 ;

0
( )

1 ( ; )
         = exp ,   0, 0,  .            (4.1)

( ; )

G x

x
G xF x x e dx

G x
x

G x








 

−− −
−=

 −
− =   
 










 

The GOIE family generalizes other odd families of distributions arising from the inverse 

exponential distribution. For instance, when 1 = = , the odd inverse exponential family 

is obtained and its CDF is given by 

1 ( ; )
( ) exp ,    .

( ; )

G x
F x x

G x

 −
= −  

 




 

The CDF of the exponentiated odd inverse exponential family is obtained when 

1 =  and is defined as 
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1 ( ; )
( ) exp ,    .

( ; )

G x
F x x

G x





 −
= −  

 




 

The CDF of the GOIE family of distributions can be interpreted as follows: Suppose that 

the odd that a cancer patient will die at time x  is ( ; )

1 ( ; )

G x

G x



−




. Then the probability of these 

odds of death represented by a random variable X that follows the inverse exponential 

distribution is ( )
( ; )

1 ( ; )

G x
P X F x

G x





 
 = 

− 




, which is given in equation (4.1). Hence, a 

random variable X that follows the GOIE distribution is denoted by ( ); , ,X GOIE x     

and for the sake of simplicity ( );G x  may be represented by ( )G x . 

However, if   , then we have the concept of relative odd. The corresponding PDF is 

obtained by differentiating the CDF and is given by 

1 1 ( ; ) 1
( ) ( ; ) ( ) ( ; ) ( ; ) exp   , >0, >0, ,     (4.2)

( ; )

G x
f x g x G x G x x

G x


  


    − − − −  −

 = − +   
 


  



where   and  are positive shape parameters and   is vector of parameters for the 

baseline ( ; )G x  . 

Proposition 4.1. The CDF of the GOIE family of distribution is well defined. 

Proof. For the CDF to be well defined, ( )  0,1 .F x   

As x →− , ( ); 0G x → . Hence, ( ) 0.F x →  Also, as x → , ( ); 1G x → . Thus, 

( ) 1F x → . Since ( )  0,1 ,F x  the CDF is well defined. 

Proposition 4.2. The PDF of the GOIE family of distribution is a legitimate density 

function. 
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Proof. For the PDF to be legitimate, ( ) 1.f x dx



−

=  

Hence, we need to show that when the PDF of the GOIE family is integrated over its 

support we will get 1.  

( )
( ) ( )

( )

( )

( )

1

1
.

G x

G xG x
g x e dx

G x








 
 −
  −
 
 

+

−

 −
 
  

  

Let  

. 

 

As x →− , ( ) 0G x → and y → , as x → , ( ) 1G x → and 0.y →  Also,  

( )
( ) ( )

( )
1

.
G xdy

g x
dx G x





  
+

 − +
= −  

  

  

This implies that  

( )
( ) ( )

( )
1

.
G x

dy g x dx
G x





  
+

 − +
= −  

  

 

Hence,  ( )
0

0
0

0 1 1y y ye dy e dy e




− − −



 − = = = − − =   . Thus, the proof is complete. 

The survival function is very useful when studying the average time to death or recovery 

of a cancer patient. Hence, the survival function of the GOIE family is given by 

1 ( ; )
( ) 1 exp , >0, >0, .                        (4.3)

( ; )

G x
S x x

G x




 

 −
= − −  

 




 

  The hazard rate function of the GOIE family is therefore given by          

( )

( )

1 G x
y

G x





 
− =

 
 
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1 1 ( ; ) 1
( ; ) ( ) ( ; ) ( ; ) exp

( ; )
( ) , 0, 0, .     (4.4)

( ; ) 1
1 exp

( ; )

G x
g x G x G x

G x
h x x

G x

G x


  







  

 

− − − −  −
 − +   

 =   
 −

−  
 


  







 

Lemma 4.1. The density function of the GOIE family can be expressed in a mixture form 

as 

0 0 0 0

( ) ( ) ( ) ,                           (4.5)
i k

m

ijkm

i j k m

f x g x G x
 

= = = =

=  

where  

( )
( )

( ) ( ) ( )1 1 1 1 1 1
.

!

i j k m

ijkm

i k j i j i

j mi k k

   
   

+ + +
 −    + − + − − + −  

= − +      
        

 

Proof. Using the Taylor series expansion 
0

( 1)

!

i i
z

i

Z
e

i


−

=

−
= , the PDF can be written as 

 

1 1

0

1 ( )
( 1)

( )
( ) ( ) ( ) ( ) ( ) ( ) .                

!

i

i

i

G x

G x
f x g x G x g x G x

i





    


− − − −

=

 −
−  

  = − +   

Thus, 

( 1) 1 ( 1) 1

0 0

( 1) ( 1)
( ) ( ) ( ) ( ) 1 ( ) ( ) ( ) 1 ( ) .

! !

i i
i i

i i

i i

f x g x G x G x g x G x G x
i i

      
 

− + − − + −

= =

− −
   = − − + −      

Using the binomial expansion ( )
0

(1 ) 1
n

jn j

j

n
x x

j=

 
− = −  

 
 , 1x  ,  

                         

( 1) ( 1) 1 ( 1) 1

0 0 0 0

( 1) ( 1)
         ( ) ( ) ( ) ( )  ( ) ( ) .

! !

i j i ji i
j i j i

i j i j

i i
f x g x G x g x G x

j ji i

     
+ + 

+ − + − − + −

= = = =

   − −
= − +   

   
   

But  
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 1 (1 ( ) ( )G x G x− − = . 

This implies 

   
( 1) ( 1) 1 ( 1) 1

0 0 0 0

( 1) ( 1)
( ) ( ) ( ) 1 (1 ( ))  ( ) 1 (1 ( )) .

! !

i j i ji i
j i j i

i j i j

i i
f x g x G x g x G x

j ji i

   
  

+ + 
+ − + − − + −

= = = =

   − −
= − − − + − −   

   
   

Applying the binomial series expansion twice, yields 

( ) ( ) ( )
( )

0 0 0 0

1 1 1 1
( ) ( ) ( )

!

i j k m
i k

m

i j k m

i kj i
f x g x G x

j mi k

 
 

+ + +
 

= = = =

−  + − + −   
= − +    

    
  

   
( ) ( )

( )
0 0 0 0

1 1 1
( ) .

!

i j k m
i k

m

i j k m

i kj i
g x G x

j mi k

 


+ + +
 

= = = =

−  − + −   
    

    
  

Thus  

0 0 0 0

( ) ( ) ( ) .
i k

m

ijkm

i j k m

f x g x G x
 

= = = =

=   

The proof is therefore complete. 

 

 Alternatively, the density function can be expressed in terms of the exponentiated-G (exp-

G) density function as 

*

1

0 0 0 0

( )  ( ),                            (4.7)
i k

ijkm m

i j k m

f x x
 

+

= = = =

=   

where *

1

ijkm

ijkm
m


 =

+
  , ( ) ( ) ( )1( ) 1

m

m x m g x G x+ = +  is the exp G−  density function with 

power parameter 1m +  . By integrating equation (4.7), the CDF of the mixture 

representation becomes 

*

1

0 0 0 0

( )  ( ),                            (4.8)
i k

ijkm m

i j k m

F x x
 

+

= = = =

=   
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where  ( )
1

1( )
m

m x G x
+

+ = is the CDF of the exp-G family with power parameter 1m + .  

 

4.3 Statistical Properties of the GOIE family 

This section presents the statistical properties of the GOIE family of distribution.  

 

4.3.1 Quantile Function 

Quantile functions are very useful when simulating random samples from a given 

distribution. The median, skewness and kurtosis of a distribution can also be derived using 

the quantile functions. 

Proposition 4.3. The quantile function of the GOIE family for  0,1u is given by 

                              ( ; ) log( ) ( ; ) 1 0 ,  0,1 .                             (4.9)G x u G x u − + =    

Proof. Using the CDF of the GOIE family defined in equation (4.1), the quantile function 

is obtained as follows; 

( ; ) 1
( ) exp .

( ; )

G x
F x u

G x





 −
= = 

 




 

This implies 

( ; ) 1
exp .

( ; )

G x
u

G x





 −
= 

 




 

Taking logarithm of both sides and simplifying yields 

( ; ) log( ) ( ; ) -1.                            G x u G x =   

Hence,  

 ( ; ) log( ) ( ; ) 1 0,   0,1 .                            G x u G x u − + =    
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Since the quantile function does not have a closed form, it is therefore solved numerically 

to obtain the quantile values. The first quartile, median and upper quartile of the GOIE 

distribution are obtained by substituting 0.25,0.5 and 0.75u = respectively. 

 

4.3.2 Moment 

In any statistical analysis, the moment plays an important role. It is very useful when 

computing measures of shapes, central tendencies and dispersion.  

Proposition 4.4. The  rth non-central moment of the GOIE family of distributions is 

 

Proof. The rth non-central moment is defined as 

' ( ) .r

r x f x dx


−

=   

Substituting the mixture representation of the density function into the definition gives 

                   

( ) ( )

'

0 0 0 0

0 0 0 0

( ) ( )

    ,   1,2,...

i k
r m

r ijkm

i j k m

i k
mr

ijkm

i j k m

x g x G x dx

x g x G x dx r

 



  

= = = =−

 

= = = = −

=

= =



 

 

This complete the proof. 

 

4.3.3 Moment Generating Function 

The moment generating function (MGF) are useful functions when estimating the moments 

of a random variable. The MGF of a random variable X  having the GOIE distribution if 

it exist is given by the following proposition. 

( ) ( )'

0 0 0 0

,   1,2,....                          (4.10)
i k

mr

r ijkm

i j k m

x g x G x dx r 
 

= = = = −

= = 
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Proposition 4.5. The MGF of the GOIE family of distribution is given by 

( ) ( )
0 0 0 0 0

( ) ,   1,2,....                 (4.11)
!

i k
ijkm r m

X

r i j k m

M t x g x G x dx r
r

   

= = = = = −

= =   

 

Proof. Using the identity 
0

.
!

r r
tX

r

t X
e

r



=

=  

The MGF of a random variable is 

( ) tX

XM t E e =    

0

0

!

.
!

r r

r

r
r

r

t X
E

r

t
E X

r



=



=

 
=  

 

 =  





 

But rE X    is the thr  non-central moment. This implies 

( ) '

0

.
!

r

X r

r

t
M t

r




=

=  

Hence,  

( ) ( )
0 0 0 0 0

( ) .
!

i k
ijkm r m

X

r i j k m

M t x g x G x dx
r

   

= = = = = −

=   

The proof is complete. 

 

4.3.4 Incomplete Moment 

The incomplete moments is very useful when estimating the median deviation, mean 

deviation and measures of inequalities such as Lorenz and Bonferroni curves. 

Proposition 4.6. The rth incomplete moment of the GOIE distribution is given by 
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( ) ( )
0 0 0 0

( ) ,      1,2,....               (4.12)

yi k
mr

r ijkm

i j k m

M y x g x G x dx r
 

= = = = −

= =   

Proof. The thr incomplete moment is defined as 

( )  | .rM y E X X Y=   

For continuous random variable, 

 | ( ) .

y

rE X X Y x f x dx
−

 =   

Substituting the mixture representation of the density function into the definition yields 

( )
0 0 0 0

( ) ( ) .

y i k
r m

r ijkm

i j k m

M y x g x G x dx
 

= = = =−

=   

Hence, 

( ) ( )
0 0 0 0

( )

yi k
mr

r ijkm

i j k m

M y x g x G x dx
 

= = = = −

=  . 

The incomplete moment can also be expressed in terms of the quantile function. Let 

( ) ,G x u= then ( ) ,G u
x Q= where ( )

1

.
.

G
Q G−= ( ) ,

du
g x

dx
= it implies that ( )du g x dx= . As

( ),  0x G x→− →  and ( ) ( ),  .x y G x G y→ → Hence,  

( ) ( )
( )

0 0 0 0 0

.

G yi k
r m

r ijkm G

i j k m

M y Q u u du
 

= = = =

=   

 

4.3.5 Characteristic Function 

The characteristic function play an important role in statistics and probability theory. When 

the MGF of a random variable does not exist, the characteristic function becomes more 

useful. 
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Proposition 4.7. The characteristic function of the GOIE distribution is given by 

( ) ( ) ( )
0 0 0 0 0

( ) ,   1,2,.... , 1.                       (4.13)
!

p k
rijkm m

X

r i j k m

t it g x G x dx r i
r




  

= = = = = −

= = = −   

Proof. Using the identity  

0 !

r r r
itX

r

i t X
e

r



=

= , 

the characteristic function of the GOIE distribution is 

( ) ,itX

X t E e  =   1.i = −  

Using Taylor series expansion 

0 !

r r r
itX

r

i t X
E e E

r



=

 
  =   

 
  

0

.
!

r r
r

r

i t
E X

r



=

 =    

This implies 

( ) '

0

.
!

r r

X r

r

i t
t

r
 



=

=  

Hence, 

                                     ( ) ( ) ( )
0 0 0 0 0

( ) .                        
!

i k
rijkm m

X

r i j k m

t it g x G x dx
r




  

= = = = = −

=                                                      

 

4.3.6 Inequality Measures 

Lorenz and Bonferroni curves are the most widely used methods for estimating the income 

inequality of a given population. It can also be used to assess the inequality in terms of the 

survival times of cancer patients in a given population.  
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Proposition 4.8. If Y~ GOIE ( , , )   , then the Lorenz curve ( )FL y is given by 

( ) ( )
0 0 0 0

1
( ) .                        (4.14)

yi k
m

F ijkm

i j k m

L y xg x G x dx


 

= = = = −

=    

Proof. The Lorenz curve is defined as 

( ) ( )
1

.

y

FL y xf x dx


−

=   

But ( )
y

xf x dx
−

  is the first incomplete moment. Hence,  

( ) ( )
0 0 0 0

1
( ) .

yi k
m

F ijkm

i j k m

L y xg x G x dx


 

= = = = −

=    

 

Proposition 4.9. If Y~ GOIE ( , , )   , then the Bonferroni curve ( )FB y is given by 

( ) ( )
0 0 0 0

1
( ) .                (4.15)

1 ( )
exp

( )

yi k
m

F ijkm

i j k m

B y xg x G x dx
G y

G y









 

= = = = −

=
 −
− 
 

   

 

Proof. By definition 

( )
( )

( )
.

F

F

L y
B y

F y
=  

This implies 

( ) ( )
0 0 0 0

1
( ) .                

1 ( )
exp

( )

yi k
m

F ijkm

i j k m

B y xg x G x dx
G y

G y









 

= = = = −

=
 −
− 
 

   
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4.3.7 Mean Residual Life 

The Mean Residual Life (MRL) function plays a vital role in survival analysis. The Mean 

Residual Life function, ( )m y characterizes the distribution function, ( )F y uniquely (Kotz 

and Shanbhag, 1980). 

Proposition 4.10. If Y is a random variable which represents the life of a component with 

distribution function ( )F y , then the MRL is defined as 

( ) ( )
0 0 0 0

1
( ) ,                               (4.16)

1 ( )
1 exp

( )

yi k
m

ijkm

i j k m

m y xg x G x dx y
G y

G y





 
 

= = = = −

 
= − − 
  −   − −  

  

   

where 
'

1. =   

Proof. By definition ( )  | .m y E X y X y= −   

                                             ( )
( )

( ) ( )

1

y

x y f x dx

m y
F y



−

=
−


 

                                                      
( )

'

1 ( )

.
1

y

xf x dx

y
F y


−

−

= −
−


 

But ( )
y

xf x dx
−

  is the first incomplete moment and ( )1 F y− is the survival function. 

Substituting the first incomplete moment yields 

( ) ( )
0 0 0 0

1
( ) .                         

1 ( )
1 exp

( )

yi k
m

ijkm

i j k m

m y xg x G x dx y
G y

G y





 
 

= = = = −

 
= − − 
  −   − −  

  

   
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4.3.8 Mean and Median Deviation 

The combined deviations of the mean and median to some extent can be used to measure 

the variation in a population. If the random variable X follows the GOIE distribution, then 

the following propositions represents the mean and median deviations respectively. 

Proposition 4.11. The mean deviation of a random variable X having the GOIE distribution 

is given by 

( ) ( )1

0 0 0 0

2 2 ( ) .                        (4.17)
i k

m

ijkm

i j k m

F xg x G x dx



   
 

= = = = −

= −    

Proof. By definition 

( )

( ) ( )

1

   2 2 .

x f x dx

F xf x dx



 

 



−

−

= −

= −





 

But ( )
y

xf x dx
−

  is the first incomplete moment. Substituting the first incomplete moment 

gives 

( ) ( )1

0 0 0 0

2 2 ( ) .                        
i k

m

ijkm

i j k m

F xg x G x dx



   
 

= = = = −

= −    

Proposition 4.12. The median deviation of a random variable X having the GOIE 

distribution is given by 

( )2

0 0 0 0

2 ( ) .                    (4.18)

mi k
m

ijkm

i j k m

xg x G x dx  
 

= = = = −

= −    

Proof. By definition 
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( )

( )

2

   2 .

m

x m f x dx

xf x dx







−

−

= −

= −





 

But ( )
y

xf x dx
−

  is the first incomplete moment. Hence, 

( )2

0 0 0 0

2 ( ) .

mi k
m

ijkm

i j k m

xg x G x dx  
 

= = = = −

= −    

 

4.3.9 Order Statistics 

Order statistics plays a vital role in the field of biostatistics. For example the least order 

statistics, average order statistics and the highest order statistics can be used respectively 

to estimate the minimum, average and maximum time it will take for a patient to die.  

Therefore, this subsection is focused on deriving the pth order statistics of the GOIE 

distribution. Let 1 2, ,..., nX X X  be a random sample from the GOIE distribution and 

1: 2: :...n n n nX X X    are order statistics obtained from the sample, then the PDF, : ( )p nf x , 

of the pth order statistic :n pX  is given by 

( )
( ) ( )

( ) ( ):

0 0 0 0 0

!
,          (4.19)

1 ! !

qn p j m

ijkmqp n

i j k m q

n
f x g x G x

p n p


−  

= = = = =

=
− −

  

where  

( ) ( ) ( ) ( ) ( )1 1 1 1 1 1
( ) .

!

i j k m q j

ijkmq

n p j mp i k j k j

i k qj m m

   
   

+ + + +
 −− +    + − + − − + −   

= − +       
         

 

Proof. By definition, the density function of the 
thp  order statistics is 
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( )
( ) ( )

( ) ( ) ( )
1

:

!
1 .

1 ! !

p n p

p n

n
f x F x F x f x

p n p

− −

   = −   − −
 

Using the binomial expansion 

( )
( ) ( )

( ) ( ) ( ) ( )
1

:

0

!
1 .

1 ! !

n p
p ii

p n

i

n pn
f x F x F x f x

ip n p

−
−

=

− 
   = −     − −  

  

This implies 

( )
( ) ( )

( ) ( ) ( )
1

:

0

!
1 .

1 ! !

n p
p ii

p n

i

n pn
f x F x f x

ip n p

−
+ −

=

− 
 = −    − −  

  

But  

( )
( )

( )

1
exp

G x
F x

G x





 −
=  

  

 

and  

1 1 ( ) 1
( ) ( ) ( ) ( ) ( ) ( ) exp .

( )

G x
f x g x G x g x G x

G x


  


  − − − −  −

 = − +   
 

 

Hence, 

( )
( ) ( )

( ) ( )1 1

:

0

! ( ) 1
1 ( ) ( ) ( ) ( ) ( ) exp .

1 ! ! ( )

n p
i

p n

i

n pn G x
f x g x G x g x G x p i

ip n p G x


  


  

−
− − − −

=

 −    −
 = − − + +     − −     

  

             Using Taylor series expansion, 

 

( ) ( )

( ) ( ) ( ) ( ) ( )1 1 1 1

:

0 0

1!
( ) ( ) ( ) ( ) ( ) ( ) 1 .

1 ! ! !

i j j
n p j

j j

p n

i j

n pp in
f x g x G x g x G x G x

ip n p j

  
  

+
− 

− + − − + −

= =

−− +     = − + −     − −  
  

Applying the binomial expansion twice, yields 

( )
( ) ( )

( ) ( ):

0 0 0 0 0

!
.

1 ! !

n p j m
q

ijkmqp n

i j k m q

n
f x g x G x

p n p


−  

= = = = =

=
− −

  
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4.3.10 Moment of the 
thp  Order Statistic 

Proposition 4.13. The thr non-central of the 
thp  order statistic of a random variable X 

having the GOIE distribution is given by 

( ) ( ) ( ):'

0 0 0 0 0

.                        (4.20)
n p j m

qp n r
ijkmqr

i j k m q

x g x G x dx 
−  

= = = = = −

=   

Proof. By definition 

( ) ( ):'

: .
p x r

r p xx f x dx


−

=   

But ( ):p nf x is the PDF of the 
thp  order statistic. This implies 

( ) ( ) ( ):'

0 0 0 0 0

.
n p j m

qp n r
ijkmqr

i j k m q

x g x G x dx 
 −  

= = = = =−

=   

Hence,  

( ) ( ) ( ):'

0 0 0 0 0

.
n p j m

qp n r
ijkmqr

i j k m q

x g x G x dx 
−  

= = = = = −

=   

 

4.4 Parameter Estimation 

In this section, we employed three estimation methods to obtain the unknown parameters 

of the GOIE distribution. These estimation methods are; maximum likelihood estimation, 

ordinary least squares estimation and Cramér-Von Mises minimum distance estimation.  
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4.4.1 Maximum likelihood Estimation for Complete Dataset 

Given that 1 2, ,..., nX X X  is a random sample of 𝑛 independently and identically distributed 

random variables from the GOIE distribution, then the total log-likelihood function is given 

by; 

( ) ( ) ( ) ( ) ( )
1 1

1 1 1

log ( ; ) log ; ; ; ; .     (4.22)
n n n

i i i i i

i i n

g x G x G x G x G x
     

      
− − − − − −

= = −

   = + − + − +
       

Differentiating the total log-likelihood function with respect to the parameters yield the 

following score functions; 

 

 

( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( )

1 1

1 1
1 1

; ; log ;
; log ; ,      (4.24)

; ;

                                       

n n
i i i

i i

i ii i

G x G x G x
G x G x

G x G x

   

 

  

 

   

− − − −

−

− − −
= =

 − −  = + 
  + −  

 
  

 
 

and 

( )

( )

( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 2' ' '

1 1
1 1

1 1' '

; 1 ; ; 1 ; ;

; ; ;

          ; ; ; ; ,                                  (4

n n
i i i i i

i ii i i

i i i i

g x G x G x G x G x

g x G x G x

G x G x G x G x

  

  

  

     

  

  

− − − −

− − −
= =

− − − −

   − − − + − −
= + −  

 − +      

 − − −
 

 
    

   

   
1

.25)
n

i=



  

 

where 
' ( ; )
( ; )

g x
g x


=







 and 

' ( ; )
( ; )

G x
G x


=







. 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1

1 1
1

1

; ; ; log ; ; log ;
          

; ;

                       ; log ; ; log ; ,                           

n
i i i i i

i i i

n

i i i i

i

G x G x G x G x G x G x

G x G x

G x G x G x G x

   

  

  

  

   

− − − − − −

− − − −
=

− −

=

 − − − −
= − 

 − +  

 +
 





     

 

                   (4.23)
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Equating the scores functions to zero and solving the system of equations numerically, 

gives the maximum likelihood estimates of the parameters. 

 

4.4.2 Maximum likelihood Estimation for Censored Case 

Given a dataset ( ), ,i iU x = where ix  is the observation that corresponds to the censored 

failure times and i is the censoring indicator. If failure is observed, 1i = and 0i =  if 

censored. Given that ( ),i iU x = is independent and identically distributed and   is the 

vector of parameters from the GOIE family of distributions, the likelihood of  is given 

by 

( ) ( )
1

1

; 1 ;
i i

n

i i

i

L f x F x
 

 
−

=

   = −     

( ) ( )
1

1

; ; .
i i

n

i i

i

f x S x
 


−

=

   =       

where  ( ) ( ); 1 ;i iS x F x= −  . The log likelihood function is 

( )( ) ( )( )

( )( ) ( ) ( )( )

1

1

1

log ; ;

  log ; 1 log ; .                    (4.26)

i i

n

i i

i

n

i i i i

i

f x S x

f x S x

 
 

   

−

=

=

 =
  

 = + − 




 

Substituting the PDF and survival function of the GOIE family of distributions into 

equation (4.26) yields 

( ) ( ) ( ) ( )( ) ( )

( )

1 1

1

; 1
log ; ; ; exp

;

n
i

i i i i

i i

G x
g x G x G x

G x



  


   

− − − −

=

  −
 = − + + 
    




  


 

www.udsspace.uds.edu.gh 

 

 

 

 



67 
 

( )
( )

( )
( )

1

; 1
1 log 1 exp .                                4.27

;

n
i

i

i i

G x

G x






=

  −
 − −  
    





 

Differentiating  in equation (4.27) with respect to ,  and respectively yields 

 

 

( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( )

( )
( )

( )
( )( )

( )

( )

1 1

1 1
1 1

; ; log ;
; log ;

; ;

; 1
(1 ) ; exp log ;

;
          

1 ; 1
1 exp

;

n n

i i

i i

i

i i i

i

i

i

G x G x G x
G x G x

G x G x

G x
G x G x

G x

G x

G x

   

 

  



 







 
 

   



− − − −

−

− − −
= =

− +

 − −  = + − 
  + −  

  −
 −  
   
 

 − − 
−   

    

 
  

 
 


 







( )
1

,                                 4.29

                                       

n

i=

  

( )

( )

( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

- -2 - -2' ' '

- -1 -1
1 1

1 1' '

1

'

; - - -1 ; ; - -1 ; ;

; - ; ;

          ; ; ; ;

(1 )

     

n n
i i i i i

i

i ii i i

n

i i i i i

i

i

g x G x G x G x G x

g x G x G x

G x G x G x G x

G

  

  

  

          


     

   



= =

− − − −

=

    +
 + −  

  +      = − 
  − − −   

−

 




   

( ) ( ) ( )  ( ) ( )
( )

( )

( )

( )

( )

'

1

; 1
; ; ; ; exp

;
,            4.30

; 1
1 exp

;

i

i i i i
n

i

i
i

i

G x
x G x G x G x

G x

G x

G x



  







 
− −

=

  −
 −  
   
 

 − 
−   

    




   







  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1

1 1
1

1

; ; ; log ; ; log ;
        

; ;

                  ; log ; ; log ;                               

n
i i i i i i

i

i i i

n

i i i i i

i

G x G x G x G x G x G x

G x G x

G x G x G x G x

   

  

  

  


   



− − − − − −

− − − −
=

− −

=

 − − − −
= − 

 − +  

 +
 





     

 

   

( ) ( )( ) ( )

( )
( )( )

( )

( )

( )
1

                            

; 1
(1 ) ; 1 ; exp log ;

;
                  ,                  4.28

; 1
1 exp

;

i

i i i i
n

i

i
i

i

G x
G x G x G x

G x

G x

G x



 








−

=

−

  −
 − −  
   
 

 − 
−   

    




  






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where 
' ( ; )
( ; )

g x
g x


=







 and 

' ( ; )
( ; )

G x
G x


=







. 

Solving 0, 0
 

 
= =

 
and 0


=


simultaneously using numerical methods produces the 

Maximum likelihood estimates of parameters ,  and  respectively for the censored 

datasets. 

 

4.4.3 Ordinary Least Squares Estimation Method 

The ordinary least squares (OLS) estimation method is one of the estimation methods that 

estimates the parameters by minimizing the objective function. This method was 

introduced by Swain et al. (1988). If ( ) ( ) ( )1 2
, ,...,

n
x x x  are order statistics of a random sample 

of size n  obtained from the GOIE distribution. The OLS estimates, , ,OLS OLS OLS    for 

the GOIE distribution parameters can be derived by minimizing the function  

( ) ( )( )
2

1

, , | , , ,                                           (4.31)
1

n

i
i

i
F x

n
      

=

 
= − + 
  

with respect to ,  and   . But 

 

( )
( )( )

( )( )

; 1
exp , , 0, .

;

i

i

G x
F x x R

G x




 

 −
 =  
 
  





 

Hence, 

( )
( )( )

( )( )
( )

2

1

; 1
, , exp .                         4.32

1;

n
i

i
i

G x i

nG x




   

=

  −  = −   +
    





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Differentiating equation (4.32) with respect to the parameters yields 

( )( )

( )( )
( )( )

2

1

; 1
exp ; , , 0,           1,2,3,

1;

n
i

k i
i

i

G x i
x k

nG x




 

=

  −   −  = =   +
    







 

where   

( )( ) ( )( )

( )( )
1

; 1
; , , exp ,

;

i

i

i

G x
x

G x




 



 −   =
 
  






 

( )( ) ( )( )

( )( )
2

; 1
; , , exp ,

;

i

i

i

G x
x

G x




 



 −   =
 
  






 

and 

( )( ) ( )( )

( )( )
3

; 1
; , , exp .

;

i

i

i

G x
x

G x




 

 −   =
 
  




 

 

 

4.4.4 Cramér-Von Mises Minimum Distance Estimation Method 

The Cramér-Von Mises (CVM) distance estimation method, also known as maximum 

goodness of fit estimation method has minimum bias compared to other minimum distance 

estimation methods (MacDonald, 1971). It rely on the difference between the estimates of 

the CDF and the empirical distribution (Luceno, 2006). Let ( ) ( ) ( )1 2
, ,...,

n
x x x  be order 

statistics of a random sample of size n  obtained from the GOIE distribution. The estimators 

of the CVM for the GOIE distribution parameters can be derived by minimizing the 

function.  

www.udsspace.uds.edu.gh 

 

 

 

 



70 
 

                        

( ) ( )( )
2

1

1 2 1
, , | , , ,                                         (4.34)

12 2

n

i
i

i
V F x

n n
   

=

− 
= + − 

 
   

with respect to ,  and  . Putting the GOIE CDF into (4.34) yields 

               ( )
( )( )

( )( )

2

1

; 11 2 1
, , exp .

12 2;

n
i

i
i

G x i
V

n nG x




  

=

  − −  = + −  
    






 

Also, the nonlinear equations can be solved numerically to obtain the estimates of the 

CVM. That is 

 

                      
( )( )

( )( )
( )( )

2

1

; 1 2 1
exp ; , , 0,           1,2,3,...

2;

n
i

k i
i

i

G x i
x k

nG x




 

=

  − −   −  = =  
    







 

where   

( )( ) ( )( )

( )( )
1

; 1
; , , exp ,

;

i

i

i

G x
x

G x




 



 −   =
 
  






 

( )( ) ( )( )

( )( )
2

; 1
; , , exp ,

;

i

i

i

G x
x

G x




 



 −   =
 
  






 

and 

( )( ) ( )( )

( )( )
3

; 1
; , , exp .

;

i

i

i

G x
x

G x




 

 −   =
 
  




 

 

 

 

www.udsspace.uds.edu.gh 

 

 

 

 



71 
 

4.5 Special Distributions  

In this section, two special distributions of the GOIE family of distribution are discussed. 

These includes: generalized odd inverse exponential Weibull distribution (GOIEW) and 

generalized odd inverse exponential Lomax distribution (GOIEL). 

 

4.5.1 Generalized Odd Inverse Exponential Weibull Distribution 

Given the baseline CDF is that of the Weibull distribution, that is

( ); , 1 expG x x   = − −  , with corresponding PDF ( ) 1 expg x x x  −  = −  , and 

positive parameters , 0   . The CDF of the GOIEW distribution is given by 

                              

( )
( )( )

( )( )

1 exp 1
exp , 0.                                (4.35)

1 exp

x
F x x

x











 − − −
 = 
 

− −  

 

 

4.5.1.1 Sub-models from GOIEW 

The GOIEW have a number of sub-models that are used in modeling lifetime data. These 

are: 

1. Odd Inverse Exponential Weibull Distribution 

When 1 = = , the GOIEW reduces to the odd inverse exponential Weibull distribution 

(OIEW) with the following CDF: 
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( )
( )( )
( )( )

1 exp 1
exp ,

1 exp

x
G x

x









 − − −
 =
 − −
 

 

for , 0    and 0x  . 

 

2. Exponentiated Odd Inverse Exponential Weibull Distribution 

When 1 =  , the GOIEW reduces to the exponentiated odd inverse exponential 

Weibull distribution (EOIEW) with the following CDF: 

( )
( )( )

( )( )

1 exp 1
exp ,

1 exp

x
G x

x











 − − −
 =
 

− −  

 

for , , 0     and 0x  . 

3. Generalized Odd Inverse Exponential Exponential Distribution 

When 1 = , the GOIEW reduces to the generalized odd inverse exponential exponential 

distribution (GOIEE) with the following CDF: 

( )
( )( )

( )( )
1 exp 1

exp ,
1 exp

x
G x

x









 
− − − =

 − −
  

 

for , , 0     and 0x  . 

 

4. Generalized Odd Inverse Exponential Rayleigh Distribution 

When 2 = , the GOIEW reduces to the generalized odd inverse exponential Rayleigh 

distribution (GOIER) with the following CDF: 
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( )
( )( )
( )( )

2

2

1 exp 1
exp ,

1 exp

x
G x

x









 
− − − 

=  
− − 

 

 

for , , 0     and 0x  . 

Table 4.1: Summary of sub-models from the GOIEW distribution 

 

 

 

 

 

Figure 4.1 displays the plot of the CDF of the GOIEW distribution for some selected 

parameter values. It is observed from Figure 4.1 that when the scale parameter is equal to 

one or approximately equal to one, the curves shows fast convergence to one. However, 

the curves shows a slow convergence to one when the scale parameter is less than one.   

 

Figure 4.1: Plot of the CDF of the GOIEW distribution 

Distribution         

OIEW 1 1     

EOIEW         

GOIEE       1 

GOIER       2 
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The PDF of the GOIEW distribution is represented in equation (4.36). 

( ) ( ) ( ) ( )( ) ( )( )

( )( )

( )( )

1 1
1 exp 1 exp 1 exp

1 exp 1
            exp , 0.                                                      (4.36)

1 exp

f x x x x x

x
x

x

  
   







      





− − − −
−  = − − − − + − − 

  

 − − −
  
 

− −  

 

Figure 4.2 shows the plot of the PDF of the GOIEW distribution for some chosen parameter 

values. The density function exhibit bimodal shape, reverse J-shape, left skewed, right 

skewed and approximately symmetric shape. This means that the GOIEW family would be 

able to handle datasets under different shapes. 

 

Figure 4.2: Plot of the GOIEW distribution density function 
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The hazard rate function of the GOIEW distribution is given by: 

( ) ( ) ( )( ) ( )( )
( )( )

( )( )

( )( )

( )( )

1 1
1

1 exp
exp 1 exp 1 exp exp

1 exp
( )

1 exp
1 exp

1 exp

1

, 0.      (4.37)
1

x
x x x x

x
h x

x

x

x




  
   











      







− − − −
−

− −
− − − − + − −

− −
=

− −
−

− −

 −
   
    

  
 −
 
 
 

 

The plot of the hazard rate function of the GOIEW distribution for some selected parameter 

values is exhibited in Figure 4.3. It is clear that the GOIE family can produce a hazard rate 

shapes which include; decreasing, bathtub, reversed-J, upside-down bathtub, modified 

bathtub and modified upside-down bathtub. 

 

Figure 4.3: Plot of the GOIEW distribution hazard rate function 

 

The associated survival function of the GOIEW distribution is given by: 
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( )
( )( )

( )( )
( )

1 exp 1
1 exp , 0.                             4.38

1 exp

x
S x x

x











 − − −
 = − 
 

− −  

 

The plot of the survival function of the GOIEW distribution for different combination of 

the values of the parameters is shown in Figure 4.4. The scale parameter values of the 

GOIEW distributions that are equal to one or approximately equal to one indicates a fast 

convergence to zero than those whose scale parameter values are less than one.  

 

Figure 4.4: Plot of the survival function of the GOIEW distribution 
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The quantile function can be used to compute the median, skewness and kurtosis of a 

distribution. It is also useful when simulating random samples from a given distribution. 

The quantile function of the GOIEW distribution is  

( )( ) ( )( )  1 exp log 1 exp 1 0,  0,1 .      (4.39)x u x u
 

  − − − − − + =   

The quantile values of the GOIEW distribution for different parameter values are presented 

in Table 4.2.  With the help of numerical technique in R, these values were generated. The 

different parameter values that were used for the computation are as follows; I: , 

, , ; II: , , , ; III: , , 

,  and IV: , , , . 

 

Table 4.2: Quantile values of GOIEW distribution for some chosen parameter 

values 

u  I II III IV 

0.1 9.7769×10-10 0.0035 0.5032 0.8117 

0.2 5.2442×10-10 0.0044 1.3354 0.8179 

0.3 5.7922×10-10 0.0052 2.7503 0.8229 

0.4 1.8372×10-7 0.0062 4.5883 0.8277 

0.5 1.9772×10-5 0.0072 6.7672 0.8324 

0.6 9.0276×10-4 0.0085 9.4095 0.8375 

0.7 2.4778×10-2 0.0102 12.8391 0.8432 

0.8 5.4786×10-1 0.0127 17.8390 0.8503 

0.9 1.4952×101 0.0172 27.1113 0.8606 

 

0.1 =

0.3 = 0.7 = 0.2 = 10 = 20 = 40 = 0.5 = 1.0 = 7 = 0.8 =

0.5 = 15 = 24 = 33 = 12 =
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The values of the first six (6) moments and other related measures such as skewness, 

kurtosis, standard deviation and coefficient of variation of the GOIEW distribution for 

some chosen parameter values are shown in Table 4.3. Numerical integration was used to 

derive the values of the first six moments. The coefficients of skewness and kurtosis of the 

GOIEW distribution from Table 4.3 are all positive. This means that the GOIEW 

distribution can handled datasets that are positively skewed and leptokurtic in nature. The 

following values of the parameters were used for the calculation. I: 10.5 = , 10.8 = , 

5 = , 1.5 = ; II: 0.5 = , 0.8 = , 5 = , 1.5 = ; III: 1.5 = , 4.5 = , 2.5 = , 3.5 =  

and IV: 11.5 = , 8.5 = , 1.5 = , 0.5 = . 

 

Table 4.3: First six moments of GOIEW distribution 

 I II III IV 

 0.7493 0.2921 0.9211 4.9782 

 0.5855 0.1236 0.8720 39.1660 

 0.4797 0.0681 0.8474 547.3385 

 0.4141 0.0456 0.8442 13499.68 

 0.3783 0.0354 0.8610 536497.2 

 0.3671 0.0311 0.8777 31406060.0000 

SD 0.0240 0.0383 0.0236 14.3835 

CV 0.2070 0.6698 0.1667 0.7618 

CS 1.3243 1.2800 0.2127 3.8341 

CK 5.2414 5.0816 0.0322 0.6733 

CK=coefficient of kurtosis, CS=coefficient of skewness, CV=coefficient of variation and 

SD=standard deviation. 

'

r

'

1

'

2

'

3

'

4

'

5

'

6
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4.5.2 Generalized Odd Inverse Exponential Lomax Distribution 

Consider the Lomax distribution with shape parameter 0  and scale parameter 0  , 

where the CDF and PDF for 0x   are given by ( ) ( )1 1G x x



−

= − + and

( ) ( )
1

1g x x


 
− −

= + respectively. Inserting the PDF and CDF of the Lomax distribution 

into equations (4.1) and (4.2), the CDF and PDF of the GOIEL distribution is given by  

                                               

( )
( )( )
( )( )

1 1 1
exp , 0.                               (4.40)

1 1

x
F x x

x











−

−

 
− + − 

=  
− + 

 

 

4.5.2.1 Sub-models from GOIEL 

The GOIEW have a number of sub-models that are used in modeling lifetime data. These 

are: 

1. Odd Inverse Exponential Lomax Distribution 

When 1 = = , the GOIEL reduces to the odd inverse exponential Lomax distribution 

(OIEL) with the following CDF: 

( )
( )( )
( )( )

1 1 1
exp ,

1 1

x
G x

x









−

−

 − + −
 =
 − +
  

 

for , 0    and 0x  . 

2. Exponentiated Odd Inverse Exponential Lomax Distribution 

When 1 =  , the GOIEL reduces to the exponentiated odd inverse exponential Lomax 

distribution (EOIEL) with the following CDF: 
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( )
( )( )
( )( )

1 1 1
exp ,

1 1

x
G x

x











−

−

 
− + − 

=  
− + 

 

 

for , , 0     and 0x  . 

 

3. Generalized Odd Inverse Exponential Exponential Distribution 

When 1 = , the GOIEL reduces to the generalized odd inverse exponential exponential 

distribution (GOIEE) with the following CDF: 

( )
( )( )
( )( )

1

1

1 1 1
exp ,

1 1

x
G x

x









−

−

 
− + − 

=  
− + 

 

 

for , , 0     and 0x  . 

4. Generalized Odd Inverse Exponential Rayleigh Distribution 

When 2 = , the GOIEL reduces to the generalized odd inverse exponential Rayleigh 

distribution (GOIER) with the following CDF: 

( )
( )( )
( )( )

2

2

1 1 1
exp ,

1 1

x
G x

x









−

−

 
− + − 

=  
− + 

 

 

for , , 0     and 0x  . 
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Table 4.4: Summary of sub-models from GOIEL distribution 

 

 

 

 

 

 

Figure 4.6 shows the plot of the CDF of the GOIEL distribution for some given parameter 

values. The convergence of the CDF to one is dependent on the shape parameter  . When 

the values of   is less than one, we experience a delay convergence and a quick 

convergence is realized when the values of   is far greater than one. 

 

Figure 4.5: Plot of the CDF of the GOIEL distribution 

Distribution         

OIEL 1 1     

EOIEL         

GOIEE       1 

GOIER       2 
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The corresponding PDF of the GOIEL distribution is given in equation (4.4.41)   

( ) ( ) ( ) ( )( ) ( )( )
( )( )
( )( )

1 1
1

1 1 1
1 1 1 1 1 exp , 0.       (4.41)

1 1

x
f x x x x x

x




  
  





      



−

− − − −
− − − −

−

 
− + −  

= + − − + + − +     − + 
 

   

Figure 4.3 shows some of the possible shapes of the density function of the GOIEL 

distribution for some selected parameter values. From Figure 4.5, the density function of 

the GOIEL distribution can have shapes such as right skewed, decreasing and reversed-J 

for some selected parameter values, the PDF also exhibit bimodality. 

 

Figure 4.6: Plot of the GOIEL distribution density function 

The hazard rate function of the GOIEL distribution is given by 
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( ) ( ) ( )( ) ( )( )
( )( )
( )( )

( )( )
( )( )

1 1
1

1 1 1
1 1 1 1 1 exp

1 1

                                                                
( ) , 0.  (4.42)

1 1 1
1 exp

1 1

x
x x x

x

h x x

x

x




  
  











      







−

− − − −
− − − −

−

−

−

 
− + −  

+ − − + + − +     − + 
 

= 
 

− + − 
−  

− + 
 

 

The plot of the hazard rate function of the GOIEL distribution for different combination of 

parameter values are illustrated in Figure 4.7. The shapes of the hazard function can be 

increasing, upside-down bathtub and modified upside-down bathtub. 

 

Figure 4.7: plot of the GOIEL distribution hazard rate function 

 

The associated survival function of the GOIEL distribution is given by 
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( )( )
( )( )

1 1 1
( ) 1 exp , 0.                                                      (4.43)

1 1

x
S x x

x











−

−

 
− + − 

= −  
− + 

 

 

 

The plot of the survival function of the GOIEL distribution for different combination of 

the parameter values is represented in Figure 4.8. From Figure 4.8, it is clear that the shape 

parameter  determines the rate at which the survival curve converges to zero. Values of 

  less than one, shows a slow convergence compared to values of   greater than one.  

 

Figure 4.8: Plot of the survival function of the GOIEL distribution 

 

The quantile function of the GOIEL distribution is  

( )( ) ( )( )  1 1 log 1 1 1 0,  0,1 .      (4.44)x u x u
 

 
 

− −
− + − − + + =   
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Generation of random numbers from the GOIEL distribution can be done using equation 

(4.44). The first quartile, median and upper quartile of the GOIEL distribution is obtained 

by replacing 0.25,0.5 and 0.75 respectively.u =  

Table 4.5 indicates the quantile values of the GOIEL distribution for different parameter 

values.  Using numerical approach in R, the quantile values are obtained. The different 

parameter values that were used for the computation are as follows; I: , , 

, ; II: , , , ; III: , , ,  

and IV: , , , . 

Table 4.5: Quantile values of GOIEL distribution for some chosen parameter values 

 

 

 

 

 

 

 

 

 

 

 

The values of the first six moments, skewness, kurtosis, standard deviation and coefficient 

of variation of the GOIEL distribution for some chosen parameter values are shown in 

Table 4.6. Numerical integration was used to derive the values of the first six moments. It 

0.8 = 0.1 =

0.3 = 0.9 = 1.2 = 1.0 = 3.0 = 0.1 = 3.0 = 8 = 0.4 = 0.6 =

14 = 27 = 32 = 16 =

u  I II III IV 

0.1 0.1751 3.8001×10-9 7.3930 0.8564 

0.2 0.2523 4.5082×10-8 10.2694 0.8617 

0.3 0.3366 3.1805×10-7 13.2090 0.8660 

0.4 0.4386 1.8574×10-6 16.4286 0.8700 

0.5 0.5709 1.0341×10-5 20.1159 0.8739 

0.6 0.7552 6.0773×10-5 24.5470 0.8781 

0.7 1.0371 4.2132×10-4 30.2335 0.8827 

0.8 1.5365 4.1443×10-3 38.3515 0.8883 

0.9 2.7289 9.4023×10-2 52.8417 0.8963 
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is observed that, the coefficient of skewness of the GOIEL distribution can either positive 

or negative. This means that datasets that are positively or negatively skewed can easily be 

modeled by this distribution. Again, datasets that are leptokurtic in nature can be modeled 

by the GOIEL distribution.  The following values of the parameter were used for the 

computation. I: 12.5 = , 11.8 = , 10.5 = , 11.5 = ; II: 10.5 = , 13.8 = , 17.5 = ,

12.5 = ; III: 16.5 = , 11.8 = , 14.1 = , 13.5 =  and IV: 14.7 = , 12.1 = , 

18.2 = , 10.5 = . 

Table 4.6: First six moments of GOIEL distribution 

 

 

I II III IV 

 

 

3.348×10-2 1.8415×10-2 2.1432×10-2 2.2074×10-2 

 

 

1.2873×10-3 3.9311×10-4 5.1416×10-4 5.5678×10-4 

 

 

6.188×10-5 9.5693×10-6 1.0794×10-5 1.3858×10-5 

 

 

3.535×10-6 3.0870×10-7 4.2988×10-7 6.0064×10-7 

 

 

2.6703×10-7 1.3040×10-8 2.025×10-8 3.2926×10-8 

 

 

2.789×10-8 7.1664×10-10 1.1861×10-9 2.4617×10-9 

SD 

 

1.6639×10-4 5.3998×10-5 5.48294×10-5 6.95185×10-5 

CV 

 

0.3853 0.3990 0.3455 0.3777 

CS 

 

3.5595 0.8605 -6.3441 -2.5904 

CK 

 

4.9267 20.1267 95.9979 60.5334 

CK=coefficient of kurtosis, CS=coefficient of skewness, CV=coefficient of variation and 

SD=standard deviation. 

'

r

'

1

'

2

'

3

'

4

'

5

'

6
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4.8 The GOIEW and GOIEL Regression Models with Cure Fraction 

Long-term survival models, also known as cure rate models play a key role in survival and 

reliability analysis. Models to handle the cure fraction have been widely developed. In the 

literature, two main models have been identified to fit survival data with a cure fraction. 

The first one in the standard cure rate model, also known as the mixture cure rate model 

(MCRM) and was pioneered by Boag (1949) and Berkson and Gage (1952). The 

assumption with this model is that, certain proportion of the population is cured whiles the 

remaining is not. The other type of cure rate models is the non-mixture cure rate model 

(NMCRM), also known as the promotion time model or bounded cumulative hazard model. 

This model was first developed by Yakovlev et al. (1993) and later studied by Chen et al. 

(1999). According to Tsodikov et al. (2003), the non-mixture cure rate model have the 

following advantages: the NMCRM has proportional hazard model structure, it presents a 

clearer biological meaningful interpretation of the data analysis and finally, the simple 

structure of the survival function provides an easy computations especially when 

developing the maximum likelihood estimates. In this section, we derived the GOIEW and 

GOIEL cure rate models and compared them with other competing models in terms of 

modeling a gastric cancer dataset. The GOIEW and GOIEL cure rate models are derived 

as follows. Given that N represent the unobservable number of causes of the event of 

interest for an individual in a population, and that N follows the Poisson distribution with 

mean  . The time for the thk cause to give the event of interest is represented by 

,  1,..., .kZ k N=  It was also assume that, the kZ  are identically and independent random 

variables with CDF defined in equation (1), where 1 2, ...Z Z  are independent on .N The 
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observable time to the event of interest is defined as  1min ,..., ,NX Z Z= and T =   when 

0N =  with ( )| 0 1P X N=  = = . 

Based on this setup, the survival function for the population is given as 

( ) ( ) ( )10 ,..., | 1 1pop NS P N P Z x Z N P N= = +    . 

This implies that, ( ) ( )popS t A S t =   (Tsodikov et al., 2003; Rodrigues et al., 2009), where 

( ).A is the probability generating function of the number of competing causes ( ).N Hence, 

the survival function for the population of the GOIEW distribution is given by 

                     ( )
( )( )

( )( )
( )

1 exp 1
exp exp , 0                         4.45

1 exp
pop

x
S x x

x












  − − −  = −   
− −    

 

with the cured fraction as ( ) 0popS e  − = = . The corresponding PDF for the population 

of the GOIEW distribution is given by 

( ) ( ) ( )( )1 1exp( )(1 exp( )) 1 exp ,   0,      (4.46)popf x x x x x x


           − − −  = − − − − − − +  
  

where 
( )( )
( )( )

( )( )
( )( )

1 exp 1 1 exp 1
exp exp .

1 exp 1 exp

x x

x x

 
 

 
 

 
 

 

     − − − − − −     = − −     
− − − −          

 

The associated hazard rate function for the population of the GOIEW distribution is given 

by 

( )
( ) ( )( )

( )( )
( )( )

( )

1 1exp( )(1 exp( )) 1 exp

, 0.   4.47

1 exp 1
exp exp

1 exp

pop

x x x x

h x x

x

x


    







       






− − −  − − − − − − + 
  = 

  − − −  −  
− −    
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Equation (4.45), (4.46) and (4.47) are termed as GOIEW model with cure fraction in 

competitive-risk structure. 

 

Similarly, the GOIEL model with its cure fraction were also derived. The survival 

function for the population of the GOIEL distribution is given by 

                               
( )( )
( )( )

1 1 1
( ) exp exp , 0.                   (4.48)

1 1
pop

x
S x x

x












−

−

  
− + −  

= −   
− +  

  

 

The corresponding PDF for the population of the GOIEL distribution is given by 

( ) ( ) ( ) ( )( ) ( )( )
1 1

1
1 1 1 1 1 ,   0,            (4.49)popf x x x x x

  
  

       
− − − −

− − − − 
= + − − + + − +    

 

 where 
( )( )
( )( )

( )( )
( )( )

1 1 1 1 1 1
exp exp .

1 1 1 1

x x

x x

 
 

 
 

 
 

 

− −

− −

     
− + − − + −     

= − −     
 − + − +    

     

 

The hazard rate function for the population of the GOIEL distribution was also derived 

and is given b

( )
( ) ( ) ( )( ) ( )( )

( )( )
( )( )

( )

1 1
1

1 1 1 1 1

, 0.                    4.50    

1 1 1
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x x x
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  
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





       






− − − −
− − − −

−

−

 
+ − − + + − +   = 

  
− + −  

−  
− +  

  

  

Equations (4.48), (4.49) and (4.50) are referred to us the GOIEL model with cure fraction. 
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4.8.1 Estimation of Parameters 

In order to estimate the parameters of the regression models with cure fractions, the 

maximum likelihood estimation method with censored observations is employed. In this 

subsection, we consider a lifetime data that is right censored and assumed that there are n  

patients undergoing cancer study. Let iQ  represent the censoring time. We observe 

 min ,i i ix X Q= and ( )i i iI X Q =  , where 1i = if ix is a time-to-event and 0i =  

given that it is right censored, for 1,..., .i n=  For censoring indicators 1 1( , ),..., ( , ),n nx x   

the total log-likelihood function with non-informative censoring can be expressed as 

                 

( )( ) ( ) ( )( ) ( )
1

log ; 1 log ; ,                     4.51                    
n

i pop i i pop i

i

f x S x   
=

 = + −
   

where  represents the vector of parameters. Therefore, the total log-likelihood of both 

GOIEW and GOIEL regression models with cure fraction are obtain by substituting 

( ),pop if x  and ( ),pop iS x   respectively into equation (4.51). The maximum likelihood 

estimates of   are obtained by maximizing their total log-likelihood functions directly.  
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CHAPTER FIVE 

SIMULATIONS AND EMPIRICAL APPLICATIONS  

5.0 Introduction 

This chapter presents the simulations and empirical applications of the GOIE family of 

distributions. It was subdivided into three headings and this include: Monte Carlo 

simulation, applications of the GOIE family of distributions to cancer datasets and 

conclusion.  

 

5.1 Monte Carlo Simulation 

This section examines the properties of the estimators for the parameters of the GOIEW 

distribution using Monte Carlo simulation. Random samples from the GOIEW distribution 

where generated using the quantile function in equation (4.39). The average bias (AB) and 

the mean square error (MSE) of the MLE, OLS and CVM estimators for the parameters 

are presented in Table 5.1, 5.2, 5.3 and 5.4 for some chosen parameter values. Five 

thousand replications were used in the simulation experiment ( 5,000N = ) with sample 

sizes n =  30, 50, 80, 120, 200 and 250 with parameter values

( ) ( ), , , 0.8,0.4,1.8,0.3 ,    = ( )0.5,0.9,2.5,0.6 , ( )0.4,0.7,2.6,0.4 , and (0.6, 0.5,2.4, 

0.8). 

Table 5.1 shows the simulation results of ( ) ( ), , , 0.8,0.4,1.8,0.3    = for three 

estimators (MLE, OLS, and CVM). From Table 5.1, the ABs for the parameters were all 

positive and decreases towards zero as the sample size increases. Also, as the sample size 

increases the MSEs of the estimators of the parameters decreases indicating that the 
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estimators of the parameters are consistent. However, the maximum likelihood estimator 

recorded the least values of the ABs   and the MSEs making it the best estimator.  

  

Table 5.1: Simulation results for ( ) ( ), , , 0.8,0.4,1.8,0.3    =  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The simulation results of ( ), , , (0.6,0.5,2.8,0.8)    = for three estimators (MLE, OLS, 

and CVM) are shown in Table 5.2. The results from Table 5.2 shows that the three 

estimators are consistent since MSEs of the estimators of the parameters decreases as the 

Parameter M AB MSE 

    MLE   OLS  CVM  MLE  OLS  CVM  

   30 0.5138 0.6857 0.7186 0.2815 0.5121 0.5407 

50 0.5025 0.6262 0.676 0.2702 0.4637 0.5086 

80 0.4857 0.5989 0.5257 0.2520 0.4384 0.3736 

120 0.4579 0.4837 0.4764 0.2290 0.3378 0.3352 

200 0.4377 0.4518 0.4409 0.2122 0.3248 0.3243 

250 0.4138 0.5369 0.4871 0.1929 0.3940 0.3183 

   30 0.3551 0.4105 0.3887 0.1147 0.2050 0.2323 

50 0.3427 0.4281 0.4248 0.1139 0.2243 0.2201 

80 0.3397 0.4325 0.3857 0.1121 0.2210 0.1923 

120 0.3353 0.3929 0.3816 0.1111 0.2050 0.1885 

200 0.3286 0.3633 0.3878 0.1100 0.1842 0.1877 

250 0.3229 0.4094 0.4144 0.0073 0.2158 0.1745 

   30 1.0206 1.2199 1.2152 1.6223 1.6827 1.6948 

50 1.0141 1.2643 1.3282 1.5524 1.6768 1.6545 

80 1.0121 1.2267 1.2455 1.4440 1.5638 1.6092 

120 1.0111 1.2303 1.2641 1.3034 1.5390 1.6021 

200 1.0109 1.2637 1.2404 1.2516 1.5159 1.5523 

250 1.0044 1.2981 1.2656 1.2273 1.4038 1.5136 

   30 0.1852 0.3037 0.3175 0.1298 0.1506 0.1663 

50 0.1696 0.2647 0.3197 0.1288 0.1452 0.1536 

80 0.1321 0.2410 0.2827 0.1184 0.1399 0.1464 

120 0.1812 0.2651 0.2800 0.1042 0.1287 0.1347 

200 0.1423 0.2760 0.2720 0.1015 0.1135 0.1272 

250 0.1001 0.2786 0.2685 0.0058 0.0822 0.0729 
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sample size increases. The maximum likelihood estimates remains the best estimator since 

it recorded the least values of ABs and MSEs compared to the other estimators.  

 

Table 5.2: Simulation results for ( ) ( ), , , 0.6,0.5,2.8,0.8    =  

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Parameter m AB MSE 

    MLE   OLS  CVM  MLE  OLS  CVM  

   

30 0.1069 0.5397 0.5393 0.0166 0.3032 0.3057 

50 0.0923 0.5435 0.5338 0.0121 0.3082 0.2989 

80 0.0867 0.5419 0.543 0.0102 0.3061 0.3062 

120 0.0856 0.552 0.5503 0.0100 0.3148 0.3136 

200 0.0844 0.5275 0.5206 0.0092 0.2906 0.2888 

250 0.0839 0.5177 0.5395 0.0089 0.2802 0.3022 

   

30 0.2010 0.3252 0.2772 0.1027 0.1339 0.1030 

50 0.1980 0.3609 0.3634 0.1026 0.1522 0.1545 

80 0.1893 0.368 0.3506 0.1024 0.1578 0.1472 

120 0.1781 0.3774 0.4048 0.1019 0.1601 0.1818 

200 0.1678 0.3574 0.3805 0.1017 0.1480 0.1655 

250 0.1580 0.3475 0.3633 0.1015 0.1419 0.1501 

   

30 1.8054 1.8163 1.8369 3.2616 3.3904 3.4793 

50 1.8047 1.9358 1.9166 3.2581 3.8153 3.7283 

80 1.8027 1.9736 1.9740 3.2507 3.9471 3.9511 

120 1.8006 2.0177 1.9842 3.2422 4.1013 3.9616 

200 1.8001 1.9990 1.9920 3.2404 4.0190 3.9906 

250 1.8000 1.9890 2.0085 3.2401 3.9756 4.0493 

   

30 0.1988 0.4787 0.4427 0.0399 0.2990 0.2713 

50 0.1984 0.5999 0.6396 0.0398 0.4173 0.4537 

80 0.1978 0.6264 0.6383 0.0396 0.4369 0.4502 

120 0.1968 0.7146 0.7385 0.0394 0.5347 0.5562 

200 0.1000 0.7202 0.7319 0.0201 0.5369 0.5512 

250 0.1000 0.7284 0.7549 0.0200 0.5453 0.5766 
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Table 5.3 displays the simulation results of ( ), , , (0.5,0.9,2.5,0.6)    = for MLE, OLS 

CVM estimators. Generally, the ABs and MSEs of all the estimators were found to be 

decreasing as the sample size increases indicating that they were consistent estimators. The 

MLE from Table 5.3 was the best estimator since it recorded the smallest values of ABs 

and MSEs. 

Table 5.3: Simulation results for ( ), , , (0.5,0.9,2.5,0.6)    =  

 

Parameter n AB MSE 

MLS OLS CVM MLE OLS CVM 

   30 0.1845 0.4439 0.4537 0.0586 0.2086 0.2158 

50 0.1777 0.4537 0.4619 0.0459 0.2179 0.2220 

80 0.1092 0.4494 0.4567 0.0432 0.2143 0.2159 

120 0.1091 0.4831 0.4820 0.0419 0.2357 0.2347 

200 0.1024 0.4858 0.4710 0.0416 0.2288 0.2280 

250 0.1005 0.4849 0.4893 0.0408 0.2382 0.2403 

   30 0.1240 0.2897 0.2483 0.0529 0.1472 0.1109 

50 0.1137 0.2365 0.1964 0.0512 0.1003 0.0717 

80 0.1082 0.2484 0.2331 0.0503 0.1044 0.0954 

120 0.1073 0.1979 0.1660 0.0501 0.0713 0.0526 

200 0.1048 0.2083 0.2053 0.0497 0.0712 0.0723 

250 0.1042 0.2273 0.1969 0.0496 0.0809 0.0582 

   30 1.5563 2.0620 1.9790 2.4422 4.3700 4.0164 

50 1.5350 2.1246 2.0828 2.3681 4.5696 4.4036 

80 1.5243 2.1382 2.0975 2.3314 4.6266 4.4642 

120 1.5150 2.1577 2.1575 2.2988 4.6836 4.6308 

200 1.5042 2.1826 2.1629 2.2632 4.7856 4.7030 

250 1.5041 2.1963 2.2166 2.2626 4.8458 4.9300 

   30 0.3896 0.4593 0.4317 0.1539 0.2350 0.2118 

50 0.3839 0.5132 0.4990 0.1501 0.2785 0.2664 

80 0.3820 0.5228 0.5022 0.1488 0.2853 0.2661 

120 0.3813 0.5626 0.5647 0.1415 0.3245 0.3252 

200 0.3810 0.5758 0.5640 0.1410 0.3334 0.3212 

250 0.3800 0.5759 0.5838 0.1401 0.3335 0.3418 
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The simulation results of ( ) ( ), , , 0.4,0.7,2.6,0.4    = for the three estimators are 

presented in Table 5.4. Again, the MLE emerges as the best estimator since it recorded the 

least values of ABs and MSEs. It was also observed from Table 5.4 that all the three 

estimators were consistent as their ABs and MSEs values decreases with increasing sample 

size. 

Table 5.4: Simulation results for ( ) ( ), , , 0.4,0.7,2.6,0.4    =  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

parameter M 
AB MSE 

MLE OLS CVM MLE OLS CVM 

   

30 0.2173 0.3506 0.3539 0.0498 0.134 0.1372 

50 0.2166 0.376 0.3509 0.0495 0.1546 0.1327 

80 0.2119 0.3653 0.3757 0.0475 0.148 0.1509 

120 0.2084 0.3829 0.3802 0.0456 0.1611 0.1581 

200 0.2077 0.4216 0.3791 0.0455 0.1879 0.162 

250 0.207 0.3911 0.4142 0.045 0.1687 0.1812 

   

30 0.059 0.3026 0.3127 0.0351 0.1056 0.112 

50 0.0587 0.3038 0.2862 0.0346 0.1042 0.0909 

80 0.058 0.3006 0.2929 0.0338 0.1013 0.0951 

120 0.0573 0.2744 0.2897 0.033 0.0839 0.0948 

200 0.0571 0.2636 0.266 0.0326 0.0797 0.0809 

250 0.0568 0.2771 0.2833 0.0324 0.0822 0.0889 

   

30 1.732 2.0237 2.023 3.0577 4.1828 4.1793 

50 1.7142 2.0904 2.0898 2.9831 4.4295 4.421 

80 1.6682 2.1037 2.1334 2.8081 4.4731 4.5867 

120 1.6517 2.1507 2.1625 2.746 4.6461 4.7011 

200 1.6313 2.1556 2.1362 2.6707 4.6657 4.5809 

250 1.6235 2.1443 2.188 2.6427 4.6099 4.8049 

   

30 0.0546 0.338 0.3446 0.0314 0.1332 0.1411 

50 0.0523 0.3474 0.352 0.0293 0.1338 0.134 

80 0.0489 0.3481 0.3649 0.0263 0.1322 0.1401 

120 0.0456 0.3699 0.3767 0.023 0.1399 0.1462 

200 0.0445 0.3734 0.3715 0.0216 0.1414 0.1393 

250 0.0433 0.3795 0.3833 0.0204 0.1446 0.1484 
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5.2 Applications of the GOIE-G Family 

In this section, the applications of the special distributions (GOIEW and GOIEL) of the 

GOIE distribution were examined using eight cancer datasets. These datasets were 

categorized into complete data and censored datasets. Tests such as  A*, K-S  and W*, as 

well as AIC, AICc and BIC were employed to compare the goodness-of-fit of the GOIEW 

and GOIEL distributions with other models. 

 

5.2.1 Complete Datasets  

In this subsection, the GOIEW and GOIEL distributions were applied to four complete 

cancer datasets. The parameters of the fitted models were obtained using the maximum 

likelihood estimation method. The PDFs and the CDFs of the fitted models were also 

plotted for visual comparisons. All this computations were done using the R-language. 

 

5.2.1.1 Leukemia Dataset 

The descriptive statistics of the leukemia dataset is explained in Table 5.5. The minimum, 

maximum and the average values of the dataset were observed to be 115, 1965 and 1192.3 

respectively. The results from Table 5.5 also suggest that the data is negatively skewed and 

platykurtic in nature. Thus, less peaked compared to the normal distribution.   

 

Table 5.5: Descriptive statistics for leukemia dataset 

 

 

Minimum Maximum Mean Skewness Excess kurtosis 

115.0000 1965.0000 1192.3000 -0.4600 -0.6600 
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The behavior of the failure rate of the dataset is explored using the TTT plot. The TTT 

transform curve of the leukemia data exhibit an increasing failure rate as shown in Figure 

5.1. 

 

Figure 5.1: TTT transform plot for the leukemia data 

 

Table 5.6 presents the maximum likelihood estimates of the GOIEW, GOIEL, generalized 

inverse Weibull (GIW) and exponentiated Lomax (E-Lx)) distributions fitted to the 

leukemia dataset. It was evident from Table 5.6 that all the parameters of the fitted 

distributions were significant at the 5% level of significance except   in GOIEW 

distribution.  
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Table 5.6: Maximum likelihood estimates for leukemia dataset 

Distribution Parameter Standard Error Z-Value P-Value 

 

̂ = 1.7676 0.5999 2.9467 0.0032* 

GOIEW ̂ = 42.2469 0.0143 2957.5338 2.2000×10-16*** 

 

̂ = 0.0079 0.0078 1.0162 0.3095 

 

̂ = 0.8782 0.1352 6.4966 8.2140×10-11 *** 

 

̂ = 20.4052 6.3882 3.1942 0.0014* 

GIW ̂ =1.1893 0.1184 10.0464 2.2000×10-16*** 

 

b̂ =69.0472 1.5874 43.4970 2.2000×10-16*** 

 

̂ =  6.7875 1.3537×10-1 5.0139×101 2.2000×10-16*** 

GOIEL ̂ = 5.5062×102 6.6430×10-4 8.2888×105 2.2000×10-16*** 

 

̂ = 5.2442×10-3 1.6279×10-3 3.2213 0.0013 

 

̂ = 3.3683 4.6765×10-1 7.2026 5.9070×10-13*** 

 

̂ =  2.0759×102 5.0510×10-5 4.1099×106 2.2000×10-16*** 

E-Lx ̂ = 1.0156×10-1 4.7377×10-2 2.1437 0.0321 

 ̂ =1.2399 1.3932×10-1 8.8998 2.2000×10-16*** 

*means significant at 5% level of significance 

 

The goodness-of-fit statistics, log-likelihood and the information criteria for the fitted 

models were also examined as shown in Table 5.7. Results from Table 5.7 shows that 

GOIEW distribution recorded the highest value of the log-likelihood and the least values 
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of A*, W*, K-S, AIC, AICc and BIC  suggesting that GOIEW distribution gives a better fit 

to the leukemia dataset than the other fitted models. 

Table 5.7: Goodness-of-fit statistics and information criteria for leukemia dataset 

Model -  AIC AICc BIC A* W* K-S P-Value 

GOIEW -330.480 668.9273 669.9800 675.9721 0.4933 0.0576 0.1703 0.1651 

GIW -352.3200 710.6453 711.2607 715.9289 4.2362 0.7650 0.2607 0.0058 

GOIEL -338.7500 685.5067 686.5593 692.5515 0.8518 0.1092 0.2477 0.0102 

ELx -351.9400 709.8701 710.4855 715.1537 4.2210 0.7621 0.2520 0.0085 

*Bolded means best based on selection criteria 

The plots of the histogram with the densities of the fitted models and the empirical CDF 

with the CDFs of the fitted models of the leukemia data are respectively represented in 

Figure 5.2. It can be seen that the fitted distributions mimic the empirical density and CDF 

of the leukemia data. 

Figure 5.2: Plots of fitted densities and CDFs of leukemia data 
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Again, the variance-covariance matrix for the parameter estimates of the GOIEW 

distribution for the leukemia dataset is given by 

3

5

1

5

3

0.3592 8.5666 3.8425 10 0.0667

0.0086 2.0405 9.2834 10 0.0016

0.0038 9.2834 6.0335 10 0.0010

0.0667 1.6107 1.0484 10 0.0183

J

−

−

−

−

−

 −  −
 
− −  =
 −  −
 
− −   

. 

The 95% confidence intervals for the parameters ,  ,     and   of the GOIEW distribution 

were also estimated and these are  0,  1.4839 , 1.1847,  1.2407 ,  0,  0.0218  and 

 1.0374,  1.5674 respectively. 

 

5.2.1.2 Bladder Cancer Data 

Table 5.8 represents the descriptive statistics for the bladder cancer remission time’s data. 

The least and the highest remission times of the patients were observed to be 0.08 and 

79.05 months respectively. The average time of the patients was 0.929 months. The values 

of coefficient of skewness of 3.33 and excess kurtosis of 16.15 indicates that the remission 

times was right skewed and more peak than the normal curve. 

Table 5.8: Descriptive statistics for remission times (in months) of Bladder cancer 

patients 

 

 

 

The TTT transform plot for the bladder cancer remission time’s data is shown in Figure 

5.3. It is observed from Figure 5.3 that the bladder cancer remission time’s data exhibit an 

Minimum Maximum Mean Skewness Excess kurtosis 

0.08 79.05 0.929 3.33 16.15 
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upside down bathtub failure rate since the plot of the data first shows a concave shape 

above the 045 line and a subsequent convex curve below the 045 line. 

 

Figure 5.3: TTT transform plot for the bladder cancer remission time’s data 

The remission times of the bladder cancer patients were modeled using GOIEW, GOIEL, 

GIW, OIEW, GOIEE, EOIEW, GOIER and IW distributions. The maximum likelihood 

estimates for the fitted models and its standard errors are show in Table 5.9. The parameters 

  and   for the GOIEW and GOIEE distributions as well   and   in GOIEL distribution 

were not significant at the 5% level of significance. However, the parameter values for the 

GIW, EOIEL, GOIER, OIEL and IW distributions were all significant at the 5% level of 

significance.    
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Table 5.9: Maximum likelihood estimates for bladder cancer remission time’s data 

Distribution Parameter Standard Error Z-Value P-Value 

 
= 0.5624 0.2289 2.4568 0.0140* 

GOIEW = 1.4505 1.1441 1.2677 0.2049 

 
= 0.1927 0.1857 1.0374 0.2996 

 
= 0.8556 0.2191 3.9059 9.3880×10-5 *** 

 
= 1.2266×10-2 3.6389×10-3 3.3788 7.4950×10-4*** 

GIW =7.5375×10-1 4.2548×10-2 1.7715×101 2.2000×10-16*** 

 
=6.7195×101 1.8562×10-6 3.6200×107 2.2000×10-16*** 

 
=  0.4963 0.0630 7.8792 3.2940×10-15*** 

GOIEL = 1.6500 0.7664 2.1531 0.0313* 

 
= 0.0291 0.0277 1.0474 0.2949 

 
= 5.9006 3.7475 1.5746 0.1154 

 
=  2.4310 0.2193 11.0870 2.2000×10-16*** 

IW = 0.7521 0.0424 17.7270 2.2000×10-16*** 

 
= 0.5412 

0.1597 3.3891 7.0120×10-4*** 

OIEL =0.8108 0.1580 5.1330 2.852×10-7*** 

 
= 0.5919 0.0800 7.3989 1.3740×10-13*** 

GOIER =2.4962 
1.1523 2.1663 0.0303* 

 
=0.1551 

0.0561 2.7663 0.0057** 

 
= 0.5232 0.0651 8.0356 9.3130×10-16*** 

GOIEE =0.7194 
0.4392 1.6382 0.1014 

 
=0.1328 

0.0830 1.6005 0.1095 

 
= 0.4860 3.6652×10-2 13.2600 2.2000×10-16*** 

EOIEL =0.0082 
1.2231×10-3 6.6956 2.1470×10-11*** 

 
=9.3761 5.1220×10-5 1.8306×10-5 2.2000×10-16*** 

*means significant at 5% level of significance 

̂

̂

̂

̂

̂

̂

b̂

̂

̂

̂

̂

̂

̂

̂

̂

̂
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̂

̂

̂

̂
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The GOIEL gives a better fit to the bladder cancer remission time’s data than the other 

competing models. From Table 5.10, GOIEL had the highest log-likelihood and the least 

values of A*, W*, K-S, AIC, AICc and BIC when compared to the other models.   

Table 5.10: Goodness-of-fit statistics and information criteria for bladder cancer 

remission time data 

*bolded means best based on selection criteria 

Likelihood ratio test (LRT) was carried out to compare the GOIEL distribution with its 

sub-models in Table 5.11. The LRT results indicates that the GOIEL distribution gives a 

better fit to the bladder cancer data than its sub-models at the 5% level of significance. 

Table 5.11: Likelihood ratio test statistic for bladder cancer data 

 

  

 

 

 

Model -  AIC AICc BIC A* W*        K-S P-Value 

GOIEW -414.5700 837.1456 837.4708 848.5535 0.7809 0.1223 0.0842 0.3237 

GIW -444.000 894.0033 894.1968 902.5595 4.5607 0.7468 0.1402 0.0130 

GOIEL -413.6500 835.3095 835.6347 846.7176 0.5897 0.0904 0.0904 0.2838 

IW -444.000 892.0015 892.0975 897.7056 4.5463 0.7443 0.1408 0.0125 

EOIEL -418.0600 842.1264 842.3200 850.6825 1.1416 0.1749 0.1012 0.1454 

OIEL -459.8300 923.6685 923.7645 929.3726 7.0392 1.1938 0.2226 6.1860×10-5 

GOIER -418.1800 842.3567 842.5503 850.9128 0.6302 0.0853 0.1186 0.0548 

GOIEE -430.9100 867.8152 868.0087 876.3713 2.1345 0.3314 0.1253 0.0359 

Model Hypothesis LRT P-Value 

OIEL 0 1 0: 1  :   is falseH Vs H H = =  8.8170 0.0030** 

GOIEE 0 1 0: 1  :   is falseH Vs H H =  92.3590 2.2000×10-16*** 

EOIEL 0 1 0:   :   is falseH Vs H H =  9.0473 0.0026** 

GOIER 0 1 0: 2  :   is falseH Vs H H =  34.506 4.2500×10-9*** 
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The plots of the histogram with the densities of the fitted models and the empirical CDF 

with the CDFs of the fitted models of the bladder cancer remission time’s data are 

respectively represented in Figure 5.4. It is clear that the fitted distributions have taken the 

shape of the empirical density and CDF of the bladder remission times data.  

Figure 5.4: Plots of fitted densities and CDFs of bladder cancer remission time’s data 

 

Figure 5.5 displays the P-P plots of the fitted models. They were plotted to assess how well 

the models fit the given dataset. From the Figure 5.5, it was observed that the GOIEL gives 

a better fit than the other competing models as the plots in the GOIEW and GOIEL cluster 

along the diagonal than the other models. 
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Figure 5.5: P-P plots of fitted distributions for the bladder cancer remission time’s 

data 

In addition, the parameter estimates of the GOIEL distribution for the bladder cancer data 

were used to obtain the following variance-covariance matrix  
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1

0.0041 0.0318 0.0012 0.1460

0.0318 0.6048 0.0178 1.9983

0.0012 0.0178 0.0008 0.1072

0.1460 1.9983 0.1072 14.8829

J −

− 
 

−
 =
 −
 
− − − 

. 

The estimated 95% confidence intervals for the parameters ,  ,     and   of the GOIEL 

distribution are respectively 0.3728,  0.6198 ,  0.1479,  3.1521 ,   0,  0.0834  and 

 0,  13.2457 . 

5.2.1.3 Breast Cancer Data 

Table 5.12 summarizes the descriptive statistics of the breast cancer data. The maximum, 

minimum and the average values of the data are respectively 154, 0.3 and 43.33. Table 4.9 

also indicates that the breast cancer dataset is positively skewed and leptokurtic in nature.  

Table 5.12: Descriptive statistics for breast cancer dataset 

 

 

 

The TTT transform plot was used to analyze the failure rate of the breast cancer data as 

indicated in Figure 5.6. It was clear that the breast cancer data exhibit an increasing failure 

rate since the plot of the data shows a concave shape above the 045 line. 

Minimum Maximum Mean Skewness Excess kurtosis 

0.3000 154.0000 43.3300 1.0600 0.4700 
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Figure 5.6: TTT transform plot for the breast cancer data 

 

The maximum likelihood estimates of the GOIEW, GOIEL, OIEW, GOIEE, EOIEW, odd 

generalized exponential Weibull (OGEW), and Kumaraswamy inverse exponential (KIE) 

distributions fitted to the breast cancer data are shown in Table 5.13. It is clear from Table 

5.13 that all the parameters of the distributions were significant at the 5% level of 

significance except   and   in GOIEW distribution,  and  in EOFW distribution as 

well as  in EOIEW. 
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Table 5.13: Maximum likelihood estimates for breast cancer dataset 

Distribution Estimates Std. Error Z-Value P-Value 

 ̂ =  0.3081 0.1124 2.7421 0.0061* 

GOIEW ̂ = 1.2127 
0.8184 1.4817 

0.1384 

 
̂ = 0.0065 0.0122 0.5332 0.5939 

 ̂ = 1.3024 0.3565 3.6533 0.0003* 

  ̂ = 0.4650 0.0509 9.1407 <2.0000×10-16*** 

*GOIEL ̂ = 2.6799 
0.9127 2.9364 

0.0033* 

 
̂ = 0.0060 0.00219 2.0735 0.0381* 

 ̂ = 6.8388 2.3970 2.8531 0.0043* 

  ̂ = 2.1570×101 9.1458×10-5 2.3585×105 <2.2000×10-16*** 

OGEW ̂ = 2.9678×102 4.3273×10-7 6.8584×108 <2.2000×10-16*** 

 
̂ = 2.928×10-1 

2.0080×10-2 1.4582×101 
<2.2000×10-16*** 

 ̂ =4.2040×10-3 3.1483×10-4 1.3353×101 <2.2000×10-16*** 

  â = 4.0809×101 9.4117×10-5 4.3360×105 <2.2000×10-16*** 

KIE b̂ = 5.5951×10-1 6.6034×10-2 8.4731 <2.2000×10-16*** 

 ̂ = 1.5688×10-1 2.4480×10-2 6.4087 <1.4670×10-16*** 

 ̂ = 0.7029 0.3778 1.8605 0.0628 

EOFW ̂ = 1.5407 
0.3651 4.2197 

2.4460×10-5*** 

 ̂ =  0.0043 0.0085 0.5126 0.6082 

 ̂ = 0.4149 0.1143 3.6310 0.0003* 

 
̂ = 0.1344 

0.01452 9.2572 2.2000×10-16*** 

OIEW ̂ =0.5734 0.03015 19.0197 2.2000×10-16*** 

 ̂ = 0.6952 3.6668×10-2 1.8959×101 2.2000×10-16*** 

GOIEE ̂ =711.0300 
1.6228×10-6 4.3546×108 2.2000×10-16*** 

 
̂ =0.0612 

2.1919×10-3 2.7920×101 2.2000×10-16*** 

 ̂ = 0.3217 0.1383 2.3257 0.0200* 

EOIEW ̂ =0.0021 
0.0055 0.3882 0.6979 

 ̂ =1.3725 0.5139 2.6707 0.0076** 

*means significant at 5% level of significance 
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The goodness-of-fit statistics, log-likelihood and information criteria for the breast cancer 

dataset are shown in Table 5.14. It was evident from Table 5.14 that GOIEW distribution 

provided a better fit to the breast cancer data than the other distributions as it recorded the 

highest log-likelihood value and minimum values of  A*, W*, K-S, AIC, AICc and BIC. 

 

Table 5.14: Goodness-of-fit statistics and information criteria for breast cancer 

dataset 

Model -  AIC AICc BIC A* W*        K-S P-Value 

GOIEW -583.4200 1174.8400 1175.1850 1186.0230 0.7748 0.0958 0.0779 0.4555 

GOIEL -588.0100 1184.0160 1184.3610 1195.1990 0.6971 0.0695 0.1111 0.1008 

OGEW -597.2400 1202.4790 1202.8240 1213.6620 2.2858 0.3608 0.1248 0.0462 

KIE -664.1200 1334.2480 1334.453 1342.6350 12.1133 2.0453 0.2793 1.2620×10-8 

EOFW -587.1200 1182.2490 1182.2490 1193.4320 1.0427 0.1430 0.1231 0.0512 

OIEW -610.9700 1225.9440 1226.0460 1231.5360 3.8873 0.5916 0.1620 0.0035 

GOIEE -714.6800 1435.3600 1435.5650 1443.7480 13.3848 2.6303 0.4799 2.2000×10-16 

EOIEW -593.8000 1193.5900 1193.7950 1201.9780 1.6498 0.2388 0.1522 0.0073 

*bolded means best based on selection criteria 

 

Table 5.15 shows the comparison of GOIEW distribution with its sub-models using LRT. 

The LRT statistics and their corresponding P-values indicates that GOIEW distribution 

provided a better fit than its sub-models. 
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Table 5.15: Likelihood ratio test statistic for breast cancer 

 

 

 

 

 

The plots of the histogram with the densities of the fitted models and the empirical CDF 

with the CDFs of the fitted models of the breast cancer data are respectively presented in 

Figure 5.7. It is clear that the fitted distributions mimic the empirical density and CDF of 

the breast cancer dataset.  

Figure 5.7: Plots of fitted densities and CDFs of breast cancer data 

 

Also, the P-P plots in Figure 5.8 indicates that the GOIEW distribution gives better fit to 

the data than GOIEL, KIE, EOFW, OIEW, GOIEE, EOIEW and OGEW distributions.  

Model Hypothesis LRT P-Value 

OIEW 0 1 0: 1  :   is falseH Vs H H = =  55.1040 1.0820×10-12*** 

GOIEE 0 1 0: 1  :   is falseH Vs H H =  262.5200 2.2000×10-16*** 

EOIEW 0 1 0:   :   is falseH Vs H H =  20.7500 5.2330×10-6*** 
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Figure 5.8: Probability-probability plots of the fitted distributions 
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The variance-covariance matrix of the parameters of the GOIEW distribution for the breast 

cancer data was also estimated and it is given by 

1

0.0141 0.0923 0.0015 0.0430

0.0923 0.7237 0.0102 0.2957
.

0.0015 0.0102 0.0002 0.0047

0.0430 0.2957 0.0047 0.1401

J −

− 
 

−
 =
 
 
− − − 

 

The 95% confidence intervals for the parameters ,  ,     and   of the GOIEW distribution 

were also estimated and these are  0.0878,  0.5284 , 0,  2.8168 ,  0,  0.0304  and 

 0.6037,  2.0011 respectively. 

  

5.2.1.4 Head and Neck Cancer Data 

The descriptive statistics of the head and neck cancer data are shown Table 5.16. The 

highest and the least observation in the dataset are 1776 and 12.2 respectively. The average 

value of the data was observed to be 233.5. In addition, Table 5.16 suggest that the dataset 

is positively skewed and leptokurtic in nature.  

Table 5.16: Descriptive statistics for head and neck cancer dataset 

 

 

 

The TTT transform plot for the head and neck cancer data is shown in Figure 5.9. It is 

observed from Figure 5.9 that the head and neck cancer data exhibit an upside down bathtub 

failure rate since the plot of the data shows a concave curve shape above the 045 line and 

a subsequent convex shape below the 045 line. 

Minimum Maximum Mean Skewness Excess kurtosis 

12.2000 1776.0000 233.5000 3.5000 15.3900 
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Figure 5.9: TTT transform plot for the head and neck cancer data 

 

The maximum likelihood estimates and its associated standard errors for the parameters of 

the distributions that were used to modeled the head and neck cancer data are displayed in 

Table 5.17. The results from Table 5.17 shows that most of the parameters for the various 

distributions were significant at the 5% level of significance except that of EOFW 

distribution. 
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Table 5.17: Maximum likelihood estimates for head and neck cancer dataset 

 

*means significant at 5% level of significance  

 

 

Distribution Parameter Standard Error Z-Value P-Value 

 
̂ = 77.3923 36.1128 2.1431 0.0321* 

GOIEW ̂ = 394.6432 6.3112 62.5308 2.2000×10-16*** 

 
̂ = 2.2630 0.4777 4.7375 2.1630×10-6*** 

 
̂ = 0.2076 0.0390 5.3196 1.0400×10-7*** 

 
â = 57.1140 0.0075 7603.2528 2.2000×10-16*** 

KIE b̂ =1.1679 0.2433 4.8011 1.5780×10-6*** 

 
̂ =1.4856 0.2888 5.1443 2.686×10-7*** 

 
̂ =  38.2754 23.4346 1.6333 0.1024 

GOIEL ̂ = 398.0173 2.3885 166.6381 2.2000×10-16*** 

 
̂ = 0.6344 0.6026 1.0528 0.2924 

 
̂ = 1.4199 0.2931 4.8450 1.2660×10-6*** 

 
̂ =  3.5351 43.6890 0.9049 0.3655 

EOFW ̂ = -0.2809 0.1651 -1.7012 0.0889 

 ̂ =13.7590 8.0738 1.7042 0.0884 

 ̂ = -0.5717 0.3270 -1.7484 0.0804 

 
̂ =  8.7890×10-1 9.4143×10-2 9.3357 2.2000×10-16*** 

GOIEE ̂ = 2.5806×102 3.2936×10-5 7.8352×106 2.2000×10-16*** 

 ̂ = 9.6392×10-3 7.4380×10-4 1.2959×101 2.2000×10-16*** 

 
̂ =  4.3453×102 3.7615×10-4 1.1552×106 2.2000×10-16*** 

EOIEW ̂ = 4.0868 1.7454×10-1 2.3416×101 2.2000×10-16*** 

 ̂ =1.0725×10-1 1.1500×10-2 9.3266 2.2000×10-16*** 
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From Table 5.18, the GOIEW recorded the least values of A*, W*, K-S, AIC, AICc and 

BIC as well as highest value of the log-likelihood when compared to GOIEL, KIE, GOIEE, 

EOIEW and EOFW. This indicates that the GOIEW performs better than the other models.  

  

Table 5.18: Goodness-of-fit statistics and information criteria for head and neck 

cancer dataset 

Model -  AIC AICc BIC A* W*        K-S P-Value 

GOIEW -277.7800 563.5564 564.5820 570.6932 0.2061 0.0325 0.0769 0.9394 

KIE -279.3100 564.6116 565.2116 569.9642 0.4512 0.0730 0.1056 0.6612 

GOIEL -279.6800 567.3698 568.3954 574.5065 0.2652 0.0326 0.1331 0.3829 

EOFW -444.000 564.0247 565.0503 571.1614 0.2613 0.0446 0.0814 0.9095 

GOIEE -306.5200 619.0498 619.6498 624.4023 2.8418 0.5328 0.4995 1.127×10-10 

EOIEW -281.0000 568.0057 568.6057 573.3582 0.6828 0.1135 0.1191 0.5220 

*bolded means best based on selection criteria 

 

The GOIEW distribution was compared with its sub-models using LRT in Table 5.19. The 

LRT statistics and their P-values suggest that GOIEW distribution gives a better fit than 

its sub-models. 

Table 5.19: Likelihood ratio test statistic for Head and Neck cancer data 

 

 

 

 

Model Hypothesis LRT P-Value 

GOIEE 0 1 0: 1  :   is falseH Vs H H =  57.4930 1.2660×10-6*** 

EOIEW 0 1 0:   :   is falseH Vs H H =  6.4493 0.0111* 
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Figure 5.10 represents the plots of empirical density with the fitted distributions and the 

CDF of the empirical distribution with the CDFs of the fitted distribution. The fitted 

distributions from Figure 5.10 tries to mimic the shape of the CDF and density of the 

empirical distribution.  

 

Figure 5.10: Plots of fitted densities and CDFs for head and neck cancer data 

 

The P-P plots in Figure 5.11 further affirms the fact that GOIEW provides a better fit to 

the head and neck cancer data than the other distributions. 
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Figure 5.11: P-P plots of the fitted distributions 

 

The variance-covariance matrix for the parameter estimates of the GOIEW distribution for 

the head and neck cancer dataset is given by 
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1

1244.2733 210.1850 15.4294 1.2169

210.1850 35.5048 2.6064 0.2056
.

15.4294 2.6064 0.2223 0.0180

2.2169 0.2056 0.0180 0.0015

J −

− − 
 
− −
 =
 − −
 
− − 

 

 

Further, the 95% confidence intervals of the estimated parameters ,  ,     and   of 

GOIEW distribution were derived and these are  6.6112,  148.1734 , 

 382.2733,  407.0132 , 1.3267,  3.1993  and  0.1312,  0.2840  respectively. 

 

5.2.2 Censored Datasets  

 This subsection examines the application of the GOIEW and GOIEL distributions to four 

censored cancer datasets.  

5.2.2.1 Cancer of the Tongue 

The descriptive statistics for the cancer of the tongue data is displayed in Table 5.20. The 

results from Table 5.20 suggest that the data was right skewed and leptokurtic in nature. 

The mean, minimum and maximum values of the cancer of the tongue data were 80.73, 1.0 

and 400.0 respectively.  

Table 5.20: Descriptive statistics for cancer of the tongue dataset 

 

 

 

Minimum Maximum Mean Skewness Excess kurtosis 

1.0000 400.0000 80.7300 2.1702 10.0714 
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The hazard rate function of the cancer of the tongue dataset showed a modified bathtub 

shape as shown in Figure 5.12. The TTT transform plot showed a convex shape followed 

by concave and then convex. 

 

 

Figure 5.12: TTT transform plot for the cancer of the tongue dataset 

The maximum likelihood estimates and its standard errors for GOIEW, GOIEL, 

Kumaraswamy inverse exponential (KIE) and generalized inverse exponential (GIE) 

distributions used to model cancer of the tongue data are presented in Table 5.21. All the 

parameters from Table 5.21 were found to be significant at the 5% level of significance 

except   in GOIEW as well as a  and   in KIE. 
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Table 5.21: Maximum likelihood estimates for cancer of tongue dataset 

Distribution Parameter Standard Error Z-Value P-Value 

 

̂ = 30.9374 20.3004 1.5240 0.1275 

GOIEW ̂ = 197.4260 3.2157 61.3950 2.2000×10-16*** 

 

̂ = 2.8825 0.6222 4.6330 3.6040×10-6*** 

 

̂ = 0.1428 0.0469 3.0480 2.3040×10-3*** 

 

â = 0.2865 3.6961 0.775 0.9382 

KIE b̂ =0.2640 0.0583 4.5293 5.9190×10-6*** 

 

̂ =22.1098 285.2039 0.0775 0.9382 

 

̂ =  9.7720×10-1 2.0117×10-1 4.8575 1.1890×10-6*** 

GOIEL ̂ = 2.0488×102 5.0650×10-4 4.0451×105 2.2000×10-16*** 

 

̂ = 5.0025×10-2 2.9483×10-2 1.6967 0.0897 

 

̂ = 2.9365 8.0619×10-1 3.6424 1.7010×10-4*** 

 

̂ =  0.2640 0.0583 4.5293 5.9170×10-6*** 

GIE ̂ = 6.3369 1.9909 3.1841 1.4520×10-3* 

*means significant at 5% level of significance 

 

The log-likelihood and information criteria for the cancer of the tongue dataset is displayed 

in Table 5.22. It was clear from Table 5.22 that GOIEW distribution performs better in 

terms of modeling cancer of the tongue data than the other distributions as it recorded the 

highest log-likelihood value and minimum values of   AIC, AICc and BIC.  
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Table 5.22: Log-likelihood and information criteria for cancer of the tongue dataset 

Model -  AIC AICc BIC 

GOIEW -177.7800 363.5694 364.4390 371.2967 

KIE -182.0300 370.0575 370.5682 375.8530 

GOIEL -186.7600 381.5256 382.3951 390.0309 

GIE -182.0300 368.0575 368.3075 371.9212 

*bolded means best based on selection criteria 

The variance-covariance matrix of the parameter estimates of the GOIEW distribution for 

the cancer of the tongue dataset is given by 

1

412.1063 65.2797 12.2537 0.9087

65.2697 10.3406 1.9412 0.1440

12.2537 1.9412 0.3871 0.0285

0.9087 0.1440 0.0285 0.0022

J −

− − 
 
− −
 =
 − −
 
− − 

. 

In addition, the 95% confidence intervals of the estimated parameters ,  ,     and   of 

GOIEW distribution were also obtained and these are  0,  70.7262 ,  191.1232,  203.7288

, 1.6630,  4.1020  and  0.0509,  0.2347  respectively. 

 

5.2.2.2 Head and Neck Cancer Data with Censored Observations 

Table 5.23 presents the descriptive statistics for the head and neck cancer dataset. The 

minimum, average and the maximum observations for the head and neck cancer dataset are 

respectively 7.0, 357.8 and 1417. Results from Table 5.23 also suggest that the data was 

right skewed and leptokurtic in nature.  
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Table 5.23: Descriptive statistics for head and neck cancer dataset 

 

 

 

As indicated in Figure 5.13, the TTT transform plot for the head and neck cancer data 

showed a convex shape followed by concave and then convex. This implies that the hazard 

rate function of the dataset exhibit a modified upside down bathtub shape.  

 

Figure 5.13: TTT transform plot for the head and neck cancer data 

 

The parameters estimates of the models are presented in Table 5.24. It is seen that, apart 

from the parameters in EOFW as well as   and   in GOIEW, the rest of the parameters 

were significant at the 5% level of significance.  

 

Minimum Maximum Mean Skewness Excess kurtosis 

7.0000 1417.0000 357.8000 1.7400 1.8700 
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Table 5.24: Maximum likelihood estimates for head and neck cancer dataset 

Distribution Parameter Standard Error Z-Value P-Value 

 

̂ = 0.5689 0.1461 3.8944 9.843×10-5*** 

GOIEL ̂ = 1.0125 1.0452 0.9687 0.3327 

 

̂ = 0.0025 0.0030 0.8405 0.4006 

 

̂ = 1.5846 0.7543 2.1009 0.0357* 

 

̂ = 0.6024 0.5298 1.1371 0.2555 

EOFW ̂ = 0.5785 0.3048 1.8979 0.0577 

 ̂ = 0.0204 0.0501 0.4072 0.6839 

 

̂ = 1.4066 0.8195 1.7165 0.0861 

 

̂ =  83.3813 63.0927 1.9084 0.0563 

GOIEW ̂ = 391.6708 8.4311 46.4554 2.2000×10-16*** 

 

̂ = 2.8113 0.5208 5.3980 6.7370×10-8*** 

 

̂ = 0.1466 0.0335 4.3819 1.177×10-5*** 

 

̂ =  25.5230 4.4521×10-5 5.7328×105 2.2000×10-16*** 

OGEW ̂ =293.9000 7.9025×10-8 3.7191×109 2.2000×10-16*** 

 ̂ = 0.2066 2.5741×10-2 8.0242 1.0220×10-15*** 

 

̂ = 0.0039 5.5144×10-4 7.0205 2.2110×10-12*** 

*means significant at 5% level of significance 

 

A comparison of the models using the AIC, AICc and BIC model selection criteria as 

shown in Table 5.25 showed that the GOIEL model had the least AIC, AICc and BIC 
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values and the highest log likelihood value than the other models; hence the GOIEL model 

was selected as the best model for fitting this head and neck cancer dataset.  

 

Table 5.25: Log-likelihood and information criteria for head and neck cancer 

dataset 

Model -  AIC AICc BIC 

GOIEL -294.0800 596.1593 597.0289 603.8866 

EOFW -294.23 596.4046 597.3340 604.1937 

GOIEW -298.61 605.2190 606.0886 612.9463 

OGEW -295.13 598.2548 599.1244 605.9821 

*bolded means best based on selection criteria 

 

The variance-covariance matrix for the parameter estimates of the GOIEL distribution for 

head and neck cancer data is given by 

2 1 4 2

1 0 3 2

1

4 3 6 3

2 2 3 1

2.1340 10 1.1633 10 3.5584 10 3.7932 10

1.1633 10 1.0924 10 2.5492 10 9.3976 10

3.5584 10 2.5492 10 8.7152 10 1.3981 10

3.7932 10 9.3976 10 1.3981 10 5.6890 10

J

− − − −

− − −

−

− − − −

− − − −

    − 
 

   −  =
    − 
 
−  −  −    

. 

Also, the 95% confidence intervals of the estimated parameters ,  ,     and   of GOIEL 

distribution were also obtained and these are  0.2825,  0.8553 ,  0,  3.0611 , 0,  0.0084  

and  0.1062,  3.0630  respectively. 
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5.2.2.3 Leukemia Dataset with Censored Observations 

Table 5.26 summarizes the descriptive statistics of the leukemia data. As shown in Table 

5.26, the least and the highest observation in the leukemia dataset was recorded as 1.0 and 

91.0 respectively. It was also observed from Table 5.26 that the dataset is right skewed 

with positive excess kurtosis.  

Table 5.26: Descriptive statistics for leukemia dataset 

 

 

 

The hazard rate function of the leukemia dataset showed a bathtub shape as exhibited in 

Figure 5.14. The TTT transform plot showed a convex shape followed by concave. 

 

Figure 5.14: TTT transform plot for leukemia dataset 

 

Minimum Maximum Mean Skewness Excess kurtosis 

7.0000 1417.0000 357.8000 1.7400 1.8700 
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Table 5.27 displays the maximum likelihood estimates of the distributions used in 

modeling the leukemia dataset. It was realized that at least two of the parameters of GOIEL, 

GOIEW and exponentiated Lomax (E-Lx) distributions were found to be significant at the 

5% level of significance. However, none of the parameters in Kum-BIII distribution were 

significant at the 5% level of significance.  

 

Table 5.27: Maximum likelihood estimates for leukemia dataset 

Distribution Parameter Standard Error Z-Value P-Value 

 
̂ = 8.8707 5.1746 1.7143 0.0865 

GOIEW ̂ = 30.3543 1.2499 24.2849 2.2000×10-16*** 

 
̂ = 1.9311 0.4831 3.9975 6.4010×10-5*** 

 
̂ = 0.2329 0.0701 3.3231 8.9010×10-4*** 

 
̂ = 7.5036×10-1 1.1451×10-1 6.5527 5.6510×10-11*** 

GOIEL ̂ = 2.4979×102 2.7915×10-2 8.9481×103 2.2000×10-16*** 

 ̂ = 9.3671×10-3 7.0296×10-3 1.3325 0.1827 

 
̂ = 1.2141×101 7.3691 1.6476 0.0994 

 
̂ =  195.8812 115.3214 1.6986 0.0894 

E-Lx ̂ = 940.2903 5.9546 157.9104 2.2000×10-16*** 

 
̂ = 0.5871 0.0695 8.4466 2.2000×10-16*** 

 
â =  1.5861 100.4313 0.01598 0.9874 

Kum-BIII b̂ =3.4476 6.5281 0.5281 0.5974 

 ĉ = 0.4878 0.3274 1.4900 0.1363 

 
k̂ = 4.6013 291.3627 0.0158 0.9874 

*means significant at 5% level of significance 

 

Among the competing distributions fitted to the leukemia dataset, the GOIEW distribution 

appears to be the best distribution for modeling the leukemia data as shown in Table 5.28. 
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This is because the GOIEW distribution had the minimum values of AIC, AICc and BIC 

compared to other distributions. 

Table 5.28: Log-likelihood and information criteria for leukemia dataset 

Model -  AIC AICc BIC 

GOIEW -108.2700 224.5469 224.5469 230.1517 

GOIEL -117.1600 242.3216 243.9216 247.9264 

E-Lx -109.7800 225.5637 226.4868 229.7673 

Kum-BIII -108.3200 224.6342 226.2342 230.2989 

*bolded means best based on selection criteria  

 

 The variance-covariance matrix of the parameter estimates of the GOIEW distribution for 

leukemia dataset is given by  

1

26.7761 6.4678 2.3586 0.3340

6.4678 1.5623 0.5704 0.0800
.

2.3586 0.5704 0.2334 0.0324

0.3340 0.0800 0.0324 0.0049

J −

− − 
 
− −
 =
 − −
 
− − 

 

Further, the 95% confidence intervals of the estimated parameters ,  ,     and   of 

GOIEW distribution were derived and these are  0,  19.0129 ,  27.9045,  32.8041 ,

 0.9842,  2.8780  and  0.0955,  0.3703  respectively. 
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5.2.2.4 Gastric Cancer Data with Censored Observations  

The fourth dataset refers to 201 patients with gastric adenocarcinoma. This data can be 

found in Arslan et al. (2018), Ortega et al. (2017) and Martinez et al. (2013). ix  is the 

response variable which represents the time in months after surgery until death. The type 

of therapy represents the only covariate in the analysis that is: 1iv (1=surgery alone, 

representing 76 observations; 0=adjuvant chemo radiotherapy, representing 125 

observations). The fits of the GOIEL and GOIEW regression models were compared with 

other competing regression models in terms of modeling the gastric adenocarcinoma 

dataset. These other competing regression models are models proposed by Ortega et al. 

(2017) and Arslan et al. (2018). The models developed by Ortega et al. (2017) includes; 

Poisson-gamma log-logistic (PGLL), Poisson Birnbaum-Saunders (PGBS), Poisson-

gamma generalized half-normal (PGGHN) and Poisson-gamma Weibull (PGW). The 

Poisson Weibull Burr (PWB), Poisson Weibull (PW), Poisson Burr (PB), Poisson Weibull-

Log-Logistic (PWLL), Poisson Rayleigh Burr (PRB), Poisson exponential Burr (PEB) and 

Poisson Weibull-Lomax (PWLx) were the models proposed by Arslan et al. (2018). The 

information criteria for the fitted regression models with cure fraction to the gastric cancer 

dataset is displayed in Table 4.29. It was evident from Table 4.29 that GOIEL regression 

model provided a better fit to the gastric cancer data than the other models as it recorded 

the least values of AIC, BIC and AICc.  
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Table 5.29: Information criteria for the fitted regression models with cure fraction 

to the gastric cancer dataset 

Model AIC  BIC AICc 

PWLx 884.4  900.9 884.7 

PWB 886.4  906.2 886.6 

PWLL 1011.3  1027.8 1011.5 

PW 898.2  911.4 898.4 

PRB 887.6  904.1 887.8 

PB 944.3  957.5 944.5 

PEB 899.2  915.7 899.4 

GOIEW 825.0  844.8 825.5 

GOIEL 728.7  748.6 729.2 

PGGHN 892.9  909.4 893.2 

PGBS 893.9  910.4 894.2 

PGLL 900.1  916.7 900.4 

PGW 900.3  916.8 900.6 

*bolded means best based on selection criteria 

 

The maximum likelihood estimates and its standard errors for the full GOIEL regression 

model with cure rate fraction to the gastric cancer data are shown in Table 4.30. It was 

observed from Table 5.30 that the regression coefficient for the therapy type was 

significant. 
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Table 5.30: The maximum likelihood estimates for the full GOIEL regression model 

with cure rate fraction to the gastric cancer dataset 

Parameter Estimates Standard Error 95% C.L. P-value 

  1.4285 0.2720 (0.8954, 1.9616) 1.5140 710−  

  764.4100 0.0005 (764.4090, 764.4110) <2.2000 1610−  

  0.7314 0.3713 (0.0037, 1.4591) 0.0488 

  2.8630 0.5817 (1.7229, 4.0031) 8.5850 710−  

0  1.0273 0.1882 (0.6584, 1.3962) 4.8270 810−  

1  -0.3540 0.2079 (-0.7615, 0.0535) 0.0886 

 

Therefore, the cure rate, 0  of the therapy type was estimated as; 

ˆ

0 .e  −=  

But 

( )0 1 1 ,  for 1,..., 201.i iv i  = + =  

This implies 

201

1

1ˆ ˆ 2.2756,
201

i

i

 
=

= =  

where 

 

1
ˆ exp(1.0273 0.3540 ).i iv = −  

Hence, 

ˆ

0 0.1027.e  −= =  
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The cure rate of patients for the individual therapy types were also estimated as follows: 

When 1 0v = , 0
ˆ exp(1.0273) = , hence the cure fraction of chemoradiotherapy alone is 

0
ˆ

00
ˆ 0.3580e

 −
= = . Also, when 1 1v = , 0

ˆ exp(1.0273 0.3540) = − , implies the cure 

fraction of surgery alone is 0
ˆ

01
ˆ 0.5100e

 −
= = . The results has indicated that the 

proportion of cured is far greater for patients receiving surgery alone than those receiving 

chemoradiotherapy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

www.udsspace.uds.edu.gh 

 

 

 

 



132 
 

CHAPTER SIX 

SUMMARY, CONCLUSION AND RECOMMENDATIONS 

6.0 Introduction 

The summary, conclusion and recommendations of the study are presented in this chapter. 

6.1 Summary 

The development of generalized class of distributions from existing distributions have 

received an increasing attention in the statistical literature, due to their wider application 

in different fields of studies. These modified distributions have the tendency of improving 

the flexibility as well as the goodness-of-fit when modeling lifetime dataset. Thus, it is 

imperative to derive or generalize the existing distribution for modeling datasets. 

 

In this study, a new family of distributions by name GOIE family of distributions was 

developed and studied using the concept of relative odds. The statistical properties of the 

proposed family of distribution, such as quantile function, moment generating function, 

characteristic function, incomplete moment, inequality measures, mean residual life and 

order statistics were derived. Some special distributions of the GOIE family of distribution 

were developed. The shapes of their densities and failure rates for some chosen parameter 

values were examined. The plots of the failure rates indicates that GOIEW and GOIEL can 

assume different kind of non-monotonic failure rates. This means that datasets that shows 

this kind of failure rates can best be modeled by GOIEL and GOIEW distributions.  

 

Further, the MLE, OLS and CVM were the techniques employed to estimate parameters of 

the distributions. Monte Carlo simulations were also carried out to assess the performance 
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of these estimation techniques. The results indicates that all the techniques are consistent 

as the sample size increases. However, the maximum likelihood estimates recorded the 

least values of the average biases and mean errors making it the best estimator.   

 

Finally, the application of the special distributions were examined using eight cancer 

datasets. The results from the applications showed that each of the special distributions 

performed better than the other candidate distributions. For the cancer of the tongue 

(censored), leukemia, breast, head and neck (censored), leukemia (censored) cancer 

datasets, GOIEW was the best model. The GOIEL model performs better than the other 

models in bladder, head and neck and gastric cancer datasets. 

 

6.2 Conclusion 

The GOIE family of distribution was developed in this study. The statistical properties of 

the GOIE family of distributions were also derived and this include; moments, moment 

generation function, characteristics function, incomplete moment, inequality measures, 

mean residual life, mean and median deviations, order statistics, quantile function and 

moment of the thp  order statistics.  Two special distributions, GOIEW and GOIEL were 

derived from the GOIE family of distributions. The results of the study shows that these 

special distributions exhibited different kind of failure rates and this include; increasing, 

decreasing, bathtub, bimodal, left-skewed, right-skewed, upside-down bathtub and 

reversed-J shapes. This gives the GOIEW and GOIEL the upper hand for modeling lifetime 

datasets that exhibits these kinds of failure rates. 
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The sub-models of the GOIEW and GOIEL such as OIEW, EOIEW, GOIEE, GOIER for 

GOIEW and OIEL, EOIEL, GOIEE and GOIER for GOIEL were also established. The 

usefulness of the sub-models were demonstrated using three cancer datasets. 

 

The study also employed three estimation techniques to estimate the parameters of the 

distributions. Monte Carlo simulation experiments were also carried out to assess the 

performance of these estimators. The results indicates that all the techniques are consistent 

as the sample size increases with maximum likelihood technique as the best estimator. 

 

Finally, regression models with cure fractions were established for GOIEW and GOIEL 

distributions and was applied to a gastric cancer dataset. The results from the application 

showed that each of the regression model from GOIE family performed better than the 

other candidate models. 

  

6.3 Recommendations 

The application of the special distributions were illustrated using only cancer datasets. 

More special distributions can be derived from the GOIE family of distributions and use to 

model other biological datasets as well as data from other fields.  

 

The study also proposed other sub-family generators that could be used to modify 

distributions. Going forward, further research should concentrate on these generators when 

modifying other existing distributions and examine their performances in terms of 

modeling lifetime datasets. 
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Based on the findings of this study, the percentage of cured is far greater for patients 

receiving surgery alone than those receiving chemoradiotherapy. The cure rate could be 

maximized for surgery alone if there were early detection of the cancer, hence awareness 

should be created amongst the general public by world health organization and Ghana 

health service on the need for frequent cancer screening in our health facilities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

www.udsspace.uds.edu.gh 

 

 

 

 



136 
 

REFERENCES 

Aarset, M. V. (1987). How to identify a bathtub hazard rate. IEEE Transactions on 

Reliability, 36(1), 106 - 108. 

Abd El-Raheem, A. M. (2019). Optimal design of multiple accelerated life testing for 

generalized half-normal distribution under type-I censoring. Journal of 

Computational and Applied Mathematics. 112539, 

https://doi.org/10.1016/j.cam.2019.112539. 

Abdus, S. W., The, M. L. and Jong-Hyeon, J. (2009). A new generalization of Weibull 

distribution with application to a breast cancer dataset. Stat Med., 28(16), 2077 - 

2094. 

Abouammoh, A. M. and Alshingiti, A. M. (2009). Reliability of generalized inverted 

exponential distribution. Journal of Statistical Computation and Simulation, 79, 

1301 - 1315. 

Afify, A. Z., Cordeiro, G. M., Maed, M. E., Alizadeh, M., Al-Mofleh, H. and Nofal, Z. M. 

(2019). The generalized odd lindley-G family: Properties and applications. Anais 

da Academia Brasileira de Ciencias, 91(3), e20180040. 

Ahmad, Z., Elgarhy, M., Hamedani, G. G. and Butt, N. S. (2020). Odd generalized N-H 

generated family of distributions with application to exponential model. Pakistan 

Journal of Statistics and Operation Research, 16(1), 53-71. 

Akaike, H. (1973). Information theory and an extension of maximum likelihood principle 

in B. N. Petrov and F. (Saki (Eds.), Second International Symposium on Information 

Theory, pg 267 - 281. 

www.udsspace.uds.edu.gh 

 

 

 

 



137 
 

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions 

on Automatic Control, 19(6), 716 - 723. 

AL Sobhi, M. M. (2020). The Inverse-Power Logistic-Exponential Distribution: properties, 

estimation methods, and application to insurance data. Mathematics, 8(2060), 2-15.  

Alizadeh, M., Altun, E., Ozel, G., Afshari, M. and Eftekharian, A. (2019). A new odd log-

logistic Lindley distribution with properties and applications. Sankhya A, 81(2), 

323-346. 

Alizadeh, M., Benkhelifa, L., Rasekhi, M. and Hosseini, B. (2020). The odd log-logistic 

generalized Gompertz distribution: properties, applications and different methods 

of estimation. Communications in Mathematics and Statistics, 8(3), 295 -317. 

Alizadeh, M., Cordeiro, G. M., Nascimento, A. D. C., Lima, M. D. C. S. and Ortega, E. M. 

M. (2017). Odd-Burr generalized family of distributions with some applications. 

Journal of Statistical Computation and Simulation, 87(2), 367-389. 

Alizadeh, M., Yousof, H. M., Afifiy, A. Z. and Mansoor, M. (2018). The complementary 

generalized transmuted Poisson –G family of distributions. Austrian Journal of 

Statistics, 47(4), 51 - 71. 

Alkarni, S., H. (2016). Generalised extended Weibull power series family of distribution. 

Journal of Data Science, 14(3), 415 – 440. 

Anwar, M. and Bibi, A. (2018). The half-Logistic generalised Weibull Distribution. 

Journal of Probability and Statistics, 2018, htt://doi.org/10.1155/2018/8767826. 

Aryal, G. R. and Yousof, H. M. (2017). The exponentiated generalized – G Poisson family 

of distribution. Stochastic and Quality Control, 32(1), 7 – 23. 

www.udsspace.uds.edu.gh 

 

 

 

 



138 
 

Barlow, R. E. and Doksum, K. A. (1972). Isotonic tests for convex orderings. In 

proceedings of the 6th Berkeley symposium, 1, 293 - 323.  

Barriga, D., Vicente, G. C., Daniel., V. G., Gauss, M. C. and Edwin, M. O. (2018). A new 

survival model with surviving fraction: An application to colorectal cancer data. 

Statistical Methods in Medical Research, 1-16.  

Berkson, J. and Gage, R. P. (1952). Survival curves for cancer patients following treatment. 

Journal of the American Statistical Association, 47, 501–515. 

Boag, J. M. (1949). Maximum likelihood estimates of the proportion of patients cured by 

cancer therapy. Journal of the Royal Statistical Society, Ser. B, 11, 15–44. 

Borges, P. (2020). Estimating the turning point of the log-logistic hazard function in the 

presence of long-term survivors with an application for uterine cervical cancer data. 

Journal of Applied Statistics, 2-11.  

Bourguignon, M., Silva, R. B. and Cordeiro, G. M. (2014). The Weibull-G family of 

probability distributions. J. Data Sci., 12, 53 - 68.  

Boussari, O., Laurent, B., Gaëlle, R., Marc, C., Nadine, B., Laurent, R. and Valérie, J. 

(2020). Modeling excess hazard with time-to-cure as a parameter. Biometric 

Methodology, 1-14.  

Broyden, C. G. (1970). A new method of solving nonlinear simultaneous equations. 

Computational journal, 12, 94 - 99. 

Calsavara, F. V., Eder, A. M., Eduardo, B. and Vera, T. (2019). Long-term frailty modeling 

using a non-proportional hazards model: Application with a melanoma dataset. 

Statistical Methods in Medical Research, 1-19. 

www.udsspace.uds.edu.gh 

 

 

 

 



139 
 

Chen, M. H., Ibrahim, J. G. and Sinha, D. (1999). A New Bayesian model for survival data 

with a surviving fraction. Journal of the American Statistical Association, 94, 909–

919. 

Cordeiro, G. M., Afify, A. Z., Ortega, E. M. M., Suzuki, A. K. and Mead, M. E. (2018). 

The odd Lomax generator of distributions: Properties, estimation and applications, 

Journal of Computational and Applied Mathematics, 

https://doi.org/10.1016/j.cam.2018.08.008. 

Cordeiro, G. M., Alizadeh, M., Ozel, G., Hosseini, B., Ortega, E. M. M. and Altun, E. 

(2017). The generalized odd log-logistic family of distributions: properties, 

regression models and applications. Journal of Statistical Computation and 

Simulation, 87(5), 908-932. 

Cordeiro, G. M., Alizadeh, M., Pescim, R. R. and Ortega, E. M. M. (2017). The odd log-

logistic generalized half-normal lifetime distribution: Properties and applications. 

Communications in Statistics - Theory and Methods, 46(9), 4195-4214. 

Cordeiro, G. M., Alizadeh, M., Ramires, T. G. and Ortega, E. M. M. (2017). The 

generalized odd half-Cauchy family of distributions: Properties and applications. 

Communications in Statistics - Theory and Methods, 46(11), 5685-5705. 

Cordeiro, G. M., Alizadehy, M., Tahirz, M. H., Mansoor, M., Bourguignonk, M. and 

Hamedani, G. G. (2016). The beta odd log-logistic generalized family of 

distributions. Hacettepe Journal of Mathematics and Statistics, 45(4), 1175-1202. 

Cordeiro, G. M., Ortega, E. M. M., Popovic, B. V. and Pescim, R. R. (2014). The Lomax 

generator of distributions: Properties, minification process and regression model. 

Applied Mathematics and Computation, 247, 465 - 486. 

www.udsspace.uds.edu.gh 

 

 

 

 



140 
 

Elbatal, I., Altun, E., Afify, A. Z. and Ozel, G. (2018). The generalised Burr XII power 

series distributions with properties and applications. Annals of Data Science. Doi: 

10.1007/s40745-018-0171-2. 

Elgarhy, M., Ahsanul Haq, M. and Ain, Q. (2018). Exponential generalized Kumaswamy 

distribution with applications. Annals of Data Science, 5(2), 273 – 292. 

Elsayed, H. A. H. and Yousof, H.M. (2020). The generalized odd generalized exponential 

Fréchet model: Univariate, bivariate and multivariate extensions with properties 

and applications to the univariate version. Pakistan Journal of Statistics and 

Operation Research, 16(3), 527-544. 

Fletcher, R. (1970). A class of methods for nonlinear programming with termination and 

convergence Properties. In Integer and Nonlinear programming. North-Holland, 

Amsterdam, pp 157 - 174.   

Goldfarb, D. (1970). A family of variable metric methods derived by variational means. 

Mathematics of computation, 24, 23 - 26.       

Haghbin, H., Ozel G., Alizadeh, M. and Hamedani, G.G. (2017). A new generalized odd 

log-logistic family of distributions. Communications in Statistics - Theory and 

Methods, 46(20), 9897-9920. 

Hassan, A., Elshrpieny, E. and Mohamed, R. (2019). Odd generalized exponential power 

function distribution: Properties and applications. Gazi University Journal of 

Science, 32(1), 351-370. 

Hosseini, B., Afshari, M. and Alizadeh, M. (2018). The generalized odd gamma-G family 

of distributions: Properties and applications. Austrian Journal of Statistics, 47(2), 

69-89. 

www.udsspace.uds.edu.gh 

 

 

 

 



141 
 

Hurvich, C. M. and Tsai, C. L. (1989). Regression and time series model selection in small 

samples. Biometrika, 76, 297 - 307. 

Jennings, S. M. (2014). Preventing chronic disease: defining the problem. Ireland: Health    

Service Executive. ISBN: 978-1-908972-05-7. 

Kang, S. B. and Han, J. T. (2015). The graphical method for goodness of fit test in the 

inverse Weibull distribution based on multiply type II censored samples. 

SpringerPlus, 4(768), 1-14. 

Khalil, M. G., Hamedani, G. G. and Yousof, H. M. (2019). The Burr X exponentiated 

weibull model: Characterizations, mathematical properties and applications to 

failure and survival time’s data. Pakistan Journal of Statistics and Operation 

Research, 15(1), 141-160. 

Korkmaz, M. Ç., Alizadeh, M., Yousof, H. M. and Butt, N. S. (2018). The generalized odd 

Weibull generated family of distributions: Statistical properties and applications. 

Pakistan Journal of Statistics and Operation Research, 14(3), 541-556. 

Kumar, M., Sanjay, K. S. and Umesh, S. (2018). Bayesian inference for Poisson-inverse 

exponential distribution under progressive type-II censoring with binomial 

removal. The Society for Reliability Engineering, Quality and Operations 

Management, 1-15. 

Leão, J., Víctor, L., Helton, S. and Vera, T. (2018). Incorporation of frailties into a cure 

rate regression model and its diagnostics and application to melanoma data. Wiley 

Statistics in Medicine, 1-20. 

Maiti, S. S. and Pramanik, S. (2015). Odds Generalized Exponential – Exponential 

Distribution. Journal of Data Science, 13, 733-754. 

www.udsspace.uds.edu.gh 

 

 

 

 



142 
 

Mallet, A. (1986). A maximum likelihood method for random coefficient regression 

models. Biometrika, 73(3), 645 - 656. 

Martinez, E. Z., Achcar, J. A., Jácome, A. A. A. and Santos, J. S. (2013). Mixture and non-

mixture cure fraction models based on the generalized modified Weibull 

distribution with an application to gastric cancer data. Comput Methods Prog 

Biomed, 112, 343–355. 

Martinez, Z. E. and Achcar, A. J. (2014). Bayesian bivariate generalized Lindley model for 

survival data with a cure fraction. Computer Methods Programs Biomedicine, 2-

13. 

Martinez, Z. E. and Achcar, A. J. (2018). A new straightforward defective distribution for 

survival analysis in the presence of a cure fraction. Journal of Statistical Theory 

and Practice, 1-26. 

Megan, C. (2013). Chronic Disease Prevention and Management. National Conference of 

State Legislatures (pp. 4-15). Denver: National Conference of State Legislatures 

ISBN 978-1-58024-699-6. 

Muhammad, M. (2017). Generalized half-logistic Poisson distributions. Communications 

for Statistical Applications and Methods, 24(4), 353 – 356. 

Muhammad, M. (2018). Poisson-odd generalized exponential family of distributions: 

Theory and applications. Hacettepe Journal of Mathematics and Statistics, 47(6), 

1652-1670. 

Nasir, A., Jammal, F. and Sha, A. A.  (2018). A compounded four-parameter lifetime 

model: properties, cure rate model and applications. Hal-01902847v1. 

www.udsspace.uds.edu.gh 

 

 

 

 



143 
 

Nasir, A., Yousof, H. M., Jamal, F. and Korkmaz, M. C. (2019). The exponentiated Burr 

XII power series distribution: properties and applications. Stats, 2(1), 15 – 31. 

Nasiru, S., Mwita, P. N. and Ngesa, O. (2017). Exponentiated generalized Transformed-

Transformer family of distributions. Journal of Statistical and Econometric 

methods, 4, 1-17. 

Nasiru, S., Mwita, P. N. and Ngesa, O. (2017). Exponentiated generalized exponential 

Dagum distribution. Journal of King Saud University – Science, 31, 362 - 371. 

Nwezza, E. E. and Ugwuowo, F. I. (2016). The Marshall-Olkin Gumbel-Lomax 

distribution: properties and applications. Heliyon, 6, e03569. 

Oguntunde, P. E. and Adejumo, A. O. (2015). The generalised inverted generalised 

exponential distribution with an application to a censored data. Journal of Statistics 

Application and Probability, 4(2), 223-230. 

Oguntunde, P. E., Adebowale, O. A. and Enahoro, A. O. (2017). Exponential Inverse 

Exponential (EIE) Distribution with Applications to Lifetime Data. Asian Journal 

of Scientific Research, 10(3), 169-177. 

Oguntunde, P. E., Adejumo, A. O. and Balogun, O. S. (2014). Statistical properties of the 

exponentiated generalized inverted exponential distribution. Applied Mathematics, 

24(2), 47-55.  

Oguntunde, P. E., Babatunde, O. S. and Ogunmola, A. O. (2014). Theoretical analysis of 

the Kumaraswamy-inverse exponential distribution. International Journal of 

Statistics and Applications, 4(2), 113-116. 

www.udsspace.uds.edu.gh 

 

 

 

 



144 
 

Okashaa, H. M. and Kayid, M. (2015). A new family of Marshall–Olkin extended 

generalized linear exponential distribution. Journal of Computational and Applied 

Mathematics, 296, 576–592. 

Oluyede, B. O., Mashabeb, B., Fagbamigbec, A., Makubateb, B. and Wandukua, D. (2020). 

The exponentiated generalized power series. Family of distributions: theory, 

properties and applications. Heliyon, 6, e04653. 

Ortega, E. M. M., Cordeiro, G. M., Hashimoto, E. M. and Suzuki, A. K. (2017). Regression 

models generated by gamma random variables with long-term survivors. Cummum 

stat Applic Methods., 24, 43-65. 

Ortega, M. E., Artur, J. L., Giovana, O. S. and Gauss, M. C. (2015). New flexible models 

generated by gamma random variables for lifetime modeling. Journal of Applied 

Statistics, 2-21. 

Prataviera, F., Ortega, E. M. M., Cordeiro, G. M., Pescim, R. R. and Verssani, B. A. W. 

(2018). A new generalized odd log-logistic ßexible Weibull regression model with 

applications in repairable systems. Reliability Engineering and System Safety. doi: 

10.1016/j.ress.2018.03.034. 

Rahmouni, M. and Orabi, A. (2018). The exponential - generalized truncated geometric 

distribution. A new lifetime distribution. International Journal of Statistics and 

Probability, 7(1), 1 – 20. 

Ramos, M. A., Cordeiro, G.M., Marinho, P. D., Dias, C. B. and Hamadani, G. G. (2013). 

The zografos-balakrishman log-logistic distribution: properties and applications. 

Journal of Statistical Theory and Applications, 12(3), 225-244. 

www.udsspace.uds.edu.gh 

 

 

 

 



145 
 

Rodrigues, J., de Castro, M., Cancho, V. G. and Balakrishnan, N. (2009). COM–Poisson 

cure rate survival models and an application to a cutaneous melanoma data. J Stat 

Plan Inference, 139, 3605–3611. 

Schumitzky, A. (1991). Nonparametric EM algorithms for estimating prior distributions. 

Applied Mathematics and computation, 45(2), 143 - 157. 

Schwarz, G. E. (1978). Estimating the Dimensions of a Model. Annals of Statistics, 6(2), 

461 - 464. 

Segura, J. L. and Arias, M. A. V. (2020). Location of the zeros of certain parametric 

families of functions of generalized Fresnel integral type. Applied Mathematics and 

Computation, 381, 125253. 

Shanno, D. F. (1970). Conditioning of quasi-Newton methods for function minimization. 

Mathematics of computation, 24, 647 - 656. 

Sugiura, N. (1978). Further analysis of the Data by Akaike Information Criterion and the 

finite corrections. Communication in statistics – theory and Methods, A7, 13 - 26. 

Sun, S. and He, S. (2019). Generalizing expectation propagation with mixtures of 

exponential family distributions and an application to Bayesian logistic regression. 

Neurocomputing, 337, 180 - 190. 

Tahir, M. H., Cordeiro, G. M., Alizadeh, M., Mansoor, M., Zubair, M. and Hamedani, G. 

G. (2014). The odd generalized exponential family of distributions with 

applications. Journal of Statistical Distributions and Applications, pp 1-28.  

Tahir, M. H., Cordeiro, G. M., Alizadeh, M., Mansoor, M., Zubair, M. and Hamedani, G. 

G. (2015). The odd generalized exponential family of distributions with 

applications. Journal of Statistical Distributions and Applications, 2(1), 1. 

www.udsspace.uds.edu.gh 

 

 

 

 



146 
 

Tahmasebi, S. and Jafari, A. A. (2015). Generalized Gompertz-power series distributions. 

https://arxiv.org/abs/1508.07634v1. 

Tsodikov, A. D., Ibrahim, J. G. and Yakovlev, A. Y. (2003). Estimating cure rates from 

survival data: an alternative to two-component mixture models. J Am Stat Assoc, 

98, 1063–1078. 

Vallinayagam, V., Prathap, S. and Venkatesan, P. (2014). Parametric regression models in 

the analysis of breast cancer survival data. International Journal of Science and 

Technology, 163-167. 

Vatto, V. T., Nascimento, A. D. C., Miranda, F. W. R., Lima, M. C. S., Pinho, L. G. B. and 

Cordeiro, G. M. (2016). Exponentiated generalized Nadarajah-Haghighi 

distribution. Chilean Journal of Statistics. Available at: 

https://arxiv.org/abs/1610.08876. Accessed on 11th December, 2020. 

Wang, L., Tripathi, Y. M. and Lodhi, C. (2019).  Inference for Weibull competing risks 

model with partially observed failure causes under generalized progressive hybrid 

censoring, Journal of Computational and Applied Mathematics. doi: 

https://doi.org/10.1016/j.cam.2019.112537. 

World Health Organization (2005). Preventing chronic diseases: a vital investment. 

Canada: Public Health Agency of Canada. 

Wullianallur, R. and Viju, R. (2018). An empirical study of chronic diseases inthe united 

states: a visual analytics approach to public health. International Journal of 

Environmental Research and Public Health, 1-24. 

www.udsspace.uds.edu.gh 

 

 

 

 



147 
 

Yakovlev, A., Asseleani, B., Bardou, V., Fourquet, A., Hoang, T., Rochefediere, A. and 

Tsodikov, A. A. (1993). Stochastic models of tumor latency and their biostatistical 

applications. Biometrie et Analyse de Donnes Spatio-Temporelles, 12, 66–82. 

Yousof, H. M., Korkmaz, M. C. and Hamedani, G. G. (2017). The odd Lindley Nadarajah-

Haghighi distribution. Journal of Mathematical Computed Science, 7(5), 864 - 882. 

Zhou, Z., Zhang, A., Ding, C. and Xiong, M. (2013). The weight enumerator of three 

families of cyclic codes. IEEE Transactions on Information Theory, 59(9), 6002-

6009. 

Zilber, D. and Katzfuss, M. (2020). Vecchia–Laplace approximations of generalized 

Gaussian processes for big non-Gaussian spatial data. Computational Statistics and 

Data Analysis, 153, 107081. 

Zubair, M., Pogány, T. K., Cordeiro, G. M. and Tahir, M. H. (2019). The log-odd normal 

generalized family of distributions with application. Anais da Academia Brasileira 

de Ciencias, 91(2), e20180207.  

 

 

 

 

 

 

 

 

 

www.udsspace.uds.edu.gh 

 

 

 

 



148 
 

APPENDIX A 

PDFs of other competing distributions 

1. Poisson Weibull-Burr distribution 
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3. Poisson Burr distribution 
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4. Poisson Weibull log-logistic distribution 
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5. Poisson Rayleigh Burr distribution 
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6. Poisson exponential-Burr distribution 

www.udsspace.uds.edu.gh 

 

 

 

 



149 
 

( )
( ) ( )

( ) 1 exp 1 1

.
111

k
ax c

ax c

k cc

e x
e ckx

f x a
exx






−
−

− −

−

 − − +    
 = +

−+ +  
 

7. Poisson Weibull-Lomax distribution 

( )
( ) ( )

( ) 
1

exp 1 1
.

1 11

b
b

kax
ax

b

k

e x
e k

f x abx
x ex




−−

−
−

−

 − − +   
= + 

+ −+   
 

 

8. Extended odd Fréchet Weibull distribution 
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9. Odd generalized exponential Weibull distribution 
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10. Generalized inverse exponential distribution 
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11. Kumaraswamy inverse exponential distribution 
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12. Generalized inverse exponential distribution 
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13. Exponentiated Lomax distribution 
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14. Inverse Weibull distribution 
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15. Kumaraswamy Burr type III distribution 
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16. Poisson-gamma Weibull distribution 
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17. Poisson-gamma log-logistic distribution 
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18. Poisson-gamma Birnbaum-Saunders distribution 
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19.  Poisson-gamma generalized half-normal distribution 
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APPENDIX B 

########################### GOIEW Distribution PDF ######################### 

PDF_GOIEW<-function(x,alpha,beta,gamma,theta){ 

  A<-theta*gamma*(x^(theta-1))*exp(-gamma*(x^theta)) 

  B<-1-exp(-gamma*(x^theta)) 

  C<-((beta-alpha)*(B^(beta-alpha-1)))+(alpha*(B^(-alpha-1))) 

  PDF<-A*C*exp(-((1-B^beta)/B^alpha)) 

  return(PDF) 

} 

########################## GOIEW Distribution CDF ######################## 

CDF_GOIEW<-function(x,alpha,beta,gamma,theta){ 

  A<-1-exp(-gamma*(x^theta)) 

  CDF<-exp(-((1-A^beta)/A^alpha)) 

  return(CDF) 

} 

########################### GOIEW Distribution Hazard function ################ 

Hazard_GOIEW<-function(x,alpha,beta,gamma,theta){ 

  A<-theta*gamma*(x^(theta-1))*exp(-gamma*(x^theta)) 

  B<-1-exp(-gamma*(x^theta)) 

  C<-((beta-alpha)*(B^(beta-alpha-1))+alpha*(B^(-alpha-1))) 

  HAZARD<-(A*C*exp(-(1-B^beta)/B^alpha))/(1-exp(-(1-B^beta)/(B^alpha))) 
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return(HAZARD) 

} 

################## GOIEW Distribution Survival function ################### 

SURVIVAL_GOIEW<-function(x,alpha,beta,gamma,theta){ 

  A<-1-exp(-gamma*(x^theta)) 

  B<-exp(-((1-A^beta)/A^alpha)) 

  SURVIVAL<-1-B 

  return(SURVIVAL) 

} 

########################### GOIEW Distribution Quantile function ############### 

Qf<-function(alpha,beta,gamma,theta){ 

  output<-0 

  u<-seq(0.1,0.9,0.1) 

  for(i in 1:length(u)){ 

    f<-function(x){(((1-exp(-gamma*(x^theta)))^alpha)*log(u[i]))-((1-exp(-

gamma*(x^theta)))^beta)+1} 

    rc<-uniroot(f,lower=0,upper=10000,tol=1e-9) 

    output[i]=rc$root 

  } 

 output  

} 
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u<-seq(0.1,0.9,0.1) 

cbind(u,Qf(0.1,0.3,0.7,0.2),Qf(10,20,40,0.5),Qf(1.0,7,0.8,0.5),Qf(15,24,33,12)) 

 

########################### GOIEW Distribution moment ####################### 

Moment<-function(alpha,beta,gamma,theta){ 

  results<-0 

  r<-seq(1,6,1) 

  for(i in 1:length(r)){ 

    f<-function(x,alpha,beta,gamma,theta,r){(x^r[i])*(PDF_ODIEW(x,alpha,beta,gamma,theta))} 

    results[i]<-

integrate(f,lower=0,upper=Inf,subdivisions=1000,alpha=alpha,beta=beta,gamma=gamma,thet

a=theta,r=r)$value 

  } 

  return(results) 

} 

r<-seq(1,6,1) 

print(cbind(r,Moment(10.5,10.8,5,1.5),Moment(0.5,0.8,5,1.5),Moment(1.5,4.5,2.5,3.5),Moment(1

1.5,8.5,1.5,0.5))) 

 

#### GOIEW Distribution Negative Log-likelihood for Optimization (Complete data) ##### 

LL_GOIEW<-function(alpha,beta,gamma,theta){ 

  A<-theta*gamma*(x^(theta-1))*exp(-gamma*(x^theta)) 
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  B<-1-exp(-gamma*(x^theta)) 

  C<-((beta-alpha)*(B^(beta-alpha-1)))+(alpha*(B^(-alpha-1))) 

  PDF<-A*C*exp(-((1-B^beta)/B^alpha)) 

  LL<--sum(log(PDF)) 

  return(LL) 

} 

 

####################### GOIEW Distribution Optimization (Complete case)  ########## 

Require (bbmle) ###### calling R package bbmle ######## 

Fit<-mle2 (GOIEW_LL, start=list (alpha=alpha, beta=beta, gamma=gamma, theta=theta), 

method “BFGS”, data=list(x) 

Summary (fit) ########## summary of results ################### 

 

##### GOIEW Distribution Negative Log-likelihood for Optimization (Censored case) ####### 

LLL_ODIEW<-function(alpha,beta,gamma,theta){ 

  A<-theta*gamma*(x^(theta-1))*exp(-gamma*(x^theta)) 

  B<-1-exp(-gamma*(x^theta)) 

  C<-((beta-alpha)*(B^(beta-alpha-1)))+(alpha*(B^(-alpha-1))) 

  D<-1-exp(-gamma*(x^theta)) 

  CDF<-exp(-((1-D^beta)/D^alpha)) 

  PDF<-A*C*exp(-((1-B^beta)/B^alpha)) 
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  LL<--sum(r*log(PDF))-sum((1-r)*log(1-CDF)) 

  return(LL) 

} 

 

####################### GOIEW Distribution Optimization (Censored case) ########## 

require (bbmle) ###### calling R package bbmle ######## 

fit<-mle2 (GOIEW_LL, start=list (alpha=alpha, beta=beta, gamma=gamma, theta=theta), 

method “BFGS”, data=list(x,r)) 

Summary (fit) ########## summary of results ################### 

 

########################### GOIEL Distribution PDF ######################### 

PDF_GOIEL<-function(x,alpha,beta,gamma,theta){ 

  A<-theta*gamma*((1+gamma*x)^(-theta-1)) 

  B<-(beta-alpha)*((1-((1+gamma*x)^(-theta)))^(beta-alpha-1)) 

  C<-(alpha)*((1-((1+gamma*x)^(-theta)))^(-alpha-1)) 

  D<-1-((1-((1+gamma*x)^(-theta))))^beta 

  E<-((1-((1+gamma*x)^(-theta))))^alpha 

  PDF<-A*(B+C)*exp(-(D/E)) 

  return(PDF) 

} 
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########################## GOIEL Distribution CDF ######################## 

CDF_GOIEL<-function(x,alpha,beta,gamma,theta){ 

  A<-(1-(1+gamma*x)^(-theta)) 

  CDF<-exp(-((1-A^beta)/A^alpha)) 

  return(CDF) 

} 

 

########################### GOIEL Distribution Hazard function ################ 

HAZARD_GOIEL<-function(x,alpha,beta,gamma,theta){ 

  A<-theta*gamma*((1+gamma*x)^(-theta-1)) 

  B<-(beta-alpha)*((1-((1+gamma*x)^(-theta)))^(beta-alpha-1)) 

  C<-(alpha)*((1-((1+gamma*x)^(-theta)))^(-alpha-1)) 

  D<-1-((1-((1+gamma*x)^(-theta))))^beta 

  E<-((1-((1+gamma*x)^(-theta))))^alpha 

  F<-A*(B+C)*exp(-(D/E)) 

  HAZARD<-F/(1-exp(-(D/E))) 

  return(HAZARD) 

} 

################## GOIEL Distribution Survival function ################### 

SURVIVAL_GOIEL<-function(x,alpha,beta,gamma,theta){ 

  A<-(1-(1+gamma*x)^(-theta)) 
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  B<-exp(-((1-A^beta)/A^alpha)) 

  SURVIVAL<-1-B 

  return(SURVIVAL) 

} 

########################### GOIEL Distribution Quantile function ############### 

Qf<-function(alpha,beta,gamma,theta){ 

  output<-0 

  u<-seq(0.1,0.9,0.1) 

  for(i in 1:length(u)){ 

    f<-function(x){(((1-(1+gamma*x)^(-theta))^alpha)*log(u[i]))-((1-(1+gamma*x)^(-

theta))))^beta)+1} 

    rc<-uniroot(f,lower=0,upper=10000,tol=1e-9) 

    output[i]=rc$root 

  } 

  output  

} 

u<-seq(0.1,0.9,0.1) 

cbind(u,Qf(0.8,0.1,0.3,0.9),Qf(1.2,1.0,3.0,0.1),Qf(3.0,8,0.4,0.6),Qf(14,27,32,16)) 
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########################## GOIEL distribution moment ######################## 

Moment<-function(alpha,beta,gamma,theta){ 

  results<-0 

  r<-seq(1,6,1) 

  for(i in 1:length(r)){ 

    f<-function(x,alpha,beta,gamma,theta,r){(x^r[i])*(PDF_GOIEL(x,alpha,beta,gamma,theta))} 

    results[i]<-

integrate(f,lower=0,upper=Inf,subdivisions=100000,alpha=alpha,beta=beta,gamma=gamma,th

eta=theta,r=r)$value 

  } 

  return(results) 

} 

r<-seq(1,6,1) 

print(cbind(r,Moment(12.5,11.8,10.5,11.5),Moment(10.5,13.8,17.5,12.5),Moment(16.5,11.8,14.1,

13.5),Moment(14.7,12.1,18.2,10.5))) 

 

#### GOIEL Distribution Negative Log-likelihood for Optimization (Complete data) ##### 

LL_GOIEL<-function(alpha, beta, gamma ,theta){ 

  A<-theta*gamma*((1+gamma*x)^(-theta-1)) 

  B<-(beta-alpha)*((1-((1+gamma*x)^(-theta)))^(beta-alpha-1)) 

  C<-(alpha)*((1-((1+gamma*x)^(-theta)))^(-alpha-1)) 

  D<-1-((1-((1+gamma*x)^(-theta))))^beta 
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  E<-((1-((1+gamma*x)^(-theta))))^alpha 

  PDF<-A*(B+C)*exp(-(D/E)) 

  LL<--sum(log(PDF)) 

  return(LL) 

} 

 

############# GOIEL Distribution Optimization (Complete case) ###### 

Require (bbmle) ###### calling R package bbmle ######## 

Fit<-mle2 (GOIEL_LL, start=list (alpha=alpha, beta=beta, gamma=gamma, theta=theta), 

method “BFGS”, data=list(x) 

Summary (fit) ########## summary of results ################### 

 

#### GOIEL Distribution Negative Log-likelihood for Optimization (Censored case) ##### 

LLL_GOIEL<-function(alpha, beta, gamma, theta){ 

  A<-theta*gamma*((1+gamma*x)^(-theta-1)) 

  B<-(beta-alpha)*((1-((1+gamma*x)^(-theta)))^(beta-alpha-1)) 

  C<-(alpha)*((1-((1+gamma*x)^(-theta)))^(-alpha-1)) 

  D<-1-((1-((1+gamma*x)^(-theta))))^beta 

  E<-((1-((1+gamma*x)^(-theta))))^alpha 

  H<-(1-(1+gamma*x)^(-theta)) 

  CDF<-exp(-((1-H^beta)/H^alpha)) 
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  PDF<-A*(B+C)*exp(-(D/E)) 

  LL<--sum(r*log(PDF))-sum((1-r)*log(1-CDF)) 

  return(LL) 

 

############# GOIEL Distribution Optimization (Censored case) ###### 

Require (bbmle) ###### calling R package bbmle ######## 

Fit<-mle2 (GOIEL_LL, start=list (alpha=alpha, beta=beta, gamma=gamma, theta=theta), 

method “BFGS”, data=list(x,r)) 

Summary (fit) ########## summary of results ################### 

 

##### Algorithm for Monte Carlo Simulation study of MLE for GOIEW Distribution ######## 

quantile<-function(alpha,beta,gamma,theta,u){ 

  f<-function(x){(((1-(1+gamma*x)^(-theta))^alpha)*log(u))-((1-(1+gamma*x)^(-

theta))^beta)+1} 

  rc<-uniroot(f,lower=0,upper=10000,tol=1e-09) 

  result=rc$root 

  return(result) 

} 

 

############### 

P_LL<-function(par){ 

  alpha=par[1] 
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  beta=par[2] 

  gamma=par[3] 

  theta=par[4] 

  A<-theta*gamma*((1+gamma*x)^(-theta-1)) 

  B<-(beta-alpha)*((1-((1+gamma*x)^(-theta)))^(beta-alpha-1)) 

  C<-(alpha)*((1-((1+gamma*x)^(-theta)))^(-alpha-1)) 

  D<-1-((1-((1+gamma*x)^(-theta))))^beta 

  E<-((1-((1+gamma*x)^(-theta))))^alpha 

  PDF<-A*(B+C)*exp(-(D/E)) 

  LL<--sum(log(PDF)) 

  return(LL) 

} 

###Algorithm for Monte Carlo Simulation Study 

library(numDeriv) 

library(Matrix) 

alpha=0.3 

beta=2.2 

gamma=0.4 

theta=0.8 

n1=c(30,50, 80,120,200,250) 

for(j in 1:length(n1)){ 
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  n=n1[j] 

  N=50 

  mle_alpha<-c(rep(0,N)) 

  mle_beta<-c(rep(0,N)) 

  mle_gamma<-c(rep(0,N)) 

  mle_theta<-c(rep(0,N)) 

  LC_alpha<-c(rep(0,N)) 

  UC_alpha<-c(rep(0,N)) 

  LC_beta<-c(rep(0,N)) 

  UC_beta<-c(rep(0,N)) 

  LC_gamma<-c(rep(0,N)) 

  UC_gamma<-c(rep(0,N)) 

  LC_theta<-c(rep(0,N)) 

  UC_theta<-c(rep(0,N)) 

  count_alpha=0 

  count_beta=0 

  count_gamma=0 

  count_theta=0 

  temp=1 

  HH1<-matrix(c(rep(2,16)),nrow=4,ncol=4) 

  HH2<-matrix(c(rep(2,16)),nrow=4,ncol=4) 
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  for(i in 1:N) 

  { 

    print(i) 

    flush.console() 

    repeat{ 

      x<-c(rep(0,n)) 

      # Generate a random variable from uniform distribution 

      u<-0 

      u<-runif(n,min=0,max=1) 

      for(k in 1:n){ 

        x[k]<-quantile(alpha,beta,gamma,theta,u[k]) 

      } 

      #Maximum likelihood estimation 

      mle.result<-nlminb(c(alpha,beta,gamma,theta),P_LL,lower=c(0,0,0,0),upper=c(1,1,1,1)) 

      temp=mle.result$convergence 

      if(temp==0){ 

        temp_alpha<-mle.result$par[1] 

        temp_beta<-mle.result$par[2] 

        temp_gamma<-mle.result$par[3] 

        temp_theta<-mle.result$par[4] 

        HH1<-hessian(P_LL, c(temp_alpha,temp_beta,temp_gamma,temp_theta)) 
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if(sum(is.nan(HH1))==0&(diag(HH1)[1]>0)&(diag(HH1)[2]>0)&(diag(HH1)[3]>0)&(diag(H

H1)[4]>0)){ 

          HH2<-solve(HH1) 

          #print(det(HH1)) 

        } 

        else{ 

          temp=1} 

      } 

      

if((temp==0)&(diag(HH2)[1]>0)&(diag(HH2)[2]>0)&(diag(HH2)[3]>0)&(diag(HH2)[4]>0)

&(sum(is.nan(HH2))==0)){ 

        break 

      } 

      else{ 

        temp=1} 

    } 

    temp=1 

    mle_alpha[i]<-mle.result$par[1] 

    mle_beta[i]<-mle.result$par[2] 

    mle_gamma[i]<-mle.result$par[3] 

    mle_theta[i]<-mle.result$par[4] 
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    HH<-hessian(P_LL,c(mle_alpha[i],mle_beta[i],mle_gamma[i],mle_theta[i])) 

    H<-solve(HH) 

    LC_alpha[i]<-mle_alpha[i]-qnorm(0.975)*sqrt(diag(H)[1]) 

    UC_alpha[i]<-mle_alpha[i]+qnorm(0.975)*sqrt(diag(H)[1]) 

    if((LC_alpha[i]<=alpha)&(alpha<=UC_alpha[i])){ 

      count_alpha=count_alpha+1 

    } 

    LC_beta[i]<-mle_beta[i]-qnorm(0.975)*sqrt(diag(H)[2]) 

    UC_beta[i]<-mle_beta[i]+qnorm(0.975)*sqrt(diag(H)[2]) 

    if((LC_beta[i]<=beta)&(beta<=UC_beta[i])){ 

      count_beta=count_beta+1 

    } 

    LC_gamma[i]<-mle_gamma[i]-qnorm(0.975)*sqrt(diag(H)[3]) 

    UC_gamma[i]<-mle_gamma[i]+qnorm(0.975)*sqrt(diag(H)[3]) 

    if((LC_gamma[i]<=gamma)&(gamma<=UC_gamma[i])){ 

      count_gamma=count_gamma+1 

    } 

    LC_theta[i]<-mle_theta[i]-qnorm(0.975)*sqrt(diag(H)[4]) 

    UC_theta[i]<-mle_theta[i]+qnorm(0.975)*sqrt(diag(H)[4]) 

    if((LC_theta[i]<=theta)&(theta<=UC_theta[i])){ 

      count_theta=count_theta+1 
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    } 

     

  } 

  #Calculate Average Bias 

  ABias_alpha<-sum(abs(mle_alpha-alpha))/N 

  ABias_beta<-sum(abs(mle_beta-beta))/N 

  ABias_gamma<-sum(abs(mle_gamma-gamma))/N 

  ABias_theta<-sum(abs(mle_theta-theta))/N 

  print(cbind(ABias_alpha,ABias_beta,ABias_gamma,ABias_theta)) 

  #Calculate MSE 

  MSE_alpha<-sum((alpha-mle_alpha)^2)/N 

  MSE_beta<-sum((beta-mle_beta)^2)/N 

  MSE_gamma<-sum((gamma-mle_gamma)^2)/N 

  MSE_theta<-sum((theta-mle_theta)^2)/N 

  print(cbind(MSE_alpha,MSE_beta,MSE_gamma,MSE_theta)) 

  #Average Estimate 

  AValpha<-sum(mle_alpha)/N 

  AVbeta<-sum(mle_beta)/N 

  AVgamma<-sum(mle_gamma)/N 

  AVtheta<-sum(mle_theta)/N 

  print(cbind(AValpha,AVbeta,AVgamma,AVtheta)) 
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} 

 

##### Algorithm for Monte Carlo Simulation study of OLS for GOIEW Distribution ######## 

quantile<-function(alpha,beta,gamma,theta,u){ 

  f<-function(x){(((1-exp(-gamma*(x^theta)))^alpha)*log(u))-((1-exp(-

gamma*(x^theta)))^beta)+1} 

  rc<-uniroot(f,lower=0,upper=10000,tol=1e-9) 

  result=rc$root 

  return(result) 

} 

############### 

P_LL<-function(par){ 

  alpha=par[1] 

  beta=par[2] 

  gamma=par[3] 

  theta=par[4] 

  y<-sort(x) 

  n<-length(y) 

  p<-(1:n)/(n+1) 

  A<-1-exp(-gamma*(x^theta)) 

  CDF<-exp(-((1-A^beta)/A^alpha)) 
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  LSE<-sum((CDF-p)^2) 

  return(LSE) 

} 

###Algorithm for Monte Carlo Simulation Study 

library(numDeriv) 

library(Matrix) 

alpha=0.4 

beta=0.7 

gamma=2.6 

theta=0.4 

n1=c(30,50, 80,120,200,250) 

for(j in 1:length(n1)){ 

  n=n1[j] 

  N=100 

  mle_alpha<-c(rep(0,N)) 

  mle_beta<-c(rep(0,N)) 

  mle_gamma<-c(rep(0,N)) 

  mle_theta<-c(rep(0,N)) 

  LC_alpha<-c(rep(0,N)) 

  UC_alpha<-c(rep(0,N)) 

  LC_beta<-c(rep(0,N)) 
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  UC_beta<-c(rep(0,N)) 

  LC_gamma<-c(rep(0,N)) 

  UC_gamma<-c(rep(0,N)) 

  LC_theta<-c(rep(0,N)) 

  UC_theta<-c(rep(0,N)) 

  count_alpha=0 

  count_beta=0 

  count_gamma=0 

  count_theta=0 

  temp=1 

  HH1<-matrix(c(rep(2,16)),nrow=4,ncol=4) 

  HH2<-matrix(c(rep(2,16)),nrow=4,ncol=4) 

  for(i in 1:N) 

  { 

    print(i) 

    flush.console() 

    repeat{ 

      x<-c(rep(0,n)) 

      # Generate a random variable from uniform distribution 

      u<-0 

      u<-runif(n,min=0,max=1) 
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      for(k in 1:n){ 

        x[k]<-quantile(alpha,beta,gamma,theta,u[k]) 

      } 

      #Maximum likelihood estimation 

      mle.result<-nlminb(c(alpha,beta,gamma,theta),P_LL,lower=c(0,0,0,0),upper=c(1,1,1,1)) 

      temp=mle.result$convergence 

      if(temp==0){ 

        temp_alpha<-mle.result$par[1] 

        temp_beta<-mle.result$par[2] 

        temp_gamma<-mle.result$par[3] 

        temp_theta<-mle.result$par[4] 

        HH1<-hessian(P_LL, c(temp_alpha,temp_beta,temp_gamma,temp_theta)) 

        

if(sum(is.nan(HH1))==0&(diag(HH1)[1]>0)&(diag(HH1)[2]>0)&(diag(HH1)[3]>0)&(diag(H

H1)[4]>0)){ 

          HH2<-solve(HH1) 

          #print(det(HH1)) 

        } 

        else{ 

          temp=1} 

      } 
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if((temp==0)&(diag(HH2)[1]>0)&(diag(HH2)[2]>0)&(diag(HH2)[3]>0)&(diag(HH2)[4]>0)

&(sum(is.nan(HH2))==0)){ 

        break 

      } 

      else{ 

        temp=1} 

    } 

    temp=1 

    mle_alpha[i]<-mle.result$par[1] 

    mle_beta[i]<-mle.result$par[2] 

    mle_gamma[i]<-mle.result$par[3] 

    mle_theta[i]<-mle.result$par[4] 

    HH<-hessian(P_LL,c(mle_alpha[i],mle_beta[i],mle_gamma[i],mle_theta[i])) 

    H<-solve(HH) 

    LC_alpha[i]<-mle_alpha[i]-qnorm(0.975)*sqrt(diag(H)[1]) 

    UC_alpha[i]<-mle_alpha[i]+qnorm(0.975)*sqrt(diag(H)[1]) 

    if((LC_alpha[i]<=alpha)&(alpha<=UC_alpha[i])){ 

      count_alpha=count_alpha+1 

    } 

    LC_beta[i]<-mle_beta[i]-qnorm(0.975)*sqrt(diag(H)[2]) 

    UC_beta[i]<-mle_beta[i]+qnorm(0.975)*sqrt(diag(H)[2]) 

www.udsspace.uds.edu.gh 

 

 

 

 



173 
 

    if((LC_beta[i]<=beta)&(beta<=UC_beta[i])){ 

      count_beta=count_beta+1 

    } 

    LC_gamma[i]<-mle_gamma[i]-qnorm(0.975)*sqrt(diag(H)[3]) 

    UC_gamma[i]<-mle_gamma[i]+qnorm(0.975)*sqrt(diag(H)[3]) 

    if((LC_gamma[i]<=gamma)&(gamma<=UC_gamma[i])){ 

      count_gamma=count_gamma+1 

    } 

    LC_theta[i]<-mle_theta[i]-qnorm(0.975)*sqrt(diag(H)[4]) 

    UC_theta[i]<-mle_theta[i]+qnorm(0.975)*sqrt(diag(H)[4]) 

    if((LC_theta[i]<=theta)&(theta<=UC_theta[i])){ 

      count_theta=count_theta+1 

    } 

     

  } 

  #Calculate Average Bias 

  ABias_alpha<-sum(abs(mle_alpha-alpha))/N 

  ABias_beta<-sum(abs(mle_beta-beta))/N 

  ABias_gamma<-sum(abs(mle_gamma-gamma))/N 

  ABias_theta<-sum(abs(mle_theta-theta))/N 

  print(cbind(ABias_alpha,ABias_beta,ABias_gamma,ABias_theta)) 
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  #Calculate MSE 

  MSE_alpha<-sum((alpha-mle_alpha)^2)/N 

  MSE_beta<-sum((beta-mle_beta)^2)/N 

  MSE_gamma<-sum((gamma-mle_gamma)^2)/N 

  MSE_theta<-sum((theta-mle_theta)^2)/N 

  print(cbind(MSE_alpha,MSE_beta,MSE_gamma,MSE_theta)) 

  #Average Estimate 

  AValpha<-sum(mle_alpha)/N 

  AVbeta<-sum(mle_beta)/N 

  AVgamma<-sum(mle_gamma)/N 

  AVtheta<-sum(mle_theta)/N 

  print(cbind(AValpha,AVbeta,AVgamma,AVtheta)) 

} 

 

##### Algorithm for Monte Carlo Simulation study of CVM for GOIEW Distribution ######## 

quantile<-function(alpha,beta,gamma,theta,u){ 

  f<-function(x){(((1-exp(-gamma*(x^theta)))^alpha)*log(u))-((1-exp(-

gamma*(x^theta)))^beta)+1} 

  rc<-uniroot(f,lower=0,upper=10000,tol=1e-9) 

  result=rc$root 

  return(result) 
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} 

############### 

P_LL<-function(par){ 

  alpha=par[1] 

  beta=par[2] 

  gamma=par[3] 

  theta=par[4] 

  y<-sort(x) 

  n<-length(y) 

  i<-(1:n) 

  p<-((2*i)-1)/(2*n) 

  A<-1-exp(-gamma*(x^theta)) 

  CDF<-exp(-((1-A^beta)/A^alpha)) 

  CVM<-(1/(12*n))+sum((CDF-p)^2) 

  return(CVM) 

} 

###Algorithm for Monte Carlo Simulation Study 

library(numDeriv) 

library(Matrix) 

alpha=0.4 

beta=0.7 

www.udsspace.uds.edu.gh 

 

 

 

 



176 
 

gamma=2.6 

theta=0.4 

n1=c(30,50, 80,120,200,250) 

for(j in 1:length(n1)){ 

  n=n1[j] 

  N=100 

  mle_alpha<-c(rep(0,N)) 

  mle_beta<-c(rep(0,N)) 

  mle_gamma<-c(rep(0,N)) 

  mle_theta<-c(rep(0,N)) 

  LC_alpha<-c(rep(0,N)) 

  UC_alpha<-c(rep(0,N)) 

  LC_beta<-c(rep(0,N)) 

  UC_beta<-c(rep(0,N)) 

  LC_gamma<-c(rep(0,N)) 

  UC_gamma<-c(rep(0,N)) 

  LC_theta<-c(rep(0,N)) 

  UC_theta<-c(rep(0,N)) 

  count_alpha=0 

  count_beta=0 

  count_gamma=0 
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  count_theta=0 

  temp=1 

  HH1<-matrix(c(rep(2,16)),nrow=4,ncol=4) 

  HH2<-matrix(c(rep(2,16)),nrow=4,ncol=4) 

  for(i in 1:N) 

  { 

    print(i) 

    flush.console() 

    repeat{ 

      x<-c(rep(0,n)) 

      # Generate a random variable from uniform distribution 

      u<-0 

      u<-runif(n,min=0,max=1) 

      for(k in 1:n){ 

        x[k]<-quantile(alpha,beta,gamma,theta,u[k]) 

      } 

      #Maximum likelihood estimation 

      mle.result<-nlminb(c(alpha,beta,gamma,theta),P_LL,lower=c(0,0,0,0),upper=c(1,1,1,1)) 

      temp=mle.result$convergence 

      if(temp==0){ 

        temp_alpha<-mle.result$par[1] 
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        temp_beta<-mle.result$par[2] 

        temp_gamma<-mle.result$par[3] 

        temp_theta<-mle.result$par[4] 

        HH1<-hessian(P_LL, c(temp_alpha,temp_beta,temp_gamma,temp_theta)) 

        

if(sum(is.nan(HH1))==0&(diag(HH1)[1]>0)&(diag(HH1)[2]>0)&(diag(HH1)[3]>0)&(diag(H

H1)[4]>0)){ 

          HH2<-solve(HH1) 

          #print(det(HH1)) 

        } 

        else{ 

          temp=1} 

      } 

      

if((temp==0)&(diag(HH2)[1]>0)&(diag(HH2)[2]>0)&(diag(HH2)[3]>0)&(diag(HH2)[4]>0)

&(sum(is.nan(HH2))==0)){ 

        break 

      } 

      else{ 

        temp=1} 

    } 

    temp=1 
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    mle_alpha[i]<-mle.result$par[1] 

    mle_beta[i]<-mle.result$par[2] 

    mle_gamma[i]<-mle.result$par[3] 

    mle_theta[i]<-mle.result$par[4] 

    HH<-hessian(P_LL,c(mle_alpha[i],mle_beta[i],mle_gamma[i],mle_theta[i])) 

    H<-solve(HH) 

    LC_alpha[i]<-mle_alpha[i]-qnorm(0.975)*sqrt(diag(H)[1]) 

    UC_alpha[i]<-mle_alpha[i]+qnorm(0.975)*sqrt(diag(H)[1]) 

    if((LC_alpha[i]<=alpha)&(alpha<=UC_alpha[i])){ 

      count_alpha=count_alpha+1 

    } 

    LC_beta[i]<-mle_beta[i]-qnorm(0.975)*sqrt(diag(H)[2]) 

    UC_beta[i]<-mle_beta[i]+qnorm(0.975)*sqrt(diag(H)[2]) 

    if((LC_beta[i]<=beta)&(beta<=UC_beta[i])){ 

      count_beta=count_beta+1 

    } 

    LC_gamma[i]<-mle_gamma[i]-qnorm(0.975)*sqrt(diag(H)[3]) 

    UC_gamma[i]<-mle_gamma[i]+qnorm(0.975)*sqrt(diag(H)[3]) 

    if((LC_gamma[i]<=gamma)&(gamma<=UC_gamma[i])){ 

      count_gamma=count_gamma+1 

    } 
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    LC_theta[i]<-mle_theta[i]-qnorm(0.975)*sqrt(diag(H)[4]) 

    UC_theta[i]<-mle_theta[i]+qnorm(0.975)*sqrt(diag(H)[4]) 

    if((LC_theta[i]<=theta)&(theta<=UC_theta[i])){ 

      count_theta=count_theta+1 

    } 

     

  } 

  #Calculate Average Bias 

  ABias_alpha<-sum(abs(mle_alpha-alpha))/N 

  ABias_beta<-sum(abs(mle_beta-beta))/N 

  ABias_gamma<-sum(abs(mle_gamma-gamma))/N 

  ABias_theta<-sum(abs(mle_theta-theta))/N 

  print(cbind(ABias_alpha,ABias_beta,ABias_gamma,ABias_theta)) 

  #Calculate MSE 

  MSE_alpha<-sum((alpha-mle_alpha)^2)/N 

  MSE_beta<-sum((beta-mle_beta)^2)/N 

  MSE_gamma<-sum((gamma-mle_gamma)^2)/N 

  MSE_theta<-sum((theta-mle_theta)^2)/N 

  print(cbind(MSE_alpha,MSE_beta,MSE_gamma,MSE_theta)) 

  #Average Estimate 

  AValpha<-sum(mle_alpha)/N 
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  AVbeta<-sum(mle_beta)/N 

  AVgamma<-sum(mle_gamma)/N 

  AVtheta<-sum(mle_theta)/N 

  print(cbind(AValpha,AVbeta,AVgamma,AVtheta)) 

} 
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