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Abstract

In this paper, we present and prove some inequalities involving the ratios
11:1“8 and ll:kg; Our approach makes use of the series representations of the
p q

functions v, (t), 1,(t) and ().
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1. INTRODUCTION

We begin by recalling some basic definitions related to the Gamma function.

The classical Euler’s Gamma function I'(¢) is defined by,

I(t) = / e “a' N dur, t>0. (1)
0
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The p-Gamma function I',(¢), also known as the p-analogue of the Gamma
function is defined as (see [3], [2] )

B pp* B p'
Fp(t)_t(t+1)...(t+p)_t(1+§)...(1+§)’ peN, >0 (2

The p-psi function v,(t) is defined as the logarithmic derivative of the p-
Gamma function. That is,

lt) = 0) = 20, >0 ®)

The ¢g-Gamma function, I'y(¢) is defined as (see [5])

o0

L) =(1—q)' " [] 11__;;, g€ (0,1), t>0. (4)

n=1

The g¢-psi function, ,(t) is also defined as,

1) = ) = L2

Cdt
The k-Gamma function, I'y(¢) is defined as (see [1], [6] )

t>0. (5)

o a:k
Li(t) = / e~ w ' de, k>0, t>0. (6)
0
The k-psi function, 1 (t) is similarly defined as follows.
d I.(t)
t) = — In(Tx(t)) = =&
0(0) = (D) = 2

In a recent paper [4], Krasniqi and Shabani proved the following result.

t>0. (7)

pte ()  T(a+t) p 0D (a+1)

< < 8
L@ Dfatn~  Tfatl ¥
for t € (0,1), where « is a positive real number such that o +¢ > 1.
Also in [2], Krasniqi, Mansour and Shabani proved the following result.
(1—q)te™(a) T(a+t) (1—¢q) eI (a+1) (9)

I'y(a) F(a+1) < F(a+1)

for t € (0,1), where « is a positive real number such that o +¢ > 1 and
g€ (0,1).

Our objective is to establish and prove some results similar to (8) and (9).
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2. PRELIMINARIES
We present the following auxiliary results.

Lemma 2.1. The function 1,(t) as defined in (3) has the following series
representation.

Yp(t) =Inp — Z — (10)

Proof. See [4].

Lemma 2.2. The function 1¢,(t) as defined in (5) has the following series
representation.

0 qt—i-n
%(t):—ln(l—Q)ﬂLIHQZm (11)
n=0

Proof. See [2].

Lemma 2.3. The function ¢y (t) as defined in (7) also has the following series
representation.

o0

() = 2o —%+Zm (12)

n=1

where 7y is the Fuler-Mascheroni’s constant.

Proof. See [6]
Lemma 2.4. Lett > 0. Then,
Ink — 1
——— I+ lt) = Gy(t) > 0
Proof. Using the series representations in equations (10) and (12) we have,
Ink —~ 1 N t & 1
- Inp+ - H—v,t) =y ——— >0
p H 0 =0 = e + )

Lemma 2.5. Let o be a positive real number such that o+t > 0. Then,
Ink —~

ok
Proof. Follows directly from Lemma 2.4

Lemma 2.6. Lett > 0. Then,

—mkk_ T (1 -q)+ % Fi(t) — y(t) > 0

1
+lnp+?+¢k(oz+t)—¢p(oz+t)>0
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Proof. Using the series representations in equations (11) and (12) we have,

o0

Ink —
2 7—1n(1—q)+%+wk(t)—¢q(t)—an(nkH qZ f e

Lemma 2.7. Let o be a positive real number such that o+t > 0. Then,
Ink —

ok
Proof. Follows directly from Lemma 2.6

—1n(1—q)+%+¢k(o¢+t)—@Z)q(oﬁ—t)>0

3. MAIN RESULTS
We now state and prove the results of this paper.
Theorem 3.1. Define a function Q by

te tE DT (a + 1)

FP(O‘ +t)
where « is a positive real number. Then Q is increasing on t € (0,00) and the
imequality

Q) = € (0,00), k>0, p€eN. (13)

Tpla+t) etV (a+ 1)

0< < 14
Ip(a+1t) tp=ry(a+ 1) (14)
holds for every t € (0,1).
Proof. Let u(t) = InQ(t) for every t € (0,00). Then,
te!("T t
u(t) =1 1 ela )
~Tpa+1)
Ink —
—Int+tlnp—t(——— )+ mTy(a +¢) — InTy(a +1)
Then
, Ink —~ 1
u'(t) = — ’ +lnp+;+wk(oz+t)—wp(oz+t) > 0. (by Lemma 2.5)

That implies u is increasing on t € (0,00). Hence (2 is increasing on t €
(0,00) and for every t € (0,1) we have,

Q(0) < Q(t) < Q1) yielding,

Tp(a+1) _ DD (o + 1)
Ip(a+1t) tp Iy (e + 1)

>0
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Corollary 3.2. Ift € [1,00), then the following inequality holds.

6(t—1)(1ni—V)Fk(a+ 1) - (o +1)
P, t1) S latd)
Proof. If t € [1,00), then we have (1) < Q(¢) yielding the result.

Theorem 3.3. Define a function ¢ by

Ink—~

o) = 1 Tula+ )

(1 =) Tela+1)
where « is a positive real number. Then ¢ is increasing on t € (0,00) and the
mequality

te(0,00), k>0,q€(0,1). (15)

0 < Fp(a+1t) _ DT (o + 1) (16)
Fola+t) — t(1—q)''Ty(a+1)

holds for every t € (0,1).

Proof. Let v(t) = In¢(t) for every t € (0,00). Then,

Ink—~

te tCF T (o + 1)

t)=1
o) = T (a0
Ink —
:mp4mu—@—unk:%+mwua+ﬂ—mmm+@
Then,
, Ink —~ 1
V() = — . In(1—gq)+ n + Yp(a+1t) =Yy (a+1t) >0. (by Lemma 2.7)

That implies v is increasing on t € (0,00). Hence ¢ is increasing on t €
(0,00) and for every t € (0,1) we have,

¢(0) < ¢(t) <¢(1)  yielding,

Tl + 1) _ et DI, (o + 1)
Lla+t)  t(1—g) ' Ty(a+1)"
Corollary 3.4. Ift € [1,00), then the following inequality holds.

0<

1= T,(a+1) = T,at?)
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Proof. If t € [1,00), then we have ¢(1) < ¢(t) yielding the result.
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