The q-Analogues of Some Inequalities for the Digamma Function

Kwara Nantomah

Department of Mathematics, University for Development Studies, Navrongo Campus, P. O. Box 24, Navrongo, UE/R, Ghana. mykwarasoft@yahoo.com, knantomah@uds.edu.gh

Edward Prempeh

Department of Mathematics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana. eprempeh.cos@knust.edu.gh

Abstract

In this paper, we present the q-analogues of some inequalities concerning the digamma function.

Mathematics Subject Classification: 33B15, 26A48.

Keywords: digamma function, q-digamma function, Inequality.

1 Introduction and Preliminaries

We begin by recalling some basic definitions involving the Gamma function.

The classical Euler's Gamma function, $\Gamma(t)$ is commonly defined by

$$\Gamma(t) = \int_0^\infty e^{-x} x^{t-1} dx, \qquad t > 0.$$

The digamma function, $\psi(t)$ is defined as the logarithmic derivative of the Gamma functio, that is,

$$\psi(t) = \frac{d}{dt} \ln(\Gamma(t)) = \frac{\Gamma'(t)}{\Gamma(t)}, \quad t > 0.$$

The q-analogue of the Gamma function, $\Gamma_q(t)$ is defined by (see [2])

$$\Gamma_q(t) = (1-q)^{1-t} \prod_{n=1}^{\infty} \frac{1-q^n}{1-q^{t+n}}, \quad q \in (0,1), \quad t > 0.$$

Similarly, the q-digamma function, $\psi_q(t)$ is defined as,

$$\psi_q(t) = \frac{d}{dt} \ln(\Gamma_q(t)) = \frac{\Gamma'_q(t)}{\Gamma_q(t)}, \quad t > 0.$$

The functions $\psi(t)$ and $\psi_q(t)$ as defined above have the following series representations.

$$\psi(t) = -\gamma + (t - 1) \sum_{n=0}^{\infty} \frac{1}{(1+n)(n+t)}, \quad t > 0.$$

$$\psi_q(t) = -\ln(1-q) + (\ln q) \sum_{n=1}^{\infty} \frac{q^{nt}}{1-q^n}, \quad q \in (0,1), \quad t > 0.$$

where γ is the Euler-Mascheroni's constant. For some properties of these functions, see [4], [1] and the references therein.

By taking the m-th derivative of the functions $\psi(t)$ and $\psi_q(t)$, it can be shown that the following statements are valid for $m \in N$.

$$\psi^{(m)}(t) = (-1)^{m+1} m! \sum_{n=0}^{\infty} \frac{1}{(n+t)^{m+1}}, \quad t > 0.$$

$$\psi_q^{(m)}(t) = (\ln q)^{m+1} \sum_{n=1}^{\infty} \frac{n^m q^{nt}}{1 - q^n}, \quad q \in (0, 1), \quad t > 0.$$

In a recent paper [3], Sulaiman presented the following results.

$$\psi(s+t) \ge \psi(s) + \psi(t) \tag{1}$$

where t > 0 and 0 < s < 1.

$$\psi^{(m)}(s+t) \le \psi^{(m)}(s) + \psi^{(m)}(t) \tag{2}$$

where m is a positive odd integer and s, t > 0.

$$\psi^{(m)}(s+t) \ge \psi^{(m)}(s) + \psi^{(m)}(t) \tag{3}$$

where m is a positive even integer and s, t > 0.

The objective of this paper is to establish that the inequalities (1), (2) and (3) still hold true for the function $\psi_q(t)$.

2 Main Results

We now present the results of this paper.

Theorem 2.1. Let t > 0, $0 < s \le 1$ and $q \in (0,1)$. Then the following inequality is valid.

$$\psi_q(s+t) \ge \psi_q(s) + \psi_q(t). \tag{4}$$

Proof. Let $u(t) = \psi_q(s+t) - \psi_q(s) - \psi_q(t)$. Then fixing s we have,

$$u'(t) = \psi_q'(s+t) - \psi_q'(t) = (\ln q)^2 \sum_{n=1}^{\infty} \left[\frac{nq^{n(s+t)}}{1 - q^n} - \frac{nq^{nt}}{1 - q^n} \right]$$
$$= (\ln q)^2 \sum_{n=1}^{\infty} \left[\frac{nq^{n(s+t)} - nq^{nt}}{1 - q^n} \right]$$
$$= (\ln q)^2 \sum_{n=1}^{\infty} \frac{nq^{nt}(q^{ns} - 1)}{1 - q^n} \le 0.$$

That implies u is non-increasing. In addition,

$$\begin{split} &\lim_{t \to \infty} u(t) = \lim_{t \to \infty} \left[\psi_q(s+t) - \psi_q(s) - \psi_q(t) \right] \\ &= \ln(1-q) + (\ln q) \lim_{t \to \infty} \sum_{n=1}^{\infty} \left[\frac{q^{n(s+t)}}{1-q^n} - \frac{q^{ns}}{1-q^n} - \frac{q^{nt}}{1-q^n} \right] \\ &= \ln(1-q) + (\ln q) \lim_{t \to \infty} \sum_{n=1}^{\infty} \left[\frac{q^{n(s+t)} - q^{ns} - q^{nt}}{1-q^n} \right] \\ &= \ln(1-q) + (\ln q) \lim_{t \to \infty} \sum_{n=1}^{\infty} \left[\frac{q^{ns} \cdot q^{nt} - q^{ns} - q^{nt}}{1-q^n} \right] \\ &= \ln(1-q) - (\ln q) \sum_{n=1}^{\infty} \frac{q^{ns}}{1-q^n} \ge 0. \end{split}$$

Therefore $u(t) \geq 0$ concluding the proof.

Theorem 2.2. Let s, t > 0 and $q \in (0,1)$. Suppose that m is a positive odd integer, then the following inequality is valid.

$$\psi_{q}^{(m)}(s+t) \leq \psi_{q}^{(m)}(s) + \psi_{q}^{(m)}(t).$$
(5)

Proof. Let $v(t) = \psi_{q}^{(m)}(s+t) - \psi_{q}^{(m)}(s) - \psi_{q}^{(m)}(t)$. Then fixing s we have,
$$v'(t) = \psi_{q}^{(m+1)}(s+t) - \psi_{q}^{(m+1)}(t)$$

$$= (\ln q)^{m+2} \sum_{n=1}^{\infty} \left[\frac{n^{m+1}q^{n(s+t)}}{1-q^n} - \frac{n^{m+1}q^{nt}}{1-q^n} \right]$$

$$= (\ln q)^{m+2} \sum_{n=1}^{\infty} \left[\frac{n^{m+1}q^{nt}(q^{ns}-1)}{1-q^n} \right] \geq 0. \text{ (since } m \text{ is odd)}$$

That implies v is non-decreasing. In addition,

$$\begin{split} \lim_{t \to \infty} v(t) &= (\ln q)^{m+1} \lim_{t \to \infty} \sum_{n=1}^{\infty} \left[\frac{n^m q^{n(s+t)}}{1 - q^n} - \frac{n^m q^{ns}}{1 - q^n} - \frac{n^m q^{nt}}{1 - q^n} \right] \\ &= (\ln q)^{m+1} \lim_{t \to \infty} \sum_{n=1}^{\infty} \left[\frac{n^m q^{ns}.q^{nt}}{1 - q^n} - \frac{n^m q^{ns}}{1 - q^n} - \frac{n^m q^{nt}}{1 - q^n} \right] \\ &= -(\ln q)^{m+1} \sum_{n=1}^{\infty} \frac{n^m q^{ns}}{1 - q^n} \le 0. \text{ (since } m \text{ is odd)} \end{split}$$

Therefore $v(t) \leq 0$ concluding the proof.

Theorem 2.3. Let s, t > 0 and $q \in (0,1)$. Suppose that m is a positive even integer, then the following inequality is valid.

$$\psi_q^{(m)}(s+t) \ge \psi_q^{(m)}(s) + \psi_q^{(m)}(t). \tag{6}$$

Proof. Let $w(t) = \psi_q^{(m)}(s+t) - \psi_q^{(m)}(s) - \psi_q^{(m)}(t)$. Then by fixing s we have,

$$w'(t) = \psi_q^{(m+1)}(s+t) - \psi_q^{(m+1)}(t)$$

$$= (\ln q)^{m+2} \sum_{n=1}^{\infty} \left[\frac{n^{m+1}q^{n(s+t)}}{1-q^n} - \frac{n^{m+1}q^{nt}}{1-q^n} \right]$$

$$= (\ln q)^{m+2} \sum_{n=1}^{\infty} \left[\frac{n^{m+1}q^{nt}(q^{ns}-1)}{1-q^n} \right] \le 0. \text{ (since } m \text{ is even)}$$

That implies w is non-increasing. In addition,

$$\lim_{t \to \infty} w(t) = (\ln q)^{m+1} \lim_{t \to \infty} \sum_{n=1}^{\infty} \left[\frac{n^m q^{n(s+t)}}{1 - q^n} - \frac{n^m q^{ns}}{1 - q^n} - \frac{n^m q^{nt}}{1 - q^n} \right]$$

$$= (\ln q)^{m+1} \lim_{t \to \infty} \sum_{n=1}^{\infty} \left[\frac{n^m q^{ns} \cdot q^{nt}}{1 - q^n} - \frac{n^m q^{ns}}{1 - q^n} - \frac{n^m q^{nt}}{1 - q^n} \right]$$

$$= -(\ln q)^{m+1} \sum_{n=1}^{\infty} \frac{n^m q^{ns}}{1 - q^n} \ge 0. \text{ (since } m \text{ is even)}$$

Therefore $w(t) \geq 0$ concluding the proof.

References

[1] V. Krasniqi, T. Mansour and A. Sh. Shabani, Some Monotonicity Properties and Inequalities for Γ and ζ Functions, Mathematical Communications **15**(2)(2010), 365-376.

- [2] T. Mansour, Some inequalities for the q-Gamma Function, J. Ineq. Pure Appl. Math. 9(1)(2008), Art. 18.
- [3] W. T. Sulaiman, Turan inequalites for the digamma and polygamma functions, South Asian J. Math. 1(2)(2011), 49-55.
- [4] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Camb. Univ. Press, 1969.

Received: March, 2014