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Abstract

In this paper, we present some sharp inequalities involving ratios of
the functions I', T'(, o) and Iy 1.
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1 Introduction

The classical Euler’s Gamma function, I'(¢) is commonly defined as
() = / e o' da, t > 0.
0

The p-analogue of the Gamma function, I',(¢) is defined as (see [7])

plp’ P
L,(t) = ' = : eN, t>0.
() tt+1)...(t+p)  tA+{)...(1+1) b

The g-analogue of the Gamma function, I';(¢) is defined as (see [2])

P —
Fq(t):(l—Q)lth7 g€ (0,1), t>0.

n=1
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The k-analogue of the Gamma function I',(t) is also defined as (see [1],[3])
o xk
Tk(t) = / e"ma'"tdr, k>0 areal number, t> 0.
0

In 2012, Krasniqi and Merovci [4] defined the (p, ¢)-analogue of the Gamma
function, I'¢, 4)(t) as

T (t) = P, [Pl t>0, peN, qe(0,1)
P [t + 1]y [+l ’ ’ ’
where [p|, = 11__‘1;.

Also, the (g, k)-analogue of the Gamma function, I'(4x)(t) is defined as (see
[51,[6])

o) = o Dar Q@) o) ko,
(I-q)F ' (1=¢)5(1—gr!

The digamma function, (p, ¢)-analogue of the digamma function and (g, k)-
analogue of the digamma function are respectively defined as follows.

d I (t)
Y(t) o (t) (o) t>0
d VN0
—InT P9) t>0,pe N 0,1
77D(P Q)(t) dt n (P q)(t) F(p,q)(t)’ > ) p € } q S ( ) )
d tam ()
V(g (t) Elnf(q w(t) = Fi%g(t)’ t>0,q€(0,1), k>0
q7

- 1
() =l + () >0 11 )
—In(1 — > nkt
st = g 3y )

where v is the Euler-Mascheroni’s constant.
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In [8], Krasniqi and Shabani presented the following results.

pte™ () _ I'(a+1) _ p Tt (o + 1)
Iy(a) Ip(a+1) Ip(a+1)

for t € (0,1), where « is a positive real number such that o +¢ > 1.

Also in [7], Krasniqi, Mansour and Shabani presented the following.

(1—¢)le"T(a) T(a+t) (1—¢q) 10D (o + 1)

L@ Tatt - Tyatd) )

for t € (0,1), where « is a positive real number such that o +¢ > 1 and
€ (0,1).

In a recent paper, Nantomah [9] also presented the following.

ket (5 W)F(Oz) Da+t)  krel™ t)(m)F(a +1)
Thla) = Tha+td) = CES)

(6)

for t € (0,1), where « is a positive real number.

Results of this nature and some generalizations can also be found in the papers
[10], [11] and [12].

The objective of this paper is to establish similar results involving ratios of the
functions I', I, ¢y and I'(gx).

2 Preliminary Results

Lemma 2.1. Lett > 1, Then,

v+ 1In[ply +¥(t) — Yg(t) > 0.

Proof. Using the series representations in equations (1) and (2) we have,

p

- q"
Y+ Infply + () = by () = (t=1) Y ———=— n+1 ) -

’fL:(] n=1

Lemma 2.2. Let o be a positive real number such that oo+t > 1. Then,

v+ Inply +Y(a+t) — Ve la+t) > 0.
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Proof. Follows directly from Lemma 2.1.
Lemma 2.3. Lett > 1, Then,

- w +1)(t) — Yy (t) > 0.

Proof. Using the series representations in equations (1) and (3) we have,

nkt

=2 Dy () = (1) ;—(IHQ)Z >0

k (n+1)(n+1t) 1—qgnk

n=0

Lemma 2.4. Let o be a positive real number such that o+t > 1. Then,

Y- w +¢Y(a+1t) —’(/J(qk)(a—l—t) > 0.

Proof. Follows directly from Lemma 2.3.

3 Main Results

Theorem 3.1. Define a function U by
e"'Ta +t)
[p]q_tl—‘(p,q)(a +1)’

where a 1s a positive real number such that o+t > 1. Then U is increasing
ont € (0,00) and the inequalities

e T () NG I (o + 1)
Pl ea(@)  Tegla+t) [Pl Tegla+1)
are valid for every t € (0,1).
Proof. Let u(t) =InU(t) for every t € (0,00). Then,
() = In f’YtF(a +t)
[p]q tr(p,q)(a +1)
=t +thn[pl, + nI(a+t) —InT, g (a4 1).

U(t) = te(0,00),pe N, qe (0,1) (7)

(8)

Then,

p(t) =y +1nply + Y(a+1t) —gq(a+t) >0

by Lemma 2.2. That implies p is increasing on ¢t € (0,00). Hence U is
increasing on ¢ € (0,00) and for every ¢ € (0,1) we have,

U0)<U(t) <U(1)
yielding the result.
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Corollary 3.2. Ift € (1,00), then the following inequality is valid.

I(a+t) YD (a + 1)
11(1%[1)(0‘ + 1) [p]f;_lr(:n,q) (a+1)
Proof. If t € (1,00), then we have U(t) > U(1) yielding the result.

Theorem 3.3. Define a function V by
' +t)
(1—q)iTm(a+1)

where a 1s a positive real number such that aw+t > 1. Then V is increasing
ont € (0,00) and the inequalities

V(t) = te(0,00), g € (0,1), k >0 (9)

e T () _ I'(a+1) _ Y= (a + 1)
(1—q) i Tm(@) Tamla+t) (1 - el (a+1)

(10)

are valid for every t € (0,1).

Proof. Let A\(t) =1InV(t) for every t € (0,00). Then,
e"'INa+t)

(1= q)¥Tigy(a +1)

t
=yt — Z In(l —q)+Inl(a+t) —InLp(a+1).

A(t) =In

Then,

N(t)=v— w +(a+1t) —Ygm(a+1t) >0

by Lemma 2.4. That implies A is increasing on ¢ € (0,00). Hence V is
increasing on ¢ € (0,00) and for every ¢ € (0,1) we have,

V(0) < V(t) < V(1)
establishing the result.
Corollary 3.4. Ift € (1,00), then the following inequality is valid.

C(a+t) IO (a + 1)
Lgmla+t) " (1 - ¢)x09T(a+1)

Proof. If t € (1,00), then we have V (t) > V(1) yielding the result.




506

4

Kwara Nantomah and Edward Prempeh

Concluding Remarks

Remark 4.1. If in (8) we allow ¢ — 1, then the inequality (4) is recovered.

Remark 4.2. If in (8) we allow p — oo or if in (10) we allow k£ — 1 then the
inequality (5) is recovered.

Remark 4.3. If in (10) we allow ¢ — 1 then the inequality (6) is recovered.
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