Some Inequalities for the q-Digamma Function

Kwara Nantomah

Department of Mathematics, University for Development Studies, Navrongo Campus, P. O. Box 24, Navrongo, UE/R, Ghana. mykwarasoft@yahoo.com, knantomah@uds.edu.gh

Edward Prempeh

Department of Mathematics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana. eprempeh.cos@knust.edu.gh

Abstract

Some inequalities involving the q-digamma function are presented. These results are the q-analogues of some recent results.

Mathematics Subject Classification: 33B15, 26A48.

Keywords: digamma function, q-digamma function, Inequality.

1 Introduction and Preliminaries

The classical Euler's Gamma function $\Gamma(t)$ and the digamma function $\psi(t)$ are commonly defined as

$$\Gamma(t) = \int_0^\infty e^{-x} x^{t-1} \, dx, \quad \text{and} \quad \psi(t) = \frac{d}{dt} \ln(\Gamma(t)) = \frac{\Gamma'(t)}{\Gamma(t)}, \quad t > 0.$$

Similarly the q-Gamma and q-digamma functions are defined as (see [1])

$$\Gamma_q(t) = (1-q)^{1-t} \prod_{n=1}^{\infty} \frac{1-q^n}{1-q^{t+n}}, \quad q \in (0,1), \quad t > 0.$$

and

$$\psi_q(t) = \frac{d}{dt} \ln(\Gamma_q(t)) = \frac{\Gamma_q'(t)}{\Gamma_q(t)}$$

The functions $\psi(t)$ and $\psi_q(t)$ as defined above exhibit the following series representations.

$$\psi(t) = -\gamma + (t - 1) \sum_{n=0}^{\infty} \frac{1}{(1+n)(n+t)}, \quad t > 0.$$

$$\psi_q(t) = -\ln(1-q) + (\ln q) \sum_{n=1}^{\infty} \frac{q^{nt}}{1-q^n}, \quad q \in (0,1), \quad t > 0.$$

where γ is the Euler-Mascheroni's constant.

By taking the m-th derivative of the above functions, we arrive at the following statements for $m \in N$.

$$\psi^{(m)}(t) = (-1)^{m+1} m! \sum_{n=0}^{\infty} \frac{1}{(n+t)^{m+1}}, \quad t > 0.$$

$$\psi_q^{(m)}(t) = (\ln q)^{m+1} \sum_{n=1}^{\infty} \frac{n^m q^{nt}}{1 - q^n}, \quad q \in (0, 1), \quad t > 0.$$

In 2011, Sulaiman [3] presented the following results.

$$\psi(t+s) \ge \psi(t) + \psi(s) \tag{1}$$

where t > 0 and 0 < s < 1.

$$\psi^{(m)}(t+s) \le \psi^{(m)}(t) + \psi^{(m)}(s) \tag{2}$$

where m is a positive odd integer and t, s > 0.

$$\psi^{(m)}(t+s) \ge \psi^{(m)}(t) + \psi^{(m)}(s) \tag{3}$$

where m is a positive even integer and t, s > 0.

In a recent paper, Sroysang [2] presented the following geralizations of the above inequalities.

$$\psi(t + \sum_{i=1}^{\alpha} \beta_i s_i) \ge \psi(t) + \sum_{i=1}^{\alpha} \beta_i \psi(s_i)$$
(4)

where t > 0, $\beta_i > 0$ and $0 < s_i < 1$ for all $i \in N_{\alpha}$.

$$\psi^{(m)}(t + \sum_{i=1}^{\alpha} \beta_i s_i) \le \psi^{(m)}(t) + \sum_{i=1}^{\alpha} \beta_i \psi^{(m)}(s_i)$$
 (5)

where m is a positive odd integer, t > 0, $\beta_i > 0$ and $s_i > 0$ for all $i \in N_\alpha$.

$$\psi^{(m)}(t + \sum_{i=1}^{\alpha} \beta_i s_i) \ge \psi^{(m)}(t) + \sum_{i=1}^{\alpha} \beta_i \psi^{(m)}(s_i)$$
 (6)

where m is a positive even integer, t > 0, $\beta_i > 0$ and $s_i > 0$ for all $i \in N_{\alpha}$.

The objective of this paper is to establish that the inequalities (4), (5) and (6) still hold true for the q-digamma function.

2 Main Results

We now present our results.

Theorem 2.1. Let $q \in (0,1)$, t > 0, $\beta_i > 0$ and $0 < s_i < 1$ for all $i \in N_{\alpha}$. Then the following inequality is valid.

$$\psi_q(t + \sum_{i=1}^{\alpha} \beta_i s_i) \ge \psi_q(t) + \sum_{i=1}^{\alpha} \beta_i \psi_q(s_i)$$
 (7)

Proof. Let $u(t) = \psi_q(t + \sum_{i=1}^{\alpha} \beta_i s_i) - \psi_q(t) - \sum_{i=1}^{\alpha} \beta_i \psi_q(s_i)$. Then fixing s_i for each i we have,

$$u'(t) = \psi'_{q}(t + \sum_{i=1}^{\alpha} \beta_{i} s_{i}) - \psi'_{q}(t)$$

$$= (\ln q)^{2} \sum_{n=1}^{\infty} \left[\frac{nq^{n(t + \sum_{i=1}^{\alpha} \beta_{i} s_{i})}}{1 - q^{n}} - \frac{nq^{nt}}{1 - q^{n}} \right]$$

$$= (\ln q)^{2} \sum_{n=1}^{\infty} \frac{nq^{nt}(q^{n} \sum_{i=1}^{\alpha} \beta_{i} s_{i} - 1)}{1 - q^{n}} \le 0.$$

That implies u is non-increasing. Moreover,

$$\lim_{t \to \infty} u(t) = \lim_{t \to \infty} \left[\psi_q(t + \sum_{i=1}^{\alpha} \beta_i s_i) - \psi_q(t) - \sum_{i=1}^{\alpha} \beta_i \psi_q(s_i) \right]$$

$$= \ln(1 - q) \sum_{i=1}^{\alpha} \beta_i$$

$$+ (\ln q) \lim_{t \to \infty} \sum_{n=1}^{\infty} \left[\frac{q^{n(t + \sum_{i=1}^{\alpha} \beta_i s_i)}}{1 - q^n} - \frac{q^{nt}}{1 - q^n} - \sum_{i=1}^{\alpha} \frac{\beta_i q^{ns_i}}{1 - q^n} \right]$$

$$= \ln(1 - q) \sum_{i=1}^{\alpha} \beta_i - (\ln q) \sum_{n=1}^{\infty} \sum_{i=1}^{\alpha} \frac{\beta_i q^{ns_i}}{1 - q^n} \ge 0.$$

Therefore $u(t) \ge 0$ concluding the proof.

Theorem 2.2. Let $q \in (0,1)$, t > 0, $\beta_i > 0$ and $s_i > 0$ for all $i \in N_\alpha$. Suppose that m is a positive odd integer, then the following inequality is valid.

$$\psi_q^{(m)}(t + \sum_{i=1}^{\alpha} \beta_i s_i) \le \psi_q^{(m)}(t) + \sum_{i=1}^{\alpha} \beta_i \psi_q^{(m)}(s_i)$$
 (8)

Proof. Let $v(t) = \psi_q^{(m)}(t + \sum_{i=1}^{\alpha} \beta_i s_i) - \psi_q^{(m)}(t) - \sum_{i=1}^{\alpha} \beta_i \psi_q^{(m)}(s_i)$. Then fixing s_i for each i we have,

$$v'(t) = \psi_q^{(m+1)}(t + \sum_{i=1}^{\alpha} \beta_i s_i) - \psi_q^{(m+1)}(t)$$

$$= (\ln q)^{m+2} \sum_{n=1}^{\infty} \left[\frac{n^{m+1} q^{n(t + \sum_{i=1}^{\alpha} \beta_i s_i)}}{1 - q^n} - \frac{n^{m+1} q^{nt}}{1 - q^n} \right]$$

$$= (\ln q)^{m+2} \sum_{n=1}^{\infty} \left[\frac{n^{m+1} q^{nt} (q^n \sum_{i=1}^{\alpha} \beta_i s_i - 1)}{1 - q^n} \right] \ge 0. \text{ (since } m \text{ is odd)}$$

That implies v is non-decreasing. Moreover,

$$\lim_{t \to \infty} v(t) = \lim_{t \to \infty} \left[\psi_q^{(m)}(t + \sum_{i=1}^{\alpha} \beta_i s_i) - \psi_q^{(m)}(t) - \sum_{i=1}^{\alpha} \beta_i \psi_q^{(m)}(s_i) \right]$$

$$= (\ln q)^{m+1} \lim_{t \to \infty} \sum_{n=1}^{\infty} \left[\frac{n^m q^{n(t + \sum_{i=1}^{\alpha} \beta_i s_i)}}{1 - q^n} - \frac{n^m q^{nt}}{1 - q^n} - \sum_{i=1}^{\alpha} \beta_i \frac{n^m q^{ns_i}}{1 - q^n} \right]$$

$$= -(\ln q)^{m+1} \sum_{n=1}^{\infty} \sum_{i=1}^{\alpha} \beta_i \frac{n^m q^{ns_i}}{1 - q^n} \le 0. \text{ (since } m \text{ is odd)}$$

Therefore $v(t) \leq 0$ concluding the proof.

Theorem 2.3. Let $q \in (0,1)$, t > 0, $\beta_i > 0$ and $s_i > 0$ for all $i \in N_\alpha$. Suppose that m is a positive even integer, then the following inequality is valid.

$$\psi_q^{(m)}(t + \sum_{i=1}^{\alpha} \beta_i s_i) \ge \psi_q^{(m)}(t) + \sum_{i=1}^{\alpha} \beta_i \psi_q^{(m)}(s_i)$$
 (9)

Proof. Let $w(t) = \psi_q^{(m)}(t + \sum_{i=1}^{\alpha} \beta_i s_i) - \psi_q^{(m)}(t) - \sum_{i=1}^{\alpha} \beta_i \psi_q^{(m)}(s_i)$. Then fixing

 s_i for each i we have,

$$w'(t) = \psi_q^{(m+1)}(t + \sum_{i=1}^{\alpha} \beta_i s_i) - \psi_q^{(m+1)}(t)$$

$$= (\ln q)^{m+2} \sum_{n=1}^{\infty} \left[\frac{n^{m+1} q^{n(t + \sum_{i=1}^{\alpha} \beta_i s_i)}}{1 - q^n} - \frac{n^{m+1} q^{nt}}{1 - q^n} \right]$$

$$= (\ln q)^{m+2} \sum_{n=1}^{\infty} \left[\frac{n^{m+1} q^{nt} (q^n \sum_{i=1}^{\alpha} \beta_i s_i - 1)}{1 - q^n} \right] \le 0. \text{ (since } m \text{ is even)}$$

That implies w is non-increasing. Moreover,

$$\lim_{t \to \infty} w(t) = \lim_{t \to \infty} \left[\psi_q^{(m)}(t + \sum_{i=1}^{\alpha} \beta_i s_i) - \psi_q^{(m)}(t) - \sum_{i=1}^{\alpha} \beta_i \psi_q^{(m)}(s_i) \right]$$

$$= (\ln q)^{m+1} \lim_{t \to \infty} \sum_{n=1}^{\infty} \left[\frac{n^m q^{n(t + \sum_{i=1}^{\alpha} \beta_i s_i)}}{1 - q^n} - \frac{n^m q^{nt}}{1 - q^n} - \sum_{i=1}^{\alpha} \beta_i \frac{n^m q^{ns_i}}{1 - q^n} \right]$$

$$= -(\ln q)^{m+1} \sum_{n=1}^{\infty} \sum_{i=1}^{\alpha} \beta_i \frac{n^m q^{ns_i}}{1 - q^n} \ge 0. \text{ (since } m \text{ is even)}$$

Therefore $w(t) \geq 0$ concluding the proof.

Remark 2.4. If we let $q \to 1^-$ in inequalities (7), (8) and (9) then we repectively recover the inequalities (4), (5) and (6).

References

- [1] T. Mansour, Some inequalities for the q-Gamma Function, J. Ineq. Pure Appl. Math. 9(1)(2008), Art. 18.
- [2] B. Sroysang, More on some inequalities for the digamma function, Math. Aeterna, 4(2)(2014), 123-126.
- [3] W. T. Sulaiman, Turan inequalites for the digamma and polygamma functions, South Asian J. Math. 1(2)(2011), 49-55.

Received: May, 2014