Some Inequalities for the (q, k)-Digamma Function

Kwara Nantomah

Department of Mathematics, University for Development Studies, Navrongo Campus, P. O. Box 24, Navrongo, UE/R, Ghana. mykwarasoft@yahoo.com, knantomah@uds.edu.gh

Edward Prempeh

Department of Mathematics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana. eprempeh.cos@knust.edu.gh

Abstract

Some inequalities involving the (q, k)-digamma function are presented. These results are the (q, k)-analogues of some recent results.

Mathematics Subject Classification: 33B15, 26A48.

Keywords: digamma function, (q, k)-digamma function, Inequality.

1 Introduction and Preliminaries

The classical Euler's Gamma function $\Gamma(t)$ and the digamma function $\psi(t)$ are commonly defined as

$$\Gamma(t) = \int_0^\infty e^{-x} x^{t-1} dx, \quad \text{and} \quad \psi(t) = \frac{d}{dt} \ln(\Gamma(t)) = \frac{\Gamma'(t)}{\Gamma(t)}, \quad t > 0.$$

The (q, k)-Gamma and (q, k)-digamma functions are defined as [1],

$$\Gamma_{q,k}(t) = \frac{(1 - q^k)_{q,k}^{\frac{t}{k} - 1}}{(1 - q)^{\frac{t}{k} - 1}} = \frac{(1 - q^k)_{q,k}^{\infty}}{(1 - q^t)_{q,k}^{\infty}(1 - q)^{\frac{t}{k} - 1}}, \quad t > 0, \ q \in (0, 1), \ k > 0.$$

and

$$\psi_{q,k}(t) = \frac{d}{dt} \ln \Gamma_{q,k}(t) = \frac{\Gamma'_{q,k}(t)}{\Gamma_{q,k}(t)}.$$

The functions $\psi(t)$ and $\psi_{q,k}(t)$ as defined above exhibit the following series representations.

$$\psi(t) = -\gamma + (t - 1) \sum_{n=0}^{\infty} \frac{1}{(1+n)(n+t)}, \quad t > 0$$

$$\psi_{q,k}(t) = \frac{-\ln(1-q)}{k} + (\ln q) \sum_{n=1}^{\infty} \frac{q^{nkt}}{1 - q^{nk}}, \quad t > 0.$$

where γ is the Euler-Mascheroni's constant.

By taking the m-th derivative of the above functions, we arrive at the following statements for $m \in N$.

$$\psi^{(m)}(t) = (-1)^{m+1} m! \sum_{n=0}^{\infty} \frac{1}{(n+t)^{m+1}}, \quad t > 0$$

$$\psi_{q,k}^{(m)}(t) = (\ln q)^{m+1} \sum_{n=1}^{\infty} \frac{n^m k^m q^{nkt}}{1 - q^{nk}}, \quad t > 0$$

In 2011, Sulaiman [3] presented the following results.

$$\psi(t+s) > \psi(t) + \psi(s) \tag{1}$$

where t > 0 and 0 < s < 1.

$$\psi^{(m)}(t+s) \le \psi^{(m)}(t) + \psi^{(m)}(s) \tag{2}$$

where m is a positive odd integer and t, s > 0.

$$\psi^{(m)}(t+s) \ge \psi^{(m)}(t) + \psi^{(m)}(s) \tag{3}$$

where m is a positive even integer and t, s > 0.

In a recent paper, Sroysang [2] presented the following geralizations of the above inequalities.

$$\psi(t + \sum_{i=1}^{\alpha} \beta_i s_i) \ge \psi(t) + \sum_{i=1}^{\alpha} \beta_i \psi(s_i)$$
(4)

where t > 0, $\beta_i > 0$ and $0 < s_i < 1$ for all $i \in N_{\alpha}$.

$$\psi^{(m)}(t + \sum_{i=1}^{\alpha} \beta_i s_i) \le \psi^{(m)}(t) + \sum_{i=1}^{\alpha} \beta_i \psi^{(m)}(s_i)$$
 (5)

where m is a positive odd integer, t > 0, $\beta_i > 0$ and $s_i > 0$ for all $i \in N_\alpha$.

$$\psi^{(m)}(t + \sum_{i=1}^{\alpha} \beta_i s_i) \ge \psi^{(m)}(t) + \sum_{i=1}^{\alpha} \beta_i \psi^{(m)}(s_i)$$
 (6)

where m is a positive even integer, t > 0, $\beta_i > 0$ and $s_i > 0$ for all $i \in N_{\alpha}$.

The objective of this paper is to establish that the inequalities (4), (5) and (6) still hold true for the (q, k)-digamma function.

2 Main Results

We now present our results.

Theorem 2.1. Let $q \in (0,1)$, k > 0, t > 0, $\beta_i > 0$ and $0 < s_i < 1$ for all $i \in N_{\alpha}$. Then the following inequality is valid.

$$\psi_{q,k}(t + \sum_{i=1}^{\alpha} \beta_i s_i) \ge \psi_{q,k}(t) + \sum_{i=1}^{\alpha} \beta_i \psi_{q,k}(s_i)$$

$$\tag{7}$$

Proof. Let $F(t) = \psi_{q,k}(t + \sum_{i=1}^{\alpha} \beta_i s_i) - \psi_{q,k}(t) - \sum_{i=1}^{\alpha} \beta_i \psi_{q,k}(s_i)$. Then fixing s_i for each i we have,

$$F'(t) = \psi'_{q,k}(t + \sum_{i=1}^{\alpha} \beta_i s_i) - \psi'_{q,k}(t) = (\ln q)^2 \sum_{n=1}^{\infty} \left[\frac{nkq^{nk(t + \sum_{i=1}^{\alpha} \beta_i s_i)}}{1 - q^{nk}} - \frac{nkq^{nkt}}{1 - q^{nk}} \right]$$
$$= (\ln q)^2 \sum_{n=1}^{\infty} \frac{nkq^{nkt}(q^{nk\sum_{i=1}^{\alpha} \beta_i s_i} - 1)}{1 - q^{nk}} \le 0.$$

That implies F is non-increasing. Also,

$$\lim_{t \to \infty} F(t) = \lim_{t \to \infty} \left[\psi_{q,k}(t + \sum_{i=1}^{\alpha} \beta_i s_i) - \psi_{q,k}(t) - \sum_{i=1}^{\alpha} \beta_i \psi_{q,k}(s_i) \right]$$

$$= \sum_{i=1}^{\alpha} \beta_i \frac{\ln(1-q)}{k}$$

$$+ (\ln q) \lim_{t \to \infty} \sum_{n=1}^{\infty} \left[\frac{q^{nk(t + \sum_{i=1}^{\alpha} \beta_i s_i)}}{1 - q^{nk}} - \frac{q^{nkt}}{1 - q^{nk}} - \sum_{i=1}^{\alpha} \beta_i \frac{q^{nks_i}}{1 - q^{nk}} \right]$$

$$= -\sum_{i=1}^{\alpha} \beta_i \left[\frac{-\ln(1-q)}{k} + (\ln q) \sum_{n=1}^{\infty} \frac{q^{nks_i}}{1 - q^{nk}} \right]$$

$$= -\sum_{i=1}^{\alpha} \beta_i \psi_{q,k}(s_i) \ge 0. \quad \text{(Note: } \psi_{q,k}(t) < 0 \text{ for } 0 < t \le 1\text{)}$$

Therefore $F(t) \geq 0$ concluding the proof.

Theorem 2.2. Let $q \in (0,1)$, k > 0, t > 0, $\beta_i > 0$ and $s_i > 0$ for all $i \in N_{\alpha}$. Suppose that m is a positive odd integer, then the following inequality is valid.

$$\psi_{q,k}^{(m)}(t + \sum_{i=1}^{\alpha} \beta_i s_i) \le \psi_{q,k}^{(m)}(t) + \sum_{i=1}^{\alpha} \beta_i \psi_{q,k}^{(m)}(s_i)$$
 (8)

Proof. Let $G(t) = \psi_{q,k}^{(m)}(t + \sum_{i=1}^{\alpha} \beta_i s_i) - \psi_{q,k}^{(m)}(t) - \sum_{i=1}^{\alpha} \beta_i \psi_{q,k}^{(m)}(s_i)$. Then fixing s_i for each i we have,

$$G'(t) = \psi_{q,k}^{(m+1)}(t + \sum_{i=1}^{\alpha} \beta_i s_i) - \psi_{q,k}^{(m+1)}(t)$$

$$= (\ln q)^{m+2} \sum_{n=1}^{\infty} \left[\frac{n^{m+1} k^{m+1} q^{nk(t + \sum_{i=1}^{\alpha} \beta_i s_i)}}{1 - q^{nk}} - \frac{n^{m+1} k^{m+1} q^{nkt}}{1 - q^{nk}} \right]$$

$$= (\ln q)^{m+2} \sum_{n=1}^{\infty} \left[\frac{n^{m+1} k^{m+1} q^{nkt} (q^{nk} \sum_{i=1}^{\alpha} \beta_i s_i - 1)}{1 - q^{nk}} \right] \ge 0. \text{ (since } m \text{ is odd)}$$

That implies G is non-decreasing. Also,

$$\lim_{t \to \infty} G(t) = \lim_{t \to \infty} \left[\psi_{q,k}^{(m)}(t + \sum_{i=1}^{\alpha} \beta_i s_i) - \psi_{q,k}^{(m)}(t) - \sum_{i=1}^{\alpha} \beta_i \psi_{q,k}^{(m)}(s_i) \right]$$

$$= (\ln q)^{m+1} \times$$

$$\lim_{t \to \infty} \sum_{n=1}^{\infty} \left[\frac{n^m k^m q^{nk(t + \sum_{i=1}^{\alpha} \beta_i s_i)}}{1 - q^{nk}} - \frac{n^m k^m q^{nkt}}{1 - q^{nk}} - \sum_{i=1}^{\alpha} \beta_i \frac{n^m k^m q^{nks_i}}{1 - q^{nk}} \right]$$

$$= -(\ln q)^{m+1} \sum_{n=1}^{\infty} \sum_{i=1}^{\alpha} \beta_i \frac{n^m k^m q^{nks_i}}{1 - q^{nk}} \le 0. \text{ (since } m \text{ is odd)}$$

Therefore $G(t) \leq 0$ concluding the proof.

Theorem 2.3. Let $q \in (0,1)$, k > 0, t > 0, $\beta_i > 0$ and $s_i > 0$ for all $i \in N_{\alpha}$. Suppose that m is a positive even integer, then the following inequality is valid.

$$\psi_{q,k}^{(m)}(t + \sum_{i=1}^{\alpha} \beta_i s_i) \ge \psi_{q,k}^{(m)}(t) + \sum_{i=1}^{\alpha} \beta_i \psi_{q,k}^{(m)}(s_i)$$
(9)

Proof. Let $H(t) = \psi_{a,k}^{(m)}(t + \sum_{i=1}^{\alpha} \beta_i s_i) - \psi_{a,k}^{(m)}(t) - \sum_{i=1}^{\alpha} \beta_i \psi_{a,k}^{(m)}(s_i)$. Then fixing

 s_i for each i we have,

$$H'(t) = \psi_{q,k}^{(m+1)}(t + \sum_{i=1}^{\alpha} \beta_i s_i) - \psi_{q,k}^{(m+1)}(t)$$

$$= (\ln q)^{m+2} \sum_{n=1}^{\infty} \left[\frac{n^{m+1} k^{m+1} q^{nk(t + \sum_{i=1}^{\alpha} \beta_i s_i)}}{1 - q^{nk}} - \frac{n^{m+1} k^{m+1} q^{nkt}}{1 - q^{nk}} \right]$$

$$= (\ln q)^{m+2} \sum_{n=1}^{\infty} \left[\frac{n^{m+1} k^{m+1} q^{nkt} (q^{nk \sum_{i=1}^{\alpha} \beta_i s_i} - 1)}{1 - q^{nk}} \right] \le 0. \text{ (since } m \text{ is even)}$$

That implies H is non-increasing. Also,

$$\lim_{t \to \infty} H(t) = \lim_{t \to \infty} \left[\psi_{q,k}^{(m)}(t + \sum_{i=1}^{\alpha} \beta_i s_i) - \psi_{q,k}^{(m)}(t) - \sum_{i=1}^{\alpha} \beta_i \psi_{q,k}^{(m)}(s_i) \right]$$

$$= (\ln q)^{m+1} \times$$

$$\lim_{t \to \infty} \sum_{n=1}^{\infty} \left[\frac{n^m k^m q^{nk(t + \sum_{i=1}^{\alpha} \beta_i s_i)}}{1 - q^{nk}} - \frac{n^m k^m q^{nkt}}{1 - q^{nk}} - \sum_{i=1}^{\alpha} \beta_i \frac{n^m k^m q^{nks_i}}{1 - q^{nk}} \right]$$

$$= -(\ln q)^{m+1} \sum_{n=1}^{\infty} \sum_{i=1}^{\alpha} \beta_i \frac{n^m k^m q^{nks_i}}{1 - q^{nk}} \ge 0. \text{ (since } m \text{ is even)}$$

Therefore $H(t) \geq 0$ concluding the proof.

Remark 2.4. If we let $q \to 1^-$ as $k \to 1$ in inequalities (7), (8) and (9) then we repectively recover the inequalities (4), (5) and (6).

References

- [1] R. Díaz and C. Teruel, q, k-generalized gamma and beta functions, J. Nonlin. Math. Phys. 12(2005), 118-134.
- [2] B. Sroysang, More on some inequalities for the digamma function, Math. Aeterna, 4(2)(2014), 123-126.
- [3] W. T. Sulaiman, Turan inequalites for the digamma and polygamma functions, South Asian J. Math. 1(2)(2011), 49-55.

Received: May, 2014