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Abstract

Background: The adoption of climate-smart agricultural (CSA) practices is expected to improve farmers’ adaptation
to climate change and also increase yields while simultaneously curbing greenhouse gas (GHG) emissions. This
paper explores the determinants of smallholder farmers’ participation in GHG-emitting activities. It also estimates
the impact of CSA activities on reducing GHG emissions.

Methods: The findings are based on survey data obtained from 350 smallholder farmers in the East Gonja district
of Northern Ghana. We adopted the generalized Poisson regression model in identifying factors influencing farmers’
participation in the GHG emission practices and inverse-probability-weighted regression adjustment (IPWRA) to
estimate the impact of CSA adoption on GHG emissions.

Results: Most farming households engaged in at least one emission activity. The findings of the generalized
Poisson model found that wealthier households, higher education, and households with access to extension
services were less likely to participate in GHG emission activities. There was also evidence that CSA adoption
significantly reduces GHG emissions.

Conclusion: Advocacy in CSA adoption could be a necessary condition for environmental protection through the
reduction of GHG emissions.

Keywords: Climate-smart agriculture, Emission, Mitigation, Adoption, Under-dispersion, Count models, Treatment
effect

Background
Climate change and its effects pose a major global
challenge to both agricultural growth and human welfare
efforts, especially in sub-Saharan Africa (SSA). The
steady decline in agricultural productivity followed by
food price increases has severe implications for food
security, particularly in developing countries where there
is a high degree of vulnerability to climate change (FAO
2016). In SSA, where the majority of the population

relies on climate-sensitive practices, primarily in agricul-
tural production, climate change and variability poses a
developmental challenge (Thompson et al. 2010; IFPRI
2010). In Ghana, climate change is predicted to affect
crop production, food security, water security, and en-
ergy supply in the country’s northern regions, especially
in the agricultural sector (Stanturf et al. 2011; Akudugu
et al. 2012). The challenges faced in these regions are
amplified by the harsh climate and distance from the na-
tion’s administrative capital (Sova et al. 2014) with ma-
jority of the farmers in these locations depending on
farming as their primary occupation. According to
Thamaga-Chitja and Morojele (2014), the marginal areas
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of these rural smallholder farmers, coupled with their
low level of technical expertise and the various barriers
to accessing essential farming agricultural resources, are
particularly prone to the effects of climate change.
The agricultural sector is also expected to make a

significant contribution to the proportion of GHG
emissions resulting from climate change. According to
Czyżewski and Kryszak (2018), agricultural practices
contribute about 25–30% of GHG emissions. Agricul-
tural activities contribute about 17% to GHG emissions
and 7–14% to land use change (OECD 2015). In addition
to industry and transport, it contributes significantly to
GHG emissions through a number of activities, such as
land clearing, biomass or wood burning, and tilling or
agrochemical use, all of which increase the effects of cli-
mate change by releasing GHGs (FAOSTAT, 2015). In
addition, agriculture in tropical developing countries is
estimated to account for 7–9% of anthropogenic GHG
emissions annually (Smith et al. 2014).
In Ghana, total GHG emissions increased by 20% be-

tween 1990 and 2011 (WRI 2015). With the exception of
emissions from industrial processes, total GHG emis-
sions in all sectors have increased in the country, with
growth in emissions dominated by agriculture, forestry,
and other land use (AFOLU) sectors. According to the
Ministry of Environment, Science, Technology and
Innovation (MESTI), the growing trend of emissions in
the AFOLU sector since 1990 has resulted from the con-
version of forests to cropland and grassland, an increase
in the population of animals, burning biomass through
wildfires, crop production, and fertilizer use, as well as
other associated emissions (MESTI 2015).
Various methods of mitigation of GHG emissions

have been proposed. Robertson (2004) identified strat-
egies that could significantly reduce net CO2 emissions
from the agriculture sector. These include (1) improv-
ing farm operations that consume fuel that leads to
energy efficiency gains, (2) soil carbon sequestration
through changes in tillage, (3) crop residues and
animal waste management and use of cover crops, (4)
production and use of biofuels and bio-based materials
technology to offset the use of fossil fuels for energy
production, and (5) agricultural production and yields
efficiency for livestock and crops to offset the need to
expand lands for agricultural production resulting in
carbon losses. Smith et al. (2008) categorize GHG
mitigation potentials into three categories, namely
emission reduction, elimination, and emission preven-
tion. In reducing emissions, the instability of GHGs is
potentially reduced by the efficient management of
carbon and nitrogen flows in the agro-ecosystem
(Smith et al. 2008). Unfortunately, many developing
countries view the move to focus on agricultural
emissions as a threat to stifle their growth and reduce

the burden of mitigation on developing countries
(Chandra et al. 2016).
Climate-smart agriculture (CSA) integrates the three

dimensions of sustainable development (economic, so-
cial, and environmental) by jointly addressing food se-
curity and climate challenges through the development
of technical, policy, and investment conditions to
achieve sustainable food security in agricultural develop-
ment (FAO, 2013). The CSA term was developed to rep-
resent strategies to address climate change challenges by
increasing resilience to extreme weather conditions, cli-
mate change adaptation, and the reduction of green-
house gases from agricultural sources that contribute to
global warming (Steenwerth et al. 2014). CSA practices
are not or must not necessarily be new; in fact, accord-
ing to Schaller et al. (2017), any agricultural practice or
technique that contributes to the achievement of the
three pillars can be considered climate-smart. The differ-
ent techniques employed in CSA often perform differ-
ently over the components and, as a result, have to be
combined as an integrated approach to complement
each other to maximize the benefits (FAO 2015).
Despite the high vulnerability to climate change in the

Savannah region of Ghana, burning has been identified
as a major contributor to anthropogenic sources of agri-
cultural GHG emissions (FAO 2016). It is therefore im-
perative to address both issues simultaneously in order
to ensure the sustainability of agricultural production in
the region. Climate change studies, particularly in the
SSA, have focused on adaptation strategies, their effect
on farmers and households, as well as on farmers'
perception of climate change. Although the agricultural
sector has been shown to make a significant contribu-
tion to global GHG emissions, little attention has been
paid to the contribution of farmers to emissions or miti-
gation as they adapt to climate change. This study seeks
to assess the level of participation in emissions practices,
to identify factors that influence the participation of
smallholders in emissions practices, and to estimate the
impact of climate change adaptation strategies on the re-
duction of GHG emissions.

Methods
Study area and data collection
For this study, data was acquired from a 2018 survey of
350 households in the East Gonja district of the
Savannah Region of Ghana. A multistage sampling pro-
cedure was employed for this study. In the first stage,
the district was stratified into a beneficiary and non-
beneficiary communities. A beneficiary community is a
community where the CSA technologies have been dis-
seminated and these communities were identified from a
list obtained from extension agencies promoting CSA
practices in the district. A non-beneficiary community is
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one where the technologies were not directly introduced.
In the second stage, simple random sampling was used
to select 15 communities, 10 and 5 communities from
the pool of beneficiary and non-beneficiary communi-
ties, respectively. In the final stage, households from
each of the selected communities were selected ran-
domly for the study. The households are mostly small-
holder producers, with farm holdings less than 2
hectares (MOFA 2006), cultivating crops like maize, rice,
yam, groundnut, cowpea, and soybean primarily under
rain-fed conditions.

Conceptual and analytical techniques
The primary objective of this study is to empirically
identify factors that influence the intensity of participa-
tion in emission practices and whether adoption of
climate-smart agricultural practices reduces participation
in emission practices. Thus, we hypothesized that adop-
tion of climate-smart agricultural practices discourages
farmers and their households from engaging in practices
that would lead to GHG emissions. The study, therefore,
uses two analytical techniques to achieve its objectives.
First, count data modelling was used to identify the
determinants of the intensity of participation in GHG
emissions. Second, the study employed inverse-
probability-weighted regression adjustment (IPWRA)
estimator within the framework of the propensity score
to estimate the causal effect of CSA adoption on partici-
pation in GHG emission practices.

Count data model—generalized Poisson model
The number of practices farm households engage that give
rise to emissions defines the dependent variable conceptu-
alized as the intensity of participation in emission prac-
tices. The GHG practices under consideration in this
study are bush burning as part of hunting, bush burning
as part of land preparation, burning crop residues after
cultivation, and tree cutting for fuelwood. Following Cam-
eron and Trivedi (1990) and Greene (2008), the number
of emission practices by farmers could be modelled under
the framework of count data modelling. This is because
the dependent variable (intensity of participation in emis-
sion) is a numerical count by its nature. The count data
model has been used in numerous studies where the
dependent variable is count (e.g. Nkegbe and Shankar
2014; Sharma et al. 2011; Isgin et al. 2008; Rahelizatovo
and Gillespie 2004; Lohr and Park 2002). Given that there
is a random occurrence of the number of practices
farmers engaged in to give rise to emission, the appropri-
ate probability distribution is the Poisson distribution. The
intensity of participation in emission practices can be
modelled using the standard Poisson because, at any given
yi, an integer of counts can be said to come from a Poisson
distribution as shown in Greene (2008).

We also run an alternative count model to cater for
limitations should the equidispersion assumption not
hold. The generalized Poisson regression (GPR) is a
flexible count data approach capable of handling count
data of any nature, under, over, or equidispersion. The
GPR has been studied by Famoye (1993) and has been
used in modelling the number of accidents and some co-
variates by Famoye et al. (2004). The GPR has also been
recently used by Mahama et al. (2020) to model under-
dispersed count-dependent variable. The mathematical
formulation for count data models, and GPR in particu-
lar can be found in studies such as Famoye (1993),
Famoye et al. (2004), and Mahama et al. (2020). These
mathematical formulation and models were not pre-
sented in this study for brevity, and lack of space1.

Inverse-probability-weighted regression adjustment (IPWRA)
The study also adopts the inverse-probability-weighted
regression adjustment (IPWRA) estimator in estimating
the treatment effect of CSA adoption on the participa-
tion in emission practices. IPWRA estimator possesses a
double-robust property, and it also serves as a reliable
solution for possible biassed estimates (Bourguignon
et al. 2007; Robins et al. 2007). It was also noted by
Wooldridge (2007) that even under situations of treat-
ment or outcome misspecifications, IPWRA estimates
would still be consistent but not when both are misspe-
cified. The primary aim of using the IPWRA estimator is
to measure the impact of adopting CSA in reducing the
participation of emission practices, measured by the
average treatment effect on the treated (ATT), which is
the average effect of the treatment limited to the individ-
uals receiving the treatment (CSA adopters). Other pa-
rameters, such as the average treatment effect (ATE)
and the potential outcome means (POM) were also esti-
mated. ATE is the average effect of the treatment among
all individuals in the sample/population under consider-
ation. On the other hand, the POMs are the potential
outcomes given a specific treatment level (adoption or
non-adoption). Again, the mathematical formulations and
the model specifications for the IPWRA can be found in
Imbens and Wooldridge (2009)2.

Results and discussion
Variable definition
The dependent variables
The number of emission practices engaged by house-
holds is the dependent variable for this study. However,
these practices are limited to agriculture, land use,

1Readers are kindly requested to consult those references for further
knowledge.
2Readers are kindly requested to consult Imbens and Wooldridge
(2009).
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forestry, tree cutting, and burning activities, in recogni-
tion of the fact that burning in the Savannah is the main
source of emissions in the agricultural sector in Ghana
(FAOSTAT 2015). Emissions practices include cutting
trees for fuelwood, burning bush while hunting for small
game, burning bush as part of land clearing activities,
and burning bush after cultivation. The number of
emission practices in which households participated is
shown in Table 1.
Table 1 shows that the majority of the sampled house-

holds participated in at least one of the GHG emission
practices. Six (6%) of the sampled households did not
participate in any of the GHG emission practices, while
41.14% of the households were into all four emission
contributing practices. In addition, about 8.29% partici-
pated in only one of the practices contributing to GHG
emissions from the agricultural sector in Ghana. The
remaining 22% and 22.57% of the sampled households
were into two and three of the practices contributing to
GHG emissions in the study area, respectively. Table 2
shows the types of emission practices engaged by house-
holds. Bush burning as part of land preparation and tree
cutting were the most common emission practices
among households in the study area, accounting for ap-
proximately 86% and 87%, respectively. Burning crop
residues after cultivation and bush burning during hunt-
ing had relatively low participation compared to the
former but still had more than 50% of the sample
participating.
The CSA practices have been classified into three main

categories: soil conservation practices, livelihood diversi-
fication and irrigation, and water harvesting.
Soil conservation practices aimed at improving soil fer-

tility and structure and they include creating swales,
composting, or application of decayed organic domestic
waste, and crop residues improve soil fertility, making,
controlling bush, and ploughing crop residues back into
the soil. Livelihood diversification strategies are aimed
mostly at minimizing weather-induced losses and also
stabilize incomes of farmers as well as their households.
The approaches considered in this study include rearing
livestock for commercial purposes, beekeeping, and soya
cultivation as an alternative to the cultivation of trad-
itional crops and its processing and dry season vegetable

farming. Irrigation and water harvesting practices in-
clude the use of manual pumps to support the continu-
ous cultivation of crops during the dry seasons when
droughts become severe. Water harvesting helps house-
holds harness water, which can be used in irrigation and
also domestic activities for the same reason. Table 3 is a
summary of the CSA practices adopted by respondents
in the study area.

The independent variables
The probability of participation in emission practices is
hypothesized to be influenced by variables which are
categorized as household and personal characteristics,
institutional characteristics, and climate change
perceptions.
Table 4 reports the descriptive statistics of the vector

of explanatory variables included in the model. House-
hold size, education status of household head, farm size,
wealth (welfare per capita), production intention, and
farming experience were some of the household and
personal characteristics considered. According to Adeoti
(2008), larger households are expected to adopt im-
proved technology and could also mean labour

Table 1 Distribution of counts of emission practices

Emission practice (counts) Frequency Percent

0 21 6

1 29 8.3

2 77 22.0

3 79 22.6

4 144 41.1

Total 350 100.0

Table 2 Distribution of households’ participation in emission
practices

Emission practice Frequency Percent

Bush burning before cultivation 300 85.7

Tree cutting 304 86.9

Burning crop residues after cultivation 199 56.7

Bush burning during hunting 193 55.1

Table 3 Summary of CSA practice adoption

CSA practice Adopters (%) Non-adopters (%)

Soil conservation practices 67.7 32.29

Creation of swales 10.86 89.14

Compost application 11.43 88.57

Making contours 25.43 74.57

Bush burning control 55.14 44.86

Ploughing crop residues into soil 38.86 61.14

Livelihood diversification 66.00 34.00

Commercial livestock production 58.86 41.14

Soya cultivation 13.71 86.29

Soya processing 9.71 90.29

Dry season gardening 7.43 92.57

Beekeeping 2.29 97.71

Irrigation and water harvesting 41.71 58.29

Water harvesting 39.14 60.86

Manual pump irrigation 2.86 97.14

Total = 350
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availability for land clearing activities. Conversely, re-
source allocation constraints in larger households could
become a barrier in the adoption of improved and sus-
tainable agricultural technologies. As a result, household
size could be either positive or negative when it comes
to participation in emission practices. Farmers who have
attained a level of education are expected to be exposed
to knowledge on the causes and effects of climate
change so would take steps not to contribute to emis-
sions. Hence, education is expected to have a negative
effect on participation in emission practices in the study
area. For this study, farm size refers to the total acreage
cultivated by respondents. When it comes to participa-
tion in burning, larger farm sizes might be compelled to
burn during land clearing. Larger farm sizes can be a
symbol of wealth, and as such, burning might not be the
case given that wealthier farmers may be able to hire
more labour. The effect of farm size on participation in
emission practices, as a result, could be either negative
or positive. Given that the study area has high poverty
levels, relatively wealthier households are believed to
have a higher probability of adopting improved tech-
nologies and less likely to participate in emission prac-
tices. The intention of production is also expected to
influence households’ participation in emission practices.
Households cultivating primarily for commercialization

are expected to adopt practices which would result in
higher yields to realize more profit at the same time. In
efforts to reduce the cost of production, commercially
oriented producers may result in labour and cost-saving
practices which could lead to the contribution of GHG
emissions.
The institutional variables hypothesized to affect the

household participation in emission practices are FBO
membership, extension access, credit access, and CSA
training. Respondents’ membership of farmer groups fo-
cused on any aspect of the agricultural production and is
believed to affect participation in GHG emission prac-
tices. We expect farmers who are members of such
organization to be more likely to adopt sustainable agri-
cultural practices or CSA practices and as a result, par-
ticipate less GHG emission practices. This is because
there is an increased likelihood of farmer to farmer in-
formation dissemination on improved technologies and
access to labour sharing if farmers belong to an FBO.
Correspondingly, farmers in FBOs are more likely to get
access to credit to supplement their production and off-
set the associated cost in technology adoption. Again,
the study expects that farmers who had access to exten-
sion services, whether from the Ministry of Agriculture
or any other source will be more likely to adopt im-
proved technologies. In the context of CSA, farmers who

Table 4 Variable definition and descriptive statistics

Variable Definition Mean Standard deviations

Dependent variable

Emission Number of participated emission practices (counts) 2.846 1.22

Explanatory variables

Household size Number of household members 8.46 4.42

Education Highest level of education of household head (years) 3.85 5.10

Off-farm revenue Alternative income source aside farming (1 if yes, 0 if no) 0.26 0.44

Farm size Total size of land cultivated (acres) 8.14 6.55

Experience Number of years of farming 20.22 13.31

FBO membership Membership of farmer-based organization (1 if yes, 0 if no) 0.26 0.44

Extension access Contact with extension agent (1 if yes, 0 if no) 0.64 0.48

Credit access Access to credit for farming activities (1 if yes, 0 if no) 0.33 0.47

Production intention Primary purpose for farming (1 if commercial, 0 if subsistence) 0.40 0.49

Climate change awareness Whether a farmer has knowledge of climate change (1 if yes, 0 if no) 0.72 0.45

CSA training Farmer participation in CSA training (1 if yes, 0 if no) 0.15 0.36

CSA adopter Farmer adoption of CSA practices (1 if yes, 0 if no) 0.87 0.33

Welfare Household monthly per capita expenditure 277.40 304.82

Perception of causes

Naturally Average index of perception climate change occurring as a result of natural events 1.04 1.14

Deforestation Average index of perception climate change occurring as a result of deforestation 0.75 1.32

Bush burning Average index of perception climate change occurring as a result of bush burning 0.33 1.38

Mean responses for dichotomous variables (yes/no) represent the percentage of yes responses
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get access to extension services are more likely to learn
about climate change, its impact and causes. As a result,
extension access should have a negative influence on
participation intensity in GHG emission practices.
Farmers in some communities in the study area and
communities considered in this study were exposed to
CSA training. Farmers who participated in the CSA
training were directly introduced to CSA technologies to
have knowledge about climate change, causes and im-
pacts. This variable was measured as a dummy and is ex-
pected to increase the probability of adopting CSA
technologies. The adoption of CSA practices is expected
to lead to a reduction in GHGs. As such, for this study,
farmers or households that adopted CSA practices are
expected to participate less in the GHG emission prac-
tices in the study area. The sign in the model is expected
to be negative.
Finally, climate change awareness and perception

variables were also hypothesized to influence household
participation in emission practices. Niles and Mueller
(2016) adduce that the perceptions of individuals on
climate change are connected to their support of climate
policies and their alteration of their climate-related be-
haviours. The perception of respondents on the causes
of climate change concerning anthropogenic and non-
anthropogenic causes is measured on a Likert scale from
− 2 to 2 corresponding, respectively, from strongly dis-
agree to strongly agree. A positive coefficient relates to
individuals who agree that climate change is caused by
either deforestation, or bush burning or naturally. These
variables are expected to be significant in the model with
the perception of anthropogenic causes having a nega-
tive sign while the others have a positive.

Determinants of the intensity of GHG emission practices
Although the basic Poisson model is theoretically at-
tractive, it has a major shortcoming of equidispersion
assumption. The assumption of equidispersion is that
the variance of the count-dependent variable and its
conditional mean are equal. However, some empirical
studies on count data have been shown to exhibit over-
dispersion with the variance being greater than the mean
as a result of zero observations in the dependent variable
(Nkegbe and Shankar 2014). The preliminary analysis on
the count-dependent variable of this study showed that
the variance is less than the mean resulting in under-
dispersion, which can be attributed to the fact that only
6% of the information on the dependent variable was
zero. The estimated dispersion parameter from the GPR
model is negative (− 0.64), indicating under-dispersion.
The likelihood ratio test gave a chi-square value of
115.13, which is significant at 1%, suggesting that the
generalized Poisson model rather than the standard
Poisson model is the appropriate model for the

estimation. Also, we found that chi-square, AIC, and
BIC for GPR are less than standard Poisson, confirming
that GPR better describe the data than the standard
Poisson model.
The estimates from the GPR model identifying the

determinants of the intensity of GHG emission prac-
tices are reported in Table 5. The results show that
education, experience, access to extension services,
CSA training, CSA adoption, and welfare as well as
the perception of deforestation are all negative and
significant determinants of GHG emission practices.
However, non-farm activities, climate change aware-
ness, and perception on bush burning as a cause of
climate change are positive and significant determi-
nants in the GPR model.
Education was found to have a negative and significant

influence on participation in emission practices. The
marginal effect indicates that as respondent attain an
extra year of education, the number of emission prac-
tices participated is expected to reduce by about 0.02.
This result is in line with the study's a priori expecta-
tions, given that education has a positive influence on
the adoption of modern and sustainable agricultural
practices. Education enables households to understand
the threats and risks posed by emission practices and
their overall impacts on the climate and environment.
This finding confirms that of Manda et al. (2016), who
also found a significant positive relationship between
education and the adoption of sustainable agricultural
practices in rural Zambia.
Extension access was also found to have a negative

effect on the decision to intensively participate in
emission practices among farmers in the study area.
The variable was found to be statistically significant
at 1% and shows that households who had access to
extension services reduce the number of emission
practices by 0.4 compared to households that did not
have access to the service. These findings are also in
line with our expectations and consistent with find-
ings of the literature. For example, Kim et al. (2005)
reported that the extension services had a positive ef-
fect on the adoption of best management practices
among beef cattle producers in Louisiana. Similarly,
Nkegbe and Shankar (2014) also established a positive
relationship between extension contact and adoption
of soil and water conservation practices in northern
Ghana.
Farmers who participated in CSA training were also

found to be less likely to participate in emission prac-
tices than those who did not. The coefficient was found
to be significant at 5%, indicating that respondents who
received CSA training tend to reduce the number of
emission practices they participated by 0.3 compared to
respondents who did not. Respondents who participated
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in CSA training were more likely to implement effect-
ively the CSA practices that led to the mitigation of
GHGs. The CSA adoption variable was also found to be
negative and significant at 5%. The marginal effect also
indicates that the adoption of CSA practices has reduced
the number of emission practices that respondents par-
ticipated in by 0.4. Considering that one of the objectives
of CSA is to reduce GHG emissions, this result is con-
sistent with expectations and confirms that the adoption
and practice of CSA as a way to address climate change
issues positively by reducing emissions.
The household wealth, proxied by per capita house-

hold consumption expenditure, was also found to be
statistically significant at 1% with a negative coefficient.
As the wealth of the household increased by GHS 1.00
per household member, the number of emission prac-
tices participated decreased by 0.23. Wealth is believed
to contribute to the adoption of improved farming prac-
tices. Regarding the emission practices, the relationship
between wealth and participation in the practices has also

proved to be favourable. This finding is consistent with
the expectation of the study, given that wealthier house-
holds can afford to bear the cost of adopting sustainable
agricultural practices.
Households whose main purpose of production is fam-

ily consumption tend to contribute less to emission
practices than those produced for commercial pur-
poses. The marginal effect value of 0.2 indicates that
households cultivating for commercial purposes are
more likely to participate in emission practices by 0.2
more than households cultivating for subsistence
reasons. This result could be attributed to the fact that
households producing for family consumption tend to
cultivate on small farmlands, making land clearing easier
and burning unnecessary. Non-farm income was also
found to have a positive and significant coefficient, im-
plying that households with alternative income streams
tend to be more involved in emission-related practices in
the study area, ceteris paribus. The associated marginal
effect shows that individuals who have an alternative

Table 5 Count data model results

Variable Generalized Poisson model Poisson model

Coefficient Marginal effect Coefficient Marginal effect

Intercept 1.293*** (0.073) – 1.325*** (0.129) –

Household size − 0.007 (0.005) − 0.020 (0.014) − 0.009 (0.009) − 0.025 (0.025)

Education (years) − 0.009** (0.004) − 0.025** (0.011) − 0.013* (0.007) − 0.036* (0.019)

Off-farm activities revenue 0.075* (0.043) 0.214* (0.122) 0.110 (0.072) 0.313 (0.206)

Farm size 0.005* (0.003) 0.016* (0.009) 0.006 (0.005) 0.017 (0.014)

Experience − 0.0009 (0.002) − 0.002 (0.004) − 0.0001 (0.003) − 0.002 (0.008)

FBO membership 0.040 (0.053) 0.114 (0.150) 0 .040 (0.095) 0.105 (0.270)

Extension access − 0.154*** (0.043) − 0.438*** (0.121) − 0.164** (0.072) − 0.468** (0.207)

Credit access 0.015 (0.046) 0.042 (0.131) 0.021 (0.079) 0.059 (0.225)

Production intention 0.072* (0.043) 0.201* (0.128) 0.093 (0.074) 0.266 (0.212)

Climate change awareness 0.142*** (0.045) 0.405*** (0.128) 0.198** (0.079) 0.565** (0.224)

CSA training − 0.121** (0.065) − 0.346** (0.184) − 0.177 (0.116) − 0.503 (0.332)

CSA adopter − 0.092** (0.042) − 0.263** (0.121) − 0.118 (0.072) − 0.336 (0.205)

Wealth − 0.079*** (0.023) − 0.226*** (0.066) − 0.095** (0.044) − 0.270** (0.125)

Perception on causes of climate change

Natural − 0.005 (0.019) − 0.014 (0.054) − 0.008 (0.033) − 0.022 (0.094)

Deforestation − 0.083*** (0.022) − 0.237*** (0.062) − 0.112*** (0.037) − 0.317*** (0.107)

Bush burning 0.049** (0.019) 0.106** (0.055) 0.074** (0.035) 0.210** (0.099)

Dispersion − 0.64

Log likelihood − 525.967 − 583.534

Chi-squared 104.20*** 124.60***

AIC 1083.158 1201.048

BIC 1156.459 1270.491

Likelihood ratio test LR chi2(1) = 115.13***

Significant at *10%, **5%, and ***1%
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source of income other than farming have participated
0.2 times more in emission practices than those who
have not. This finding was contrary to our expectations.
Farm size also had a positive and significant coefficient
with a corresponding marginal effect of 0.016, indicating
that the participation in emission practices increased by
0.016 as the farm size increased by an acre. This finding
is consistent with the a priori expectation, given that lar-
ger farm sizes may require more labour to clear before
and after production. Most farmers would rather resort
to burning the crop residues after production or during
clearing without any form of control because of the farm
sizes. It is relatively easier to clear smaller farms using
limited labour and even employ fire management prac-
tices where burning is practised.
In terms of farmers’ perceptions on the causes of cli-

mate change and how they influence their participation
in emission practices, it was revealed that their percep-
tions on anthropogenic causes, deforestation and bush
burning, have a significant effect on GHG emissions.
The perception of deforestation as the cause of climate
change had a negative coefficient with an associated
marginal effect of − 0.2 and that of bush burning with a
positive coefficient and corresponding marginal effect of
0.106. The results indicate that respondents who
were generally opposed to climate change as a result of
deforestation were likely to contribute more to GHG
emissions than those who agreed. The result is in line
with the a priori expectation. It indicates that farmers
are sensitive to environmental issues and are likely to
desist from certain activities which could have a negative
impact on the environment.
The result for the bush burning also indicates that re-

spondents who generally agreed that bush burning was
one of the contributing factors of climate change were
more likely to participate in emission practices, holding
all other variables constant. This result was contrary to
our expectation and the ascertions made by Niles and
Mueller (2016). Practices such as burning during hunt-
ing are practices that have been practiced in the study
area since childhood. These acts form a fundamen-
tal part of their culture and, as such, become a challenge
for individual to abandon them, since they would essen-
tially mean abandoning part of their culture.
Again, burning during land clearing provides a cheaper

alternative for some farmers as opposed to other ap-
proaches. Resource-constrained smallholders are likely
to opt for burning over other land clearing options to
save cost irrespective of the cost to the environment.

Average adoption effect of CSA on emission practices:
IPWRA estimator
The estimated effects of climate-smart agricultural tech-
nology adoption on emissions from the IPWRA estimator

is presented in Table 6. In estimating this effect, the out-
come indicators of the adopters group are compared
with the outcome indicators of the same group had they
not adopted (the counterfactual situation). This is
known as the average treatment effect on the treated.
The results indicate that the adoption of CSA practices
has led to a reduction in the likelihood of participating in
emission practices by 0.596 in the population. Thus, esti-
mated ATE suggests that an average household in the
population will have 0.596 less probability to engage in
practices that will lead to GHG emissions if CSA is
adopted. Similarly, the conditional treatment effect
which measures ATT of CSA adoption on GHG emis-
sions is 0.623. Thus, the average farm household in the
CSA adoption group would be 0.623 less likely to engage
in practices that would lead to GHG emissions.
The POM shows that if none of the household in the

sample adopts any of the CSA practices, they will par-
ticipate in about three practices leading to GHG emis-
sion. The results, therefore, confirmed the effectiveness
of CSA practices in the mitigation of GHG emissions in
the study area.

Conclusions
Empirical results of the study highlighted that educa-
tion, access to extension, and household wealth play
vital roles in reducing GHG emissions. Improving ac-
cess to the extension services and education will in-
crease mitigation efforts, particularly in rural farming
communities. In addition, by improving access to
credit for farmers, they are more likely to adopt CSA
technologies that, in turn, are likely to contribute to
GHG mitigation. The study also showed that having
the right understanding of the causes of climate
change does not automatically correlate with altering
their climate-related behaviours as some studies
have indicated. The intensity of participation in emis-
sion practices was high among respondents who gen-
erally perceived bush burning as one of the causes of
climate change, alluding to the fact that some of the
practices of burning are tied to people’s culture.
It would therefore require the collaborative effort of
the traditional authorities to deter individuals from
such practices.
On the effectiveness of adoption of CSA technology

in reducing GHG emissions in the study area, the

Table 6 IPWRA estimates of ATE and ATT

Treatment effects Coefficient Standard error

Average treatment effect (ATE) − 0.596*** 0.155

Treatment effect on the treated (ATT) − 0.623*** 0.155

Potential outcome mean (POM) 3.402*** 0.141

Significant at *10%, **5%, and ***1%
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empirical results showed that households that adopted
CSA technologies were less likely to contribute to
GHG emissions by reducing their participation in
emission practices. As such, it can be concluded that
the adoption of CSA can be used as a tool for redu-
cing GHG emissions from agricultural sources. The
implementation of CSA technologies should be con-
sidered by the government as part of its policy for
meeting the intended national determined contribu-
tion and other climate change mitigation plans of the
country. The methodological approach is considered
robust, given that the study yields near-uniform esti-
mates across both Poisson and generalized Poisson
models as well as the IPWRA.
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