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ABSTRACT
Assessment and prediction of land use/land cover change using
spatiotemporal data are of great importance for better environ-
mental monitoring, land use planning, and management.
Therefore, the objective of this study is to predict LULC change,
its driving factors and impact on water availability for irrigation in
the Vea catchment, Ghana. CA-Markov model was used to predict
land-use changes in 2038 and 2054. Terrset geospatial monitoring
and modeling system software was used to run the model. The
Relative Importance Index was used to identify major drivers of
the LULC change. The results showed an increase in cropland
from 181 km2 in 2038 to 183 km2 in 2054 at the expense of grass-
land and mixed vegetation/forest, which are expected to decrease
from 51–50 km2 and 73–71 km2, respectively. Population growth
and agricultural expansion are among the leading drivers of LULC
change in the Vea catchment. The CA-Markov model shows a
continued increase in anthropogenic land uses, negatively affect-
ing irrigation water availability and landscape sustainability. These
results provide a foundation for sustainable land use governance
through responsible planning and management of land and
water resources by considering trade-offs between LULC change
and water availability for irrigation in the Vea catchment.
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1. Introduction

Changes in land use/land cover (LULC) are one of the most challenging and persistent
drivers of environmental change. It is increasingly identified as an important cause of
environmental change across all geographic and temporal dimensions. Several intercon-
nected earth systems are influenced by humans and alter the regular provisions of the glo-
bal natural environment. LULC change has a detrimental effect on the sustainability of
the global environment and is perhaps the most pressing concern in many parts of the
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world (Sleeter et al. 2013). Over the past 300 years, LULC change around the world has
been ranked by gains in agriculture and declines in other areas (forests, grasslands, water
and wetlands) (Chisanga et al. 2022). Globally, every year, millions of hectares of forests
are burned. For example, FAO (2020) estimates that around 420 million hectares of forest
land globally is degraded with 10 million hectares of forest cleared annually. Since 1990,
as with the rest of the world, in Africa, the extent and intensity of natural resource extrac-
tion has led to significant changes in land properties (Govender et al. 2022). According to
a report by FAO (2011), about 27.4% of Africa’s land area (nearly 500 million hectares) is
degraded. An extensive review of LULC in Africa found that agricultural land expansion,
influenced by population growth, is the main driver of LULC change at the expense of
forests (Govender et al. 2022). Rapid changes in the LULC are recognizable in Ghana.
Ghana’s protected forest reserves experienced average annual deforestation rates of 0.7,
0.5, 0.4 and 0.6%, respectively, over the periods 1990–2000, 2000–2005, 2005–2010 and
2010–2015 (Springgay et al. 2019).

Predicting changes to LULC is a step towards ensuring effective land use planning and
sustainable management of land resources and is routinely used for various suitability
measures as an indicator of human impact on land change processes (Gashaw et al.
2017). Remote sensing (RS) and geographic information systems (GIS) are the most popu-
lar tools used in LULCC research. RS detects and monitors land use at various levels,
from which land cover information can be extracted (Hua 2017a, b). while GIS provides a
flexible environment to collect, store, display and analyze digital data required for change
detection and subsequent prediction (Shawul and Chakma 2019). Since there are many
models for simulating changes in LULC, their complexity with respect to stochastic
change and the dynamic nature of natural and socioeconomic variables must often be
considered (Abdurahman et al. 2023). As reported by Yirsaw et al. (2017), several models
are based on agents (Xie et al. 2007), CLUE (Han et al. 2015), mobile automaton (CA)
and Markov chains. A multidisciplinary model that combines elements of different model-
ing techniques has been proposed to develop predictions of future LULC change (Olmedo
et al. 2015). A CA Markov model is a combination of cellular automata and transition
probability matrices generated by mapping between two different images (Nadoushan
et al. 2015). Markov chain analysis is a useful tool for modeling land use and land cover
change (LUC) when the changes and processes in the land use layer (LUC) are difficult to
describe. In addition, the use of CA-Markov model in LULC change studies has the
advantage of its dynamic simulation capabilities; high efficiency with data, simple calibra-
tion; and the ability to simulate multiple land cover and complex patterns (Khawaldah
et al. 2020; Munthali et al. 2020). Therefore, we used the CA-Markov model with the
Terrset geospatial modeling and monitoring system software to improve the simulation of
complex land cover in the Vea catchment.

The Vea catchment is a sub-catchment of the White Volta basin and source water for
the Vea irrigation reservoir. Historically, it was a mosaic landscape consisting of large nat-
ural forests, woodlands, and savannah grasslands. The landscape of the catchment area is
suitable for agriculture, settlements, and mining. Due to its favorable landscape, the catch-
ment has been exposed to LULC changes as a result of population growth and the associ-
ated expansion of agricultural land. Little has been done by the regional environmental
protection authority to change this situation through the preservation of natural forests.
Regardless of the efforts made, the catchment is experiencing noticeable environmental
problems such as land degradation, overgrazing, and deforestation resulting in a decline
in land productivity. This phenomenon necessitates the generation of scientific informa-
tion regarding changes in LULC, associated potential drivers, and future projections to
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develop appropriate land use plans. Therefore, the modeling of changes in LULC is at the
center of current scientific research to make informed planning decisions for the develop-
ment of green development policies and strategies. The purpose of this study was to
address the following questions: (1) Which LULC classes have changed to other classes in
the study area during the last 24 years (1998–2022)? (2) Which LULC classes will be
changed to other land uses in 2038 and 2054? (3) What are the possible drivers of LULC
change in the study area? (4) How does LULC change affect future water availability for
irrigation in the study area? This study is crucial to provide empirical evidence of previ-
ous and future LULC change patterns by the driving factors of change and their impact
on the availability of water for irrigation for natural resource managers, ecologists, and
decision-makers to develop a land use plan that affects the sustainable land management
of the studied landscape.

2. Materials and methods

2.1. Description of the study area

The Vea catchment is between latitudes 10�300 and 11�000N and longitudes 1�120W and
0�500E (Figure 1). The catchment mainly covers Bongo and Bolgatanga districts in Ghana
and south-central Burkina Faso (Larbi et al. 2019). The catchment area consists of three
agroecological zones in the semi-arid zone with an average yearly rainfall of about
956mm, and its peak is in August; the basin has a unimodal rainfall regime from May to
October. The temperature is generally higher than the average annual temperature of

Figure 1. Map of the study area.
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28.9 �C, except for the wet months of July, August, and September. The rainfall pattern is
shown in Figure 2. Potential evaporation exceeds yearly precipitation (Limantol et al.
2016). The Vea catchment has a relatively low topography with elevations between 89 and
317 m above sea level. LULC is mainly cropland, followed by grassland with mixed vege-
tation/forest. The primary economic activity of the inhabitants of this area is agricultural
production (Larbi et al. 2019).

2.2. Data sources and methods of acquisition

Satellite images were obtained from the United States Geological Survey (USGS) Data
Portal (http://earthexplorer.usgs.gov). World Reference System "WRS", Path 194, Row 52,
was applied to select the area of interest. To examine land cover changes in the Vea
catchment, four Landsat scenes were captured between 1998 and 2022, each taken eight
years apart. Images were taken in November with at least 5% cloud cover to reduce sea-
sonal variation in vegetation and pattern variation. Google Earth Pro was used to refer-
ence and validate satellite images. A DEM (Digital Elevation Model) with a resolution of
30m was obtained from the SRTM (Shuttle Radar Topography Mission) and was also
used to collect spatial data. All data (images) are projected to the Universal Transverse
Mercator (UTM) Zone 30N projection system and the World Geodetic System-84
(WGS84) reference to ensure consistency between data sets during analysis. Data collec-
tion and other information for each Landsat scene are presented in Table 1.

2.3. Methods of data acquisition

Each Landsat scene’s acquisition dates and further details are displayed in Table 1.

Figure 2. Monthly temperature and rainfall of Vea catchment.

Table 1. Sources and description of satellite data.

Sensor type Date of acquisition
Cloud

Cover (%)
Pixel

resolution

WRS
Spectral
resolution

Bands/
colourPath Row

Landsat TM 06/11/1998 5 30� 30 194 52/53 8 Multi-spectral
Landsat7 ETMþ 09/11/2006 5 30� 30 194 52/53 8 Multi-spectral
Landsat 8 (OLI) 23/05/2014 4 30� 30 194 52/53 11 Multi-spectral
Landsat 8 (OLI) 16/05/2022 4 30� 30 194 52/53 11 Multi-spectral

OLI: Operational Land Imager; ETMþ: Enhanced thematic mapper, Thematic Mapper (TM).

4 G. F. ARFASA ET AL.

http://earthexplorer.usgs.gov


2.4. Land use and land cover change assessment

2.4.1. Image pre-processing
Environmental resource data analysis system (ERDAS) Imagine version 2015 software is
used for preprocessing operations. The most common image preprocessing methods are
geometric and radiometric corrections that improve the quality of remotely sensed images
for further analysis. Therefore, as suggested by Mohajane et al. (2018), all images for this
study were geometrically corrected and rectified at level 1 (L1T). To reduce errors in the
digital number of images and improve their interpretation, radiometric correction is
applied (Hoque et al. 2021; Nath et al. 2023). The image processing chain was also per-
formed using the open source software Quantum GIS (QGIS version 3.10) (QGIS, https://
qgis.org/en/site/). Atmospheric correction was applied using a semi-automatic classifica-
tion plugin (Mohajane et al. 2018) was done based on the Dark Object Downloading
(DOS) algorithm (Abdurahman et al. 2023). In this study, radiometric correction was
applied to the TM, ETMp and OLI images for the years 1998, 2006, 2014 and 2022. The
conversion process was performed for each of the TM, ETMþ and OLI items at a reso-
lution of 30m. For all images, calibration was obtained by converting raw digital numbers
(DN) to sensor spectral radiance using Equation (1). A flowchart with the methodology
followed in this study is presented in Figure 4. All bands of TM, ETMþ and Operational
Land Imager (OLI) were considered for layers stacking. After stacking the satellite, data/
images were clipped to a subset of the case study area which is 306 km2 in order to focus
on the relevant data.

Lk ¼ ðLkmax� LkminÞ=ðQCALkmax�QCALkminÞ � ðDN�QCALkminÞ þ Lkmin

(1)

where Lk is the spectral radiance at the sensor’s aperture in mW/(cm2 �sr�mm); DN is the
digital number of the quantized calibrated pixel value; Lkmax is the maximum spectral
radiance that is scaled to QCALkmax; Lkmin is the minimum spectral radiance that is
scaled to QCALkmin; QCALkmax is the maximum quantized calibrated pixel value in
DN (corresponding to Lkmax); and QCALkmin is the minimum quantized calibrated
pixel value in DN (corresponding to Lkmin). After this conversion, the radiance is con-
verted into top-of-atmosphere (TOA) reflectance using Equation (2):

P ¼ pLd2

ESunkcosh
(2)

where q 1=4 Unitless planetary reflectance, L 1=4 Spectral radiance at sensor aperture, d 1=4
the Earth-Sun distance which is on the date of imaging, ESun 1=4 Mean solar exoatmos-
pheric irradiance, p ¼ Mathematical constant equal to �3.14159 [unitless], hs ¼ Solar
zenith angle [degrees]

2.4.2. Image classification
To classify LULC categories, training sites were randomized and used to locate training
pixels for each LULC classes. Training sites supported high-resolution images from
Google Earth for current imagery generated by GPS readings. For old historical images,
Training sites were assigned using visual image interpretation, information from local eld-
ers, and local knowledge from researchers. At the evaluation stage, signature editions are
made by deleting, merging or renaming until the most satisfactory results are achieved.
Supervised Maximum Likelihood Classification (MLC) has been widely used to obtain
LULC information from multidimensional raster images through the process of image
interpretation and classification (Govender et al. 2022; Nageswaran et al. 2022;

GEOCARTO INTERNATIONAL 5

https://qgis.org/en/site/
https://qgis.org/en/site/


Abdurahman et al. 2023). This is mainly because the classification errors are minimized
by considering the variance-covariance within the class distribution and combining the
spectral class signatures of individual components to obtain them for reasonable classes.
It is preferred because of its availability and the fact that it does not require long training.
Therefore, this study uses MLC with field integration and Google Earth verification, a
popular image classification method (Abdurahman et al. 2023; Nath et al. 2023). To
monitor LULC change, it is necessary to have at least two periods of data for comparison
(Mohajane et al. 2018). Therefore, the LULC map was created by Landsat (TM, ETMp
and OLI) for the years 1998, 2006, 2014 and 2022. Five LULC classes were identified
using field observations, expert opinion, and photographs of specific locations (Table 2).
GPS was used for subsequent classification. Therefore, field visits were conducted for field
testing of uncertain land covers to further refine the LULC classification. Multi-temporal
grid layers were then generated and their corresponding statistics compared to LULC
change estimates.

2.4.3. Accuracy assessment
Accuracy assessment tells us to what extent the ground truth is depicted on the equivalent
classified image (Abbas and Jaber 2020). The classification accuracy assessment provides
the degree of reliability of the results and subsequent change detection (Brown et al.
2020). The classified map was compared to ground truth data to assess accuracy. For
2006 and 2014, the reference points were collected from Google Earth, original Landsat
imagery, interviews, group discussions, previous reports and maps. For the 2022 image,
Google Earth, field observations, original Landsat imagery, interviews and group discus-
sions of random reference points in different LULC types from the field survey using GPS
were recorded.

The most common and effective way to measure classified image accuracy from
remotely sensed imagery is an error/confusion matrix (Visa et al. 2011). The confusion
matrix provides user accuracy, producer accuracy, overall accuracy and kappa statistics.
Kappa coefficient was determined by using Equation (3) (Rwanga and Ndambuki 2017).
According to (Foody 2020), a kappa coefficient value below 0.4 indicates poor agreement,
a value between 0.4 and 0.8 represents moderate agreement, and a value above 0.8 indi-
cates strong agreement.

K ¼ N
P

r i ¼ 1xii � P
r i ¼ 1 ðxiþ � xþ 1Þ

N2 � P
r i ¼ 1ðxiþ � xþ 1Þ �100 (3)

K ¼ ðTotal � sum of correctÞ � sum of all the ðrow total � column totalÞ
Total squared � sum of all the ðrow total � column totalÞ (4)

where r is the row number in the matrix, xii is the number of observations in row i and
column i (the diagonal elements), xþ i and xiþ are the marginal totals of row i and col-
umn j, respectively, and N is the number of observations.

Table 2. Description of LULC classes (Larbi et al. 2019).

LULC categories Description

Cropland Areas used for crop cultivation
Grassland The land mostly covered with grasses
Mixed vegetation/forest Land covered with dense trees, mixed forests, and plantation forests.
Waterbody Areas covered with standing or moving water
Built-up/bare land Areas of human settlements, roads, artificial surfaces, and bare soil
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2.4.4. Change detection
Due to the availability of large storage data sets, a number of numerical change detection
algorithms and methods have been developed and studied over the past decades to esti-
mate and detect LULC changes (Lu et al. 2014). These methods and procedures have
been thoroughly reviewed, with excellent descriptions and summaries provided. The most
common approaches for change detection include image contrast, image segmentation,
PCA, CVA and post-classification comparison (Hansen 2022). Recently, there has been
much debate about the application of machine learning algorithms to remote sensing
images (Friedenthal et al. 2018). In this study, we investigated and detected changes in
the spatial extent and model of the study area through a change detection method based
on QGIS, which combines GIS and ERDAS images. For each type of LULC, the area in
km2 and the percentage change for the periods 1998–2006, 2006–2014, 2014–2022 and
1998–2022 were calculated to analyze land cover change in the study area. Although the
LULC statistics are calculated differently, the change in LULC over the four time periods
is based on the difference between the years 1998, 2006, 2014 and 2022. Magnitude of
Change (MC), Percentage change (PC) and rate of change (ARC) of the classified images
were calculated based on the following equations:

MC km2ð Þ ¼ Af � Ai (5)

PC %ð Þ ¼ Af � Ai
Ai

� 100 (6)

ARC km2year�1
� �

¼ Af � Ai
n

(7)

Rate of change Rð Þ ha
yr

� �
¼ Area final year� Area initial year

area initial year
� 1= time intervalð Þ � 100Þ

� �

(8)

where Ai is the class area (km2) at the initial time, Af is the class area (km2) at the final
time, and (n) is the number of years of the study period. Loss¼Row total - diagonals of
each class. Gain¼ column total – diagonals of each class. Net change¼ gain-loss. Net
persistence¼Net change/diagonals of each class

2.4.5. Annual rate of change analysis
The difference between the final year and the initial year, determining the magnitude of
change between corresponding years, will be divided by the initial year and period to
obtain the annual rate of change for each land use type. For determining the spatiotempo-
ral size and rate of change in LULC categories (Equation 9):

ARC %ð Þ ¼ Fy�Iy
Iy � t �100 (9)

where ARC is the annual rate of change in LULC categories. Iy and Fy are the initial and
final year areas, respectively, and t is the time interval.

2.5. Land use/land cover change drivers

Changes in LULC are driven by natural and human activities (Xing et al. 2018). Large-
scale global and regional changes in LULC have important implications for many eco-
logical aspects. If the engines of change remain in the past, it is safe to believe that they
will remain influential forces in the future (Leta et al. 2021). Topographic and distance
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driver variables have been used in LULC change modeling studies. Elevation, slope, dis-
tance from roads and distance to building were considered as potential driver variables.
Road and river area distances were set as dynamic variables to express the differential dis-
tance as it changes over time.

2.6. Change analysis and modeling

2.6.1. Post-classification change analysis using the land change Modeler
Various modeling tools have been used to analyze LULC dynamics, with each tool offer-
ing different levels of accuracy (Hamad et al. 2018). Land Change Modeler (LCM),
Cellular Automata (CA), and CA-Markov are embedded in Terrset software and are com-
monly used tools for LULC change modeling. For short-term forecasts, mostly ten years
or less, for short-term forecasts, typically ten years or less, LCM provides predictive accur-
acy in LULC change analysis (Roy et al. 2014). In addition, LCM provides more accurate
results compared to other models that project LULC changes based on supervised classifi-
cation due to the robustness of the multi-layer perceptron-neural (MLP) network used in
LCM (P�erez-Vega et al. 2012). These reasons guided the LCM decision to predict LULC
changes in the Vea catchment for the 2054 horizon. LULC change analysis and scenario
maps of the Wea Basin were generated in LCM using change analysis, transition potential
modeling, model validation and change prediction (Figure 3). The model evaluates the
change of LULC between two sets of images with different data, the same legend and the
same spatial features, and presents the results of the changes in a chart and map form

Figure 3. The suitability maps and input data: Distance from river (a), distance from road (b), DEM (c), and slope (d),
are the input data. Source: NASA Shuttle Radar Topography Mission (SRTM) (2013). Shuttle Radar Topography Mission
Global. Distributed by Open Topography. https://doi.org/10.5069/G9445JDF.
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(Megahed et al. 2015). In this study, LULC changes for four time periods (1998–2006,
2006–2014, 2014–2022 and 1998–2022) were performed using the post-classification com-
parison method, a widely used approach to detect LULC changes (Mahmoud and Alazba
2016). LULC change analysis was performed using the change detection module in LCM,
which provides information on the gain and loss of each LULC class, the net change,
which is the difference between the gain and loss of each class, the contributions to the
net change. Each class and transition intervals between each LULC class that occurred
between two different dates (Larbi et al. 2019).

2.6.2. Modeling of transition potentials using the multilayer perceptron neural
network
The LULC maps of the year (2006–2014 and 1998–2014) were used as inputs to create
the transitions. Using the change analysis module, dominant transitions (grassland to
cropland, forest/mixed vegetation to cropland, and forest/mixed vegetation to grassland)
were identified, which were used to create potential transition maps for modeling by set-
ting a threshold of 1000 hectares. The change maps were used to determine the probabil-
ity of conversion from other classes to cropland. The LCM uses logistic regression, Sim
Weight and a multi-layer perceptron neural network (MLP) as modeling algorithms to
model transition variables. In this study, the MLP neural network was used to construct
the transition potential maps. The MLP is extensively extended and requires no user
intervention, with the ability to model multiple transitions simultaneously and also to
model non-linear relationships. The MLP neural network operates as a feedforward artifi-
cial neural network (ANN) model with a unidirectional flow of data through hidden
layers in between. Neural network training is based on a supervised training algorithm,
which is a common method for training ANNs. The transition potential maps for the
LULC changes were generated with an MLP accuracy rate (89%), which is within the
acceptable range.

2.6.3. LCM validation and change projection
After the model is created, the simulation map must be checked for correctness of the
prediction. Therefore, model validation is one of the important stages of land use predic-
tion. The validation module includes a comparative evaluation of the simulated and real
maps based on the Kappa index. However, it differs from the traditional kappa statistic in
that it divides the validation into many components, each with a specific kappa pattern
such as Klocation, Kno, Kstandard, etc. The results of the model were compared with the
current or actual land use map. The comparison of the projected LULC map representing
the LULC in 2022 with the actual LULC (2022 map) is based on the Index of Agreement
(KIA) approach, which is often used to validate predictions of LULC change (Eastman
and Toledano 2018). Before the CA Markov model can be applied to estimate the next
32 years. For this purpose, the validation module available in Terrset Software must be
used.

2.6.4. Simulation and prediction of land use/cover changes
2.6.4.1. Markov-chain model analysis. The Markov chain model is a unique and widely
used land use and land cover modeling tool that represents LULCC as a stochastic pro-
cess. In a Markov system, the future state of the crop system is modeled based on the
immediate state of progress. The transition of the system from one state to another is a
transition, and the probability associated with that state transition is called the transition
probability. The initial estimates of pij can be computed as
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Pij ¼ Pij=Ntðij . . . 1, 2, 3, . . . :mÞ (10)

where Nij is the number of units transitioned from the state i to state j, Ni is the number
of units in state i.

Therefore, the basic hypothesis of the Model simulation process mainly produces a
Land Use area transfer matrix and a probability transfer matrix to predict land use
change. The Markov Chain Model is described as a set of states, S¼(S_1, S_2, S_
3,… S_n) assuming that the current state is〖S〗_t and then, it changes to state S_j at
the next step with a probability denoted by transition probabilities P_IJ Thus, the state S_
(tþ 1) in the system determined by former stage S_t in the Markov Chain using the fol-
lowing formula (Chang et al. 2018);

Pij ¼
Pll � � � Pln

..

. . .
. ..

.

Pnl � � � Pnn

2
64

3
75ð0 � Pij � l and

X
Pij ¼ li, j, . . . , nÞ (11)

Stþ1 ¼ Pij � Pt . . . :

where Pij is the state transition probability matrix and n are the land represents the num-
ber of land use type; S is land use status, t; tþ 1 is the time point. In this study, Markov
chain analysis was conducted in three periods; 1998–2006, 2006–2014, 2014–2022 and
2022–2054. In this way, the matrix of the transition area of land use and the transition
probability matrix for the current periods were determined.

2.6.4.2. Cellular automata (CA). The CA model is a change model with local interaction
that reflects the evolution of the system, where space and time are treated as discrete enti-
ties, and space is often represented as a regular two-dimensional grid. The temporal and
spatial complexity of land use land cover systems can be well modeled by properly speci-
fying transition rules in CA models. CA modeling provides important information for
understanding theories of forest cover, such as the evolution of forms and structures
(Zhang et al. 2008). Cellular Automata is a bottom-up dynamic model within a spatio-
temporal computation. It is discrete in space-time and the state can perform complex
time-space modeling. The data for each cell in the St þ 1 state is determined by the cell
itself and its neighboring cells in the St state, which means that changes in the cell are
handled according to the rules. It mainly consists of cells, cell space, neighbor, rule and
time. The CA model filter identifies neighbors (Zhou and Chen 2018). The smaller the
distance between the original cell and its neighbor, the greater the weighting factor. The
weight factor is combined with the transition probability to predict the state of neighbor-
ing network cells. See above that land use changes are not entirely random decisions. In
this study, the cellular automata network represented each land use cell, and each network
had 8 neighboring cells; Cell status represented the type of land use of the cell; the time
interval is 24 years. To track land use transitions, the maximum transition probability rule
and the hysteresis rule are valid. If a cell is assigned a land use type, the cell will not
change to other land use types during the simulation period (Aburas et al. 2016;
V�azquez-Quintero et al. 2016; Gharaibeh et al. 2020).

St þ 1 ¼ f ðSt,NÞ (12)

where S is the set of states of the finite cells. t and tþ 1 are different moments; N is the
neighborhood of cells; and f is the local space transformation rule (Figure 4).
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3. Result and discussion

3.1. Status of land use/land covers

Five LULC classes were identified for the period of 1998–2022 (Figure 5). In 1998, the
grassland accounted for 54.8%, followed by mixed vegetation/forests (31.7%), cropland
(10.9%), built-up areas (1.6%), and waterbodies (1.1%), which show minimal coverage of
the Vea Catchment (Table 3). In 2006, grassland cover was about 39.7%, followed by mixed
vegetation/forests (29.1%), while cropland, built-up area and waterbodies accounted for
26.2, 4 and 1.1%, respectively. In 2014, grassland covered about 32.6%, followed by mixed
vegetation/forests (23.6%), cropland increased to 36.6%, and built-up area and waterbodies
accounted for 6.1 and 1%, respectively. Grassland declined to 16.6% in 2022, mixed vegeta-
tion/forest decreased to 22.73%, and water decreased to 1.03%, whereas cropland and built-
up area increased by 52.87 and 6.75%, respectively. In the entire study period, cropland
and built-up areas significantly increased at the expense of forestland and grassland cover-
age, which decreased by 54–75.1 km2 and 174.5–54 km2 from 1998 to 2022 (Table 3).

3.2. LULC conversions analysis

The LULC change was performed by taking the initial year of 1998. Four LULC conversions
were detected, that is, between 1998 and 2006, 2006 and 2014, 2014 and 2022, and 1998 and

Figure 4. Methodological flowchart land use land cover change detection and modeling.
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2022. The conversion results revealed substantial losses and gains in LULC in the first
(1998–2006), second (2006–2014), third (2014–2022) and fourth (1998–2022) study periods.
For instance, grassland, mixed vegetation, and water bodies were converted to other LULC
classes during the first, second, third, and fourth study periods. Grassland converted to
other LULC classes by about 70.81 km2 in 2006, 51.9 km2 in 2014, and 58.4 km2 in 2022.
Mixed vegetation/forest converted to other land use land cover classes by 11.7 km2 in 2006,

Figure 5. LULC of 1998, 2006, 2014 and 2022 of the Vea catchment.

Table 3. Area of LULC class from 1998 to 2022 (area in km2).

LULC classes

1998 2006 2014 2022

km2 % km2 % km2 % km2 %

Water 3.5 1.1 3.46 1.1 3.43 1 3.41 1.03
Built-up and bare land 5.1 1.6 13.1 4 20.5 6.3 22.3 6.75
Grassland 181 54.8 131 39.7 107.6 32.6 54 16.6
Cropland 36.1 10.9 86.4 26.2 120.8 36.6 174.5 52.87
Mixed v./forest 104.5 31.7 96.2 29.1 77.8 23.6 75.1 22.73
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20.3 km2 in 2014, and 6.29 km2 in 2022. Cropland converted to other land use land cover
classes by 11.58 km2 in 2006, 46.1 km2 in 2014, and 5.46 km2 in 2022. Built-up area and bare
land converted to other land use land cover classes by 0.45 km2 in 2006, 8.1 km2 in 2014,
and 10.3 km2 in 2022. While water converted to other land use classes by 0.15 km2 in 2006,
0.01 km2 in 2014, and 0.09 km2 in 2022. Table 4 shows that three LULC classes registered a
negative annual change between 1998 and 2022. Annual losses in the grassland, water, and
mixed vegetation/forest classes were �0.15, �0.01 and �3.67 km2, respectively. For the
same time period, the annual rate of change (ARC) for these classes was �8.35, �2.58, and
�3.5%, respectively.

3.3. LULC change driver variables

Driver variables that affect change are based on spatial analysis and added to the model as
static or dynamic components. The LULC prediction in the catchment is based on chang-
ing driver effects. In this study, both topography and proximity factors were selected to
analyse LULC change. Selected driver variables were evaluated for their explanatory value
using Cramer’s V and P values before entering the model (Table 5). Cramer’s’ V value does
not provide convincing evidence that any particular variable explains land use change.
Instead, it is a much easier tool to understand the importance of a variable in influencing
change. Index probability is used to determine the relative frequency of pixels of different
LULC types in different regions. Recommended in cases where Cramer’s V value is low.
The result obtained is considered good in terms of probabilities. In this study, it was a
quantitative measure of the frequency of variation between crops and other soils (also
known as disturbance). Table 5 shows that variables such as elevation, slope, distance to
the river, and distance to the road are considered useful variables for the transition.
Variables such as slope have low Cramer’s V values, indicating that the influence of slope
on LULC change in the study area is not important. Variables with good Cramer V values
suggest that they are the most explanatory variables for the LULC change. All other varia-
bles were used to model the transition. Elevation and slope are considered to be the domin-
ant topographic factors affecting LULC change. Topography affects the extent and extent
of built-up areas, vegetation, mixed forests, and the conversion of grasslands into cropland.
Qasim et al. (2013) found that deforestation decreases with increasing slope. In the low-
lands, accessibility is the factor most closely associated with agricultural expansion. Other
influencing factors, such as distance to rivers and distance to roads, also play an important
role in land use change as they make it easier for people to access resources.

Table 4. The annual rate of changes in km2 and % occurred from 1998 to 2022.

Land use classes

1998-2006 2006-2014 2014-2022 1998-2022

km2 % km2 % km2 % km2 %

Water �.05 �0.14 �0.004 �0.14 �0.001 �0.03 �0.01 �2.58
Built up 1.0 19.6 0.92 7.06 0.04 0.18 1.89 37
Grassland �6.2 �3.45 �2.9 �2.23 �5.95 �5.53 �15.12 �8.35
Cropland 6.28 17.4 4.3 4.97 6.34 5.25 16.92 46.88
Mixed V./F �1.0 �0.99 �2.3 �2.4 �0.34 �0.43 �3.67 �3.5

Table 5. Cramer’s V and p-value for each of the explanatory variables.

Driver variables Cramer’s V p-value

Distance from road 0.1391 0.0000
Distance from river 0.2158 0.0000
Elevation 0.2967 0.0000
Slope 0.0094 0.0000
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3.4. Transition probability matrix (TPM)

The transition potential model evaluates the possibility of LULC transition from one layer
to another based on the appropriate transition of the region and the presence of driving
forces (Mahamud et al. 2019). TPM captures the probability that each land-use class shifts
to another. The LULC change predictions are mined by the probability of the transition
matrix (Muhammad et al. 2022). The model-generated transition probability matrices
between LULC types in the periods 1999–2006, 2006–2014, 2014–2022 and 1998–2022 were
presented in Tables 6–9, respectively. The spatiotemporal LULC change values between
the previous and subsequent land cover maps were tabulated. Cross-tabulation is used to
determine the degree of change and conversion between different land cover maps. In the
cross-tabulation (Tables 6–9), the frequencies in bold according to the diagonal transition
probability matrix confirm the probability of the LULC class remaining unchanged from the
previous map to the land cover map. Cropland land has the highest area of 185.5 km2 and is
expected to remain as cropland from 1998 to 2022. The conversion of mixed vegetation/for-
est and grassland was the most important land use factor for arable land. The mean loss of
the LULC category was observed from the water body to grassland and built-up/bare land.
However, there has been minimal or no conversion to grassland and water on built-up/bare
land. From 1998 to 2022, the biggest loss was the conversion of grassland to cropland by
185.5 km2. The lowland areas of the catchment were covered with forests and grasslands
before 2006 and even before 2014. Currently, due to the expansion of cropland, the area of
grasslands and forests has decreased sharply. Recently, the expansion of built-up areas has
been increasing continuously and at a faster rate. A study in China reported that urban
built-up land expansion results from the conversion of cultivated land (Wu and Zhang

Table 6. Transition area matrix (km2) and accuracy assessment of the Vea catchment from 1998 to 2006.

LULC classes

2006

Producer
accuracy

(%)
User

accuracy (%)

Built
up/bare
land Cropland Grass land

Mixed
v./forest Water Row total

1998 Built up/bare
land

3.83 0.22 0.192 0.012 0.00 4.286 93.1 90

Cropland 0.07 22.15 11.326 0.180 0.00 33.729 93.1 87.1
Grass land 9.59 56.68 114.569 4.51 0.00 185.382 97.8 96.7
Mixed

V./forest
1.04 4.23 6.487 91.556 0.00 103.307 88.9 97.6

Water 0.01 0.003 0.000 0.000 3.528 3.535 97 97
Column total 14.54 83.28 132.575 96.256 3.528

Note: The overall classification accuracy is 95% whereas the overall Kappa Statistics is 0.93%.

Table 7. Transition area matrix (km2) and accuracy assessment of the Vea catchment from 2006 to 2014.

LULC classes

2014
Producer
accuracy

(%)

User
accuracy

(%)
Built up/bare

land Cropland Grass land
Mixed
v./forest Water Row total

2006 Built up/bare
land

6.420 0.160 7.799 0.166 0.017 14.561 100 93.33

Cropland 2.980 37.158 42.888 0.263 0.000 83.288 93.94 91.2
Grass land 8.566 86.079 36.664 1.258 0.000 132.566 89.53 97.5
Mixed

v./forest
0.713 0.748 18.926 75.852 0.000 96.240 94.64 85.48

Water 0.002 0.005 0.007 0.000 3.450 3.464 95.52 98.46
Column total 18.681 124.149 106.284 77.538 3.467

Note: The overall classification accuracy is 93.7% whereas the overall Kappa Statistics is 0.92%.
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2012). Kafy et al. (2021) revealed that effective urban planning is necessary to address the
multiple challenges and competing interests of urban environments due to the rapid
increase in urban built-up area and the scarce land and water resources on the urban edge.

3.5. Gains and losses of LULC category from 1998 to 2022

The gains and losses of the different land use categories in a Vea catchment over the
24-year period (1998–2022) are presented in Figure 6a–d. The LULCC is characterized by
very contrasting changes in land use, with the green color representing gains per class in
km2 and the wine color indicating losses in the land use category. Figure 6a shows
Cropland and grassland increased about 62.4 and 18.01 km2, respectively, between 1998
and 2006. While mixed vegetation/forest lost about 10.87 km2, there were no losses in the
water area and built-up area category. In the second period (2006–2014), cropland
increased by 83.81 km2, while grassland and mixed vegetation/forest lost �93.84 and
19.38 km2, respectively (Figure 6b). A similar trend is observed in 2014–2022, where crop-
land increases by 55.17 km2, while grassland and mixed vegetation/forests lose �58.16 and
5.04 km2, respectively (Figure 6c). Figure 6d depicts that between 1998 and 2022, cropland
and built-up area/bare land increase by 142.16 and 15.12 km2, respectively, while grass-
land, mixed vegetation/forest and water are lost �147.36, �30.15 and �0.07 km2, respect-
ively. The study support the Losses in the Savannah forest are corroborated by Atulley
et al. claim that the Savannah forest ecosystem is subject to many stresses leading to forest
degradation; Extraction of firewood, uncontrolled bush fires, illegal mining and conver-
sion of forests to cropland.

Table 8. Transition area matrix (km2) and accuracy assessment of the Vea catchment from 2014 to 2022.

LULC classes

2022

Producer
accuracy

(%)

User
accuracy

(%)

Built
up/bare
land Cropland Grassland

Mixed
v./forest Water Row total

2014 Built-up/bare
land

8.505 7.553 2.669 0.036 0.048 18.810 100 93.33

Cropland 0.392 118.703 4.862 0.204 0.000 124.160 90 97.3
Grassland 8.423 46.672 47.899 3.302 0.003 106.300 97.2 98.6
Mixed

v./forest
0.952 1.751 3.586 71.242 0.000 77.531 94.7 94.7

Water 0.003 0.003 0.000 0.000 3.429 3.435 98.2 94.8
Column total 18.275 174.681 59.02 74.784 3.480

Note: The overall classification accuracy is 95.9% whereas the overall Kappa Statistics is 0.94%.

Table 9. Transition area matrix (km2) and accuracy assessment of the Vea catchment from 1998 to 2022).

LULC classes

2022

Producer
accuracy

(%)

User
accuracy

(%)

Built
up/bare
land Cropland Grassland

Mixed
v./forest Water Row total

1998 Built-up/bare
land

3.854 0.152 0.262 0.004 0.016 4.28 96.55 93.33

Cropland 0.256 27.790 5.661 0.012 0.000 33.72 87.2 94.44
Grassland 12.501 137.726 33.806 1.490 0.011 185.53 100 90.4
Mixed

v./forest
1.692 9.002 19.268 73.326 0.000 103.28 94.1 100

Water 0.004 0.002 0.000 0.000 3.418 3.42 100 93
Column total 18.307 174.672 58.997 74.833 3.445

Note: The overall classification accuracy is 95.2% whereas the overall Kappa Statistics is 0.95%.
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3.6. Contributors to land use/land cover changes from 1998 to 2022

In order to observe the transformations of all other LULC classes to cropland, plots of
contributors (LULC types transformed into other LULC types) on the dynamics of crop-
land area over the 24-year period, expressed in km2 were constructed (Figure 7a–d). The

Figure 6. (a) Gain and losses between 1998 and 2006 (km2). (b) Gain and losses between 2006 and 2014 (km2).
(c) Gain and losses between 2014 and 2022 (km2). (d) Gains and losses between 1998 and 2022 (km2).

16 G. F. ARFASA ET AL.



Figure 7. (a) Contributors to Net change in cropland from 1998 to 2006 (km2). (b) Contributors to Net change in
Cropland from 2006 to 2014 (km2). (d) Contributors to Net change in Cropland from 2014 to 2022 (km2).
(d) Contributors to Net change in Cropland from 1998 to 2022 (km2).
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main contributor behind the expansion of cropland over the last 24 years was grassland,
followed by mixed vegetation/forest. From 1998 to 2006, grassland contributed about
47 km2, while mixed vegetation/forest contributed 3.4 km2 to the increase in cropland.
From 2006 to 2014, grassland contributed about 37 km2, followed by mixed vegetation/
forest which contributed 0.29 km2. From 2014 to 2022, grassland contributed about
43 km2, while built-up/bare land contributed about 7 km2. Generally, from 1998 to 2022,
grassland and forest/mixed vegetation were the main contributors to the increase in crop-
land in the Vea catchment and contributed about 127 and 8.5 km2, respectively.

3.7. Potential LULC change drivers in the Vea catchment

The results of the relative importance index (RII) analysis showed that agricultural expan-
sion (0.80), followed by firewood extraction (0.75) and charcoal production (0.68) were
the leading drivers of the change in LULC (Table 9). As proximity drivers of LULC
change function at the local community level, they directly reflect how and why local land
cover changes and transforms.

The main underlying drivers of LULC change in the Vea catchment are unprecedented
population growth (0.85) which are followed by land degradation (0.78), lack of livelihood
options (0.72), lack of law enforcement (0.70) and dry spell (0.63) (Table 10).

Understanding the patterns and drivers of LULC change is necessary for rational and
specific planning of sustainable land management (Kamwi et al. 2018). Significant LULC
changes (grassland decline, cropland, built-up/bare land expansion, and mixed vegeta-
tion/woodland decline) occurred in the study area due to various driving factors.
Population growth appears to be the main driver of LULC change, most notably the
expansion of cropland at the expense of grassland and mixed vegetation/forests. It con-
firms the results of Abebe et al. (2022) reported in Gubalafito district of northeastern
Ethiopia and in Kuma et al. (2022) were carried out from the Bilat catchment in southern
Ethiopia, according to which more than half of the studied basins were arable land.
Population growth, lack of livelihood opportunities, inappropriate agricultural trends asso-
ciated with land degradation, mono-cultural market culture that encourages farmers to
acquire more arable land for higher yields, and institutional weakness in the implementa-
tion of land use policies have led to the increase in cropland.

3.8. Model validation

Comparisons between actual and simulated LULC 2022 maps were performed to validate
the predicted maps. The validation results between the simulated and actual LULC test
summary of the model are presented in Table 11. The accuracy of the prediction was con-
firmed by comparing the predicted LULC for 2022 with the classified LULC for the same

Table 10. Identified potential land use/land cover drivers in Vea catchment.

No Proximity drivers RII Rank Underlying drivers RII Rank

1 Agricultural Expansion 0.80 2 Population growth 0.85 1
2 Firewood extraction 0.75 4 Land degradation 0.78 3
3 charcoal production 0.68 7 Lack law enforcement 0.70 6
4 Overgrazing 0.65 8 dry spell 0.63 10
5 Settlement 0.64 9 Lack of livelihood option 0.72 5
6 Bush fires 0.60 12 Land tenure 0.62 11
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year. The statistics show that Kno is 0.9016, Klocation is 0.9120, and K-standard, which is
the overall kappa, is 0.9043. This means that the simulation is perfectly capable of pin-
pointing the location and also the quantity. Therefore, there is very little quantification
and location error and all K-index values exceed the minimum acceptable standard of
82% (Mishra et al. 2014). In this study, all values of Kappa indices are greater than 95%,
meaning that the agreement between the predicted and the actual map of 2022 is rela-
tively high, showing a strong projection ability of the model to utilize it for LULC change
prediction in 2038 and 2054 (Table 11). LULC prediction of the landscape of the current
study is based on the change of driver effects. Four spatial factors such as distance to
road, river, slope and elevation were used (Table 12). River, slope, and height data were
obtained from open topography with a resolution of 30 � 30m.

The visual comparison between the actual LULC 2022 map and the simulated map
(Figure 8) is relatively similar. The common area of all land use types from the actual
and simulated maps also shows an acceptable decision range, where the difference in
actual area between the simulated map and the 2022 reality for all LULC types is less
than 5% (Table 13). Regardless of the magnitude of variability among the classified land-
use types, the best agreement of change trends was observed with past LULC changes and
predicted LULC change outcomes (Tables 3, 13). The high degree of consistency between
the actual and predicted spatial land use distribution confirms that the developed CA-
Markov model is best suited for predicting changes in the LULC of the Vea catchment in
2038 and 2054.

3.9. Prediction of LULC changes

The predicted land use/land cover types for 2038 and 2054 were calculated using the CA
Markov model and are plotted in areal in Table 13. The area of grassland and mixed veg-
etation/forest decreased from 54.9 km2 in 2022 to 52 km2 in 2038 and 72 km2 in 2022 to
72 km2 in 2054. From 2038 (179 km2) to 2054 (182 km2) and from 2038 (24 km2) to 2054
(25.2 km2) there will be a continuous increase in cropland and built-up/bare land. On the
other hand, the amount of water will decrease from 2038 (3.1 km2) to 2054 (3 km2). The
expansion of cropland and built-up/bare land is expected to increase at the expense of
mixed vegetation/forest and grassland. Over 2022–2054 grassland and mixed v./forest
would have exhibited the highest loss by 4.9 km2, and 5.2 ha, respectively (Table 13). The
lowest loss could be scored by water body. While the highest gain would be observed in
cropland (Figure 9).

Table 11. The k-index values of the simulated LULC map of 2022.

Index Value

K no 0.9016
K Location 0.9120
K standard 0.9043

Table 12. Driver factors and their weight.

No Factors (spatial drivers) Weight (%)

1 Distance to roads 0.24
2 Distance to rivers 0.24
3 Elevation 0.18
4 Slope 0.18
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3.10. Predicted LULC category gains and losses from 2022 to 2054

The gains and losses of the different land use categories in the Vea catchment over the 32-
year period (2022–2054) are shown in Figure 10a–d. The LULC change is characterized by

Table 13. LULC area coverage, and rate of changes between 2022 and 2054.

LULC classes

Area of 2022 Area of 2038 Area of 2054 Gain/loss 2022–2054 (%)

km2 % km2 % km2 % Km2 % Annual change (%)

Cropland 174.5 52.87 179 54.24 182 55.15 7.5 4.3 0.13
Water 3.41 1.03 3.1 0.94 3 0.91 �0.41 �12.02 �0.37
Built-up/bare land 22.3 6.75 24 7.3 25.2 7.64 2.9 13.01 0.45
Mixed v/forest 75.2 22.7 72 21.8 70 21.2 �5.2 �7.1 �0.22
Grassland 54.9 16.6 52.1 15.8 50 15.2 �4.9 �8.9 �0.31

Figure 9. The predicted 2038 and 2054 LULC of the Vea catchment.

Figure 8. Simulated and actual LULC maps of 2022.
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very contrasting changes in land use, with the green color representing gains per class in
percent and the wine color indicating losses in the land use category. Figure 10a shows
that, in the period 2022–2038 cropland increased by 2%, while grassland and mixed vegeta-
tion/forest lost �7 and 0.68%, respectively. These dynamics reflect the saturation of crop-
land caused by significant demographic developments over the past 20 years. A similar
trend is predicted in 2038–2054, where cropland increases by 3%, while grassland and
mixed vegetation/forests lose �0.80 and �2%, respectively (Figure 10b). In general,
between 2022 and 2054, cropland and built-up area/bare land increased by 0.8 and 1.2%,
respectively, while grassland, mixed vegetation/forest, and water are �2, �0.3 and
�0.02 km2, respectively, lost (Figure 10c). This finding confirms the Losses in the Savannah
forest are corroborated by Atulley et al. claim that the Savannah forest ecosystem is subject
to many stresses leading to forest degradation; Extraction of firewood, uncontrolled bush
fires, illegal mining and conversion of forests to cropland.

Figure 10. (a) Gain and losses between 2022 and 2038 (%). (b) Gain and losses between 2038 and 2054 (%). (c) Gain
and losses between 2022 and 2054 (%).
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3.11. Contributors to predicted land use/land cover changes from 2022 to 2054

In order to observe the conversions of all other LULC classes into cropland, plots of the
contributors (LULC types converted into other LULC types) on the dynamics of cropland
area over the period of 32 years, expressed in %, are presented in Figure 11. The main fac-
tor behind the expansion of cropland over the last 32 years was grassland, followed by
mixed vegetation/forest. From 2022 to 2038, Built-up/bare land contributed about 0.5% to
the increase in cropland. From 2038 to 2054, grassland contributed about 0.58%, while
mixed vegetation/forest contributed about 0.1% and built up is �0.4%. In general, from
2022 to 2054, grassland, built-up/bare land, and forest/mixed vegetation were the main
drivers for the increase in cropland in the Vea catchment, contributing about 1.5, 0.7 and
0.2%, respectively.

3.12. LULC change impact on water availability for irrigation

Most countries in sub-Saharan Africa (SSA) are vulnerable to LULC changes (Iannella
et al. 2021). The LULC change puts increasing stress on future water. The gradual degrad-
ation of water bodies can lead to degradation of landscape components (flora, soil and

Figure 11. (a) Contributors to net change in cropland from 2022 to 2038 (%). (b) Contributors to net change in
Cropland from 2038 to 2054 (%). (c) Contributors to net change in Cropland from 2022 to 2054 (%).
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fauna), leading to desertification, which in turn leads to health problems, poverty and loss
of biodiversity (Kelly et al. 2015). Deforestation is one of the alterations in LULC, which
is believed to be the primary source of variations in hydrological processes such as surface
runoff, sediment production, evapotranspiration, groundwater, infiltration, lateral flow
and rainfall interception (Getachew and Manjunatha 2022). Changes in the LULC will be
driven by human interaction, which in turn will produce changes that alter the availability
of water resources (Daba and You 2022). The Vea catchment is home to one of the two
major irrigation systems in the Upper East Region of Ghana (Limantol et al. 2016). Land
use and climate change are the two main driving forces affecting the hydrological systems
of the Vea catchment. The availability of future water for irrigation is highly dependent
on land use planning and management in an ever-changing environment. On the other
hand, ongoing human behavior continues to transform LULC to meet increased demand,
particularly due to significant population growth and agricultural expansion.

The Vea catchment has high precipitation variability and high temperatures, and rela-
tively high surface water evaporation. This leads to a low water level in the catchment
area. Therefore, high evapotranspiration leads to a reduction in base flow and ground-
water, resulting in a reduction in water production and runoff. Decreased water produc-
tion can lead to water scarcity and extreme concern about water supplies. Assessing water
availability in the catchment requires a LULC change assessment to study the ecological
and hydrological conditions for future viable water resource management. Several studies
have examined the impact of LULC on water resources in many countries around the
world. For example, in eastern and southern Africa, changes in LULC are the main reason
for reducing river flow and surface runoff (Namugize et al. 2018), leading to water short-
ages. Changes in the LULC not only affect water availability for irrigation but also affect
the quality of water resources through various mechanisms. Changes in the LULC, such
as fragmentation and degradation of the land landscape, adversely affect water quality in
the catchment by moving sediments and chemicals into the reservoir. In addition, water
pollution is common with rapid changes in land use and land cover, particularly from the
emission of greenhouse gases such as methane and CO2 released by deforestation and rice
production in the Vea catchment. This study has shown that there is a positive associ-
ation between LULC changes and water availability for irrigation, suggesting that LULC
changes contribute to water scarcity. Due to the projected changes in LULC in the Vea
catchment, the water is expected to continue to be impacted. Therefore, appropriate meas-
ures must be taken to reduce the impact of LULC changes on water availability, especially
for irrigation, as the area has high evapotranspiration, which is greater than rainfall.

4. Conclusion

In order to develop future policies and strategies for river basin management, it is neces-
sary to know the dynamics of changes in natural resources and evaluate future scenarios.
Using the CA-Markov model, this study simulated future land use patterns for 2038 and
2054 for the Vea catchment. The prediction simulations were performed at Terrset based
on historical land use maps from 1998, 2006, 2014 and 2022. To validate the model, the
projected LULC map for 2022 was compared to the actual map for 2022 and after suc-
cessful validation, the LULC map for 2038 and 2054 was stimulated. The results of the
model validation demonstrated the LCM’s ability to predict the future LULC state of the
study area with an accuracy of over 82% of the minimum acceptable level of accuracy.
Overall, the LULC maps between 1998 and 2022 are characterized by large increases in
the cropland category and significant losses in grassland and mixed vegetation/forest.
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Cropland is expected to increase to 182 km2 by 2054, while grassland and mixed vegeta-
tion/forest area will decrease to 50 and 70 km2, respectively, in 2054. The change maps
show that the loss of grassland and varied vegetation/forest is due to cropland expansion.
Future LULC maps show a continued increase in cropland and built-up areas at the
expense of grassland, water and mixed vegetation/forest cover. As indicated by the major-
ity of respondents, the increase in cropland could be related to the growing population
and the associated demand for food security. The significant conversion of grassland and
mixed vegetation/forest to cropland around the Vea catchment is a cause for concern
about water availability for irrigation because this will increase sedimentation and endan-
ger storage in the reservoir. This study found a positive relationship between LULC
changes and irrigation water availability, implying that LULC changes contribute to water
scarcity in the study catchment since it affects the storage of the reservoir. This study’s
findings are encouraging for Upper East Ghana, where information on historical, current,
and future patterns of LULC is critical for water availability for agriculture in the face of
climate change. To promote sustainable growth and decrease the intensity of changes
around the reservoir, policymakers must adopt timely management activities. It is believed
that the findings of this study will provide an important foundation for planning the
long-term management of forest water resources in the Vea catchment.
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