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ABSTRACT 
 

Hidden Markov Models (HMMs) have become increasingly popular in the last several years due to 
the fact that, the models are very rich in mathematical structure and hence can form the theoretical 
basis for use in a wide range of applications. Various algorithms have been proposed in literature 
for optimizing the parameters of these models to make them applicable in real-life. However, the 
performance of these algorithms has remained computationally challenging largely due to 
slow/premature convergence and their sensitivity to preliminary estimates. In this paper, a hybrid 
algorithm comprising the Particle Swarm Optimization (PSO), Baum-Welch (BW), and Genetic 
Algorithms (GA) is proposed and implemented for optimizing the parameters of HMMs. The 
algorithm not only overcomes the shortcomings of the slow convergence speed of the PSO but also 
helps the BW escape from local optimal solution whilst improving the performance of GA despite 
the increase in the search space. Detailed experimental results demonstrates the effectiveness of 
our proposed approach when compared to other techniques available in literature. 
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1. INTRODUCTION 
 
Hidden Markov Models (HMMs) are Machine 
Learning Algorithms which are used to model 
processes with a finite set of hidden/internal 
states governed by a set of transition 
probabilities. In a particular state, a visible 
observation symbol is emitted also according to 
an associated probability distribution [1]. The 
application of HMMs ranges from speech and 
image recognition, intrusion/anomaly detection in 
data, motion/action analysis in videos, to 
bioinformatics among others.   
 
Rabiner, [1] also outlined the following general 
characteristics of a Hidden Markov Model; 
 

1. The number of Hidden states denoted by N 
and represented as S=S1, S2…SN where Si 

=1, 2, . . .N are individual states denoted 
by qt at a specific time t. 

2. The number of unique observation 
symbols denoted by M, and usually 
specified by a set of symbols V = V1; V2; . . 
. VM, where Vi, i = 1, 2, . . ., M  

3. A transition probability among states 
denoted by a matrix, A = [aij] as defined in 
(1) and (2) below: 
 

𝑎𝑖𝑗 = 𝑃(𝑞𝑡+1 = 𝑆𝑗 |𝑞𝑡 = 𝑆𝑖), 1 ≤ 𝑖, 𝑗 ≤ 𝑁, 𝑡 =

1,2, … 𝑇 − 1                                            (1) 
 

Also, 
 

 ∑ 𝑎𝑖𝑗 = 1, 𝑤ℎ𝑒𝑟𝑒   1 ≤ 𝑖 ≤ 𝑁.                   (𝟐)𝑁
𝑗=1  

 
1. An emission probability matrix, B = [bj(k)] 

as defined in (3) and (4) where; 
 

𝐵𝑗 (𝑤) = 𝑃(𝑉𝑘 = 𝑞𝑡|𝑆𝑗 = 𝑞𝑡)     

 
𝑤ℎ𝑒𝑟𝑒   1 ≤ 𝑗 ≤ 𝑁, 1 ≤ 𝑀                                (𝟑)      

  
Also, 
 

∑ 𝑏𝑗 
𝑀
𝑤=1 (𝑤) = 1, 𝑎𝑛𝑑   1 ≤ 𝑗 ≤ 𝑁                 (4) 

 
2. An initial probability for each state denoted 

by the vector π = [πi] as defined in (5) 
below; 

 
𝜋𝑖 = 𝑃(𝑞1 = 𝑆𝑖), 1 ≤ 𝑖 ≤ 𝑁,

𝑠𝑢𝑐ℎ   𝑡ℎ𝑎𝑡 ∑ 𝜋𝑖 = 1                (𝟓)

𝑁

𝑖=1

 

HMMs should be able to address the following 
three (3) basic problems in order to make them 
applicable in solving real life problems [1]: 
 

1. The Evaluation Problem: Given a 
sequence of observations, O and a Hidden 
Markov Model, λ, the task is to compute a 
probability for the observation sequence,   
P (O|λ) with respect to the model. 

2. The Decoding Problem: Determining the 
optimal state transition sequence for an 
underlying Markov process. 

3. The Learning Problem: Given a series of 
observation, O, the task is to estimate the 
model parameters in order to maximize the 
probability of an observation sequence, P 
(O|λ). 

 
The solution to Problems 1 and 3 is what this 
study focusses on. The use of HMMs have 
become increasingly popular in the last several 
years due to the fact that, the models are very 
rich in mathematical structure and hence can 
form the theoretical basis for use in a wide range 
of applications. An effective optimization of the 
parameters of these Models for enhanced 
performance has remained computationally 
challenging and there is no generally agreed 
method that can guarantee best performance 
within reasonable computing time [2]. Various 
algorithms such as the Baum-Welch (BW), 
Particle Swarm Optimization (PSO), Genetic 
Algorithm (GA), Tabu-Search (TS) among others 
have been proposed in literature for optimizing 
the parameters of HMMs [3].  
 
The Baum-Welch (BW) algorithm is very popular 
estimation method due to its reliability and 
efficiency. However, it is easily trapped in local 
optimum and very sensitive to preliminary 
estimates [4]. GAs searches parallel from a 
population of points with the ability of avoiding 
being trapped in local optimal solution. When the 
number of possible solutions (chromosomes) 
which are uncovered to the genetic operators 
and mutation is large however, there is most 
likely to be an exponential increase in the search 
space which leads to a poor performance of the 
algorithm [5]. According to [6], PSO algorithm 
has emerged as a new training algorithm for 
Hidden Markov Models based on its simplicity 
and robust optimization capacity requiring small 
number of parameters and correspondingly lower 
number of iterations but has a relatively slow 
convergence speed. 
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A hybrid algorithm inspired by the BW, GA and 
PSO algorithms is proposed and implemented for 
optimizing the parameters of HMMs. The 
proposed algorithm overcomes the shortcomings 
of the slow convergence speed of the PSO and 
also enable the BW escape from local optimal 
solution whilst improving the performance of the 
GA by reducing its search space. 
 
A possible drawback of not using this improved 
hybrid optimization algorithm will be less 
computationally efficient HMMs with poor low 
detection rates that may also suffer from slow 
convergence. 
 
 The rest of the paper is organized as follows: In 
Section 2, we present a review of related works. 
The methodology adopted for the study 
highlighting the working principle of an HMM and 
how our proposed hybrid algorithm is created is 
outlined in Section 3. Detailed experimental 
results and discussion to establish the efficacy of 
the proposed model is presented in Section 4. 
Finally, we conclude the paper with some 
discussions in Section 5.  
 

2. RELATED WORKS 
 
The theoretical aspects of Hidden Markov 
Models was carefully and methodically reviewed 
demonstrated by [1] on how they have been 
applied to selected problems in machine 
recognition of speech. He then applied them in 
speech recognition where the BW                              
algorithm is used in training the proposed 
models. Experimental results established                     
that, BW algorithm is very sensitive to initial 
estimates and can easily trapped in local optimal 
solution. 
 
[7] Implemented GA in optimizing the parameters 
of HMMs to model speech signals where the 
model is encoded as chromosomes comprising 
two parts formed by concatenating the rows of 
the Transition and Emission probability Matrices. 
Although the Proposed algorithm has a lower 
convergence rate, it performed better than the 
BW procedure proposed by [1] in terms of 
recognition rate. A training method proposed by 
[2] based on GA and BW algorithms to optimize 
the parameters of obtain an optimized number of 
states in HMMs and other model parameters. 
Experiments with the 100 words extracted from 
the TIMIT corpus revealed that, although they 
overcame the slow convergence rate of a simple 
GA approach, their proposed models required 
more training time. 

Tabu search (TS), an AI technique capable of 
searching for global optimal solution was 
proposed by [8] for training HMMs applied to 
speaker independent (SI) continuous speech 
recognition. However, when initial parameters 
and factors are not carefully chosen, TS do not 
show a great improvement over BW and GA as 
proposed by [2]. 
 
A Variable Population-size Genetic Algorithm 
(VPGA) was proposed by [3]. They introduced a 
"dying probability" for the individuals and 
subsequently proposed a PSO-GA-based hybrid 
algorithm (PGHA) based on the VPGA. The 
proposed algorithms converges faster than the 
PSO and GA to obtain a global solution. 
However, more training time is required to train 
the models to obtain optimum performance. 
 
[9] proposed an improved training algorithm 
where the BW algorithm is applied to the new 
positions of particles in PSO to locally improve 
their positions. The BW algorithm is executed on 
the newly discovered positions of particles so 
that these positions will be locally improved. 
Each Model typically corresponds to a specific 
word unit although the training data for the 
speech usually consist of utterances and where 
the points separating the various segments of 
speech corresponding to each underlying sub-
word model in the sequence is not exactly 
known. Experimental results revealed that the 
hybrid algorithm is superior to the BW algorithm 
and that proposed by [3] in terms of recognition 
rate.  A hybrid algorithm consisting GA, TS and 
BW algorithms for HMM parameter optimization 
was implemented by [10]. Even though the 
proposed algorithm requires more training time, it 
does not only overcome the shortcoming of the 
slow convergence speed of GA and TS 
algorithms but also assists the BW algorithm 
escape from local optimum. 
 
A framework for Hidden Markov Model training 
mainly based on the principles of utilizing Particle 
Swarm Optimization (PSO) concepts was also 
proposed by [11] where generating new states 
and updating likelihood values were the new 
components they included related to training 
HMM. [12] Proposed an optimized HMM with 
PSO algorithm named PSOHMM aimed at 
finding global optimal solutions. A re-
normalization and re-mapping mechanisms to 
handle the constraints in HMM is developed and 
experiments revealed that PSOHMM can search 
better than BWHMM, with faster convergence 
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speed but performs poorly when the number of 
observation symbols is large. 
 

3. METHODOLOGY 
 

3.1 The Baum-Welch Algorithm 
 
The Baum-Welch algorithm estimates the 
elements of the transition, emission and initial 
probability matrixes denoted as A, B and π 
respectively but may raise numerical                          
exceptions and errors on computers when 
numbers computed by the algorithm are very 
small [5].  
 
Consider an Observation sequence, 𝑂 =
(𝑂0, 𝑂1 , 𝑂2,…𝑂𝑇−1) and a possible state sequence 

𝑋 = (𝑋0, 𝑋1, 𝑋2,…𝑋𝑇−1)  where the interest is to 

compute the probability of the Observation 
sequence with respect to a given Hidden Markov 
Model λ.  The Emission Probability Distribution 
Matrix (B) is formulated as in (6); 
 

𝑃(𝑂|𝑋, 𝜆) = 𝑏𝑋0
(𝑂𝑜)𝑏𝑋1

(𝑂1) … 𝑏𝑋𝑇−1
(𝑂𝑇−1)         (6) 

 
The initial probability distribution matrix(π) and 
state transition distribution matrix (A) may also 
be formulated as in (7) below; 
 

𝑃(𝑋|𝜆) = 𝜋𝑋0
𝑎𝑋0,𝑋1

… 𝑎𝑋𝑇−2,𝑋𝑇−1
          (7) 

 
(8) is obtained from (7)   
 

𝑃(𝑂, 𝑋|𝜆) = 𝑃(𝑂|𝑋, 𝜆)𝑃(𝑋|𝜆)           (8) 
 
By summing over all possible state sequences, 
(9) is obtained 
 

𝑃(𝑂|𝑋) = ∑ 𝑃(𝑂, 𝑋|𝜆)

𝑋

                                    (𝟗) 

 

= ∑ 𝑃(𝑂|𝑋, 𝜆)𝑃(𝑋|𝜆)

𝑋

                                     (𝟏𝟎) 

 
Substituting (6) and (7) into (10), (11) is obtained 
 

= ∑ 𝜋𝑋0
𝑏𝑋0

(𝑂𝑜)𝑎𝑋0,𝑋1
… 𝑎𝑋𝑇−2,𝑋𝑇−1

𝑏𝑋𝑇−1
(𝑂𝑇−1)𝑋    (11) 

 
Using (11) is computationally intensive and so 
the forward algorithm to estimate P(O|λ) with 
much more accuracy is proposed [1]. 
 
For t = 0,1, 2,…,T-1 and i = 0,1, 2,…, N-1, the 
probability of the partial observation sequence 
denoted as 𝛼𝑡(𝑖), where the system is in state i 
at time t is defined in (12). 

𝛼𝑡(𝑖) = 𝑃(𝑂1, 𝑂2, 𝑂3, … 𝑂𝑡, 𝑋𝑡 = 𝑞𝑖|𝜆)              (12) 

 
𝛼𝑡(𝑖) is calculated recursively as follows: 
 

1. 𝐿𝑒𝑡  𝛼0(𝑖) = 𝜋𝑖𝑏𝑖(𝑂0) ,   
 

𝐹𝑜𝑟 𝑖 = 0,1, 2, … , 𝑁 − 1                              (13) 
 

2. For i = 0,1,2…, N-1     and     t = 1, 2,…, T-
1, we compute 𝛼𝑡(𝑖) as in (14) 
 

𝛼𝑡(𝑖) = ∑[𝛼𝑡−1(𝑗)𝑎𝑗𝑖]

𝑁−1

𝑗=0

𝑏𝑖(𝑂𝑡)                        (𝟏𝟒) 

 
3. Incorporating (12) into (14), (15) is 

obtained 
 

P(O|λ) = ∑ 𝛼𝑇−1(𝑖)

𝑁−1

𝑖=0

                                       (𝟏𝟓) 

 
The backward algorithm, or β-pass is adopted to 
determine the optimal state sequence for a given 
observation sequence [13]; 
 
For t = 0,1, 2,…,T-1 and i = 0,1,2…, N -1,  𝛽𝑡(𝑖) 
is defined as in (16); 
 

𝛽𝑡(𝑖) = 𝑃(𝑂𝑡+1, 𝑂𝑡+2, … 𝑂𝑇−1|𝑥𝑡 = 𝑞𝑖 , 𝜆)     (16)              
                                                         

Then 𝛽𝑡(𝑖) can be computed recursively as in 
(17) to (19): 
 

1. 𝑓𝑜𝑟 𝑖 = 0,1,2, … 𝑁 − 1, Let 𝛽𝑇−1(𝑖) = 1   (17) 
 

2. 𝑓𝑜𝑟 𝑖 = 0,1,2, … 𝑁 − 1  
 

𝑎𝑛𝑑 𝑡 = 𝑇 − 2, 𝑇 − 3, 𝑇 − 4, … ,0  , 𝛽𝑡(𝑖)  is defined 
as in (18); 
 

𝛽𝑡(𝑖) = ∑[𝛽𝑡+1(𝑗)𝑎𝑖𝑗]

𝑁−1

𝑗=0

𝑏𝑗(𝑂𝑡+1)                    (𝟏𝟖) 

 
3. For t = 0,1, 2…, T-1 and i = 0,1, 2…, N-1,  

𝛾𝑡 (𝑖) is defined as in (19); 
 

𝛾𝑡 (𝑖) = 𝑃(𝑥𝑡 = 𝑞𝑖|𝑂, 𝜆)                                   (𝟏𝟗) 
 

The variable, 𝛾𝑡(𝑖)  can defined in terms of 
𝛼𝑡(𝑖) 𝑎𝑛𝑑 𝛽𝑡(𝑖) as in (20), 
 

𝛾𝑡(𝑖) =
𝛼𝑡(𝑖)𝛽𝑡(𝑖)

𝑃(𝑂|𝜆)
                                              (𝟐𝟎) 
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For i, j ϵ {0,1, 2…, N-1}   and   t = 0,1,2 ……T-2, 
the variable,  𝛾𝑡 (𝑖, 𝑗)  is used to represent the 

probability of the system being in state 𝑖 at time t 

and moving to state 𝑗 at time step t + 1, 
formulated as in (21): 
 

𝛾𝑡 (𝑖, 𝑗) = 𝑃(𝑥𝑡 = 𝑞𝑖 , 𝑥𝑡+1 = 𝑞𝑗|𝑂, 𝜆)          (21) 

 
In terms of α, β, A and B, 𝛾𝑡(𝑖, 𝑗) from (21) can be 
defined as in (22); 
 

𝛾𝑡(𝑖, 𝑗) =
𝛼𝑡(𝑖)𝑎𝑖𝑗𝑏𝑗(𝑂𝑡+1)𝛽𝑡+1(𝑗)

𝑃(𝑂|𝜆)
                (𝟐𝟐) 

 
For t = 0,1…, T-2, the relationship between  

𝛾𝑡(𝑖, 𝑗) and  𝛾𝑡(𝑖) is represented as in (23); 
 

𝛾𝑡(𝑖) = ∑ 𝛾𝑡(𝑖, 𝑗)

𝑁−1

𝑗=0

                                           (𝟐𝟑) 

 

3.2 Particle Swarm Optimization (PSO) 
 
Proposed to simulate behaviors of birds 
searching for food or the movement of fishes’ 
shoal iteratively in order to optimize a numeric 
problem. The flocking population is known as a 
swarm and the individuals are called particles 
which evaluate their positions relative to a global 
fitness. During each iteration, the particles share 
the values of their best positions in order to 
utilize those memories to adjust their next 
positions and velocities [14]. 
 
For a swarm consisting of n particles and an 
objective function, f, defined on a search space 
S, the ith particle represents a D-dimensional 
vector Xi (i = 1, 2, . . ., m). It means that the ith 
particle locates at Xi(t)= (xi1, xi2,. . . ,xiD) where i = 
1, 2,…,m in the searching space. The position of 
each particle is a potential result. The velocity of 
the ith particle is also a D-dimensional vector, 
denoted as Vi(t)= (vi1, vi2,…,viD) where i = 1, 2, . . 
., m. 
 
The best solution the particle discovers since the 
start of the search is denoted as 𝑋+

i (t) and the 
best position of the entire swarm (social 
knowledge) denoted as  𝑥̂𝑖(𝑡) . During each 
iteration, the position and velocity of a particle, i, 
is computed as (24) and (25) respectively; 
 

Xi(t+1) = Xi(t)+ Vi(t)          (24) 
 

Vi(t + 1) = wVi(t) + r1 Ʋ ([0,1]) ( X+
i (t)- Xi(t))  

+ r2 Ʋ ([0,1]) ( x̂i(t) - Xi(t))                        (25) 

Ʋ ([0,1]) is a uniform random value chosen 
between 0 and 1 and the parameters w, r1 and 
r2 controls the entire particle system. The 
variable w is an inertia weight controlling the 
previous velocity of a particle.  It is relatively 
easier to integrate PSO with other algorithms due 
to ability to run parallel computation. It is also 
robust and includes an intelligent search with a 
very good global optimization as compared to 
other metaheuristic algorithms. Furthermore, 
PSO rapidly converges to good solutions and 
has guaranteed convergence. On average, it 
performs efficiently when applied to 
comparatively complex problems [15]. 
 

3.3 The Proposed Hybrid Optimization 
Algorithm  

 
Specifically, the Genetic algorithm which acts a 
bridge between the Baum-Welch and Particle 
Swarm Optimization algorithms is outlined as 
follows; 
 

1. At t=1, an initial population N (t) of 100 
individuals (chromosomes) from using the 
Baum-Welch algorithm where each 
individual corresponds to a Hidden Markov 
Model is generated and their fitness values 
calculated. 

2. t=t+1 
3. While(t<=100) 

 

The next population is generated by keeping only 
the best 50 individuals of N (t) by: 
 

i.  Selecting randomly two individuals ( 
𝜆𝑎, 𝜆𝑏)   from the population 

ii. Recombining them with a multiple point 
crossover operator to obtain 𝜆𝑐

  

iii. 𝜆𝑐
  is mutated into 𝜆𝑐

′   

iv. N(t+1) = N(t) U 𝜆𝑐
′  

 

4. Let 𝑁 
′(t) be the best 100 individuals found 

by the Genetic algorithm 

5. The PSO algorithm is applied to 𝑁 
′(t)  

 
A linear recombination crossover that computes 
offsprings as a weighted sum of two parent 
models λa and λb, was adopted since the sum of 
each row in the Transition probability Matrix, 
observation Emission Matrix and the Initial 
Transition matrix equals 1.  
 
Given two rows of the matrix, R1= (X1, X2, ..., XN) 
and R2 = (Y1,Y2,…,YN), a new row, R3, is 
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computed using the linear recombination 
crossover as in (29). 
 

R3=αR1 +(1-α) R2 = (αX1+(1-α) Y1,  
 
αX2+(1-α)Y2,…, αXN+(1-α)YN)         (29) 

 
The variable α denoted by αX is set to 0.5 for all 
crossovers so that the sum of the coefficients in 
each new row equals 1 as required.  The value of 

P (O |λ) which represents the probability that an 
observation sequence is indeed generated by the 
Hidden Markov Model, λ, is an appropriate 
criterion adopted in this study to determine the 
fitness of a particular solution. 
 
The details of the various electronic banking 
platforms were considered the internal states of 
the proposed model.  

 

 
 

Fig. 1. The proposed hybrid optimization algorithm for HMMs 
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Transaction amounts are categorized as Low (l) 
= (0; 500], Medium (m) = (501; 1000], and High 
(h) = (1001; Transaction Limit] values. Also, the 
frequency at which they occur are also 
categorized into a Low (Less than 5 times a 
month), Medium (Between 5 and 10 times a 
month), and High (at least 10 times a month) are 
also considered by our proposed model. For 
example, if an accountholder performs about 
seven (7) transactions with the month with an 
average value of say 700, then the 
corresponding observation symbol is medium-
frequency medium-amount (mm).   
 

The transaction amounts are then combined with 
the frequency at which they occur in order to 
group customers according to their transaction 
profiles using the K-Means clustering algorithm. 
This results in the formulation of nine (9) 
observation symbols for the proposed model. 
The profiles considered are detailed in Table 1; 
 

The combination (x, y, z) as in amount parameter 
refers to an accountholder who has to performed 
x percent of transactions in the high amount, y 
percent in medium amount, and z percent in the 
low amount categories.  
 

On the other hand, (x, y, z) as in Frequency 
refers to an accountholder who has been found 
to carry out x, and z percent of his/her 
transactions on the low, medium and high 
frequencies respectively. The focus at this point 
is to establish how the system performs with 
different mixes of transaction amount ranges and 
frequency of transactions. 

4. RESULTS AND DISCUSSION 
 
To establish the efficacy of the proposed hybrid 
algorithm, it is used in optimizing the parameters 
of HMMs to detect anomalies in                           
Electronic banking transactions and the results 
compared with employing the standard BW, GA, 
PSO algorithms and hybrids of any two of                 
them.  
  
Synthetic dataset generated using a simulator 
called BankSim which simulates electronic 
banking transactions based on a sample of real 
transactions extracted from financial logs from a 
bank was employed [16].  
 
After the training phase, series of observations, 
O, is constructed from an account holders 
training data corresponding to the various 
transaction profiles as outlined in Table 1                                         
and the algorithms used to evaluate the 
probability, P (O/λ) of generating O with the 
model.  
 
For each number of hidden state (N), fifty (50) 
simulation runs were performed with each of the 
algorithms and the average value of P (O/λ) 
computed to enable us compare their 
performances using the same set of emission 
symbols  as outlined in Section 3. 
 
For a low-amount, low-frequency transaction 
profile, the values of P(O/λ) and their averages 
for the different values of N is also shown in Fig. 
2 and Table 2 respectively. 

 
Table 1. Transaction mix representing the various transaction profiles of customers 

 

Transaction Profile Parameter Transaction mix 

High Amount, High Frequency Amount (60,30,10) 
Frequency (70,25,5) 

High Amount, Medium  Frequency Amount (80,10,10) 
Frequency (25,75,5) 

High Amount, Low Frequency Amount (90,7,3) 
Frequency (25,5,75) 

Medium Amount ,High Frequency Amount (30,60,10) 
Frequency (80,15,5) 

Medium Amount ,Medium Frequency Amount (15,75,10) 
Frequency (15,80,5) 

Medium Amount ,Low Frequency Amount (10,70,20) 
Frequency (15,5,80) 

Low Amount, Low Frequency Amount (3,2,90) 
Frequency (30,20,50) 

Low Amount ,Medium Frequency Amount (5,10,85) 
Frequency (30,50,20) 

Low Amount ,High Frequency Amount (10,10,80) 
Frequency (50,30,20) 
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Table 2. Average values of P (O/λ) for a low-amount, Low-frequency transaction profile for all 
values of N 

 

 Number of states (N)  

Algorithm 2 3 4 5 Average 

BW 0.689 0.731 0.723 0.521 0.666 

GA 0.685 0.712 0.785 0.742 0.731 

PSO 0.754 0.751 0.684 0.631 0.705 

BWPSO 0.775 0.785 0.802 0.769 0.783 

BWGA 0.762 0.795 0.811 0.768 0.784 

GAPSO 0.785 0.892 0.821 0.803 0.825 

Proposed 0.824 0.932 0.852 0.832 0.860 

 

 
 
Fig. 2. Values of P (O/λ) for a low-amount, low-frequency transaction profile for all values of N 

 
Comparatively, Fig. 2 reveals that, for all the 
different values of N, the BW algorithm produces 
the worst results whilst our proposed hybrid 
algorithm produces the best. PSO and GA 
produce average values which are still below 
80%. The results for all the nine (9)                     
observation sequences representing the different 
transaction profiles of customers are displayed in 
Fig. 3. 

 
It’s evident from Fig. 3 that, for all transaction 
profiles, optimizing HMMs with our proposed 

algorithm results in better detection rates for all 
possible values of N.  
 

The efficiency of our proposed algorithm in terms 
of the time taken to optimize the HMMs for all the 
transaction profiles is shown in Fig. 4.  
 

Fig. 4 reveals that, on the average, BW algorithm 
recorded relatively better training times although 
it is trapped in local optimum as can be seen in 
the relatively lower detection rates (P (O|λ)) in 
Fig. 3. It can also be seen that, the PSO 
algorithm has a relatively slow convergence 
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speed. Our proposed hybrid approach recorded 
lower execution times just like the BW algorithm 
but performs better in terms of recognition rates 

for all the possible number of hidden states as 
shown in Fig. 3. 

 

 
 

Fig. 3. Values of P (O|λ) for the various transaction profiles for the various hidden number of 
states 

 

 
 

Fig. 4.  Time taken to optimize the HMMs by the various algorithm for all transaction profiles 
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5. CONCLUSION 
 
A hybrid optimization algorithm which leverages 
on advantages of the Baum-welch, Genetic and 
Particle Swarm Optimization algorithms have 
been proposed and implemented in optimizing 
the parameters of Hidden Markov Models for 
improved performance.  The proposed algorithm 
overcomes the shortcomings of the slow 
convergence speed of the PSO and also enable 
the BW escape from local optimal solution whilst 
improving the performance of the GA by reducing 
its search space.  
 
The Baum-Welch algorithm estimates reasonably 
rather than random guess the particles of the 
Genetic algorithm. However, when the number of 
elements which are exposed to mutation is large 
in Genetic algorithm, there is often an 
exponential increase in search space size which 
leads to a poor performance. The PSO algorithm 
which has guaranteed convergence and 
averagely performs efficiently when applied to 
comparatively complex problems is then 
introduced to produce a global solution of the 
model parameters.  The execution time of the 
proposed algorithm even though slightly higher 
than that obtained by the BW and the PSO 
algorithms, it still produced better recognition 
rates. The results are promising and future work 
will focus on applying the proposed hybrid 
algorithm to optimize the parameters of HMMs in 
the area of speech and image recognition, fraud 
detection in data, motion/action analysis in 
videos, bioinformatics among others. 
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