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ABSTRACT

The Horvitz ~Thompson estimator is often presented in the context of an estimator
based on the concept of variable probability sampling. In truth, however, the Horvitz
. ~Thompson theorem is arguably a lot more versatile than this narrow perspective.
The main objective of this article is to review the application of the generalization
provided by the Horvitz ~Thompson theorem to basic sampling methodology, and to
estimators of means and variances. It is further shown that the Horvitz —Thompson
estimator also serves as the basis for a general strategy for consistent estimation.

KEY DESCRIPTORS: Horvitz ~Thompson Theorem, Variable Probability Sam-
pling, Generalization of Probability Sampling, Consistent Estimation

INTRODUCTION

An earlier observation by Stuart (1962) that “Sample Survey Theory seems, more
than most branches of statistics, to suffer the lack of a unifying thread of statistics, on
which to string the various sampling techniques of which it is composed,” was shared
by many students of sample survey after completing the course. The Horvitz —
Thompson Theorem, which most sampling texts often introduced in the narrow con-
text of variable probability sampling of primary sampling units (cluster) according to
a measure of size of the cluster (Cochran, 1977) offers a needed integrating perspec-
tive for teaching sampling methods and estimating population total and population
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variance. The paper emphasizes the importance of the Horvitz-Thompson Thecrem
"and its role as a unifying theory of probability sampling by focusmg on Inclusion
Probabilities and the Hovitz-Thompsen Theorem.

INCLUSION PROBABILITIES
Inclusion probabilities provide a natural transition from the sample space representa-
tion to the inclusion probability representation used in Horvitz ~Thompson. The first-

. = ZP(S)
order inclusion probability, ** , defined for each element u of the finite uni-
verse, U is the probability that element u will be included in the sample. The second-

7,
order, or pair wise inclusion probability, denoted by ™ , is the probability that
7= D RS
units’ % and v will be included in the sample, and is calculated by % - with

summation now overall samples containing both elements » and v.

These inclusion probabilities are determined by the designs and can be specified
without reference to a response variable. For many designs the required inclusion
probabilities are readily calculated without the function P(S).

The inclusion probabilities for three common designs are stated below:

1). Simple random sampling (SI.iS):

n
T, = .]_V—
®
__mn-1)
NN -1 {Selection without replacement} ()]

2). Stratified random sampling; selecting a SRS of n, element from the N, elements
in stratum A:

7, =
for u in stratum 4 3)
_ m(m -1
T NN i v are both in sratum
=Ty if u and v are in different strata &)
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3). Systematic sampling with a random start on (1,...,k} and sampling interval k,
where k is an integer:

7, =
k {Equal probability out of &} *)

"

w =T

if # and v occur in the same sample

if # and v do not occur in the same sample ©

Once one has gained familiarity with the basic sampling designs and estimators of
means, totals, and proportions in the sample space presentation, one may now be
introduced to the unifying perspective provided by the Horvitz-Thompson and the
inclusion probability representation of the sampling designs (Overton and Stehman,
1995).

THE HORVITZ-THOMPSON THEOREM

Defining the Theorem

. - .. >0 : ieN .
For strictly positive probabilities i.e. for every , the Horvitz —
Thompson estimator

Zy.

Y =Jd=l
HT ,
)

with variance -

var(¥,,; ) = Z[y'} (- 7:,)+22 Z(ﬂ” dad )y,y,

i=1 f=i+] .z i

is unbiased for the population total

®

The Horvitz-Thompson theorem may be used to derive estimators of means and vari-
ances for many commonly used designs (Horvitz & Thompson, 1952; Overton &
Stehman 1992).

The Horvitz-Thompson theorem, which is a design-based approach to survey infer-
ence, has a number of strengths that make it popular with practitioners. It automati-
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cally takes into account features of the survey design, and provides reliable infer-
ences in large samples, without the need for strong modelling assumptions. On the
other hand, it is essentially asymptotic, and hence yields limited guidance for small-
sample adjustments. It lacks a theory for optimal estimation (Godambe & Thompson
1986) and estimates from the approach are potentially inefficient. .

Consider inference about the population total

T=Y+..+Y,
and any sample design with positive inclusion probability
7, =E(L;|y)>0 i N

forunits ~, =12, ..., . The HT estimator is then

n N '
HT =Zy1/”t=zliyi/”i

i=l i=] (9)

and is design unbiased for r , since

,. N N,
ETy | y)=) EU,\y) x, =)y,

=l - =1

. The unbiasedness of (9) under very mild conditions conveys robustness to modelling

_ assumptions, and makes it 2 mainstay of the design-based approach. But (9) has two
" major deficiencies. First, the cheice of variance estimator is problematic for some
designs. Second, the HT estimator can have a high variance. For example, when an
outlier in the sample has a low selection probability and hence receives a Jarge
weight, Basu’s (1971) famous circles elephant example provides an amusing, if ex-
freme example.

Due to the emphasis on equal probability sampling to which many people are nor-
mally exposed in introductory statistics, they may initially view unequal probability
sampling as unacceptable or even “biased”. However, the Horvitz — Thompson theo-
rem establishes the intuitively appealing solution that unequal inclusion probabilities
are accounted for simply by using the appropriate weights, the inverse of the inclu-
sion probabilities, in the estimators. Similarly, Stuart’s (1962) used the phrase

A

“apparent frequency”, in reference to the weight *  indicates that an

T, w,
element of the sample with inclusion probability “ represents * elements of U
when the sample data are “expanded” to estimate totals and means over U.
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‘Consistency of the Horvitz-Thompson Theorem

Overton and Stehman (1995) discussed the consistency of the Horvitz-Thompson
theorem by applying an adaptation of Fisher’s (1956) definition of consistency. This
consistency result establishes the Horvitz — Thompson estimator as the basis for a
generalized strategy of consistent estimation: any function of the linear parameters is
estimated consistently by the same function of Horvitz—Thompson estimators of
those linear parameters. This result is an important part of sampling methodology.
For a sampling methods course, it may be sufficient to mention consistency as an
important property for an estimator to posses, and then to present several applications
of this method for constructing estimators.

Exarples

A. Simpie Random Sampling:

Consider taking a sample of size four from a population of size 10 as indicated be-
low, where y;’s are the observed units i.e.

N=10and n=4
with 'y, =8,2,4,3
=4 o4
N 10
=0.16 { there is equal probability of selecnon Jor all units},
7w, =016, 7,7, = —% g—: -54— {as sampling is done without replacement}

with Horvitz—Thompson Theorem, we obtained

1. Estimate of the population total

y, _ 17
L= =42.5
HT srs Zl 7[ 4
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Estimate of the population variance

e 352t

i=l i=l j=2

= S +
8, =348.75, §, =-122.5

Vaf(?m.m) =8§,+28,
=103.75

with the common method, estimate of the population total is given by
Estimate of the population variance is given as

) = N* var(3)

= N{l—_—f—) 52
n

-, var(¥, )=103.75 {same as HT's}

srs

var(

s

B. Stratified Sampling

Consider the stratification of a population of size N = 57 into three strata which
population sizes Ny, Ny, N; respectively as given below with their respective ob-
served units from each stratum;

Ny=12, N;=20, N3 =25

yi =4, 5, 6 {units in stratum 1}

Yiz =7, 6, 4, 3 {units in stratum 2}

vi3=5,3,2,1 {units in stratum 3}

Using the Horvitz-Thompson Theorem we obtained the

1. Estimate of the population total thus:

h=l =1 gy
ny
T, = —
hi Nh
L 15 20 25

N ¢ ——t—t—— =235
HTst =095 02 033
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2. Estimate of the population variance is obtained as:

var(¥; ) = ZZ[‘-—'—"]Y +2Z§"Zh[ ly\}WM

=l i=l et izl joi \ Tni%h; ”h"

when h=1 (stratum 1)

7 = 12025 z}=00625, xx,=00625, 7, =xZ =
4 12 11 22
y]=4’5’6 . .
> 1 1] 2 1 1
var(Vpr )= | —7—— W +2 —_——— Yy,
| (Frnr.) Z(niz m‘]y' Zz(n,.nj ﬂij)yy}
=S1 + 2S2
S, =924

o var(¥y; 1) =36
when h =2 (stratum 2)

2 12

7, =02, n, =004, 7z, =004, 7m; ==
380
y,=7,6,4,3
T =% (2 -—»]y,nzz[ ‘]y,y,
7y ”U )

= §, + 28,

S,=(25—5)(7’+6’+4’+3’)
= 2200

s, —(25—m—-)(7x6+7x4+7x3+6x4+6x3+4><3)=——”600

12

36



28, = -1933 .33

L ovar( ¥y ) = 2200 -1933 .33 = 266 .67

when h = 3 (stratum

To=a=02, £2=0.04, 7,0, =004, 7,= x =
5 25 24

yi=5’3’2’1,,4

var( ¥ )=Z —1——-1-—y.2+222’ 1 __.l__yy_
S z mif' mw, my )

=5, + 28,
S, =1100
28, = ~850

covar( By ) =250

= var( Y, wr ) = 552 .67 {var iance for the entire population }
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3)

with the common method we have

N1= 12 Np= 20 N; =25

Stratum I Stratum n - Stratum Il

y y Y y |y Yy
14 16 7 49 ‘15 25

5 25 6 36 3 9

6 ' 36 4 16 2 4

15 77 3 9 1 1

y=5 20 110 % _g ,
x=5 >
x=3

Estimate of the population total

Y, = Ny,
where
.T’;-sr - Z Whj;_h
235
57
Y, = 57 235
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Estimate of the population variance
n , a
var(Y,) = N* var(y,,)

:sz (I_-ﬂl)shz u'/;'
h n,

for stratum 1, we have

2 n 1 3
=1, =2t=1 1-f==, n=3
h N, 4 A 4 ]

for stratum 2, we have

s, = LCE S T R
» f2= N, 5 /2 57 7
for stratum 3, we have '
s =—, fi= -1 1—-f=~4— n,=5
3 N 5 ’ 3 5 > 3
= varai,) =552.67
C. ’Adantive Cluster Sampling

Adaptive sampling designs are designs in which additional units or sites for observa-
tion are selected depending on the interpretation of observations made during the
survey. Additional sampling is driven by the observed results from an initial sample.
In the simplest form of adaptive cluster sampling an initial sample of units is selected
by random sampling with or without replacement (Thompson 1990) and whenever
the variable of interest for a unit in the sample satisfies a pre-specified condition,
neighboring or connected units are added to the sample and observed (Thompson
1997). The usual design unbiased estimators for adaptive cluster sampling with initial
sample taken by with or without replacement are of a Horvitz-Thompson type.

Figure 1 (showing how adaptive cluster samples are drawn from a population) below,
illustrates a network and its associated edge units, which together will be called a
cluster. Shaded areas on the figure indicate the area of interest; for instance, areas of
elevated contaminant levels. This example has four regions of contamination. The 12
darkened rectangles in the figure represent a randomly selected set of 12 sampling
units constituting the initial sample. Whenever a sampled unit is found to exhibit the
characteristic of interest — that is, the unit intersects any part of the shaded areas —
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neighboring sampling units are also sampled using a consistent pattern. An example
of follow-up sampling pattern is shown in Figure 2, where the x’s indicate the
neighboring sampling units to be sampied. The follow-up sampling pattern is called
the neighborhood of a sampling unit. The five grid units in the figure make up the
neighborhood of the initially sampled unit. In Figure 1(a), four initial sampling units
intersect the shaded areas. The units adjacent to these four initial units are sampled
next, as shown in Figure 1(b). Some of these sampled adjacent units also intersect the
shaded areas, so the units adjacent to these are sampled next, as shown in Figure 1(c).
Figures 1(d) to (f) show subsequent sampling until no more sampled units intersect
the shaded areas. Figure 3 shows the initial random sample and the final sample.
Note that the final sample covers three of the four regions of contamination. If at
" jeast one of the initial units had intersected the fourth area, it would also have been
covered by a cluster of observed units.

The final sample consists of clusters of selected (observed) units around the initial
observed units. Each cluster is bounded by a set of observed units that do not exhibit
the characteristic of interest. These are called edge units. A cluster without its edge
units is called a network. Any observed unit, including an edge unit, that does not
exhibit the characteristic of interest is a network of size one. Hence, the final sample
can be partitioned into non-overlapping networks. These definitions are important in
understanding the estimators for statistical parameters.

Fig. 1: Population Grid with Shaded Areas of Interest, Initiai Simpie Random Sam-
ple, and Follow-up Sample

| ] l [

1

L1

[T 1]
]

[

(a) Initial sample (b) First batch of adjacent units
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(¢) Second batch of adjacent units (d) Third batch of adjacent units
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Fig. 2: Follow-up Sampling Pattern
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Fig. 3: Population Grid with Shaded Areas of Interest, Initial Simpie Random Sam-
ple, and Final Sample
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Population Grid with Shaded Areas Final Adaptive Cluster Sampling
of Interest and Initial Simple Results -

Random Sample

= Observed Sampling unit
Estimators of mean and variance for adaptive cluster sampling

For an adaptive cluster sample with an initial simple random sample, the modified
Horvitz-Thompson forms of the estimators are

th

where . sum of the values of the character of interest, Y , for the
network in the sample ‘

= number of units in the population
K= number of distinct networks in the sample
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a th
% < probability that the initial sample intersects the '~ network
a ik ith kth
= probability that the initial sample intersects both the and the
networks

Units in the initial sample that do not satisfy the pre-specified condition (i.e. not in-
tersecting the shaded area) are included in the calculation as networks of size ane, but
edge units are exciuded.

X th-
If there are k units in the network, then the intersection probabilities

a, a jk :
are calculated using combinatorial formulas as follows;

o, =1-[ )3 )
ay =1= [ e () G )

where
Application (Using the Horvitz — Thompson Estimators)

Consider the adaptive cluster sample shown in Figure 1. There are N=256 grid units
in the population and n1=12 units in the initial sample. One initial sample unit on the
upper left area of the study region intersected a network of x1=18 units. Let this be
network Al. Two other initial sample units on the upper right area of the study re-
gion intersected a network (A2) of x2=19 units. Another initial sample intersected the
network of x;=13. Let this network be A;. The remaining seven initial sample units
form networks of size one (Ay,...,A11). Hence, there are k=11 distinct networks, with
x1=18, x2=19, x3=13,
x4 = x5 =.=x11 =1 units, respectively. The intersection probabilities are calculated
to be

a;= 0.591396, a,= 0.611997, a; = 0.472509 and for the remaining networks

(A4, AS,...,Al1) the intersection probability is ox = 0.046875 for k=4, 5,t0 11
Hence, the estimate of the mean using the Horvitz-Thompson estimator is
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* *

V2

where Y is the sum of the 18 observations from network Al, is the sum of

*

the 19 observations from network A,, 3 is the sum of the 13 observations from
. . . Ny
the network A;, and 4 , s > wees Vi are the single observations from the
networks of size one,
To compute an estimate of the variance, we need the joint intersection probabilities
which can easily be shown to be:

agz =0.35025, ay3 = 0.268724, ay; = 0.278403, a,; = 0.026273 for J =4, ..,11
oy =0.027229 for J =4, ..., 11, u3= 0.020826 for J =4,..,1}1,
j E33
o= 0.002022 for J . 4,...,11and ko 4,..,11, J

Then the variance using the HT is,

*\2 . 3
__1 [Q_L[I_I]Q_L[_I_,H
(256) a, \a a, \a,
+ 1 - 2 (J’;J’;)( a5 '-1J+...+2(y;°y;l)( al(f,u __IJ
(256) . alz alaZ alo’” a['oa“

CONCLUSION

The Horvitz — Thompson theorem offers a needed integrating perspective for under-
standing the methods and fundamental concepts of probability sampling in sample
survey. Development of basic concepts in sampling via this approach would provide
researchers and other users with the tools to solve more complicated problems, and
helps to avoid some common stumbling blocks of estimation of population parame-
ters when units have varying probability of selection. Qur submission is that a greater
appreciation of the Horvitz-Thompson will contribute a beneficial integrated per-
spective that assists in presenting sampling,
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