
 

www.udsspace.uds.edu.gh 

 

 

UNIVERSITY FOR DEVELOPMENT STUDIES, TAMALE 

 

 

 

 

 

 

ASSESSMENT OF SOME ACCELERATION SCHEMES IN THE SOLUTION 

OF SYSTEMS OF LINEAR EQUATIONS. 

 

 

 

SEIDU AZIZU 

 

 

 

2015 



www.udsspace.uds.edu.gh 
 
 

 
 

 

 

UNIVERSITY FOR DEVELOPMENT STUDIES, TAMALE 

 

 

 

 

 

 

ASSESSMENT OF SOME ACCELERATION SCHEMES IN THE SOLUTION 

OF SYSTEMS OF LINEAR EQUATIONS. 

 

BY 

SEUDU AZIZU (B.Ed. Mathematics) 

(UDS/MM/0016/12) 

 

THESIS SUBMITTED TO THE DEPARTMENT OF MATHEMATICS, 

FACULTY OF MATHEMATICAL SCIENCES, UNIVERSITY FOR 

DEVELOPMENT STUDIES, IN PARTIAL FULFILLMENT OF THE 

REQUIREMENTS FOR THE AWARD OF A MASTER OF SCIENCE DEGREE 

IN MATHEMATICS 

 

 

JANUARY, 2015



www.udsspace.uds.edu.gh 
 
 

 
 

 

DECLARATION

Student: 

I hereby declare that this dissertation/thesis is the result of my own original work and that 

no part of it has been presented for another degree in this University or elsewhere: 

 Candidate’s Signature:……………...…………… Date:………………….……… 

 Name: ……………………………………………………………………...……… 

 

Supervisor: 

I hereby declare that the preparation and presentation of the dissertation/thesis was 

supervised in accordance with the guidelines on supervision of dissertation/thesis laid 

down by the University for Development Studies. 

 Principal Supervisor’s Signature:………………………… Date:………………… 

 Name: ………………………………...………………………………………..….. 



www.udsspace.uds.edu.gh 
 
 

ii 
  

 

ABSTRACT 

 

An assessment of acceleration schemes in the solution of systems of linear equations has 

been studied. The iterative methods:Jacobi, Gauss-Seidel and SOR methods were 

incorporated into the acceleration scheme (Chebyshev extrapolation, Residual smoothing, 

Accelerated gradient and Richardson Extrapolation)to speed up their convergence. The 

Conjugate gradient methods of GMRES, BICGSTAB and QMR were also assessed. The 

research focused on Banded systems, Tridiagonal systems and Dense Symmetric positive 

definite systems of linear equations for numerical experiments. The experiments were 

based on the following performance criteria: convergence, number of iterations, speed of 

convergence and relative residual of each method. Matlab version 7.0.1 was used for the 

computation of the resulting algorithms. Assessment of the numerical results showed that 

the accelerated schemes improved the performance of Jacobi, Gauss-Seidel and SOR 

methods. The Chebyshev and Richardson acceleration methods converged faster than the 

conjugate gradient methods of GMRES, MINRES, QMR and BICGSTAB in general. 
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CHAPTER ONE 

INTRODUCTION 

1.0Introduction 

Many practical problems can be expressed in the form of systems of linear equations 

𝐴𝑥=𝑏, whereA is a known matrix, b and xare respectively known and unknownvectors. 

System of linear equations play importantrole in Economics, Engineering, Physics, 

Chemistry, Computer Science and other fields of Pure and Applied Sciences (Iqbalet 

al.2012). 

Convergent numerical sequences occur quite often in natural Science and 

Engineering.Some of such sequences converge very slowly and their limits are not 

available without suitable convergent acceleration methods. Santos and Linhares (1986) 

stated that there are two classes of iterative methods: linear stationary and linear 

nonstationary. The choice of a method for solving linear systems will often depend on the 

structure of the matrixA. Direct methods are mostly chosen when the size of the system is 

small and require solving with several right hand side vectors b while maintaining the 

same coefficient matrix A. However, they have some pitfalls such as division by zero, 

round-off errors and huge storage requirement. Iterative methods are chosen for large and 

sparse systems. An important feature of the iterative methods is that they are relatively 

faster than direct methods and occupy very little space and work indirectly with the 

original matrixA.The convergences of these stationary iterative methods are known to be 

relatively slow and need to be accelerated. Therefore, in this research we access the 

performance of some known acceleration schemes at improving the convergence of some 

selected stationary iterative methods. 

 



www.udsspace.uds.edu.gh 
 
 

2 
 

 

1.1Background of the Study 

One of the fundamental building blocks of numerical computing is the ability to solve 

linear system𝑠 .Systems of linear equations may consist of two or more linear equations. 

A solution exists for it if and only if the solution satisfies all equations of the system. A 

System of linear equations has the general form: 

 

 

 

Where𝑥𝑗(j= 1, 2, . . ., n) are unknown variables, 𝑎𝑖𝑗(i, j= 1, 2, . . . ,n) are the coefficients, 

and 

𝑏𝑖(i= 1, 2, . . .,n) are right hand side (RHS) constants. The first subscript identifies the 

row of the equation and the second subscript identifies the column of the system of 

equations. A system of linear equations can also be written as a matrix equation 𝐴𝑥= 𝑏, 

where: 

 

 

 

 

 

The term “iterative method” refers to a wide range of techniques that use successive 

approximations to obtain more accurate solutions (Gismalla, 2014). The two classes of 

iterative methods are Stationary and Nonstationary. Stationary methods are the 
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classicaliterative methods such as Jacobi, Gauss-Seidel and Successive Over relaxation 

(SOR). The Nonstationary methods are more recent and are renamed the Krylov subspace 

methods (Saad, 2003). These are the Conjugate Gradient (CG), Biconjugate Stabilized 

(BICGSTAB), General Minimal Residual (GMRES), Minimal Residual (MINRES) and 

Quasi Minimal Residual (QMR). The Nonstationary methods are based on the idea of 

sequences of orthogonal vectors (Gutknecht and Rollin, 2002).  

The classical iterative methods are incorporated into acceleration schemes to speed up 

convergence. Examples of acceleration schemes are Chebyshev Extrapolation scheme, 

Richardson extrapolation, Accelerated Gradient and Residual Smoothing. These schemes 

will be the focus of attention and discussion in this study. 

 

1.2Statement of the Problem 

Systems of linear equations arise from almost every field of mathematical applications, 

so the problem of solving linear system is of great importance. Numerous methods 

(Direct and Iterative) have been in existence for solving linear system. The direct 

methods find an exact solution and suitable for small system. However, they are 

subjected to round-off errors and are computational expensive. The Iterative methods 

(stationary and nonstationary) are suitable for large and sparse system but not suitable for 

particular matrix structure. The convergence of stationary iterative methods is relatively 

unsatisfactory (slow convergence). 

However, many matrix problem are structured (Tridiagonal, Banded, Symmetric Positive 

Definite etc)where fast convergence methods are required to solve such systems. The 

Jacobi and Gauss-Seidel methods may or may not converge when the coefficient matrix 

A is not diagonally dominant and when the spectral radius of these methods is greater 
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than 1(Burden and Faires, 2011). The successive over-relaxation method improves the 

convergence of Gauss-Seidel method. But fails to converge if the relaxation parameter is 

outside the range (0 2).The stationary iterative methods need to be accelerated using 

effective acceleration schemes. The problem is to assess which of the iterative methods 

are improved by which acceleration scheme. Therefore the acceleration schemes: 

Chebyshev extrapolation, Residual smoothing, Richardson extrapolation and Accelerated 

gradient would be applied to assess the convergence of the named iterative methods. 

1.3 Objectives 

The objective of the study is to assess the performance ofChebyshev Extrapolation 

Scheme, Accelerated Gradient Scheme, Residual Smoothing Scheme and Richardson 

Extrapolation scheme for solving systems oflinear equations. 

1.3.1Specific Objectives 

The specific objective are to: 

1.  incorporate stationary iterative methods into to the identified acceleration 

schemes 

2. determine which iterative methods are improved by which acceleration schemes. 

3. solve problem involving Tridiagonal, Banded, Dense and Symmetric Positive 

Definite systems of linear equations of different sizes. 

4. compare the performance of the acceleration schemes with the known Krylov 

subspace methods. 
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1.4   Research Questions 

1. Which schemes do better than the others for a given iterative method? 

2. What characteristics of the systems influence performance of the acceleration 

scheme? 

3. Which schemes improve the convergence of the classical iterative methods for the 

entire chosen systems of linear equations? 

1.5Significance of the Study 

1. Assessment of the relative efficiencies of the acceleration schemes would provide 

insight towards more economical and faster ways to solve linear systems of 

equations arising in applications. 

2. The study is expected to provide further information about convergence and 

relative residual for each identified linear systems. 

3. The result should be of interest to the wider research community in the field of 

Engineering, Science, Computing and Business. 

1.6 Conclusion 

This chapter explained the introduction, background of the study, statement of problem, 

the problem, research questions and the significance of the study. It also provided the 

basic concepts of systems of linear equations. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.0 Introduction 

This chapter reviews the literature on the relevant concepts relating to this topic. These 

are specifically: What is a Systems of Linear Equations (SLE), Sources to SLE, Some 

special matrices and their properties, Stationaryiterative methods, Convergence of 

stationary iterative methods, Spectral Radius, Acceleration Schemes and related works. 

2.1Systems of Linear Equations 

A system of linear equation in n variables is a set of n equations with each equation being 

linear in n variables. It is generally denoted by the equation A𝑥 = 𝑏,where A is a square 

matrix, 𝑥 unknown vector and b a known vector. A solution is a set of numerical values 

𝑥1, 𝑥2,𝑥3, …..𝑥𝑛that satisfies all the equations (Fink and Mathews,2004).Various methods 

have been introduced to solve systems of linear equations. There is no single method that 

is best for all situations. These methods should be determined according to speed and 

accuracy. The methods for systems of linear equations can be divided into two groups: 

Direct and Iterative Methods. The approximate methods that provide solutions for 

systems of linear equations are called iterative methods. They start from an initial guess 

and improve the approximation until an absolute error is less than the pre-defined 

tolerance. 

 Iterative methods are suitable for very large systems oflinear equations. These methods 

are very effective concerning computer storage and time requirements. One of the 

advantages of using iterative methods is that they require fewer multiplications for large 

systems. They are fast and simple to use when coefficient matrix is sparse. 

Advantageously they have fewer rounds off errors as compared to other direct methods. 
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On the other hand, the direct methods, aim to calculate an exact solution in a finite 

number of operations.  

The solution of the system is very important in scientific computing. If the linear system 

Ax = b has a unique solution 𝑥, for every right-hand side b then, the system is said to be 

nonsingular. Usually, one refers to the associated matrix A rather than the system of 

equation itself as being nonsingular, since the property is determined by the coefficients 

matrix A and does not depend on the right-hand side vector b. 

A system of linear equation with coefficient matrix A and augmented matrix Ã has a 

solution if and only if rank A= rank 𝐴̌. Again, a system with coefficient matrix A has a 

solution for any choice of 𝑏1 … … … . . 𝑏𝑚 if and only if rank(A)is equal to the number of 

rows of A. 

2.2Sources of Systems of Linear Equations 

Sparse system occurred in a wide range of applications: Electrical power systems, linear 

and non-linear optimization and cryptography. Kelley (1995) is of the view that 

Information Retrieval Systems is one of the areas in which systems of linear equations 

mostly occur. In modern society, huge amounts of data are collected and stored in 

computers so that useful information can later be extracted. The growth of the internet 

has created the necessity for an efficient way to sort through massive amounts of 

documents for desired information. There have been multiple methods of information 

retrieval used to solve this dilemma, but one of the most basic forms uses matrices to 

model information and provide practical and efficient way to sort through it. A term 

document or text matrix is used to represent the frequency with which certain terms 
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appear in a collection of documents, or a database. Each column of the matrix will 

represent a different document, and each row will represent a different term. In other 

words, the documents will make up the column space of the database.  

A truss system is another situation that leads to systems of linear equations. Truss is an 

assemblage of long, slender structural elements that are connected at their ends. Trusses 

find substantial use in modern construction, for instance in towers and bridges. Trusses 

are often used to stiffen structures and most people are familiar with the often very 

elaborate systems of cross-bracing used in bridges. Trusses (structures made of beams) 

are light but rigid. They can support and divert very heavy loads, relative to their own 

weight. Trusses are primarily used in building construction and civil engineering projects.  

Network systems in electrical engineering also lead to systems of linear equations. Today 

more than ever, electronics are an integral part of our everyday lives. They contribute to 

every aspect of our life from lighting the space around our work environments, to 

exploring uncharted territories. Behind each and every electrical appliance lies a vast 

system of electrical components that must function as a whole. Each component 

(resistors, capacitors, inductors, etc.) has specifications of their own, as does the final 

product that they are a part of, so engineers must design their devices to meet not only 

their intended purpose, but also the individual components. Vital to this is the analysis of 

currents and voltages throughout the electrical circuit. In a network model, you assume 

that the total flow into a junction is equal to the total flow out of the junction. Each 

junction in a network gives rise to a linear equation. You can analyze the flow through a 

network composed of several junctions by solving a system of linear equations. 
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2.3Some Special Matrices and their Properties 

A matrix A is symmetric (Burden and Faires, 2011) if A= 𝐴𝑇 and symmetric positive 

definite if 𝑥𝑇A𝑥 > 0.When matrix A is positive definite the matrix that scales A is 

unique.Tridiagonal matrices crop up naturally in most areas of applied linear algebra. 

Engineering problems often lead to coefficient matrices that are sparsely populated, 

meaning that most elements of the matrix are zero. If all the nonzero terms are clustered 

about the leading diagonal, then the matrix is said to be banded. All the elements lying 

outside the band are zero. The banded structure of a coefficient matrix can be exploited to 

save storage and computation time. If the coefficient matrix is also symmetric, further 

economies are possible. Most often we encounter pent diagonal (bandwidth = 5) 

coefficient matrices in the solution of fourth-order,ordinarydifferentialequationsbyfinite 

differences.Ofthese matrices are symmetric in nature. 

In many applications, extremely large linearsystems that have a bandedstructure are 

encountered. Banded matrices often occur in solving ordinary and partial differential 

equations. It is advantageous to solve such linear systems, since they reduce the amount 

of storage used (Kincaid and Chenney,2008) . 

 

2.4Structure of Banded and Tridiagonal Systems 

Sparse matrices have the majority of their elements equal to zero. More significantly, a 

matrix is considered sparse if a computation involving it can utilize the number and 

location of its nonzero elements to reduce the run time over the same computation on a 

dense matrix of the same size.The finite difference and finite element methods for solving 
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partial differential equations arising from mathematical models of continuous domain 

require sparse matrix algorithms. 

In many situations for instance, boundary value problem for ordinary and partial 

differential equations matrix arise where large proportion of the elements are equal to 

zero. If the nonzero elements are concentrated around the main diagonal, the matrix is 

called band matrix. More precisely, a matrix A is said to be band if there are natural 

numbers p and q such that 𝑎𝑖𝑗=0  if j−𝑖 > 𝑝 𝑜𝑟 𝑖 − 𝑗 > 𝑞. The bandwidth (BW) = p +𝑞 +

1. The band width is the maximum number of nonzero elements in any row. If p=q=1, 

then such band matrix is called tridiagonal as shown below. 

 

 

 
 

 

Banded systems have the following advantages 

1. When storing we do not store the elements outside the band. 

2. One can take advantage of the band structure to reduce the number of operations. 

2.5Stationary Iterative Methods 

Iterative methods start from an initial guess 𝑥0,which is successively improved until a 

sufficiently accurate solution is obtained. An important feature about these iterative 

methods is that they work indirectly with the original matrix A and only need extra 



www.udsspace.uds.edu.gh 
 
 

11 
 

 

storage for a few vectors. Iterative methods are more suitable for large and sparse matrix 

problems although they can also be used to deal with dense ones as well (Santos and 

Linhares, 1986). 

The Gauss-Seidel method is like the Jacobi method, except that it uses updated values as 

soon as they are applied (Gismalla, 2014).Iterative methods are more suitable than direct 

methods for large linear systems(Yin, 2005).The generalization of these methods are 

proposed and their convergence properties are studied (Salkuyeh, 2007). 

 Iterative methods for solving general, large sparse linear systems have gainedpopularity 

in many areas of scientific computing.However, a number of efficient iterative solvers 

(LINPACK) were discovered and the increased need for solving very large linear systems 

triggered a noticeable and rapid shift toward iterative techniques in many applications. 

This trend can be traced back to the 1960s and 1970s when two important developments 

revolutionized solution methods for large linear systems and the realization that one can 

take advantage of “sparsity” to design special direct methods that can be quite 

economical. 

2.5.1The Jacobi Method 

The Jacobi method is an iterative algorithm used to solve linear equations. The solution 

of vector x is sought where Ax b . Let ( )A D L U   , where D , L andU represent the 

diagonal, lower triangular and upper triangular part of the coefficient matrix A

respectively. Then the equation to be solved can be rewritten as: 

( )Dx L U x b     (2.1) 
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 1x D b L U x       (2.2)
  

If 0iia  for each i , the definition for Jacobi method can be expressed as 

 ( 1) 1 ( )k kx D b L U x         (2.3)
  

where k is the iteration count leading to the form: 

( 1) ( )1
, 1,2, .k k

i i ij j

j iii

x b a x i n
a





 
   

 


  (2.4)

  

2.5.2The Steps for Jacobi Algorithm 

1. Enter matrix A and choose an initial guess 𝑥0, maximum number of iteration and 

tolerance (𝜀) 

2. Find D, L and U of matrix A. 

3. Set T = −𝐷−1(𝐿 + 𝑈) 

4. Set C = 𝐷−1𝑏 

5. Compute 𝑥(𝑘+1) = 𝑇𝑥(𝑘) + 𝐶 

6. Stop if ‖𝑥(𝑘+1) − 𝑥(𝑘)‖
∞

< 𝜀 

 

2.5.3Convergence of Jacobi 

According to Burden and Faires, (2011) the necessary and sufficient condition for 

convergence of the Jacobi methodis that matrix A is strictly diagonally dominant, then for 
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any choice of  𝑥(0), both the Jacobi methods give sequences {𝑥𝑘}𝑘=0
∞   that converge to 

approximate solution  SLE. 

2.5.4 The Gauss-Seidel Method 

Gauss-Seidel method is very similar to Jacobi method except that it updates the next 

iteration. 

( 1) 1 ( )( ) ( )k kx D L Ux b       (2.5)  

( 1) ( 1) ( )1k k k

i i ij j ij j

j i j iii

x b a x a x
a

 

 

 
   

 
 

  (2.6)                 

 

2.5.5 The Steps forGauss-SeidelAlgorithm 

1. Enter matrix A and choose an initial guess 𝑥0, maximum number of iteration and 

tolerance (𝜀) 

2. Find D, L and U of matrix A. 

3. Find the inverse of (D + L). 

4. Set T = −(D + L)−1U 

5. Set C = (𝐷 + 𝐿)−1b 

6. Compute 𝑥(𝑘+1) = 𝑇𝑥(𝑘) + 𝐶 

7. Stop if ‖𝑥(𝑘+1) − 𝑥(𝑘)‖
∞

< 𝜀 

2.5.6 Convergence of Gauss-Seidel 

The method is an improved version of the Jacobi method. It is defined on matrices with 

non-zero diagonals, but convergence is only guaranteed if the matrix is either diagonally 

dominant, or symmetric and (semi) positive definite. If a linear system has strictly 
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dominant coefficient matrix and each equation is solved for each strictly dominant 

variable then, the Gauss-Seidel iteration will converge to 𝑥 for any choice of 𝑥0 (Jamil, 

2012). 

2.5.7The Successive Over Relaxation Method 

Successive over-relaxation (SOR) is a numerical method originally used to speed up the 

convergence of the Gauss-Seidel method. The SOR method is devised by applying an 

extrapolation parameter𝜔 to the Gauss-Seidel method.This extrapolation parameter takes 

the form of a weighted average between the previous iteration and the computed Gauss-

Seidel iteration successively (Gismalla, 2014).Thus the general iteration can be expressed 

as: 

( 1) ( 1)(1 )k k kX X X       (2.7)  

where the right-hand side ( 1)kX  should be calculated instead of the normal iteration 

expressions. 

For Gauss-Seidel method, the SOR expression is 

( 1) ( 1) ( )(1 )k k k k

i ij j ij j

j i j iii

X X b a x a x
a


 

 

 
     

 
   (2.8) 

2.5.8 The Steps forThe Successive Over relaxation Algorithm 

1. Enter matrix A and choose an initial guess 𝑥0, maximum number of iteration, 

tolerance (𝜀) and 𝜔 𝜖(0,2) 

2. Find D, L and U of matrix A. 
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3. Find the inverse of (D +𝜔 L). 

4. Set T = −(D + ωL)−1U[ωU + (1 − ω)D] 

5. Set C = 𝜔(𝐷 + 𝜔𝐿)−1b 

6. Compute 𝑥(𝑘+1) = 𝑇𝑥(𝑘) + 𝐶 

7. Stop if ‖𝑥(𝑘+1) − 𝑥(𝑘)‖
∞

< 𝜀 

2.5.9Convergence of Successive over relaxation 

If the relaxation parameter𝜔= 1, the SOR method is equal to the Gauss-Seidel method 

.The SOR method fails to converge if 𝜔 is outside the interval (0, 2). In general, it is not 

possible to compute in advance the value of 𝜔 that will maximize the rate of convergence 

of SOR. 

2.6Nonstationary Iterative Methods 

Varga (1962) reported that the nonstationary iterative methods werestandard iterative 

method for solving sparse linear systems. The conjugate gradient(CG) methodisone of the 

most important acceleration methods in solving large and sparse symmetric. The CG is 

Krylov subspace method based on Lanczos algorithm and is used to solve SPD linear 

system (Tullius, 2011). 

The CG algorithm, applied to the system A𝑥 = b, starts with an initial guess of the 

solution 𝑥0 with an initial residual 𝑟𝑜 and with an initial search direction that is equal to 

the initial residual: 𝑝0= 𝑟0. The idea behind the conjugate gradient method is that the 

residual 𝑟𝑘 = b −A𝑥𝑘is orthogonal to the Krylov subspace generated by b, and therefore 

each residual is perpendicular to all the previous residuals. The residual is computed at 

each step. The solution at the next step is found using a search direction that is only a 

linear combination of the previous search directions, which for 𝑥1is just a combination 
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between the previous and the current residual. Then, the solution at step k, 𝑥𝑘, is just the 

previous iterate plus a constant times the last search direction. Consider the problem of 

finding the vector 𝑥 that minimizes the scalar function f(𝑥)=
1

2
𝑥𝑇𝐴𝑥 − 𝑏𝑇𝑥 where the 

matrix A is symmetric and positive definite. Again f(𝑥)is minimize when its gradient 

∇𝑓 = 𝐴𝑥 − 𝑏 = 0. It implies that the minimization is equivalent to 𝐴𝑥 = b. Gradient 

methods accomplish the minimization by iteration starting with an initial vector 𝑥0. Each 

iteration cycle k computes a refined solution 

𝑥(𝑘+1) = 𝑥𝑘 + 𝛼𝑘𝑆𝑘         (2.9) 

The step length 𝛼𝑘 is chosen so that 𝑥(𝑘+1) minimizes f(𝑥(𝑘+1)) in the search direction 

𝑆𝑘.Again, 𝑥(𝑘+1) must satisfy 𝐴𝑥 = 𝑏 such that  

𝐴(𝑥𝑘 + 𝛼𝑘𝑆𝑘) = 𝑏         (2.10) 

Introducing the residual  𝑟𝑘 = 𝑏 − 𝐴𝑥𝑘in equation (2.36) it becomes 

𝛼𝑘𝐴𝑆𝑘 = 𝑟𝑘          (2.11) 

The immediate benefit of the search directions is that there is no need to store the 

previous search directions and the search is linearly independent of the previous 

directions. Again, at the solution of the next step, a new search direction is computed, as 

well as a new residual and new constant.  

2.6.1 Generalized Minimal Residual (GMRES) 

The Generalized Minimal Residual (GMRES)method computes a sequence of orthogonal 

vectors and combines these through least-squares method (Kelly, 1995). This method 

combines with preconditioning as discussed earlier in order to speed up convergence. 
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However, CG requires storing the whole sequence, so that a large amount of storage is 

needed. For this reason, restarted versions of this method are used. In restarted versions, 

computation and storage costs are limited by specifying a fixed number of vectors to be 

generated (Saad, 2003). This method is useful for general nonsymmetric matrices. 

GMRES is the most popular Krylov subspace method applicable to any invertible matrix 

A. 

2.6.2 Bi-Conjugate Stabilized (BI-CGSTAB) 

The GMRES method retains orthogonality of the residuals by using long recurrences, at 

the cost of a larger storage demand. The Bi-Conjugate Gradient method takes another 

approach, replacing the orthogonal sequence of residuals by two mutually orthogonal 

sequences (Varga, 1962). The update relations for residuals in the Conjugate Gradient 

method are augmented in the BiConjugate Gradient method by similar relations.Thus we 

update two sequences of residuals.Bi-Conjugate requires computing a matrix-vector 

product and a transpose product . In some applications, the latter product may be 

impossible to perform, for instance if the matrix is not formed and the regular productis 

only given as an operation. 

2.6.3 QuasiMinimal Residual (QMR) 

The BiConjugate Gradient method often displays rather irregular convergence behavior. 

Moreover, the implicit decomposition of the reduced tridiagonal system may not exist, 

resulting in breakdown of the algorithm. A related algorithm, the Quasi-Minimal 

Residual method attempts to overcome this problem. The main idea behind this algorithm 

is to solve the reduced tridiagonal system in a least squares sense, similar to the approach 

followed in GMRES. Since the constructed basis for the Krylov subspace is bi-
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orthogonal, rather than orthogonal as in GMRES, the obtained solution is viewed as a 

quasi-minimal residual solution. Additionally, QMR uses look-ahead techniques to avoid 

breakdowns in the process(Varga, 1962). 

2.7 Matrix Splitting 

According to Hadjidimos (1987), the first step in the construction of stationary iterative 

methods usually begins with splitting of matrix A. Thus, A=M – N is a splitting of matrix 

A. 

M = D and N = −(L +U)        (2.12) 

MJC= D                                                                                                (2.13) 

MGS=  D + L, N = −U.        (2.14) 

MSOR= SOR   M =
 1

 𝜔
(D +  L)       (2.15) 

where Dis the diagonal matrix A, L and U are lower and upper triangular matrix  MJC , 

MGS and MSOR are the diagonals for Jacobi, Gauss-Seidel and SOR methods respectively 

so that A𝑥=b is equivalent to  𝑥 = T𝑥 + C , where 

T = M−1N  and C = M−1b        (2.16) 

 

2.8Spectral Radius 

The spectral radius of an n × n matrix A is𝜌(𝐴) = max|𝜆|= lim
𝑛→∞

‖𝐴𝑛‖1 𝑛⁄  where 𝜆 is an 

eigenvalue of A. The theory of matrix splitting plays an important role in convergence 

analysis for the iterative Scheme.The concept of spectral radius allows us to make a 

complete description of eigenvalues of a matrix andis independent of any particular 

matrix norm (Kelly, 1995).Consider the linear system Ax = b for the iterative solution of 
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systems of linear equations, it is customary to represent the matrix A as A = M − N: If 

the matrix M is nonsingular, the iterative method is expressed in the form: 

𝑥(𝑘+1)= M−1Nxk + M−1b  ;      n ≥0 :     (2.17) 

Equation (2.17) converges to the unique solution x = 𝐴−1bof the system A𝑥 = b for each 

initial vector 𝑥(0) if, and only if, 𝜌(𝑀−1𝑁) < 1, where 𝜌(𝑀−1𝑁)is the spectral radius of 

the iteration matrix M−1N . 

2.9Acceleration Schemes 

2.9.1Chebyshev Extrapolation Scheme 

TheChebyshev Extrapolation is applied to iterative scheme uses the three-term recursion 

(Hageman and Young 1981) as shown below: 

𝑥̂(𝑘+1)= T𝑥(𝑘) + C,         (2.18) 

𝑥(𝑘+1)= 𝑥(𝑘−1)+ 𝛼𝑘{𝑥(𝑘) − 𝑥(𝑘−1) +  𝛽(𝑥̂(𝑘+1) − 𝑥(𝑘))},    (2.19) 

where T is iterative matrix, C is the nonsingularmatrix,𝛼𝑛 and 𝛽 are the extrapolation 

parametersWrigley (1963) . The formulation of the extrapolation process is preferred 

since at each iteration of one parameter, alpha need to be calculated. The application of 

Chebyshev extrapolation in the real eigenvalue case requires the knowledge of two 

parameters a and b which are respectively the upper and lower bound of the eigenvalue of 

the iterative matrix.The extrapolation parameters 𝛼𝑛 and 𝛽 are then given in terms of a 

and b (Arioli et al, 1989). 

β =
2

 2−a−b
          (2.20) 
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𝛼𝑘 =
2𝛾𝑇𝑛(𝛾)

𝑇𝑛+1(𝛾)
for k≥ 1 ,        (2.21) 

𝛾=
(2−𝑎−𝑏)

(𝑎−𝑏)
          (2.22) 

 a = λmin(D−1A)                                                   (2.23) 

b =𝜆𝑚𝑎𝑥(D−1A)                                                                              (2.24) 

𝑇𝑛(𝛾) = cos (n cos−1 γ )                                       (2.25) 

According to Duan and Zheng (2008) when the basic iterationmatrix is similar to a 

diagonal matrix and all eigenvalues are real and lie in theinterval [a, b], the Chebyshev 

extrapolation scheme for SOR employs the Chebyshevpolynomials, where D = 

nonsingular diagonal matrix (A) and𝜆=eigenvalue of A.An important number of 

applications in science and engineering require the numerical solution of large 

nonsymmetric matrix for eigenvalue problem (Saad ,1984) that involved computing the 

problem of eigenvalue. 

Peng and Lin (2012) presented restarted acceleration scheme without using Chebyshev 

polynomial to work as the acceleration process for stationary iterative methods. 

Refinement after a fixed number of iteration and the improved approximate was applied 

using both inner and outer loops to obtain more accurate approximation. 

The Chebyshev extrapolation algorithm is as follows: 

1. Input the coefficient matrix A, initial guess 𝑥0  and the RHS vector  b and set 

maximum value for iteration 
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2. Set the tolerance, 𝜀 = 0.0001 

3. Compute the residual vector r = b − Ax0 

4. Compute z = 
M

r
 

5. Compute the error vector 

6. Stop if error <𝜀 

2.9.2 Accelerated Gradient Scheme 

Accelerate Gradient acceleration scheme improves the convergence stationary iterative 

methods for solving a large and sparse system.Accelerated gradient schemes applied the 

idea of initial vector for the iterative scheme (Auslender and Teboulle, 2006). 

𝑥(𝑘+1) = 𝑦𝑘 − ∇𝑓(𝑦𝑘)        (2.26) 

𝑦(𝑘+1) =  𝑥(𝑘+1) + 𝛽(𝑥(𝑘+1) − 𝑥(𝑘))      (2.27) 

    𝛽 =
1 − √

𝑎

𝑏

1 +  √
𝑎

𝑏

  ,          (2.28) 

where∇𝑓 is the gradient function,a and b are the largest and smallest eigenvalues of 

matrix A. 

The Accelerated gradient algorithm is as follows: 

1. Let 𝑥0𝜖𝑅𝑛 and 𝑦0 = 𝑥0  and 𝜃0=1 k≥ 0 

2. Compute 𝑥𝑘+1= 𝑦𝑘 − ∇𝑓(𝑦𝑘) 

3. Compute  𝜃𝑘+1 

4. Compute 𝑦𝑘+1 = 𝑥𝑘+1  + 𝜃𝑘+1(𝑥𝑘+1 − 𝑥𝑘) 
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2.9.3Residual Smoothing Scheme 

An iterative method for solving a linear system A𝑥 = b produces iterates 𝑥𝑘 with 

associated residualnorms that, in general, need not decrease "smoothly" to zero. 

"Residual smoothing" techniques are considered that generate a second sequence (Walker 

and Zhou, 1994).  Let {𝑥𝑘} be a sequence of approximate solutions of a linearsystem A 𝑥 

= b, A ∈R(𝑛×𝑛), and let {𝑟𝑘≡ b − A𝑥𝑘} be the associated sequence of residuals. We 

consider the following general residual smoothing technique:Let 𝑦0= 𝑥0, 𝑠0 = 

𝑟0,k=1,2,3……. 

𝑥𝑘= M + (N𝑥 + b)         (2.29) 

𝑦𝑘 = 𝑦𝑘−1+ (𝑥𝑘− 𝑦𝑘−1)              (2.30) 

𝑠𝑘 = 𝑠𝑘−1 + 𝑥𝑘(𝑟𝑘− 𝑠𝑘−1)                                      (2.31) 

The Residual Smoothing Algorithm is as follows: 

1. Let 𝑠0= 𝑟0 and 𝑦0 = 𝑥0 

2. Compute 𝑥𝑘and 𝑟𝑘    k= 1,2………… 

3. Compute  𝑑𝑘=
𝑠

𝑘−1(𝑟𝑘−𝑠𝑘−1)

𝑇

‖𝑟𝑘−𝑠𝑘−1‖
 

4. Find 𝑥𝑘= M + (N𝑥0 + b) 

5. Set 𝑠𝑘 =𝑠𝑘−1  +   𝑑𝑘(𝑟𝑘 − 𝑠𝑘−1) 

6. Compute 𝑦𝑘 = 𝑦𝑘−1 +  𝑑𝑘(𝑥𝑘 − 𝑦𝑘−1) 

2.9.4 Richardson Extrapolation Scheme 

The Richardson Extrapolation Scheme is of the form: 

𝑥(𝑘+1) = (I − T)𝑥𝑘 + C        (2.32) 

since A= M− N,  T=M−1N  and C = M−1b, where M and N are nonsingular matrices. 
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(i) The iterative scheme (Eqn 2.31)  leads to the Richardson extrapolation scheme: 

x(k+1) = ((1 − ω)I +  ωT)𝑥𝑘 + ωC      (2.33) 

where 𝜔  and I are the relaxation parameters and identity matrix respectively.The 

Richardson Algorithm is as follows: 

1. Input the coefficient matrix A, initial guess 𝑥0  and the RHS vector b.  

2. Form an approximate solution 𝑥0, 𝑥1, 𝑥2 … … … 𝑥𝑘 … … …   k ≥ 0 

3. Find the output vector r = b − Axk and add this vector to 𝑥𝑘 to obtain 𝑥𝑘+1 

=𝑥𝑘 + (𝑏 − 𝐴𝑥𝑘) 

4. Add input error vector  𝑥 − 𝑥0 to 𝑥𝑘 

5. Compute  x(k+1) = ((1 − ω)I +  ωT)𝑥𝑘 + ωC 

2.10   Relative Residual 

The accuracy, stability and fast convergence of a solution to systems of linear equations 

are determined by residual as well as relative residual. Consider solution of the linear 

system Ax = b, with exact answer 𝑥 and computed solution 𝑥∗. Thus, we expect an error 

e = 𝑥 −𝑥∗. Since 𝑥 is not known to us in general we often judge the accuracy of the 

solution with assumption that a small residual may guarantee a small error.So large 

relative residual implies large backward error in the matrix and algorithm used to 

compute solution is unstable. Another way of saying this is that a stable algorithm will 

invariably produce a solution with small relative residual, irrespective of the conditioning 

of the problem, and hence a small residual by itself, sheds little light on the quality of the 

approximate solution. Therefore the residual is related to relative residual as follows: 

Relative Residual (Relres)   = 
‖A 𝑥 − A𝑥∗‖

‖A 𝑥‖
 = 

‖b − 𝑏∗‖

‖𝑏‖
 = 

‖ r ‖

‖ b ‖
(2.34) 
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There are several stopping criteria which one may apply to iterative systems. Our 

stopping criterion was to use the relative residual: 
‖A 𝑥 − A𝑥∗‖

‖A 𝑥‖
<  𝜀 where is taken as 

10−4. 

2. 11 Related Works 

Kalambi (2008) studied the three stationary iterative methods (Jacobi,Gauss-Seidel and 

SOR)for the solution of linear equations and his results shows that the SOR method was 

more efficient than the other two iterative methods, considering their performance, using 

parameters as time to converge, number of iterations required to converge, storage and 

level of accuracy. 

Zhang et al., (2014) studied the three stationary iterative methods together 

withAlternating Direction Implicit, Chebyshev and Conjugate gradient method.They 

considered Chebyshev and Conjugate gradient methods as effective. 

Santo and Linhares, (1986) proved the sufficient condition for the convergence of 

Chebyshev acceleration methods applied to numerical solution of algebraic linear system. 

The convergence condition depends on the eigenvalues of a particular matrix. 

Unified backward iterative matrix was proposed by (Wang et al., 2014)to solve large 

scale linear systems and backward and Jacobi iteration algorithms are 

employed.Hadjidimos (1978) proposed two-parameter generalization of the SOR method 

known as Accelerated Overrelaxation (AOR) method using the stationary iterative 

scheme and matrix splitting method.Peng and Lea (2012) studied an acceleration scheme 

based on stationary iterative methods for solving linear system of equations. They used a 

wide range of Chebyshev-like polynomials for the accelerating process without 
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estimating the bounds of the iterative matrix. Chebyshev extrapolation can be used to 

accelerate the convergence of Jacobi method (Young and Jea, 1980). 

Iqbal, (2012) investigated the use of projection techniques and proposed the residual 

iterative method which minimized the norm of the residual over Krylov subspace.Further, 

Young and Jea, (1980) also proposed three generalization of Conjugate Gradient 

acceleration methods which are designed to speed up the convergence of stationary 

iterative methods. 

 Walker and Zhou (1994) studied residual smoothing techniques for solving systems of 

linear equations in residual norm sequence produced by certain pairs of Krylov subspace 

methods and applied minimal residual smoothing to an orthogonal residual methodresults 

in a minimal residual method. 

From the above discussion, researchers have dealt with numerous areas in iterative 

methods for the solution of SLE. However,the convergence of Jacobi Gauss-Seidel and 

SOR methods need to be improved using acceleration schemes. That is to say, 

incorporation of the named iterative methods into the identified acceleration schemes 

using the selected linear systems. Therefore, this study focused on acceleration schemes 

to assess the solution of SLE. 

2. 12 Conclusion 

This chapter detailed the sources of systems of linear equations, concepts of stationary 

iterative 

Methods and their convergence: It also explained the concepts of the identified 

acceleration schemes and their algorithm and finally related works of stationary and 

accelerationschemes. 
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CHAPTER THREE 

METHODOLOGY 

3.0 Introduction 

This section presents details of the experimental work which includes a discussion of the 

stationary iterative methods incorporated into the acceleration schemes and other 

procedures employed to accomplish the study objectives. . 

3.1Stationary Iterative Method with Chebyshev Extrapolation Scheme 

The Jacobi, Gauss-Seidel and SOR are incorporated into Chebyshev extrapolation 

schemes. The incorporation depends on the nonsingular matrix M found in theiterative 

matrix T = M−1N(see eqn2.16). The Matrix M, wasputin the Chebyshev extrapolation 

algorithm (see Eqn2.12) as follow: 

Z = 
M

𝑟
,          (3.1) 

Wherer is the residualof A𝑥 = 𝑏. Eqn (3.1) with respect to Jacobi, Gauss-Seidel and SOR 

methods become: 

Z = 
𝑀𝐽𝐶

𝑟
(for Jacobi),         (3.2) 

Z = 
𝑀𝐺𝑆

𝑟
(for Gauss-Seidel),        (3.3) 

Z = 
𝑀𝑆𝑂𝑅

𝑟
(for SOR),         (3.4) 
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where M𝐽𝐶, M𝐺𝑆 and M𝑆𝑂𝑅 are as defined in Eqns (2.13, 2.14 and 2.15) respectively. 

The next step is to run the coded version of the algorithm of the Chebyshev extrapolation 

scheme using each of the eqns (3.2 to 3.4) as required. 

3.2Stationary Iterative Method with Richardson Extrapolation Scheme. 

The nonsingular matrix M in the iterative matrix T = M−1N was put in the Richardson 

Extrapolation Scheme (eqn 2.33) and obtained: 

T = 𝑀𝐽𝐶
−1N(for Jacobi),        (3.5) 

T = 𝑀𝐺𝑆
−1N(for Gauss-Seidel),       (3.6) 

T = 𝑀𝑆𝑂𝑅
−1N(for SOR),        (3.7) 

where M𝐽𝐶, M𝐺𝑆 and M𝑆𝑂𝑅 are as defined in Eqns (2.13, 2.14 and 2.15) respectively. 

The next step is to run the coded version of the algorithm of the Richardson extrapolation 

scheme using each of the eqns (3.5 to 3.7) as required 

3.3Stationary Iterative Method with Residual Smoothing Scheme 

The nonsingular matrix M in eqn (2.29) was replaced with MJC (eqn 2.11),MGS(eqn 2.12) 

and MSOR(eqn 2.13) and obtained: 

𝑥𝑛= 𝑀𝐺𝑆 + (N𝑥 + b),         (3.8) 

𝑥𝑛= 𝑀𝐺𝑆 + (N𝑥 + b),         (3.9) 

  𝑥𝑛= 𝑀𝑆𝑂𝑅 + (N𝑥 + b),        (3.10) 

where M𝐽𝐶, M𝐺𝑆 and M𝑆𝑂𝑅 are as defined in Eqns (2.13, 2.14 and 2.15)) respectively. 
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The next step is to run the coded version of the algorithm of the Residual scheme using 

each of the eqns (3.8 to 3.10) as required. 

3.4Stationary Iterative Method with Accelerated Gradient Scheme 

For this scheme, eqn (2.26) was replaced with: 

𝑥(𝑘+1)= 𝐷−1[𝑏 − (𝐿 + 𝑈)𝑥𝑘]       (3.11) 

Now, substituting M= D from (eqn 2.12) and eqn (3.11) and obtained 

𝑥(𝑘+1)= M−1[𝑏 − (𝐿 + 𝑈)𝑥𝑘]                                                                                      (3.12) 

Again, replacing M in eqn (3.12) and obtained: 

𝑥(𝑘+1)=  MJC
−1[𝑏 − (𝐿 + 𝑈)𝑥𝑘]                                                                                  (3.13) 

𝑥(𝑘+1)= MGS
−1[𝑏 − (𝐿 + 𝑈)𝑥𝑘]                                                                                  (3.14) 

𝑥(𝑘+1)= MSOR(−1[𝑏 − (𝐿 + 𝑈)𝑥𝑘]                                                                              (3.15) 

where M𝐽𝐶, M𝐺𝑆 and M𝑆𝑂𝑅 are as defined in Eqns (2.13, 2.14 and 2.15) respectively. 

The next step is to run the coded version of the algorithm of the Accelerated gradient 

scheme using each of the eqns (3.13 to 3.15) as required. 

3.5 Experimental work 

This section discussed the construction, processing and solutions of the Tridiagonal, 

banded and Dense SPD linear systems. 

3.5.1 Problem Construction 

The identified SLE were constructed using the systems obtained from the available 

source and Matlab code generation). The coefficient matrix A of the problem A𝑥 = b for 

each Tridiagonal, Banded and Dense SPD were randomly generated using Matlab code 

(see Appendix  D, E and F).The solution vector 𝑥 , for each generated system is 𝑥= 
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(1,1 … … … . 𝑛)T where n is the number of variables. The RHS vector b, was then 

obtained as b = A𝑥 for each n by n square matrix. The problem construction for each 

Tridiagonal, Banded and Dense SPD was started using n = 9, 25, 50,100, 200, 500 to 800. 

The size of the systems was varied to assess the performance of each method. 

3.5.2Problem Processing 

In order to process the identified linear systems, the Matlab codes for Jacobi, Gauss-

Seidel and SORand the acceleration schemes for each specific system were entered into 

the M-File editor of the Matlab software. The coefficient matrix A and RHS vector for a 

particular system were put into the code to be computed. The results were then displayed 

at the command window where each of the named performance criteria was also 

recorded. 

3.5.3 Problem Solution 

In the solution of the named SLE, the performance criteria considered were convergence, 

number of iterations, speed of convergence (in seconds) and relative residual.Tridiagonal 

systems (Appendix F) was first computed using Jacobi, Gauss-Seidel and SOR iterative 

methods with n= 9 to assess the identified performance criteria. The next computation 

dealt with finding the solution of the incorporated Jacobi, Gauss-Seidel and SOR into the 

identified accelerations schemes. That is solving the system using Chebyshev 

extrapolation scheme(CES) with Jacobi, Chebyshev extrapolation scheme (CES) with 

Gauss-Seidel,Chebyshev extrapolation scheme (CES) with SOR, Accelerated gradient 

scheme (RES) with Jacobi, Accelerated gradient scheme (RES) with Gauss-

Seidel,Accelerated gradient scheme (RES) with SOR, Residual smoothing(RS) with 

Jacobi,Residual smoothing( RS) with Gauss-Seidel,Residual smoothing( RS) with SOR, 



www.udsspace.uds.edu.gh 
 
 

30 
 

 

Richardson extrapolation scheme (RES) with Jacobi, Richardson extrapolation scheme 

(RES) with Gauss-Seidel and Richardson extrapolation scheme (RES). Then,the 

following known iterative methods (Richardson, Chebyshev, GMRES, MINRES,QMR 

and BICGSTAB) were also applied to solve the Tridiagonal system to assess and 

compare the above named performance criteria.  

Furthermore, the size of the Tridiagonal system was then increased to n=25 which was 

solved  using Jacobi, Gauss-Seidel, SOR methods first followed by the acceleration 

schemes with the stationary iterative methods (CES with Jacobi, CES with Gauss-Seidel, 

CES with SOR, RES with Jacobi, RES with Gauss-Seidel,RES with SOR, RS with 

Jacobi, RS with Gauss-Seidel, RS with SOR, AGS with Jacobi, AGS with Gauss-

Seidel,AGS with SOR) as well as the known iterative methods. The above procedures 

were repeated with varying size of Tridiagonal system (n=50,100,200,500 and 800).  

Moreover, having dealt with Tridiagonal system, the next chosen system was Dense and 

SPD. Again, some real life problems are dense which are at the same time having special 

property (SPD).The computation of dense SPD started with n=9 as used in the previous 

procedures using the stationary iterative methods with the acceleration schemes and then 

applying the known iterative methods to assess the same performance criteria. 

Again, the next system considered was Banded started with n=9 which was solved using 

Jacobi, Gauss-Seidel, SOR methods followed by the acceleration schemes with the 

stationary iterative methods (CES with Jacobi, CES with Gauss-Seidel, CES with SOR, 

RES with Jacobi, RES with Gauss-Seidel,RES with SOR, RS with Jacobi, RS with 

Gauss-Seidel, RS with SOR, AGS with Jacobi, AGS with Gauss-Seidel,AGS with SOR) 

and finally the identified acceleration methods. 
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Finally, relaxation parameter𝜔 ranging between 0 <𝜔 < 2 was used for SOR, Richardson 

extrapolation scheme and Acceleration gradient schemes respectively. When solving 

system, the parameter was arbitrarily selected and varied for each iteration within the 

given range so optimal relaxation parameter for each particular system could be obtained. 

The significance of this optimal relaxation parameter is that it helps to reduce the number 

of iterations. The smaller the number of iterations, the lesser the amount of data being 

stored in a computer and vice versa and the faster the speed.  

3.6 Conclusion 

This chapter explained the incorporation of the stationary iterative methods into the 

identified acceleration schemes. It also showed the processes of the experimental works 

for the identified systems of linear equations. 
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CHAPTER FOUR 

NUMERICAL EXPERIMENTS AND RESULTS 

4.0 Introduction 

In this section, we present some numerical results to show the performance acceleration 

schemes on the identified linear systems.We ran our algorithm using Matlab software 

version 7.0.1. 

4.1Numerical Results 

The tables below display the results of the identified linear system with varying sizes and 

the performance criteria. The relaxation parameters for each method were placed against 

the specified methods. Flag value of  “0” indicates that the method applied converged to a 

solution and “1” showed that the method did not convergence for a specific number of 

iterations.Again, Flag value of  “2” indicate preconditioned was ill-conditioned, “3” 

means method stagnated(two consecutive iterations were the same) and “4” indicate one 

of the scalars is too large to continue the computation. 

4.2 Tridiagonal System 

This section explained the results of Tridiagonal systems of linear equation. The 

experimental works begun with different dimensions of the systems. The size of 

Tridiagonal systems started with n = 9, and then increased to 25, 50, 100, 200, 500 and 

finally 800. The tables on the next page elaborated the the numerical results. 
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Table 4.1:Tridiagonal System n=9 

 ITERATIVE METHODS    n= 9 

 

Methods Flag No. of 

Iteration 

Speed(sec) Relative 

Residual 

Jacobi 0 28 0.010000 2.1129e-005 

Gauss-Seidel 0 16 0.010000 0.250000 

SOR    ω=1.12 0 11 0.025000 0.250000 

ACCELERATION SCHEMES WITH  ITERATIVE METHODS 

CES with Jacobi 0 17 0.045000 6.0578e-004 

CES with GS 0 12 0.030000 8.7898e-004 

CES with SOR  ω=0.60 0 10 0.050000 5.0506e-004 

RES with Jacobi  ω=1.12 0 29 0.042000 1.3590e-005 

RES with GS         ω=1.0 1 101 0.030000 5.2242e+008 

RES with SOR   ω=1.20 1 101 0.040000 5.4020e+016 

AGS with Jacobi 0 6 0.005000 4.6060e-016 

AGS with  Gauss-Seidel 0 6 0.010000 4.6060e-016 

AGS with  SOR   ω= 0.9 0 6 0.005000 4.6060e-016 

RS with Jacobi 0 2 0.006000 2.2480e-016 

RS with Gauss-Seidel 0 2 0.005000 4.8115e-016 

RS with SOR     ω=1.13 0 2 0.005000 5.8376e-016 

ACCELERATION METHODS 

Chebyshev   Acceleration 0 2 0.000082 1.00000 

Richardson   Acceleration 0 3 0.005000 1.1305e-016 

Gmres 0 6 0.132780 7.5e-016 

Minres 0 9 0.002641 1.8e-005 

Qmr 0 6 0.002641 9.3e-016 

Bicgstab 0 5.5 0.093143 1.6e-016 

 

From Table 4.1, all the methods converged to an approximate solutionwith the exception 

of RESwith Gauss-Seidel and RES with SOR and this can be observedfrom  their relative 

residuals. The relative residual conformed with the convergence of the methods except 

RES with Gauss-Seidel and RES with SOR because of the its large value (5.2242e+008 

and 5.4020e+016).This indicates that the corresponding schemes failed to converge. 

TheRS and Chebyshev acceleration methods have the fastest convergence in terms of 
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number of iterations.The minimum and maximum optimal relaxation parameters for the 

stationary and acceleration schemes are 0.6 and 1.2 respectively. 

Table 4.2: Tridiagonal System n= 25 

 ITERATIVE METHODS    n= 25 

Methods Flag No. of 

Iteration 

Speed(sec) Relative 

Residual 

Jacobi 0 11 0.052000 9.0872e-005 

Gauss-Seidel 0 7 0.031000 0.2500 

SOR    ω = 1.11 0 6 0.078000 0.2000 

ACCELERATION SCHEMES WITH  ITERATIVE METHODS 

CES with Jacobi 0 3 0.015000 6.8408e-004 

CES with GS 0 7 0.031000 4.6425e-004 

CES with SOR  ω =1.01 0 7 0.063000 9.8979e-004 

RES with Jacobi  ω =1.12 0 14 0.043000 5.1065e-004 

RES with GS         ω =1.25 0 8 0.024000 5.5660e-004 

RES with SOR   ω =1.11 0 11 0.016000 5.8001e-004 

AGS with Jacobi 0 9 0.020000 5.7987e-007 

AGS with  Gauss-Seidel 0 9 0.045000 5.2208e-007 

AGS with  SOR   ω = 0.9 0 9 0.030000 5.1255e-007 

RS with Jacobi 0 2 0.025000 3.4609e-007 

RS with Gauss-Seidel 0 2 0.030000 2.8579e-007 

RS with SOR     ω = 1.13 0 2 0.027000 2.0754e-007 

ACCELERATION METHODS 

Chebyshev    Acceleration 0 2 0.063000 2.7519e-016 

Richardson    Acceleration 0 3 0.125000 9.9403e-008 

Gmres 0 9 0.031000 5.1e-007 

Minres 0 8 0.109000 5.5e-007 

Qmr 0 9 0.031000 4.4e-007 

Bicgstab 0 5.5 0.109000 2.4e-007 

 

From Table 4.2, all the methods (stationary iterative methods and the accelerated 

schemesconverged. For this type of problem RS and Chebyshev acceleration methods 

converged faster than all the other methods in terms of number of iteration. The 

minimum and maximum optimal relaxation parameters for the stationary iterative 

methods and acceleration schemes are 0.9 and 1.25 respectively. For this problem only 

the acceleration methods, RS scheme and CES with Jacobi improved the convergence of 
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the stationary iterative methods.The  relative residuals for each methods are relatively 

small. 

Table 4.3: Tridiagonal System n=50 

 ITERATIVE METHODS    n= 50 

Methods Flag No. of 

Iteration 

Speed(sec) Relative 

Residual 

Jacobi 0 11 0.015000 9.8114e-005 

Gauss-Seidel 0 8 0.095000 0.2000 

SOR    ω = 1.01 0 8 0.062000 0.2000 

ACCELERATION SCHEMES WITH  ITERATIVE METHODS 

CES with Jacobi 0 3 0.062000 6.3410e-004 

CES  with GS 0 4 0.156000 8.1900e-004 

CES with SOR  ω =0.9 0 4 0.125000 7.6853e-004 

RES with Jacobi  ω = 0 14 0.013900 3.8612e-005 

RES with GS         ω =1.11 0 12 0.023000 1.2545e-005 

RES with SOR   ω =0.9 0 11 0.023200 1.6726e-005 

AGS with Jacobi 0 9 0.230000 5.1450e-007 

AGS with  Gauss-Seidel 0 9 0.253000 2.1452e-007 

AGS with  SOR   ω = 0.9 0 9 0.212300 3.1312e-007 

RS with Jacobi 0 2 0.075000 1.00000 

RS with Gauss-Seidel 0 2 0.012000 1.00000 

RS with SOR     ω = 1.01 0 2 0.311200 1.00000 

ACCELERATION METHODS 

Chebyshev   Acceleration 0 2 0.015000 2.1379e-015 

Richardson   Acceleration 0 3 0.017000 1.6651e-007 

Gmres 0 9 0.015000 5.9e-007 

Minres 0 8 0.015000 5.9e-007 

Qmr 0 9 0.016000 5.9e-007 

Bicgstab 0 5.5 0.015000 2.6e-007 

 

From Table 4.3, all the methods (stationary iterative methods, the accelerated schemes 

and acceleration methods converged. For this type of problem RS and Chebyshev 

acceleration methods converged faster than all the other methods in terms of number of 

iteration and RES did not improve the stationary iterative methods.The minimum and 

maximum optimal relaxation parameters for the stationary iterative methods and 

acceleration schemes are 0.9 and 1.11respectively.  
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Table 4.4 : Tridiagonal System n=100 

 ITERATIVE METHODS    n= 100 

Methods Flag No. of 

Iteration 

Speed(sec) Relative 

Residual 

Jacobi 0 12 0.015000 4.0542e-005 

Gauss-Seidel 0 8 0.077000 0.2000 

SOR    ω = 1.01 0 8 0.093000 0.2000 

ACCELERATION SCHEMES WITH  ITERATIVE METHODS 

CES with Jacobi 0 3 0.156000 5.7303e-004 

CES with GS 0 4 0.343000 8.3607e-004 

CES with SOR  ω =1.22 0 4 0.562000 7.8390e-004 

CES with Jacobi  ω =0.9 0 14 0.132000 3.9974e-005 

RES with GS         ω =1.01 0 13 0.120000 2.6125e-005 

RES with SOR   ω =1.25 0 9 0.320000 1.6455e-005 

RES with Jacobi 0 9 0.328000 5.7652e-007 

AGS with  Gauss-Seidel 0 9 0.114000 3.1443e-007 

AGS with  SOR   ω = 1.01 0 9 0.013000 3.1451e-007 

RS with Jacobi 0 2 0.119000 1.00000 

RS with Gauss-Seidel 0 2 0.023000 1.00000 

RS with SOR     ω = 0.9 0 2 0.130000 1.00000 

ACCELERATION METHODS 

Chebyshev  Acceleration 0 2 0.047000 2.0106e-015 

Richardson  Acceleration 0 3 0.023000 1.4708e-007 

Gmres 0 9 0.016000 5.9e-007 

Minres 0 8 0.015000 5.9e-007 

Qmr 0 9 0.015000 5.9e-007 

Bicgstab 0 5 0.016000 8.4e-007 

 

From Table 4.4, all the methods converged and CES with Jacobi and RES with Gauss-

Seidel did not improve the stationary iterative methods. The minimum and 

maximumoptimal relaxation parameters for the stationary iterative methods and 

acceleration schemes are 0.9 and 1.22 respectively.  
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Table 4.5: Tridiagonal System n=200 

 ITERATIVE METHODS    n= 200 

Methods Flag No. of 

Iteration 

Speed(sec) Relative 

Residual 

Jacobi 0 12 0.047000 4.1249e-005 

Gauss-Seidel 0 9 0.135000 0.2000 

SOR    ω = 1.01 0 8 0.328000 0.2000 

ACCELERATION SCHEMES WITH  ITERATIVE METHODS 

CES with Jacobi 0 3 0.858000 4.9097e-004 

CES with GS 0 6 1.357000 8.4722e-004 

CES  with SOR  ω =1.01 0 4 1.513000 7.9387e-004 

RES with Jacobi  ω =1.11 0 15 1.320000 1.8680e-005 

RES with GS         ω =0.9 0 13 2.100000 3.6345e-005 

RES with SOR   ω =0.9 0 10 1.020000 1.6723e-005 

AGS with Jacobi 0 9 0.280000 5.9057e-007 

AGS with  Gauss-Seidel 0 9 0.253000 4.3212e-007 

AGS with  SOR   ω = 1.01 0 9 0.013000 3.2152e-007 

RS with Jacobi 0 2 0.382000 1.00000 

RS with Gauss-Seidel 0 2 0.350000 1.00000 

RS with SOR     ω = 1.11 0 2 0.210000 1.00000 

ACCELERATION METHODS 

Chebyshev  Acceleration 0 2 0.312000 2.1717e-015 

Richardson  Acceleration 0 3 0.022000 1.8803e-007 

Gmres 0 9 0.015000 6.1e-007 

Minres 0 8 0.015000 6.1e-007 

Qmr 0 9 0.015000 6.1e-007 

Bicgstab 0 5.5 0.015000 2.6e-007 

 

From Table 4.5, RES with Jacobi,RES with Gauss-Seidel and did not converge which 

corresponds with the largest values of the relative residual. The minimum and maximum 

optimal relaxation parameters for the stationary and acceleration schemes are 0.9 and 

1.11 respectively. 
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Table 4.6: Tridiagonal System n=500 

 ITERATIVE METHODS    n= 500 

Methods Flag No. of 

Iteration 

Speed(sec) Relative 

Residual 

Jacobi 0 11 0.062000 1.0420e-004 

Gauss-Seidel 0 9 0.370000 0.2000 

SOR    ω = 1.01 0 9 1.903000 0.2000 

ACCELERATION SCHEMES WITH  ITERATIVE METHODS 

CES with Jacobi 0 3 4.868000 5.0792e-004 

CES  with GS 0 3 6.453000 7.3454e-004 

CES  with SOR  ω =0.9 0 2 9.376000 0.0097 

RES with Jacobi  ω =1.01 0 15 3.200000 4.1031e-005 

RES with GS         ω =1.11 0 12 5.202000 4.3033e-005 

RES with SOR   ω =0.9 0 6 3.230000 3023e-005 

AGS with Jacobi 0 9 2.137000 5.5644e-007 

AGS with  Gauss-Seidel 0 9 2.500000 2.2452e-007 

AGS with  SOR   ω =  0 9 3.021000 2.1851e-007 

RS with Jacobi 0 2 2.823000 1.00000 

RS with Gauss-Seidel 0 2 3.100000 1.00000 

RS with SOR     ω = 0.9 0 2 1.950000 1.00000 

ACCELERATION METHODS 

Chebyshev   Acceleration 0 2 1.685000 2.2830e-015 

Richardson   Acceleration 0 3 0.071000 1.7919e-007 

Gmres 0 9 0.016000 5.8e-007 

Minres 0 8 0.016000 5.8e-007 

Qmr 0 9 0.031000 5.8e-007 

Bicgstab 0 5.5 0.015000 2.4e-007 

 

From Table 4.6, RES with Jacobi,RES with Gauss-Seideldid not converge which 

corresponds with the largest values of the relative residual. The minimum and maximum 

optimal relaxation parameters for the stationary and acceleration schemes are 0.9 and 

1.11 respectively. 
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Table 4.7: Tridiagonal System n=800 

 ITERATIVE METHODS    n= 800 

Methods Flag No. of 

Iteration 

Speed(sec) Relative 

Residual 

Jacobi 0 13 0.172000 1.6705e-005 

Gauss-Seidel 0 9 0.821000 0.2000 

SOR    ω = 0.9 0 6 6.443000 0.2000 

ACCELERATION SCHEMES WITH  ITERATIVE METHODS 

CES with Jacobi 0 3 19.297000 2.6345e-005 

CES ev with GS 0 4 30.982000 8.7189e-004 

CES with SOR  ω =0.9 0 4 34.242000 1.6265e-005 

RES with Jacobi  ω =1.11 0 6 20.34400 1.6305e-005 

RES  with GS         ω =1.12 0 5 23.54300 1.5305e-005 

RES  with SOR   ω =0.9 0 4 13.459300 2.6715e-005 

AGS with Jacobi 0 9 5.148000 5.8790e-007 

AGS with  Gauss-Seidel 0 9 5.350000 3.1352e-007 

AGS with  SOR   ω = 0.9 0 9 5.021000 4.1342e-007 

RS with Jacobi 0 2 7.676000 1.00000 

RS with Gauss-Seidel 0 2 6.453000 1.00000 

RS with SOR     ω = 0.9 0 2 5.343000 1.00000 

ACCELERATION METHODS 

Chebyshev  Acceleration 0 2 8.034000 3.1274e-015 

Richardson  Acceleration 0 3 0.219000 1.6659e-007 

Gmres 0 9 0.047000 5.6e-007 

Minres 0 8 0.047000 5.7e-007 

Qmr 0 9 0.078000 5.7e-007 

Bicgstab 0 5.5 0.062000 2.2e-007 

 

From Table 4.7,The speed of the CES and RES were quite slow as compare to the 

remaining methods but the relative residual are sufficiently small. The minimum and 

maximum optimal relaxation parameters for the stationary iterative methods and 

acceleration schemes are 0.9 and 1.12 respectively. 
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4.3 Dense SPD Systems. 

This section gave the results of Dene SPD systems of linear equations. 

Table 4.8: Dense SPD System  n = 9 

 ITERATIVE METHODS    n= 9 

Methods Flag No. of 

Iteration 

Speed(sec) Relative 

Residual 

Jacobi 1 100 0.156000 1.5563e+023 

Gauss-Seidel 0 6 0.047000 0.0825 

SOR    ω= 0.9 0 5 0.062000 0.0825 

ACCELERATION SCHEMES WITH  ITERATIVE METHODS 

CES with Jacobi 0 8 0.094000 3.0967e-004 

CES with GS 0 7 0.031000 9.3008e-004 

CES with SOR  ω=1.01 0 7 0.016000 0.0034 

RES with Jacobi  ω=1.25 1 101 0.067000 4.9336e+037 

RES  with GS         ω=1.01 1 101 0.047000 4.5069e+013 

RES with SOR   ω=1.11 1 101 0.072100 8.0130e+012 

AGS with Jacobi 0 5 0.031000 3.1592e-007 

AGS with  Gauss-Seidel 0 5 0.015000 3.1592e-007 

AGS with  SOR        ω= 0.9 0 5 0.016000 3.1592e-007 

RS with Jacobi 0 2 0.031000 4.8449e-007 

RS with Gauss-Seidel 0 2 0.016000 4.3684e-007 

RS with SOR     ω=1.25 0 2 0.015000 3.8658e-007 

ACCELERATION METHODS 

Chebyshev  Acceleration 0 2 0.016000 2.7147e-016 

Richardson  Acceleration 0 3 0.031000 3.0564e-008 

Gmres 0 5 0.015000 3.2e-007 

Minres 0 4 0.124000 3.2e-007 

Qmr 0 5 0.124000 3.2e-007 

Bicgstab 0 3.5 0.358000 2.4e-008 

 

From Table 4.8, Jacobi, RES with Jacobi,RES withGauss-Seideland RES with SOR did 

not converge which corresponds with the largest values of the relative residual.The 

minimum and maximum optimal relaxation parameters for the stationary and acceleration 

schemes are 0.9 and 1.25 respectively.  
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Table 4.9 :  Dense SPD System  n = 25 

 ITERATIVE METHODS    n= 25 

Methods Flag No. of 

Iteration 

Speed(sec) Relative 

Residual 

Jacobi 0 95 0.952000 1.0182e-004 

Gauss-Seidel 0 7 0.091000 0.0250 

SOR    ω= 0.9 0 6 0.063000 0.0250 

ACCELERATION SCHEMES WITH  ITERATIVE METHODS 

CES with Jacobi 0 5 0.093000 1.2176e-004 

CES  with GS 0 5 0.063000 1.0908e-004 

CES with SOR  ω=0.9 0 4 0.031000 9.9137e-004 

RES with Jacobi  w=0.6 0 8 0.054000 6.0392e-005 

RES with GS         ω=0.6 0 8 0.013000 7.7639e-005 

RES with SOR      ω=0.6 0 5 0.029000 9.5900e-005 

AGS with Jacobi 0 4 0.088000 5.6974e-007 

AGS with  Gauss-Seidel 0 4 0.045000 5.6974e-007 

AGS with  SOR   w= 0.6 0 4 0.018000 5.6974e-007 

RS with Jacobi 0 2 0.046000 1.000000 

RS with Gauss-Seidel 0 2 0.032000 1.000000 

RS with SOR     ω=1.23 0 2 0.031000 8.5985e-007 

ACCELERATION METHODS 

Chebyshev   Acceleration 0 2 0.016000 6.5446e-017 

Richardson  Acceleration 0 2 0.047000 1.0895e-007 

Gmres 0 4 0.016000 5.7e-007 

Minres 0 3 0.078000 5.7e-007 

Qmr 0 4 0.016000 5.7e-007 

Bicgstab 0 2.5 0.094000 4.6e-008 

 

From Table 4.9, all the methods improved the stationary iterative methods except RES 

with Jacobi, RES with Jacobi, RES with Gauss-Seidel and RES with SOR. This is 

confirmed by the relative residual. The minimum and maximum optimal relaxation 

parameters for the stationary and acceleration schemes are 0.9 and 1.25 respectively.  
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Table 4.10 :  Dense SPD System  n = 50 

 ITERATIVE METHODS    n= 50 

Methods Flag No. of 

Iteration 

Speed(sec) Relative 

Residual 

Jacobi 1 1000 10.374000 8.5170e+264 

Gauss-Seidel 0 11 0.078000 0.0250 

SOR    ω = 0.9 0 9 0.031000 0.0250 

ACCELERATION SCHEMES WITH  ITERATIVE METHODS 

CES with Jacobi 0 7 0.055000 2.9257e-004 

CES with GS 0 7 0.093000 2.5571e-004 

CES with SOR  ω =0.9 0 6 0.156000 9.2620e-004 

RES with Jacobi  ω =1.12 1 101 2.120000 7.4506e+033 

RES with GS         ω =1.01 1 89 1.320000 1.6705e+135 

RES with SOR   ω =0.9 0 34 0.230000 1.6311e-005 

AGS with Jacobi 0 4 0.031000 7.8200e-007 

AGS with  Gauss-Seidel 0 4 0.023000 2.3433e-007 

AGS with  SOR   ω = 0.9 0 3 0.012000 2.1033e-007 

RS with Jacobi 0 2 0.015000 1.2275e-004 

RS with Gauss-Seidel 0 2 0.016000 1.1542e-004 

RS with SOR     ω = 1.25 0 2 0.031000 1.3364e-004 

ACCELERATION METHODS 

Chebyshev  Acceleration 0 2 0.016000 7.1411e-017 

Richardson  Acceleration 0 3 0.004000 2.5505 

Gmres 0 4 0.004000 7.8e-007 

Minres 0 3 0.002000 7.8e-007 

Qmr 0 4 0.008000 7.8e-007 

Bicgstab 0 2.5 0.003000 1e-007 

 

From Table 4.10, Jacobi, RES with Jacobi,RES with Gauss-Seidel did not converge 

which corresponds with the largest values of the relative residual. The minimum and 

maximum optimal relaxation parameters for the stationary and acceleration schemes are 

0.9 and 1.25 respectively.  
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Table 4.11: Dense SPD System   n= 100 

 ITERATIVE METHODS    n= 100 

Methods Flag No. of 

Iteration 

Speed(sec) Relative 

Residual 

Jacobi 1 500 6.411000 3.6534e+285 

Gauss-Seidel 0 20 0.327000 0.0250 

SOR    ω = 0.9 0 18 0.187000 0.0250 

ACCELERATION SCHEMES WITH  ITERATIVE METHODS 

CES with Jacobi 0 11 0.193000 3.9296e-004 

CES  with GS 0 11 0.375000 4.2941e-004 

CES with SOR  ω =0.9 0 10 0.390000 2.6847e-004 

RES with Jacobi  ω =1.01 1 100 0.015000 1.6659e+051 

RES with GS         ω =0.9 0 23 0.002341 1.2325e-005 

RES with SOR   ω =1.25 0 12 0.012000 1.2045e-005 

AGS with Jacobi 0 5 0.094000 7.6379e-008 

AGS with  Gauss-Seidel 0 4 0.034000 6.5479e-008 

AGS with  SOR   ω = 1.01 0 4 0.024000 5.6374e-008 

RS with Jacobi 0 2 0.015000 1.2575e-004 

RS with Gauss-Seidel 0 2 0.016000 1.2642e-004 

RS with SOR     ω = 1.25 0 2 0.021000 1.5343e-004 

ACCELERATION METHODS 

Chebyshev  Acceleration 0 2 0.062000 2.7343e-016 

Richardson  Acceleration 0 3 0.031000 1.6038e-008 

Gmres 0 5 0.005000 7.6e-008 

Minres 0 4 0.012000 7.6e-008 

Qmr 0 5 0.012000 7.6e-008 

Bicgstab 0 2.5 0.007000 1.9e-007 
 

From Table 4.11, Jacobi, RES with Jacobi, did not converge which corresponds with the 

largest values of the relative residual. The minimum and maximum optimal relaxation 

parameters for the stationary and acceleration schemes are 0.9 and 1.25 respectively.  
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Table 4.12: Dense SPD System n = 200 

 ITERATIVE METHODS    n= 200 

Methods Flag No. of 

Iteration 

Speed(sec) Relative 

Residual 

Jacobi 1 300 5.850000 1.3044e+262 

Gauss-Seidel 0 48 0.717000 0.0250 

SOR    ω = 0.9 0 40 0.718000 0.0250 

ACCELERATION SCHEMES WITH  ITERATIVE METHODS 

CES with Jacobi 0 20 0.846000 9.1197e-004 

CES  with GS 0 17 1.373000 7.4509e-004 

CES with SOR  ω =0.9 0 19 1.623000 9.7546e-004 

RES with Jacobi  ω =1.01 1 501 1.782000 6.1542e+206 

RES  with GS         ω =1.25 1 458 1.240000 1.6705e+320 

RES with SOR   ω =1.20 0 25 0.201000 1.6705e-005 

AGS with Jacobi 0 5 0.437000 1.2437e-007 

AGS with  Gauss-Seidel 0 5 0.013000 1.5347e-007 

AGS with  SOR   ω = 1.01 0 4 0.432000 1.2687e-007 

RS with Jacobi 0 2 0.015000 1.4375e-006 

RS with Gauss-Seidel 0 2 0.016000 1.3222e-006 

RS with SOR     ω = 0.9 0 2 0.024000 1.3626e-006 

ACCELERATION METHODS 

Chebyshev   Acceleration 0 2 0.250000 2.9463e-016 

Richardson    Acceleration 0 3 0.047000 3.8526e-008 

Gmres 0 5 0.015000 1.5e-007 

Minres 0 4 0.016000 1.5e-007 

Qmr 0 5 0.015000 1.5e-007 

Bicgstab 0 2.5 0.016000 3.3e-007 

 

From Table 4.12, Jacobi, RES with Jacobi,RES with Gauss-Seidel did not converge 

which corresponds with the largest values of the relative residual. The minimum and 

maximum optimal relaxation parameters for the stationary and acceleration schemes are 

0.9 and 1.25 respectively.  
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Table 4.13: Dense SPD System n =500 

 ITERATIVE METHODS    n= 500 

Methods Flag No. of 

Iteration 

Speed(sec) Relative 

Residual 

Jacobi 1 600 5.179000 3.1852e+254 

Gauss-Seidel 0 205 5.725000 0.0250 

SOR    ω = 0.9 0 167 6.458000 0.0250 

ACCELERATION SCHEMES WITH  ITERATIVE METHODS 

CES with Jacobi 0 98 8.425000 0.0069 

CES with GS 0 157 15.928000 0.0010 

CES with SOR  ω =1.01 0 156 17.082000 9.9775e-004 

RES with Jacobi  ω =0.9 1 502 12.450000 4.2852e+132 

RES with GS         ω =1.01 1 434 13.030000 1.3405e+235 

RES with SOR   ω =0.9 0 56 1.0303000 1.6205e+245 

AGS with Jacobi 0 5 2.574000 2.74854e-007 

AGS with  Gauss-Seidel 0 5 4.023000 1.24587e-007 

AGS with  SOR   ω = 1.01 0 4 3.230000 1.54687e-007 

RS with Jacobi 0 2 0.013000 1.26345e-006 

RS with Gauss-Seidel 0 2 0.016000 1.51232e-006 

RS with SOR     ω = 1.01 0 2 0.013000 1.52254e-006 

ACCELERATION METHODS 

Chebyshev  Acceleration 0 2 1.763000 4.1044e-016 

Richardson  Acceleration 0 3 0.078000 8.2364e-008 

Gmres 0 5 0.031000 3.7e-007 

Minres 0 4 0.015000 3.7e-007 

Qmr 0 5 0.063000 3.7e-007 

Bicgstab 0 2.5 0.046000 7.4e-007 

 

From Table 4.13, Jacobi, RES with Jacobi,RES with Gauss-Seideland RES with SOR did 

not converge which corresponds with the largest values of the relative residual. The 

minimum and maximum optimal relaxation parameters for the stationary and acceleration 

schemes are 0.9 and 1.01 respectively.  
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Table 4.14: Dense SPD System n = 800 

 ITERATIVE METHODS    n= 800 

Methods Flag No. of 

Iteration 

Speed(sec) Relative 

Residual 

Jacobi 1 200 6.567000 2.2079e+295 

Gauss-Seidel 0 466 30.451000 0.0250 

SOR    ω = 1.11 0 124 13.744000 0.0100 

ACCELERATION SCHEMES WITH  ITERATIVE METHODS 

CES with Jacobi 0 556 84.755000 0.02400 

CES with GS 0 392 98.780000 9.9281e-004 

CES  with SOR  ω =1.01 0 291 101.182000 9.9904e-004 

RES with Jacobi  ω =1.25 1 678 76.65000 3.1852e+254 

RES with GS         ω =1.11 1 457 68.03400 1.5087e+231 

RES  with SOR   ω =0.9 0 26 1.023000 1.5087e-004 

AGS with Jacobi 0 5 6.006000 3.7428e-007 

AGS with  Gauss-Seidel 0 5 7.230000 1.5527e-007 

AGS with  SOR   ω = 1.01 0 4 2.310000 1.3247e-007 

RS with Jacobi 0 2 10.265000 1.0000 

RS with Gauss-Seidel 0 2 23.759000 1.0000 

RS with SOR     ω = 1.13 0 2 27.846000 1.0000 

ACCELERATION METHODS 

Chebyshev   Acceleration 0 2 5.585000 5.5581e-016 

Richardson   Acceleration 0 3 0.156000 37.7154 

Gmres 0 5 0.016000 2.7e-007 

Minres 0 4 0.011000 2.7e-007 

Qmr 0 5 0.017000 2.7e-007 

Bicgstab 0 2.5 0.013000 6e-007 

 

From Table 4.14, Jacobi, RES with Jacobi,RES with Gauss-Seidel did not converge 

which corresponds with the largest values of the relative residual. The minimum and 

maximum optimal relaxation parameters for the stationary and acceleration schemes are 

0.9 and 1.25 respectively.  
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4.4  Banded Systems. 

 This section shows the numerical results of Banded Systems of linear equations. 

Table 4.15: Banded System  n = 9 

 ITERATIVE METHODS    n= 9 

Methods Flag No. of 

Iteration 

Speed(sec) Relative 

Residual 

Jacobi 0 24 0.050000 1.1630e-004 

Gauss-Seidel 0 13 0.050000 0.25000 

SOR    ω=1.12 0 8 0.015000 0.25000 

ACCELERATION SCHEMES WITH  ITERATIVE METHODS 

CES with Jacobi 0 5 0.021000 3.7993e-004 

CES v with GS 0 9 0.017000 4.8422e-004 

CES  with SOR  ω=1.11 0 9 0.041000 9.5845e-004 

RES with Jacobi  ω=0.9 0 26 0.021000 9.8621e-004 

RES with GS         ω=1.11 0 25 0.015000 7.6202e-005 

RES  with SOR   w=1.11 0 28 0.015000 7.8968e-005 

AGS with Jacobi 0 5 0.023000 2.5656e-016 

AGS with  Gauss-Seidel 0 5 0.016000 2.5656e-016 

AGS with  SOR   ω= 0.9 0 5 0.015000 2.5656e-016 

RS with Jacobi 0 2 0.031000 2.3024e-016 

RS with Gauss-Seidel 0 2 0.509000 1.1766e-016 

RS with SOR     ω= 1.02 0 2 0.003000 8.8245e-017 

ACCELERATION METHODS 

Chebyshev  Acceleration 0 2 0.016000 1.2307e-016 

Richardson  Acceleration 0 5 0.047000 2.7e-016 

Gmres 0 5 0.005000 2.6e-016 

Minres 0 5 0.005000 4.5e-016 

Qmr 0 5 0.005000 2.7e-016 

Bicgstab 0 4.5 0.004000 1.4e-016 

 

From Table 4.15,RES with Jacobi,RES with Gauss-Seideland RES with SOR did not 

improve the convergence of the stationary iterative methods.The minimum and maximum 

optimal relaxation parameters for the stationary and acceleration schemes are 0.9 and 

1.12 respectively.  
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Table 4.16: Banded System  n = 25 

 ITERATIVE METHODS    n= 25 

Methods Flag No. of 

Iteration 

Speed(sec) Relative 

Residual 

Jacobi 0 68 0.172000 3.0440e-005 

Gauss-Seidel 0 38 0.140000 0.2500 

SOR    ω= 1.11 0 30 0.171000 0.2500 

ACCELERATION SCHEMES WITH  ITERATIVE METHODS 

CES with Jacobi 0 7 0.078000 8.3188e-004 

CES  with GS 1 100 0.858000 4.3157e+033 

CES with SOR  ω=1.25 1 100 0.946000 1.6346e+022 

RES with Jacobi  ω=1.25 1 101 0.063000 9.8092e+010 

RES with GS         ω=1.20 0 66 0.063000 2.4116e-005 

RES  with SOR   ω=1.4 0 78 0.078000 3.1094e-005 

AGS with Jacobi 0 10 0.015000 7.1249e-006 

AGS with  Gauss-Seidel 0 10 0.078000 7.1876e-016 

AGS with  SOR   ω= 1.20 0 7.5 0.031000 5.9520e-007 

RS with Jacobi 0 2 0.015000 1.8975e-006 

RS with Gauss-Seidel 0 2 0.016000 1.5542e-006 

RS with SOR     ω=1.13 0 2 0.031000 1.3754e-006 

ACCELERATION METHODS 

Chebyshev  Acceleration 0 2 0.016000 5.0282e-016 

Richardson  Acceleration 0 3 0.047000 3.6478e-016 

Gmres  0 10 0.015000 7.1e-006 

Minres 0 10 0.061000 7.2e-016 

Qmr 0 11 0.043000 5.8e-016 

Bicgstab 0 7 0.014000 6e-007 

 

From Table 4.16,CES with Gauss-Seidel, CES with SOR and RES with Jacobi did not 

converge which corresponds with the largest values of the relative residual. The 

minimum and maximum optimal relaxation parameters for the stationary and acceleration 

schemes are 1.11 and 1.25 respectively.  
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Table 4.17 : Banded System  n = 50 

 ITERATIVE METHODS    n= 50 

Methods Flag No. of 

Iteration 

Speed(sec) Relative 

Residual 

Jacobi 0 78 0.104580 3.1094e-005 

Gauss-Seidel 0 63 0.202400 2.315e-004 

SOR    ω = 1.01 0 39 0.103000 2.453e-004 

ACCELERATION SCHEMES WITH  ITERATIVE METHODS 

CES with Jacobi 0 23 0.305000 6.0742e-004 

CES with GS 0 12 0.203400 4.3194e-004 

CES with SOR  ω =0.9 0 10 0.204200 5.342e-004 

RES with Jacobi  ω =1.01 1 58 2.230000 6.0742e+235 

RES with GS         ω =0.9 1 45 1.303000 6.0742e+135 

RES  with SOR   ω =1.11 0 16 0.230000 2.0132e-004 

AGS with Jacobi 0 9 3.003300 3.0163e-004 

AGS with  Gauss-Seidel 0 8 1.020000 2.2052e-004 

AGS with  SOR   ω = 0.9 0 7 0.116000 2.1452e-004 

RS with Jacobi 0 2 0.230000 1.00000 

RS with Gauss-Seidel 0 2 0.120300 1.00000 

RS with SOR     ω = 1.01 0 2 0.032200 1.00000 

ACCELERATION METHODS 

Chebyshev  Acceleration 0 2 0.016000 3.5e-007 

Richardson  Acceleration 0 3 0.015000 3.4e-007 

Gmres 0 4 0.016000 9.7e-007 

Minres 0 3 0.015000 9.7e-007 

Qmr 0 4 0.015000 9.7e-007 

Bicgstab 0 2.5 0.016000 1.4e-007 

 

From Table 4.17,RES with Jacobi andRES with Gauss-Seidel did not converge which 

corresponds with the largest values of the relative residual. The minimum and maximum 

optimal relaxation parameters for the stationary and acceleration schemes are 0.9 and 

1.11 respectively.  
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Table 4.18 : Banded System  n = 100 

 ITERATIVE METHODS    n= 100 

Methods Flag No. of 

Iteration 

Speed(sec) Relative 

Residual 

Jacobi 0 89 3.014000 6.1424e-005 

Gauss-Seidel 0 77 2.013000 4.0251e-005 

SOR    ω = 1.11 0 62 1.003200 4.0432e-005 

ACCELERATION SCHEMES WITH  ITERATIVE METHODS 

CES with Jacobi 0 43 2.045000 3.0742e-005 

CES  with GS 0 36 1.023000 4.9232e-005 

CES with SOR  ω =0.9 0 22 1.034000 2.4532e-005 

RES with Jacobi  ω =1.01 1 57 5.300000 5.0722e+143 

RES with GS         ω =0.9 1 48 6.020000 7.0342e+352 

RES with SOR   ω =1.25 0 15 0.210000 6.0742e-005 

AGS with Jacobi 0 9 0.023000 5.0432e-005 

AGS with  Gauss-Seidel 0 8 0.023200 3.1452e-005 

AGS with  SOR   ω = 1.01 0 7 0.012000 2.1612e-005 

RS with Jacobi 0 2 0.013000 1.1375e-005 

RS with Gauss-Seidel 0 2 0.012000 1.5542e-005 

RS with SOR     ω = 1.01 0 2 0.031000 1.3754e-005 

ACCELERATION METHODS 

Chebyshev   Acceleration 0 2 0.015000 3.3e-005 

Richardson   Acceleration 0 3 0.016000 4.7e-007 

Gmres 0 5 0.015000 7.6e-008 

Minres 0 4 0.015000 7.6e-008 

Qmr 0 5 0.016000 7.6e-008 

Bicgstab 0 2.5 0.015000 1.9e-007 

 

From Table 4.18,RES with Jacobi,RES with Gauss-Seidel did not converge which 

corresponds with the largest values of the relative residual. The minimum and maximum 

optimal relaxation parameters for the stationary and acceleration schemes are 0.9 and 

1.25 respectively.  
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Table 4.19 : Banded System  n = 200 

 ITERATIVE METHODS    n= 200 

Methods Flag No. of 

Iteration 

Speed(sec) Relative 

Residual 

Jacobi 0 79 0.014000 4.1094e-005 

Gauss-Seidel 0 63 0.014000 5.5143e-005 

SOR    ω = 1.01 0 59 0.015000 3.5265e-005 

ACCELERATION SCHEMES WITH  ITERATIVE METHODS 

CES with Jacobi 0 33 0.021000 7.0232e-004 

CES with GS 0 25 0.015000 5.3434e-004 

CES with SOR  ω =1.11 0 24 0.032000 3.4324e-004 

RES with Jacobi  ω =0.9 1 59 1.644000 5.0742e+231 

RES with GS         ω =1.01 0 50 1.504400 6.0262e-004 

RES with SOR   ω =1.25 0 24 0.320000 2.0732e-004 

AGS with Jacobi 0 17 0.246000 2.0132e-004 

AGS with  Gauss-Seidel 0 13 0.043000 5.1432e-004 

AGS with  SOR   ω = 1.01 0 11 0.045100 2.4752e-004 

RS with Jacobi 0 2 0.015000 1.8275e-006 

RS with Gauss-Seidel 0 2 0.026000 1.5542e-006 

RS with SOR     ω = 0.9 0 2 0.031000 1.3454e-006 

ACCELERATION METHODS 

Chebyshev   Acceleration 0 2 0.016000 4.2e-007 

Richardson  Acceleration 0 3 0.015000 5.7e-007 

Gmres 0 5 0.015000 1.5e-007 

Minres 0 4 0.016000 1.5e-007 

Qmr 0 5.5 0.015000 1.5e-007 

Bicgstab 0 2.5 0.016000 3.3e-007 
 

From Table 4.19, RES with Jacobi did not converge which corresponds with the largest 

values of the relative residual and the remaining methods improved the convergence of 

the stationary iterative methods.The minimum and maximum optimal relaxation 

parameters for the stationary and acceleration schemes are 0.9 and 1.25 respectively.  
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Table 4.20: Banded System  n = 500 

 ITERATIVE METHODS    n= 500 

Methods Flag No. of 

Iteration 

Speed(sec) Relative 

Residual 

Jacobi 0 98 0.020000 5.1043e-005 

Gauss-Seidel 0 84 0.030000 4.434e-005 

SOR    ω = 1.11 0 70 0.035600 2.453e-005 

ACCELERATION SCHEMES WITH  ITERATIVE METHODS 

CES with Jacobi 0 33 0.025000 4.0322e-005 

CES  with GS 0 15 0.043000 5.5324e-005 

CES with SOR  ω =1.01 0 12 1.020000 5.4314e-005 

RES with Jacobi  ω =1.11 1 67 2.300000 6.0742e+234 

RES n with GS         ω =1.01 1 59 1.800000 5.0742e+124 

RES with SOR   ω =0.9 0 20 0.302000 6.0732e+231 

AGS with Jacobi 0 15 0.023400 3.0322e-005 

AGS with  Gauss-Seidel 0 13 0.032000 2.1452e-005 

AGS with  SOR   ω =  0 9 0.032000 3.1352e-005 

RS with Jacobi 0 2 0.015000 1.3975e-006 

RS with Gauss-Seidel 0 2 0.016000 1.5542e-006 

RS with SOR     ω = 0.9 0 2 0.031000 1.2654e-006 

ACCELERATION METHODS 

Chebyshev    Acceleration 0 2 0.015000 2.7e-007 

Richardson    Acceleration 0 3 0.016000 5.7e-007 

Gmres 0 5 0.016000 2.7e-007 

Minres 0 4 0.031000 2.7e-007 

Qmr 0 5 0.016000 2.7e-007 

Bicgstab 0 2.5 0.015000 6e-007 

 

From Table 4.20, RES with Jacobi,RES with Gauss-Seidel did not converge which 

corresponds with the largest values of the relative residual. The minimum and maximum 

optimal relaxation parameters for the stationary and acceleration schemes are 0.9 and 

1.11 respectively.  

 

 

 



www.udsspace.uds.edu.gh 
 
 

53 
 

 

  

Table 4.21 : Banded System  n =800 

 ITERATIVE METHODS    n= 800 

Methods Flag No. of 

Iteration 

Speed(sec) Relative 

Residual 

Jacobi 0 88 0.053000 5.1365e-005 

Gauss-Seidel 0 75 0.045000 3.543e-005 

SOR    ω = 1.25 0 44 0.020000 2.425e-005 

ACCELERATION SCHEMES WITH  ITERATIVE METHODS 

CES with Jacobi 0 23 0.046000 6.210e-005 

CES  with GS 0 16 0.032000 4.4932e-005 

CES with SOR  ω =1.01 0 11 0.012000 3.4353e-005 

RES with Jacobi  ω =1.25 1 68 2.450000 3.0742e+411 

RES with GS         ω =1.01 1 67 3.560000 5.0723e+401 

RES with SOR   ω =1.11 0 25 0.230000 4.0742e-004 

AGS with Jacobi 0 12 0.430000 2.0142e-004 

AGS with  Gauss-Seidel 0 14 0.035000 2.1312e-004 

AGS with  SOR   ω = 0.9 0 10 0.036000 2.4852e-005 

RS with Jacobi 0 2 0.034000 1.8215e-005 

RS with Gauss-Seidel 0 2 0.012000 1.5522e-005 

RS with SOR     ω = 1.01 0 2 0.021000 1.3324e-005 

ACCELERATION METHODS 

Chebyshev  Acceleration 0 2 0.016000 1.4536e-015 

Richardson  Acceleration 0 3 0.001500 2.7147e-016 

Gmres 0 5 0.047000 3.7e-007 

Minres 0 4 0.015000 3.7e-007 

Qmr 0 5 0.047000 3.7e-007 

Bicgstab 0 2.5 0.047000 7.4e-007 

 

From Table 4.21, RES with Jacobi,RES with Gauss-Seidel did not converge which 

corresponds with the largest values of the relative residual.The remaining methods 

improved the convergence of the stationary iterative methods. The minimum and 

maximum optimal relaxation parameters for the stationary and acceleration schemes are 

0.9 and 1.25 respectively.  
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CHAPTER FIVE 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

5.1 Summary 

In this thesis, the performances of stationary iteration methods and accelerative schemes 

have been studied.Numerical experiments based on, Tridiagonal Banded and Dense SPD 

systems were carried out to verify the efficiency of acceleration schemes and the known 

Krylov subspace methods. From the numerical results, RS scheme and AGSimproved the 

convergence of the stationary iterative methods except RES and CES which did not 

improve the entire identified systems of linear equations. Finally, RS and AGShas the 

fastest convergence in terms of number of iteration. The findings for this research works 

are as follows: 

1. The acceleration schemes were ranked in terms of efficiency of the algorithms: 

Residual smoothing scheme improved the convergence of the stationary iterative 

methods, followed by Accelerate Gradientscheme, Chebyshev Extrapolation scheme and 

finally Richardson extrapolation scheme. 

2. The minimum and maximum optimal relaxation parameter for stationary and 

acceleration schemes are 0.9 and 1.25 respectively. 

3.  RES and CES failed to converge to with some of the chosen systems. 

4. The schemes which fail to converged corresponded with large relative residual 

5.2 Conclusions 

The performance of some Acceleration schemesand stationary iterative methods have 

been assessedin terms of convergence, number of iteration, speed and relative residual 

which were applied to Tridiagonal systems, Dense SPD system and Banded system with 
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varying dimensions. The maximum of iterations for the acceleration schemes (RS and 

AGS are 2 and 9 respectively.Again, number of iterations for the Krylov subspace 

methods: GMRES, QMR and BiCGSTAB wasless than or equal to the dimension of the 

coefficient matrix for each identified systems of linear equations. That is to say, if “k” 

represents the number of iteration and “n” the size of the coefficient matrix, then k≤ 𝑛. 

However, some of the acceleration schemes, especially CES and RES did not improve 

the convergence of some of the stationary iterative methods. These can be seen in the 

numerical resultsmore especially RES with Gauss-Seidel, RES with SOR, CES with 

Gauss-Seidel and CES with SOR. Again,Chebyshev acceleration and Richardson 

acceleration methods are the fastestconvergence methods in terms of number of 

iterations. Therefore, RS and AGSare very efficient in terms of number of iterations as 

compared to the known Krylov subspace methods when solving the identified linear 

systems. 

5.3 Recommendations 

It is recommended that;  

1. Chebyshev and Richardson acceleration methods should be used when solving 

problems involving Banded, Tridiagonal and SPD systems. 

2. RS, AGS with stationary method should be used when solving large and sparse 

systems of linear equations.  

5.4Future work 

Since RES did not improve the convergence of some of the identified systems, the further 

work is to: 
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1. Incorporate the Krylov subspace methods into RES to assess the convergence of 

stationary iterative methods. 

2. Apply optimal relaxation parameter, 𝜔 with accelerated Overrelaxation scheme to 

speedup convergence of iterative methods. 

3. Chebyshev and Richardson acceleration should also be applied to Hilbert systems  
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APPENDIX A  Matlab Code for Jacobi, Gauss-Seidel and SOR 
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function x = Jacobi(A,b,x0,tol,max) 
A=[4 -1 -1 0;-1 4 0 -1;-1 0 4 -1;0 -1 -1 4];b=[1;1;1;1]; 
x0=[0;0;0;0]; 
tol=0.001 

 
max=100 
tic 
[n m] = size(A); xold = x0; C = -A; 
for i=1:n 
C(i,i) = 0; 
end 
for i=1:n 
C(i,:) = C(i,:)/A(i,i); 
end 
for i=1:n 
d(i,1) = b(i)/A(i,i); 
end 
i = 1; 
while(i<=max) 
xnew = C * xold + d; 
if norm(xnew-xold) <= tol 
        x = xnew; 
disp('Jacobi method converged'); 
disp([i  xnew']); 
return; 
else 
xold = xnew; 
end 
disp([i  xnew']); 
    i=i+1; 
    r=b-A*xold 
    g=norm(r)/norm(b) 
toc; 
end 
disp('Jacobi method did not converge'); 
disp('results after maximum number of iterations'); 
x = xnew; 

 

 
function x = Seidel(A,b,x0,tol,max) 
A=[4 -1 -1 0;-1 4 0 -1;-1 0 4 -1;0 -1 -1 4];b=[1;1;1;1]; 
x0=[0;0;0;0]; 
tol=0.001 
w=1 
max=100 
[n m] = size(A); 
x = x0; 
tic 
C = - A; 
for i=1:n 
C(i,i) = 0; 
end 
for i=1:n 
C(i,:) = C(i,:)/A(i,i); 
end 
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for i=1:n 
r(i,1) = b(i)/A(i,i); 
end 
i = 1; 
while(i<=max) 
xold = x; 
for j=1:n 
x(j)=C(j,:) * x + r(j); 
toc 
end 
if norm(xold-x) <=tol 
disp('Gauss-Seidel method converged'); 
disp([i  x']); 
return; 
        r=b-A*x0 
end 
disp([i  x']); 
    i=i+1; 
    g=norm(r)/norm(b) 
end 
disp('Gauss-Seidel method did not converge'); 

 

 
function x = SOR(A,b,x0,w,tol,max) 
A=[4 -1 -1 0;-1 4 0 -1;-1 0 4 -1;0 -1 -1 4];b=[1;1;1;1]; 
x0=[0;0;0;0]; 
tol=0.001 
w=1.11 
max=100  
[n m] = size(A); 
x = x0; 
tic 
C = -A; 
for i=1:n 
C(i,i) = 0; 
    r=b-A*x0 
end 
for i=1:n 
C(i,1:n)=C(i,1:n)/A(i,i); 
end 
for i=1:n 
r(i,1) =b(i)/A(i,i); 
end 
i=1; 
while (i<=max ) 
xold=x; 
for j=1:n 
        x(j)=(1-w)*xold(j)+w*(C(j,:)*x+r(j)); 
end 
if norm(xold-x)<=tol 
disp('SOR method converged'); 
disp([i   x']); 
return; 
end 
disp([i   x']); 
    i=i+1; 
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    g=norm(r)/norm(b) 
toc;   
end 
disp('SOR method did not converged'); 
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APPENDIX B  Matlab Code for Acceleration Methods 

Chebyshev Acceleration 
 
function [x, error, iter, flag] = cheby(A, x, b, M, max_it, tol) 
tic 
A=matrix(A) 

b=[RHS] 
x=[intial vector] 
max_it=100 
tol=0.001 
alpha=0 
iter = 0                                % initialization 
flag = 0; 
  bnrm2 = norm( b ); 
if  ( bnrm2 == 0.0 ), bnrm2 = 1.0; end 
  r = b - A*x; 
error = norm( r ) / bnrm2; 
if ( error < tol ) return, end 

 
eigs = eig( inv(A)*A ); 
eigmax = max( eigs ); 
eigmin = min( eigs ); 

 
  c = ( eigmax - eigmin ) / 2.0; 
  d = ( eigmax + eigmin ) / 2.0; 

 
for iter = 1:max_it,                     % begin iteration 

 
    z =  A \ r; 

 
if ( iter > 1 )                        % direction vectors 
beta = ( c*alpha / 2.0 )^2; 
alpha = 1.0 / ( d - beta ); 
       p = z + beta*p; 
else 
       p = z; 
alpha = 2.0 / d 
end 

 
x  = x + alpha*p                     % update approximation 
n_iteration=iter 
    r = r - alpha*A*p 
error = norm(r) / bnrm2            % check convergence 
if ( error <= tol  ), break, end 
toc; 
end 

 
if ( error > tol ) flag = 1 

 
end;        % no convergence 
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Richardson acceleration 
function [x,noit,err,Q,rho] = Richardson(A,b,x0,eps,maxit); 
% [x,noit,err] = Richardson(A,b,x0,eps,maxit); 
% 
% Purpose: Solve Ax=b using Richardson iteration, with initial guess x0 
%           to tolerance eps in less that maxit iterations. 
% 
% Output : x    Solution 
%          noit Number of iterations 
%          err  L2 of difference between last two iterations 
% 
 A=matrix(A) 

  b=RHS 
x0=initial vector 
eps=0.001 
maxit=1000 
w=1.25 
M=diag(diag(A)) 
N=M-A 
T=inv(M)*N 
C=inv(M)*b 
% Create splitting matrix 
Q = eye(n); 
% Compute reduction factor 
R = inv(Q)*(Q-A); 
rho = max(abs(eig(R))) 
tic 
% Set initial values 
x= x0; 
noit = 1; 
err = 1.0; 
while (err>eps) 
xn = (((1-w)*Q+w*T)*x) + w*C 
err = norm(xn-x) 
noit = noit+1 
    x = xn 
    r=b-A*x 
    Relres=norm(r)/norm(b) 
if (noit>maxit) break; end;  
   x=qmr(A,b) 
toc; 
end; 
return 
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APPENDIX C Matlab Code for Acceleration Schemes 

 

Chebyshev with Jacobi 

 
function [x, error, iter, flag] = cheby(A, x, b, M, max_it, tol) 
 A=[4 -1 -1 0;-1 4 0 -1;-1 0 4 -1;0 -1 -1 4];b=[1;1;1;1]; 
x=[0;0;0;0] 
max_it=100 
tic 
R=chol(A) 
R' 
M=R*R' 
tol=0.001 
alpha=0 
iter = 0                                % initialization 
flag = 0; 
  bnrm2 = norm( b ); 
if  ( bnrm2 == 0.0 ), bnrm2 = 1.0; end 
  r = b - A*x; 
error = norm( r ) / bnrm2; 
if ( error < tol ) return, end 

 
eigs = eig( inv(M)*A ); 
eigmax = max( eigs ); 
eigmin = min( eigs ); 

 
  c = ( eigmax - eigmin ) / 2.0; 
  d = ( eigmax + eigmin ) / 2.0; 

 
for iter = 1:max_it,                     % begin iteration 

 
    z =  M \ r; 

 
if ( iter > 1 )                        % direction vectors 
beta = ( c*alpha / 2.0 )^2; 
alpha = 1.0 / ( d - beta ); 
       p = z + beta*p; 
else 
       p = z; 
alpha = 2.0 / d 
end 

 
x  = x + alpha*p                     % update approximation 
n_iteration=iter 
    r = r - alpha*A*p 
error = norm(r) / bnrm2            % check convergence 
if ( error <= tol  ), break, end 
toc; 
end 

 
if ( error > tol ) flag = 1 
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end;        % no convergence 
Cheby with Gauss-Seidel 

 
function [x, error, iter, flag] = cheby(A, x, b, M, max_it, tol) 
A=[4 -1 -1 0;-1 4 0 -1;-1 0 4 -1;0 -1 -1 4];b=[1;1;1;1]; 
x=[0;0;0;0] 
max_it=100 
tic 
R=chol(A) 
R' 
M1=R*R' 
L1=[0 0 0 0;-3 0 0 0;1 -1 0 0;-2 4 1 0] 
L=inv(M1)*L1 
M=M1+L 
tol=0.001 
alpha=0 
iter = 0                                % initialization 
flag = 0; 
  bnrm2 = norm( b ); 
if  ( bnrm2 == 0.0 ), bnrm2 = 1.0; end 
  r = b - A*x; 
error = norm( r ) / bnrm2; 
if ( error < tol ) return, end 

 
eigs = eig( inv(M)*A ); 
eigmax = max( eigs ); 
eigmin = min( eigs ); 

 
  c = ( eigmax - eigmin ) / 2.0; 
  d = ( eigmax + eigmin ) / 2.0; 

 
for iter = 1:max_it,                     % begin iteration 

 
    z =  M \ r; 

 
if ( iter > 1 )                        % direction vectors 
beta = ( c*alpha / 2.0 )^2; 
alpha = 1.0 / ( d - beta ); 
       p = z + beta*p; 
else 
       p = z; 
alpha = 2.0 / d 
end 

 
x  = x + alpha*p                     % update approximation 
n_iteration=iter 
    r = r - alpha*A*p 
error = norm(r) / bnrm2            % check convergence 
if ( error <= tol  ), break, end 
toc; 
end 

 
if ( error > tol ) flag = 1 
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end;        % no convergence 

 

Cheby with SOR 

 

 
function [x, error, iter, flag] = cheby(A, x, b, M, max_it, tol) 
A=[4 -1 -1 0;-1 4 0 -1;-1 0 4 -1;0 -1 -1 4];b=[1;1;1;1]; 
x=[0;0;0;0] 
max_it=100 
w=1.22 
tic 
R=chol(A) 
R' 
M1=R*R' 
L1=[0 0 0 0;-3 0 0 0;1 -1 0 0;-2 4 1 0] 
L=inv(M1)*L1 
M2=M1+L 
M=w*M2 
tol=0.001 
alpha=0 
iter = 0                                % initialization 
flag = 0; 
  bnrm2 = norm( b ); 
if  ( bnrm2 == 0.0 ), bnrm2 = 1.0; end 
  r = b - A*x; 
error = norm( r ) / bnrm2; 
if ( error < tol ) return, end 

 
eigs = eig( inv(M)*A ); 
eigmax = max( eigs ); 
eigmin = min( eigs ); 

 
  c = ( eigmax - eigmin ) / 2.0; 
  d = ( eigmax + eigmin ) / 2.0; 

 
for iter = 1:max_it,                     % begin iteration 

 
    z =  M \ r; 

 
if ( iter > 1 )                        % direction vectors 
beta = ( c*alpha / 2.0 )^2; 
alpha = 1.0 / ( d - beta ); 
       p = z + beta*p; 
else 
       p = z; 
alpha = 2.0 / d 
end 

 
x  = x + alpha*p                     % update approximation 
n_iteration=iter 
    r = r - alpha*A*p 
error = norm(r) / bnrm2            % check convergence 
if ( error <= tol  ), break, end 
toc; 
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end 

 
if ( error > tol ) flag = 1 
end;        % no convergence 

 

 
 Richardson with Jacobi 

 
function [x,noit,err,Q,rho] = Richardson(A,b,x0,eps,maxit); 
A=[4 -1 -1 0;-1 4 0 -1;-1 0 4 -1;0 -1 -1 4];b=[1;1;1;1]; 
x0=[0;0;0;0]; 
eps=0.001 
maxit=100 
w=1.12 
M=diag(diag(A)) 
N=M-A 
T=inv(M)*N 
C=inv(M)*b 
% Create splitting matrix 
Q = eye(4); 
% Compute reduction factor 
R = inv(Q)*(Q-A); 
rho = max(abs(eig(R))) 
% Set initial values 
x= x0; 
noit = 1; 
err = 1.0; 
while (err>eps) 
xn = (((1-w)*Q+w*T)*x) + w*C 
err = norm(xn-x) 
noit = noit+1 
    x = xn 
tic 
    r=b-A*x 
    Relres=norm(r)/norm(b) 
if (noit>maxit) break; end;  
toc; 
end; 
return 

 

Richardson with GS 

 

 
function [x,noit,err,Q,rho] = Richardson(A,b,x0,eps,maxit); 
A=[4 -1 -1 0;-1 4 0 -1;-1 0 4 -1;0 -1 -1 4];b=[1;1;1;1]; 
x0=[0;0;0;0]; 
eps=0.001 
maxit=100 
w=1.01 
M1=diag(diag(A)) 
L1=[0 0 0 0;-3 0 0 0;1 -1 0 0;-2 4 1 0] 
L=inv(M1)*L1 
M=M1+L 
N=M-A 
T=inv(M)*N 
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C=inv(M)*b 
% Create splitting matrix 
Q = eye(4); 
% Compute reduction factor 
R = inv(Q)*(Q-A); 
rho = max(abs(eig(R))) 
% Set initial values 
x= x0; 
noit = 1; 
err = 1.0; 
tic 
while (err>eps) 
xn = (((1-w)*Q+w*T)*x) + w*C 
err = norm(xn-x) 
noit = noit+1 
    x = xn 
    r=b-A*x 
    Relres=norm(r)/norm(b) 
if (noit>maxit) break; end;  
toc; 
end; 
return 

 

 

Richardson with SOR 
function [x,noit,err,Q,rho] = Richardson(A,b,x0,eps,maxit); 
A=[4 -1 -1 0;-1 4 0 -1;-1 0 4 -1;0 -1 -1 4];b=[1;1;1;1]; 
x0=[0;0;0;0]; 
eps=0.001 
maxit=100 
w=1.25 
M1=diag(diag(A)) 
L1=[0 0 0 0;-3 0 0 0;1 -1 0 0;-2 4 1 0] 
L=inv(M1)*L1 
M2=M1+L 
M=w*M2 
N=M-A 
T=inv(M)*N 
C=inv(M)*b 
% Create splitting matrix 
Q = eye(4); 
% Compute reduction factor 
R = inv(Q)*(Q-A); 
rho = max(abs(eig(R))) 
% Set initial values 
x= x0; 
noit = 1; 
err = 1.0; 
tic 
while (err>eps) 
xn = (((1-w)*Q+w*T)*x) + w*C 
err = norm(xn-x) 
noit = noit+1 
    x = xn 
    r=b-A*x 
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    Relres=norm(r)/norm(b) 
if (noit>maxit) break; end;  
toc;; 
end; 
return 

APPENDIX D Banded System Code 

 

n=(800) 
rand('state',0); 
A1=zeros(n,n); 
for i=1:n; 
for j=1:n;if i==j;A1(i,j)=40;elseif i>j A1(i,j)=1+rand; else 
A1(i,j)=0; end 
end 
end 
A=A1+(tril(A1,-1))' 
b=(A-eye(n))*ones(n,1); 
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APPENDIX E Dense and SPD System Code 

 

n=(9); 

rand('state',0); 

R=rand(n, n); 

b=rand(n, 1); 

A=R'*R+n*eye(n); 
 

n=(25) 

rand('state',0); 

A1=zeros(n,n); 

for i=1:n; 

for j=1:n;if i==j;A1(i,j)=40;elseif i>j A1(i,j)=1+rand; else 

A1(i,j)=0; end 

end 

end 

A=A1+(tril(A1,-1))' 

b=(A-eye(n))*ones(n,1); 
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APPENDIX F Tridiagonal System Code 

 

n=25 

for n = [25] 
    a = -ones(n-1,1); 
    b = 5*ones(n,1); 

 
    c = a; 
% Create a tridiagonal matrix with 2's on the diagonal and -1's on the 
% sub- and superdiagonal. 
    A1 = gallery('tridiag',a,b,c) 
    A=full(A1) 
% A random vector for the right-hand side 
    d = rand(n,1) 

 
end 

 

n=9 

A=[-4,1,0,1,0,0,0,0,0;1,-4,1,0,1,0,0,0,0;0,1,-4,0,0,1,0,0,0;1,0,0,-4,1,0,1,0,0;0,1,0,1,-

4,1,0,1,0;0,0,1,0,1,-4,0,0,1;0,0,0,1,0,0,-4,1,0;0,0,0,0,1,0,1,-4,0;0,0,0,0,0,1,0,1,-4] 

b=[-100;-100;-100;0;0;0;0;0;0] 

 

APPENDIX G Computer Specification 

 

Processor :  Intel(R)  Pentium (R) CPU  P600 @ 1.87GHz  1.87 

 

Installed Memory (RAM) :  4.00GB  (2.99GB  Usable) 

System Type  :  32-bit Operating System. 


