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On a (p, k)-analogue of the Gamma function and
some associated Inequalities

K. NANTOMAH?, E. PREMPEH® AND S. B. TwuMm®

ABSTRACT. In this paper, we introduce a new two-parameter deformation of the classical
Gamma function, which we call a (p, k)-analogue of the Gamma function. We also provide
some identities generalizing those satisfied by the classical Gamma function. Furthermore, we
establish some inequalities involving this new function.
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1. Introduction

The classical Euler’s Gamma function, I'(z) is usually defined for = > 0 by

nln®

I(z) = OotH “tdt = 1
(z) /O ‘ nhoez(z + D@ +2)... (x +n)

It is well-known that I'(z) satisfies the following basic relations.
L(n+1)=n!, neZ"U{0},
[(z+1)=2l(z), zeR".
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Closely associated with the Gamma function is the Digamma or Psi function ¢ (x),
which is defined for x > 0 as the logarithmic derivative of the Gamma function. That
is,

where v = lim,, (Zk 1 k —In n) = 0.577215664... is the Euler-Mascheroni’s con-
stant. The Polygamma functions, 1™ (z) are defined for > 0 and m € N as

derl

Y(w) = () =

dxz™

1
= (=1 m~+1 I
( ) m nz% (n + x)erl

InT'(x)

xm—i—l

where ¥ (z) = ().

The p-analogue (also known as p-extension or p-deformation) of the Gamma function
is defined for p € N and z > 0 as

T

plp
z(z+1)...(x+p)

[y(x) =

where lim, ,o I')(x) = T'(z). See [1, p. 270]. It satisfies the identities:

px
T )= —T
p('r+ ) ZE—f—p-f—l P(x)a
p
r,(1) = ——.
»(1) p+1

The p-analogues of the Digamma and Polygamma functions are defined for x > 0 as

d S|
¢p<x>:%1nrp(x)zlnp_nz:0n+xv
m—1 - 1
() = (1) ml) |

da:m
n=0
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In 2007, Diaz and Pariguan [2] also defined the k-analogue of the Gamma function for
k>0 and x € C\KZ~ as

o i k" (nk)E
[i(z) = / t*le™ % dt = lim M
0 n—oo (x)n,k
where limy_, I'y(z) = I'(z) and  (2)n = z(x + k)(z + 2k) ... (x + (n — 1)k) is the
Pochhammer k-symbol. The k-analogue also satisfies the identities:
Cp(z+ k) =al(z), z€RT
Ie(k) =1

Similarly, the k-analogues of the Digamma and Polygamma functions are defined for
x>0 as

o d ~ Ink—~ 1 x
(my, \ _ A" N 1
Uy (z) = da:mwk( )=(-1) " 'Zo(nk+x)m+1

where wlio) () = ().

The purpose of this paper is to introduce a new two-parameter deformation of the
classical Gamma function, called a (p, k)-analogue of the Gamma function. In addition,
we provide some identities and inequalities involving this function. We present our
results in the following section.

2. Results and Discussion

Definition 2.1. Let p € N and k > 0. Then the (p,k)-analogue (also called the
(p, k)-deformation or (p, k)-generalization) of the Gamma function is defined as

Cpn(r) = /Op ot (1 - ;—Z)p dt (1)

_ (p D (pk) @)

(x4 k)(z +2k) ... (z + pk)
for x € RT. It satisfies the identities:

pkx
Fp7k($ + k’) = mrﬂk(x), (3)
1
yplak) = 222k (), 0 R (4)

Lyr(k)=1. (5)
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Also, observe that ', () satisfies the following commutative diagram.

p—o0

Lpp(z) —Ti(2)
k—>1j lm
I'p(2) 555 T(2)

The (p, k)-analogue of the Digamma function is defined as the logarithmic derivative
of I'px(x). That is

_d (@)
Vpule) = G Inlpi(z) = Lpp(z)

The function v, ;(x) satisfies the following series and integral representations.

1 - 1
V() = T In(pk) — g k4 7) (6)
1 [e%) 1 o e—k‘(p-f-l)t ot
The (p, k)-analogue of the Polygamma functions are defined as
(m) dm - 1
m _ _ m+1
Vo (T) = dx—m%,k(x) = (=)™ m! HZ:O ok + 2y (8)

m+1 OO 1— e—k(p—i—l)t m —xt

for m € N, where wl(f,z(a:) = 1, x(z). It follows easily from (8) that,
(m) >0 ifmis odd
= 10
Ypi () {< 0 ifmis even, (10)

which means that the function ¢, ,(x) is a completely monotonic function of x, for
x € RT.

Remark 2.1. From the identity (3), we obtain the relations

1 1
Ypp(r + k) — pp(r) = e TAphi R (11)
m m —1)™m) —1)™m)!
oo+ ) — o) = S - @ fpkl?}'f)mﬂ, meN.  (12)

Also from (6), we obtain the relation

Ypr(k) = % [In(pk) — H(p + 1)]

where H(n) is the nth harmonic number.
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The (p, k)-analogue of the classical Beta function is defined as

Fp,k<x)rp,k<y)
Fp,k (33 + y)
Lemma 2.1. The function 1, () satisfies the following limit properties.

(i) Yp () = Yr(z) asp — oo,
(11) Ypi(x) = Yp(x) as k — 1,
(111) Ypi(x) = YP(x) as p — 0o and k — 1.

Proof. (i) By (6), we have

B, i(z,y) = , x>0,y >0.

1 1 & 1 "1 P 1
i — lim |=In(pk) == -y —— N — —
g}irgol/}p’k(x) plggo k n(pk) r = (nk+x) ;nk+;nk
1 L T TR A T 1]
— lim |=In(pk) =) — — = - N -
v kn(p) nz:;nk: m+nz::1nk: “— (nk + )
1 1 11 1 & T
— lim |=Ink+-Inp—=Y = —=
poeo | B +knp k;n a:Jr;nk:(nk:—l—a:)
1 1 - x
— “Ink+4+=lim |[lnp=Y =| ==
T * pooo | T —n x nz:lnk(nk—i-a:)
1 v 1 T
“Ink-—2L_Z
T k ac+ nk(nk + x)
= i(7)

(ii) Also by (6), we have

. 1 P 1
) =y | o) -3

n=0

(iii) This follows easily from (i) or (ii). That is,

i (Jim 64(0) ) = fim o) = vlo). o

k—1 \ p—oo

Tim (limy(x)) = lim wy(x) = v(a).
0
Lemma 2.2. Let v, = —¢,x(1) be the (p,k)-analogue of the Euler-Mascheroni’s

constant. Then vy, — v asp — 00 and k — 1.

Proof. Proceed as follows
2 1

lim 49y 4 (1) = lim lln(pk) T2 k)

n=
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SN
=lnp— )
:()n
Then,
Jim (fm ) = Jim (~ fim (1)
[ P
1
=—lim |Inp—
p—o0 n:On+1
[ p p P
1 1 1
— ] lnp— il Z_1_
pggo np ;n+n:1n ;n—l—l
- » -
1 1 1
— —lim |lnp=S =] +1— -
pinolo np ;n * ;[n n—i—l}

O

Definition 2.2. A function f is said to be logarithmically convex if the following
inequality holds for all x,y >0 .

log f(az + By) < alog f(z) + Blog f(y)
or equivalently

flaz + By) < (f(2)*(f(v)°
where a, B > 0 such that o + = 1.

Theorem 2.1. The function, ', x(x) is logarithmically convex.

Proof. We want to show that for x,y > 0 and o, > 0 such that o + 5 =1,

Dpi(az + By) < (Cpi(@)*(Tpr(y))’. (13)
Recall that the Young’s inequality is given by
2y’ < ax + By (14)
where x,y > 0 and «, 8 > 0 such that a4+ § = 1. By this, we obtain
o B
(k:—i—%) <k+%> §k+—o‘xjﬁy. (15)

Next, taking [[7_, on (15), we have
P

(k)" (o0 ) < I (222

t=1 t=1
which implies

((x+k)(x+2k;)...(x+pk))a((y+k)(y+2k)...(y+pk))’5
1x2x---Xp 1x2x---Xp
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ax + By + k)(ax + By + 2k) ... (aw + By + pk)
I1x2x---Xp

Pt

which further implies

p!
(ax + By + k)(ax + By + 2k) ... (ax + Py + pk)

p! " P! ’
N X o
(x+ k) (x +2k) ... (x + pk) (y+k)(y +2k) ... (y+ pk)

Then, by multiplying (16) by the identities:
1 1

< )

ax + py ~ x2ys

(p+1)=(p+1)*7,
Pl — (kp-i-l)a-i-ﬁ

= (pk)* ~*(pk)

By_pg
k

) aac+/3y -1

(pk

we obtain
aac-&-ﬂy -1

(p+ 1) (pk)
(ax + py)(ax + By + k) (ax + By + 2k) ... (ax + By + pk)
< ( (p+ D+ (ph) ! )"‘ ( (p + DIk (pk) £~ )/f‘
x(x +k)(x+2k)... (x+pk) y(y + k)(y + 2k) ... (y + pk)
which is (13). That completes the proof. O

Remark 2.2. Alternatively, a compact proof of Theorem 2.1 could have been as follows.
By using the defintion of ¥, x(x) and the fact that ¢, ,(x) > 0, it follows immediately
that T, i (x) is logarithmically convex. Then, from the definition 2.2 for x,y > 0,
a, > 0 such that o+ = 1, we obtain the inequality (13).

Corollary 2.1. Let p € N and k > 0. Then the inequality

T3 ) < o) Ti(y) (1)

holds for z,y > 0.

Proof. This follows directly from Theorem 2.1 by letting o = = % O
Theorem 2.2. Let p € N and k > 0. Then the inequality
Tpr(na) < (pk)¥ DT, k() (18)

holds for n € N and x > 0.
Proof. 1t follows easily from (2) that
Lpr(ne) 21y (@ +k)(x+2k). .. (x +pk)
To(z) (ph)* nx(nx + k)(nx + 2k) ... (nx + pk)
which completes the proof. O
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Corollary 2.2. Let p € N and k > 0. Then the inequality

Cpa(o+) < (k) Tpa(@)Tp(v) (19)
holds for x,y > 0.
Proof. From (17), and by using (18) for n = 2, we obtain

pk$+y \/Fpk pk 2y)

< (pk) E3 Lpr(@)lpr(y)-

O

Remark 2.3. Results similar to (13), (17), (18) and (19) for the (q,k)-analogue of
the Gamma function can also be found in [3].

Lemma 2.3 ([9]). Let f : (0,00) — (0,00) be a differentiable, logarithmically convex
function. Then the function

1s decreasing on its domain.

Theorem 2.3. Let p € N, k£ >0 and o > 1. Then the inequality
L) L@ a1 20
Fpiloay) = Dpplax) —p+1° Tple)

s valid for k < x <.

Proof. Recall from Theorem 2.1 that I', ;. () is logarithmically convex. Then by Lemma

2.3, the function H(z) = [ip:g)j) is decreasing. Hence for £ < z < y, we have
D,

H(y) < H(x) < H(k) yielding the result (20). O
Theorem 2.4. Let p € N, k>0 and o« > 1. Then the inequality

Lo+ K" _ [Tprle + k)"
[pr(a+ k) = Lyr(ax + k) =1 (21)

is valid for z € [0, 1].

[ P, k($+k)]

Proof. Define Q by Q(x) = NCTE

Then

forpe N, k> 0and o > 1. Let A(z) = InQ(x).

L n(r+ k) [ p(ax + k)

X(e) = &Fp,k(x + k) - Oérp,k(ax +k)
= a[Ypr(r + k) — Ypr(ax + k)]
<0

since v, () is increasing for x > 0. Hence Q(x) is decreasing on [0,00). Then for
x € [0,1], we obtain Q(1) < Q(x) < Q(0) yielding the result (21). O
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Remark 2.4. By letting p — o0 as k — 1 in (21), we recover the results of [10] as a
special case.

Theorem 2.5. Letpe N, k> 0,a > 1, %—l—%:l and m,n € N such that 2 + 3 € N.

Then, the inequality
(Z+7) (fﬁ y)‘
A N P
U a b/

holds for x > 0 and y > 0.

IO PINE:

YU () (22)

Proof. From the integral representation (9), we obtain

m_n T o0 1—67k(p+1)t mn z
iV (el = [ (et e
0
1 1
00 _—k(p)t\ at3 .
:/ <—1 16 5 ) ta+t e (B8t gt
0 _
o0 1_€—k(p+1)t % S 1_e—k:(p+1)t % a gt
— —1 efkt tae a. —1 efk:t tbe b dt
0 _ _
1
o /1 — e—k(p+1)t N a
(e
1
© /1 _ ekt B
INCECOReY
0 — €

@) [ ()

which concludes the proof. 0]

1
b

Note: The absolute signs in (22) are not required if m and n are positive odd integers
such that mT“, ”TH e N.

Corollary 2.3. Letp e N, k > 0 and m € N. Then the inequality
2
w0 @) [l @) - el @) =0

holds for x > 0.
Proof. This follows from Theorem 2.5 by letting x =y, a=b=2andn=m+2. U

Remark 2.5. By letting p — oo in Theorem 2.5, we obtain the k-analogue of (22).
Also, by letting k — 1 in Theorem 2.5, we obtain the p-analogue of (22) as presented
in Theorem 2.1 of [0].

Remark 2.6. By letting p — 0o as k — 1 in Theorem 2.5, we obtain Theorem 2.5 of
[11] as a special case.

Remark 2.7. Let v =y and a = b = 2 in Theorem 2.5. Then, by letting p — oo as
k — 1, we obtain Theorem 2.1 of [1].
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Theorem 2.6. Let m,n,p € N and k > 0. Then, the inequality

o]+ )] < [uw e

holds for x > 0 and y > 0, where u is a positive integer.

1 1
u u

¥ (y)

+

(23)

Proof. We employ the Minkowski’s inequality for finite sums, and the fact that a“+b* <
(a+ b)*, for a,b > 0 and u a positive integer. From (8), we obtain

) (n) 1 B [P m)! b n! “
o]« enl]* = |3 s + 3 g

(et Nt N\
a ; ((ik+x)"ﬁfl) +<(z’k+y)"ul> ]
2.

IN

Yy
~ 1
P 1 Ul P 1 Uy
(m!)w (n!)u
S m+41 + n+1
2 o) |12 G
1 1
= [ @) + [ w)
which concludes the proof. 0

Note: The absolute signs in (23) are not required if m and n are positive odd integers.

Remark 2.8. By letting p — oo in Theorems 2.5 and 2.0, we obtain the k-analogues
of (22) and (23).

Remark 2.9. By letting k — 1 in Theorems 2.5 and 2.6, we obtain the p-analogues
of (22) and (23) as presented in [5].

Remark 2.10. The g-analogues, (p,q)-analogues and (q, k)-analogues of the inequali-

ties (22) and (23) can be found in [12], [6] and [7] respectively.
Theorem 2.7. Let p € N, k > 0 and m € N. Then, the inequalities
2
<exp 1/1](:;) (x)) > exp wgzﬂ)(az). exp Q/’,(;Z_l)@)a if m is odd (24)
2
<exp @Dﬁ) (a:)) < exp ¢,(:;z+1)($)- exp @DI(ZZ*I)(:U), if m is even (25)

are satisfied for x > 0.

Proof. By relation (8), we obtain

0 (@) — 5 [ @) + i @)]
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B p ( 1 m+1 B _Z m+2 m+ 1) B li (_1)m(m . 1)|
B — (nk + )™t nk + z)mt2 24— (nk+az)"
NGRS —m! "L (m 1) " (m—1)!
oy~ N~ _ Ve N AV
2 Z (nk 4 x)m+! ;} (nk 4 x)m+2 ; (nk 4+ x)™

(= [ " (m 1) L (m—1)!
2 LZ nl{:—l—xm“ +;(nk+x)m+2+§)(nk+x)m
()" (m—=1D)!' [ 2m  (m+1Dm

— (nk + )™ [nk +z (nk+x)? * 1}

_ Y (1)

2 = (nk+az)mt?

[(m +nk + x)* + m)|

_]=>0, modd
< 0, m even.
That implies,
2y (2) 2 4 (@) + i (@) (26)
and
m+1) m—1)
2,7 (@) < (@) + o (@) (27)
respectively for odd m and even m. Then, by exponentiating the inequalities (26)
and (27), we obtain the desired results. O

Remark 2.11. By letting p — oo in Theorem 2.7, we obtain the k-analogues of (2/)
and (25).

Remark 2.12. By letting k — 1 in Theorem 2.7, we obtain the p-analogues of (2/)
and (25) as presented in Theorem 2.5 of [0] as a special case.

Remark 2.13. By letting p — oo as k — 1 in Theorem 2.7, we obtain Theorem 3.2
of [8] as a special case.

3. Conclusion

We have introduced a new two-parameter deformation of the classical Gamma func-
tion, called the (p, k)-analogue. In addition, we have established some identities and
inequalities involving this new function. The established results provide generalizations
of some known results in the literature.
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