
 
 

Copyright © 2015 IJASM, All right reserved 

  238 

International Journal of Applied Science and Mathematics 

Volume 2, Issue 6, ISSN (Online): 2394-2894 
 

Perturbation Analysis of Hilbert Linear Systems Arising 

in Applications 
 

Seidu Azizu 
Department of Mathematics,  

Wenchi Methodist Snr. High School, Wenchi, Ghana 

Email: abdulaziz_seidu@rocketmail.com 

Stephen B. Twum 
Department of Mathematics,  

University for Development Studies, Tamale, Ghana 

Email: stwum@uds.edu.gh 

 
Abstract – Perturbation analysis of Hilbert linear systems 

arising in applications is reported. This paper shows the 

impact of error bound in relation to the perturbation of the 

linear system. The goal is to bound the relative error of A𝒙 = 

b when both the right-hand side (RHS) vector b and the 

coefficient matrix A are perturbed slightly and to determine 

the relevance of small residual vector. We considered a 

Hilbert system for the conditioning due to its unique 

sensitivity to perturbation. From our numerical results ran 

on MATLAB version 7.01, the condition number of the 

Hilbert matrix gets larger as size (n) of the matrix increases. 

We also showed that small residual does not necessarily mean 

that the approximate solution is ‘close’ to the exact solution 

and again small residual does not imply a small error vector 

of the linear system. 

 

Keywords – Condition Number, Perturbation Analysis, 

Dense Linear Systems, Norm, Error Analysis, Small 

Residual.  

 

I. INTRODUCTION 
 

It is widely known that the solutions of systems of linear 

equations are sensitive [4] to round-off error. For some 

linear systems a small change in one of the values of the 

coefficient matrix or the right-hand side vector causes a 

large change in the solution vector. When the solution is 

highly sensitive to the values of the coefficient matrix A or 

the right-hand side constant vector b, the equations are 

said to be ill-conditioned. Ill-conditioned linear systems 

frequently arise in many real world applications [8, 

5].Some ill-conditioned linear systems of equations in the 

form Ax = b come from discretization of Fredholm 

integral equations of the first kind [16, 18], where A, 𝑥 

and b are discretizations of continuous functions. Solving 

such systems has been of great interest for many years and 

various approaches have been developed to do so. 

Therefore, we cannot easily rely on the solutions coming 

out of an ill-conditioned system. These systems pose 

particular problems when the coefficients are estimated 

from experimental results [6].The standard method to 

solve ill-conditioned systems known as Regularization has 

been studied [17]. Regularization methods use known 

information about the solution for solving ill-conditioned 

systems. The mission of regularization is to point to the 

most desirable solution by incorporating all the prior 

information of𝑥. 

The conditioning of a problem is a measure of how 

sensitive the problem is to small perturbations in the data. 

This attribute of the problem is important  since most 

problem are approximate to target ones and one would like 

to feel that good approximation to a target one will leave a 

solution close to that of the target. If however the problem 

is highly sensitive to small perturbations in the sense that 

small perturbations in the data cause large changes in the 

solution, then the problem is ill-conditioned, otherwise it 

is well-conditioned. The matrix A is called well-

conditioned, if the condition number defined by κ(A) = 

 𝐴 2 𝐴
−1 2  is relatively small and ill-conditioned  if 

κ(A) is large. Since I = 𝐴𝐴−1and  𝐴𝐴−1 ≤  𝐴  𝐴−1  it 

implies κ(A) ≥ 1. When using the 2-norm, then the 

condition number of a square non-singular matrix [17] can 

be expressed in terms of its non-singular values as  κ(A) 

= 𝐴 2 𝐴
−1 2 =

𝜎1

𝜎2
 where 𝜎1 and 𝜎2are the largest and the 

smallest non-singular values of A, respectively. 

The directed rounding method is used to compute and 

verify error bounds for the solution of a linear system Ax 

= b with an extremely ill-conditioned matrix 

[10].Therefore, the need to estimate the condition number 

or sensitivity of numerical problems is one of the most 

fundamental issues in numerical analysis. Together with 

knowledge of the underlying stability of the algorithm 

employed to solve a problem, a good condition estimate 

can be used to provide a means to comment quantitatively 

about the accuracy of a computed solution [11]. 

 

II. MOTIVATION 
 

Consider the linear system A=  
0.913 0.659
0.457 0.330

  
𝑥1

𝑥2
 =

 
0.254
0.127

 = b. If matrix A is perturbed with the element 

𝐴11 = 1,  then A=  
1 0.659

0.457 0.330
  and the approximate 

solutions is 𝑥 1 =  
0.00440
0.37870

 . The exact solution is 

𝑥 =  1, −1 𝑇  and the residual is  0.00038, 0.00000 𝑇 . 

The issue is: does the small residual imply: 

I) The approximate solution is ‘close’ to the exact 

solution? 

II) Small error? 

These are the issues this study seeks to examine. 

 

III. OVERVIEW OF CONDITION NUMBER 
 

Condition number is basically a measure of stability or 

sensitivity of a matrix to numerical operations [2]. The 

condition number of a problem measures the sensitivity of 

the solution to small changes in the input [1].  When a 

problem has a low condition number, it is called well-

conditioned and problems with a high condition number 

are said to be ill conditioned.  Norm- wise condition 
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estimation consolidates all sensitivity information into a 

single number.  Thus, important information may be lost if 

individual solution components have widely disparate 

sensitivity [9]. Algorithm for the computation of the 

condition of the average eigenvalue and eigenvectors has 

been studied [3]. The condition of structure-specific linear 

equations [7] is very significant in the solution of systems 

of linear equations. MATLAB codes to produce more 

accurate statistical estimates for the sensitivity of certain 

structures has been studied [9]. It reflects the maximum 

possible relative change in the exact solution of a linear 

system induced by a change in the data. Condition number 

plays a vital role in numerical solution of linear systems 

since it measures the sensitivity of the linear system 

A𝑥 = 𝑏 to the perturbation of A or b. We say a matrix is 

nearly singular if its condition number is very large. 

Therefore, ill-conditioning (near singularity) has a much 

bigger impact on solving a linear system than matrix-

vector multiplication. It provides an approximate upper 

bound on the error in a computed solution and can also be 

used to predict the convergence of iterative methods. .The 

value of condition number is dependent on the choice of a 

matrix norm, and indirectly on the choice of a vector 

norm. There are several ways of estimating the condition 

number of a linear system. Statistical condition estimation 

(SCE) has been introduced in [7, 14]. SCE provides a 

systematic way of estimating structured condition numbers 

Properties of Condition Number are:                                      

1. For any matrix A, cond (A) ≥ 1 

2. For identity matrix, cond (I) = 1 

3. For any matrix A and scalar 𝛾, cond ( 𝛾 A) = cond (A) 

 

IV. VECTOR AND MATRIX NORMS 
 

A norm is a function [20] that assigns a positive length 

to all the vectors in a vector space. Matrix and vector 

norms have the same symbol  .  . However   vector-norm 

and matrix-norm are computed very differently. Thus 

before computing a norm, we need to examine carefully 

whether it is applied to a vector or a matrix, [19]. A vector 

norm  𝑥  measures the size of a vector 𝑥 ∈ 𝑅𝑛  by a 

nonnegative quantity and has the following properties: 

1.  𝑥 ≥ 0    and  𝑥   = 0  implies 𝑥 = 0 (positive 

definiteness) 

2.  𝛼𝑥   =  𝛼  𝑥     (Positive homogeneity) 

3.  𝑥 + 𝑦 ≤  𝑥   +  𝑥 (Triangular Inequality) 

Matrix norms corresponding to the vector norms above are 

defined by the general relationship:   

  
p 1

x
p p

A max A x



  

1.  Largest column sum:
n

1 ij
j i 1

A max a



   

2.  Largest row sum: 
n

ij
i j 1

x max a




   

3.  Spectral norm: 
1/2

2 maxA ( )   

where µmax is the largest eigenvalue of [A]T[A]. 

If [A] is symmetric, (µmax)1/2 = max,the largest 

eigenvalue of [A]. 

1. Norms permit us to express the accuracy of the solution 

{x} in terms of ||x|| 

2. Norms allow us to bound the magnitude of the product [ 

A ] {x} and the associated errors. 

 

V. PERTURBATION ANALYSIS 
 

Recently, structured perturbations for linear systems 

have attracted much attention [13, 12, and 15]. When 

solving linear systems of equations, it is important to 

analyze [17] how small perturbations of the matrix and 

right-hand side affect the solution. Perturbation theory has 

developed a number of diagnostic measures. One of the 

most important of these is the condition number. The 

condition number of a matrix can be regarded as a worst-

case indicator of the sensitivity of the result of a matrix 

inversion to a perturbation of the coefficients of the matrix 

itself. The eigenvalues of some matrices are sensitive to 

perturbations. Small changes in the matrix elements can 

lead to large changes in the eigenvalues. Round-off errors 

introduced during the computation of eigenvalues with 

floating-point arithmetic have the same effect as 

perturbations in the original matrix. Consequently, these 

round-off errors are magnified in the computed values of 

sensitive eigenvalues. The sensitivity of the eigenvalues is 

estimated by the condition number of the matrix of 

eigenvectors. 

 

I. Perturbation in the right hand side 
The right-hand side (RHS) vector may be slightly 

perturbed to observe the nature of the error bound and the 

conditioning of the linear system. The condition number is 

a key factor in determining the relative error of the linear 

system. Thus: 

1

1 1

& ( )

 

b b b x x x A x b A x x b b

A b b bx
A x b A A A A

x x A x b
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II. Perturbation on Matrix A 
The coefficient matrix A is perturbed in the system A𝑥=b 

which shows a variation in the approximate solution. In 

this case: 
1
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V. ERROR ANALYSIS 
 

Suppose we want to solve A𝑥 = b. Let 𝑥  denote an 

approximated solution and r = A𝑥 -b is called residual. Let 

e=𝑥 -x denote the actual error in the solution, then 
 𝑒 

 𝑥 
 is 

called relative error. Now  Ae = A 𝑥 − 𝑥  ,       Ae = A𝑥  – 

Ax ,    Ae = A𝑥  – b ,    Ae = r        

Hence   e=𝐴−1r 

 𝑒 =  𝐴−1𝑟  ≤    𝐴−1  𝑟  ,   b=A 𝑥  which implies  

 𝑏 = 𝐴𝑥  ≤    𝐴  𝑥 , hence 

 𝑒 

 𝑥 
≤

 𝐴−1  𝑟 
 𝑏 

 𝐴 

 =  𝐴−1  𝐴 .
 𝑟 

 𝑏 
 = Cond(A)

 𝑟 

 𝑏 
 

 𝑒 

 𝑥 
 ≤Cond(A)

 𝑟 

 𝑏 
 .  

The bound, 
 𝑒 

 𝑥 
 ≤ Cond(A)

 𝑟 

 𝑏 
  implies that the linear 

system A𝑥=b is well-conditioned if the condition number 

is small. In particular, if the condition number is small and 

the relative residual norm,
 𝑟 

 𝑏 
  is also small, then the 

approximate solution has a small error (in normwise 

relation sense). However, if the condition number is large, 

then the linear system is ill-conditioned. 

 

VII. NUMERICAL EXPERIMENTS 
 

In this section, we present some numerical results to 

show the performance of error bound, condition number, 

relative error and residuals of ill-conditioned and well-

conditioned linear systems. We ran our algorithm using 

MATLAB software version 7.0.1 on Intel(R) Pentium (R) 

CPU P600 @ 1.87GHz 1.87 and Installed Memory 

(RAM):  4.00GB. 

Example 1 

We considered the Hilbert system of linear equations 

using the MATLAB command for the coefficient matrix A 

and RHS vector b where the exact solution is 𝑥 = ones 

(n,1) for the discussion to test for ill-conditioning of the 

system as shown in Table 1.The Hilbert matrix H𝜖𝑅𝑛×𝑛  

with entries ℎ𝑖𝑗 =  𝑥𝑖+𝑗−21

0
𝑑𝑥 =

1

𝑖+𝑗−1
 . 

 

Table 1: Hilbert System and Conditioning. 

n Condition Number Relative Error Relative Residual Error Bound EMF 

2 19.2815 7.7716e-016 0.0000 0.0000 ∞ 

3 524.0568 1.4433e-014 0.0000 0.0000 ∞ 

4 1.5514e+004 6.3771e-013 0.0000 0.0000 ∞ 

5 4.7661e+005 6.0325e-012 0.0000 0.0000 ∞ 

6 1.4951e+007 3.9584e-010 0.0000 0.0000 ∞ 

7 4.7537e+008 1.7710e-008 0.0000 0.0000 ∞ 

8 1.5258e+010 8.3549e-007 0.0000 0.0000 ∞ 

9 4.9315e+011 2.1290e-005 0.0000 0.0000 ∞ 

10 1.6025e+013 5.2781e-004 0.0000 0.0000 ∞ 

11 5.2237e+014 0.0117 0.0000 0.0000 ∞ 

12 1.6335e+016 0.0812 0.0000 0.0000 ∞ 

13 1.3442e+018 5.8393 0.0000 0.0000 ∞ 

14 2.6741e+017 18.3823 6.8289e-017 18.2612 2.6919e+017 

15 3.9824e+017 11.5222 3.3458e-017 13.3245 3.4438e+017 

16 2.3717e+017 8.4047 3.2840e-017 7.7887 2.5593e+017 

17 9.4039e+017 12.5040 6.4556e-017 60.7081 1.9369e+017 

18 6.9787e+017 45.4945 9.5295e-017 66.5038 4.7741e+017 

19 4.4423e+018 13.2892 6.2588e-017 278.0313 2.1233e+017 

20 2.9373e+018 31.9708 6.1718e-017 181.2837 5.1802e+017 

50 2.6060e+019 353.2111 3.4546e-016 9.0027e+003 1.0224e+018 

100 4.2276e+019 1.7247e+003 1.1985e-015 5.0670e+004 1.4390e+018 

150 6.6433e+019 887.8749 1.4297e-015 9.4977e+004 6.2103e+017 

200 1.5712e+020 3.5558e+003 1.5866e-015 2.4927e+005 2.2412e+018 

250 1.5532e+020 3.0947e+003 3.0573e-015 4.7487e+005 1.0122e+018 

300 2.2004e+020 4.9432e+003 4.6652e-015 1.0265e+006 1.0596e+018 

350 6.4285e+020 4.2322e+004 3.8637e-014 2.4838e+007 1.0954e+018 

400 1.4107e+021 7.3601e+004 4.9073e-014 6.9229e+007 1.4998e+018 

450 1.8079e+021 2.0016e+004 7.8358e-015 1.4166e+007 2.5544e+018 

500 5.1045e+020 1.8573e+004 1.2421e-014 6.3406e+006 1.4952e+018 
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Table 1 shows the behavior of the condition number of 

the Hilbert matrix which increases when n gets larger. The 

error bound for between n = 2 and n = 13 is zero because 

the relative residual, 
 𝑟 

 𝑏 
 is zero, which implies that the 

error magnification factor (EMF) that is the ratio of 

relative error and relative residual should go to infinity due 

to division by zero. This also means that the approximate 

and exact solutions for that interval are equal. Again, from 

n=14 to n=500 there were variations between the 

approximate and the exact solutions and since the 

condition numbers got larger and larger, the error bound 

must automatically increase. 

Example 2 

Consider the linear system A 𝑥 =b, where A= 

 
2 6
2 6.00001

 , 𝑥 =  
𝑥1

𝑥2
 , b= 

8
8.00001

  

The exact solution is 𝑥 =  1,1 𝑇  and the condition 

number of coefficient matrix A is 4000000 and let 𝑥∗ be 

the approximate solution. Table 2 illustrates the 

perturbation of the right-hand side (RHS) vector. The 

system was solved using MATLAB command: 𝑥 = inv (A) 

∗ 𝑏 

Table 2:  RHS Perturbation 

RHS Approximate Solution 

(𝒙∗) 

Exact 

Solution (𝒙) 

8.00002  −2  , 2 𝑇   1 , 1  𝑇  

8.00003  −5, 3 𝑇   1 , 1  𝑇  

8.00004  −8, 4 𝑇   1 , 1  𝑇  

8.00005  −11, 5 𝑇   1 , 1  𝑇  

 

From Table 2, as the RHS vector is perturbed slightly, 

the approximate solutions increased as compared to the 

exact solutions. This are an indication of an ill-conditioned 

linear system. 

Table 3:  Perturbation of Matrix A 

Matrix A Approximate solution 

(𝒙∗) 

Exact solution 

(𝒙) 

6.00002  3.4, 0.2 𝑇   1 , 1  𝑇  

6.00003  3.000, 0.333 𝑇   1 , 1  𝑇  

6.00004  3.25, 0.25 𝑇  1 , 1  𝑇  

6.00005  3.40, 0.20 𝑇  1 , 1  𝑇  

 

Table 3 shows that, as the matrix A  is perturbed slightly 

from 6.00001  to  6.00002 , 6.00003 , 6.00004 , and 

6.00005 respectively , the approximate solutions increased 

as compared to the exact solutions. This is also an 

indication of an ill-conditioned linear system 

Table 4: Perturbation of both RHS and Matrix A 

RHS 

Perturbation 

Perturbation 

on Matrix A 

Approximate 

solution (𝑥∗) 

Exact 

solution (𝑥) 

8.00006 6.00004  2.00,0.67  𝑇   1 , 1  𝑇  

8.00002 6.00003  −0.50,1.50  𝑇   1 , 1  𝑇  

8.00005 6.00004  1.60,0.80  𝑇   1 , 1  𝑇  

8.00005 6.00003  2.20,0.60  𝑇   1 , 1  𝑇  

 

Table 4 shows that as both the RHS vectors and the 

coefficient matrix are perturbed, the approximate solutions 

increased as compared to the exact solutions. 

Example 3  

Consider the linear system A 𝑥 = b, where A 

= 
1 4

1.0001 4
 , 𝑥 =  

𝑥1

𝑥2
   , 𝑏 =  

5
5.0001

  

The exact solution is 𝑥 =  1,1 𝑇 . If 𝑏 =  
5

5.0001
  is 

perturbed as 

𝑏1 =  
5

5.0002
 the approximate solution, 𝑥∗ = 

 2.00,   0.75 𝑇 .   

 

Table 5: Small Residual 1 

Residual Relative Error Relative Residual Condition Number Error Bound EMF 

 0, −0.0001 𝑇 . 1.0000 1.9999e-005 8.5001e+004 1.6999 5.0002e+004 

 

Table 5 shows that the residual vector, 0, −0.0001 𝑇 of 

the system stated in example 3 is small and the condition 

number, 8.5001e+004  is very large. As well as EMF. The 

error bound must always be greater than or equal to the 

relative error as: 

Cond(A) 
 𝑟 

 𝑏 
≥

 𝑒 

 𝑥 
 which is shown in Table 5. The value 

of the condition number, 8.5001e+004 indicates that the 

linear system is ill-conditioned.      

Example 4                                                                                    

Consider the linear system A 𝑥 = b, where A 

= 
0.4 0.3
0.9 0.7

 ,  
𝑥1

𝑥2
  , 𝑏 =  

0.3
0.7

  

The exact solution is 𝑥 =  0,1 𝑇 . The element 𝐴12  is 

perturbed as 𝑏1 =  
0.31
0.7

  and the approximate solution 

is 𝑥∗=  −7.00, 10.00 𝑇.  

 

Table 6: Small Residual 2 

Residual Relative Error Relative Residual Condition Number Error Bound EMF 

 0.10, −0.00 𝑇 . 9.0000 0.1429 154.9935 22.1419 63 

 

Table 6 shows that small residual vector, 

 0.10, −0.00 𝑇 does not mean that the approximate 

solution, 𝑥∗ =  −7.00, 10.00 𝑇  is ‘close’ to the exact 

solution, 𝑥 =  0,1 𝑇 . The error vector is 

 7.000, −9.000 𝑇 . Therefore, a small residual did not 

necessarily result in a small error. The error bound is 

related to the relative error and the condition number of 

154.9935 confirmed that the above linear system is ill-

conditioned. 
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Example 5                        

Consider the linear system A𝑥 = b,  

where A = 
1 1
0 0.999

 , 𝑥 =  
𝑥1

𝑥2
   , 𝑏 =  

2
0.999

  

 

The exact and approximate solutions are 𝑥 =  1,1 𝑇  and 

𝑥 =  1.0256,1.000 𝑇  respectively 

The perturbed matrix is A= 
0.95 1

0 0.999
  

Table 7: Small Residual 3 

Residual Relative Err. Relative Res. Cond.Num Error Bound EMF 

 −0.0526, 0 𝑇  0.0526 0.0263 2.6192 0.0689 2.0000 

 

From Table 7, the condition number, 2.6192 is small 

which implies that the above linear system is well-

conditioned. The EMF is also small which has a direct link 

with the relationship between error bound and relative 

error. That is Error Bound ≥ Relative Error. 

Again, RHS vector perturbed as b = 
1.98

0.999
   results in 

Table 8  below. 

 

 

Table 8: Small Residual 4 

Residual Relative Error Relative Res. Cond.Num Error Bound EMF 

 0.0200,0.0000  𝑇  0.0200 0.0100 2.6192 0.0262 2.0000 

 

The residual vector,  0.0200,0.0000  𝑇  is small 

compared to the EMF (2.0000), the errorbound (0.0262) 

and relative error (0.0200)confirmed that the system in 

example 5 is well-conditioned. That is to say that, for 

well-conditioned linear system, EMF and condition 

number sufficiently smaller as compared to example 3 

 

VIII. CONCLUSION 
 

In this paper, we studied error bounds in relation to 

relative error of an ill-conditioned and well-conditioned 

linear system as a quantitative measure of sensitivity. 

From the numerical results, the condition number plays a 

major role in the problem of solving linear systems and 

relates relative error and error bounds. From results 

obtained, we have observed that large relative residual 

implies large backward error in the matrix and the 

algorithm used to compute the solution is unstable. 

Another way of saying this is that a stable algorithm will 

invariably produce a solution with small relative residual, 

irrespective of the conditioning of the problem, and hence 

a small residual by itself, sheds little light on the quality of 

the approximate solution and how close the approximate 

solution is to the exact solution. 

 

FUTURE WORK 
 

In this study only Hilbert matrix was experimented with 

due to it sensitivity to slight perturbation and large 

condition number. The error bound as well as the relative 

residual of this matrix need further analysis more 

especially the first 13 matrices of the Hilbert system. The 

QR factorization, singular Value Decomposition and 

Regularization method could as well be used to determine 

the relative and residual errors. Furthermore, the analysis 

of Vander monde and Pascal matrices in terms of 

conditioning of linear systems would also be areas of 

further research. 
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