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ABSTRACT 

In this thesis, an algorithm for Residue Number System (RNS) implementation of Rivest 

Shamir and Adleman (RSA) cryptography based on an existing RNS division algorithm is 

proposed. Many RNS division algorithms have been proposed over the years targeted at 

application to areas like cryptography. However all of these algorithms are restricted either 

due to the number of iterations involved or in terms of generality and the type of quotients 

involved. Iterations in RNS division algorithms mostly lead to long execution time, large 

hardware requirements, high cost for implementation, and high power consumption among 

others. However, performing division in RNS using a non-iterative and pure RNS division 

algorithm avoids iterations, high hardware requirements, high cost implementation, 

restrictions from the type of quotient and high time consumption. The proposed algorithm 

and that of the state of the art were written in C++ programming language to compare their 

efficiency with respect to execution time using two different moduli sets with dynamic range 

of 29 and 692 respectively. The study reveals that show that our proposed algorithm can 

encrypt and decrypt text without loss of inherent information and faster than the state of the 

art. It also offers firm resistance to Brute-force and key sensitivity attacks. We carried out an 

error analysis of the experimental results at 95 degrees significance level. The statistics 

showed a low level of error in our algorithm. 
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• 
CHAPTER ONE 

INTRODUCTION 

1.1 Introduction and Background of the Study 

In recent times, there has been a vigorous and continuous search for improving computer 

performance Parhami (1999). Researchers are coming out with new ideas and technologies to 

make the computer more efficient. The main task of a computer is computing which deals 

with numbers all the time. Some examples of number systems are binary number systems, 

decimal number systems, Weighted Number System (WNS) and Residue Number System 

(RNS). Binary and decimal number systems, intrinsically limit the performance of arithmetic 

units and processors built based on them. Because of these limitations in Weighted Number 

System (WNS), RNS has the following advantages of computing large numbers over WNS. 

These include carry-free addition and borrow free subtraction, which are the challenges to 

binary and decimal number system because, in RNS a number is represented by the residues 

of all moduli, and the arithmetic can be performed on each modulus independently. Therefore 

RNS offers the properties of parallelism (Szabo, 1967). 

1 

Even though RNS has many advantages over WNS in terms of encoding large numbers into a 

set of smaller numbers to speed up computations the following are time-consuming 

operations III RNS which affect the wide spread application of RNS, in areas like 

cryptography, overflow detection, SIgn detection, magnitude companson and division. 

Among them, division has modular operations application as can be found in cryptography 

(Szabo, 1967). 

Currently fast hardware implementations of RSA cryptosystem is under study while 

confidentiality and security requirements are becoming more and more important. In view of 

this emerging problem of digital security, cryptographers keep increasing the key-length. 
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1.2 Division Algorithms and Executing Time in RNS 

A lot of division algorithms have been developed including the general division method over 

the years. However, all these proposed algorithms require long execution time and large 

hardware resources. This is attributed to the methods used, namely the Mixed-Radix 

Conversion (MRC), Montgomery Multiplication (MM) and Chinese Remainder Theorem 

(CRT) (Hiasat and Zohdy, 1997). 

Recently, it is assumed that a 1024-bit key-length makes a reasonable choice for the 

cryptography proposed by Rivest et aI., (1978), popularly known as RSA, and current 

analysis predict that 2048-bit or 4096-bit key will become the standard in a near future 

(Rivest et aI., 1978). 

The ability to perform fast arithmetic on large integers IS still a major Issue for the 

implementation of public key cryptography and digital signature, particularly from the 

hardware design point of view (Rivest et aI., 1978). 

Instead of employing MRC and CRT, Hiasat and Zohdy (1997) used the highest powers two 

comparison between the dividend and the divisor to design a division algorithm in RNS. 

Their algorithm computes the evaluated quotient according to the highest powers of the 

dividend and the divisor, and obtains the actual quotient by computing the sum of all 

evaluated quotients until the product of the divisor and the evaluated quotient is less than the 

dividend. However, the evaluated quotient is underestimated in their algorithm. Thus, Yang 

et aI., (2004) proposed a division algorithm in RNS using the parity checking technique. In 

the algoritlun, the evaluated quotient is estimated precisely such that approximating the actual 

quotient by adding the evaluated quotients is two times faster than that in the algorithm 

proposed by (Hiasat and Zohdy, 1997). However, computing the highest power of 2 of a 

number is time-consuming in RNS (Yang et aI., 2004). 

2 
• 

www.udsspace.uds.edu.gh 

 

 

 

 



.::. 

Chang and Yang, (2013) designed a division algorithm, which limits the above constrains 

using the bisection method in RNS. It is a new algorithm which finds the quotient in a 

probable interval efficiently. The algorithm only needs to compute the highest-power 

comparison in RNS in the first round. 

1.3 Basics of Cryptography 

Cryptography is a method of turning readable file into gibberish. We can use cryptography to 

store, transmit or receive sensitive data across insecure networks like (the internet) so that it 

cannot be read by anyone except the recipient (Steve and Stephen, 2004). 

Plain-text is data which can be read and understood without any special measures. Cipher­ 

text is when plain-text is disguised in such a way as to hide its substance. Encryption is used 

to get cipher-text and decryption is also used to get plain-text back (Steve and Stephen, 

2004). 

1.3.1 THE ROLE OF CRYPTOGRAPHY 

Most often than not we have secrets that need protection, these secrets appear in areas like 

medical files, bank statements, paycheck, investment portfolio and credit card bills. Others 

include social security numbers, credit card numbers, bank account numbers and the PIN for 

ATM credit card or phone card among others. We all have information we want to keep 

private. 

Corporations also have secrets, strategy report, sales forecasts, technical product details, 

research results and personnel files among others 

In the past before the advent of computers, security was simply a matter of locking of doors 

or storing files in locked filling cabinet or safe. Today files are stored in computer databases 

as well as file cabinets. 

3 
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Hard-drives and floppy disks hold many of our secrets. In the beginning the best way was to 

provide security to these data through the Operating System (OS), by locking it using a 

password. 

However, various attacks on passwords have rendered this mode of security vulnerable and 

attacks by pass the OS. For your secrets to be secured, it may be necessary to add protection 

not provided by a computer (OS).One of the most important tools for protecting data is 

cryptography (Steve and Stephen, 2004). 

1.3.2 ADV ANT AGES OF CRYPTOGRAPHY 

Some advantages of cryptography include;- 

~ Adding security to the process of authenticating people identity. 

~ Improves privacy, meaning that, no one can break into files to read your 

sensitive data. 

~ Another concept is data integrity, which refers to a mechanism that tells us 

when something has been altered. 

~ By applying the practice of authentication, you can verify identities. 

~ Non repudiation, a legal driving force that impels people to honor their 

word is also used in cryptography (Steve and Stephen, 2004). 

1.3.3 COMMON CRYPTOGRAPHIC ALGORITHMS 

Data Encryption Standard (DES) is the most popular computer encryption algorithm. DES is 

of US and international standard. It is a symmetric algorithm, that is, the same key is used for 

encryption and decryption (Steve and Stephen, 2004). 

The algorithm proposed by Rivest et al. (1978), known as RSA, is a public key algorithm. It 

can be used for both encryption and digital signatures (Rivest et aI., 1978). 

4 
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Digital Signature Algorithm (DSA) is another public key algorithm. It cannot be used for 

encryption, but can only be used for digital signatures (Rivest et aI.,1978) 

1.3.4 CRYPTANALYSIS 

Cryptanalysis is the science of analyzing and breaking through secure communication. This 

involves combination of critical thinking, application of mathematical tools, creating patterns. 

Cryptanalysts can be referred to as attackers. In cryptography, the secrecy must reside 

entirely in the key Rivest et al. (1978) 

1.3.5 COMMON CRYPT ANALYTIC ATTACKS 

The cryptanalytic attacks presented here are all assumed, the cryptanalyst has full knowledge 

of the encryption algorithm used. These include; 

1. Cipher-text-only attack. The cryptanalyst has the cipher-text of several massages, all 

of which have been encrypted using the same encryption algorithm. The job of the 

Cryptanalyst is to recover the plain-text of as many messages as possible, or better yet 

to deduce the key or keys used to encrypt the messages in order to decrypt other 

encrypted with the same keys. 

11. Known-plain-text attack. The cryptanalyst has access not only to the cipher-text of 

several messages, but also to the plain-text of those messages. His job is to deduce the 

key or keys used to encrypt the messages or an algorithm to decrypt any new 

messages encrypted with the same key or keys. 

Ill. Chosen-plain-text attack. The cryptanalyst not only has access to the cipher-text and 

associated plain-text for several messages, but he also chooses the plain-text that gets 

encrypted. This is more powerful than a known-plain-text attack, because the 

cryptanalyst can choose specific plain-text blocks to encrypt, ones that might yield 

more information about the key. His job is to deduce the key or keys used to encrypt 

5 
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the messages or an algorithm to decrypt any new messages encrypted with the same 

key or keys. 

IV. Adaptive-chosen-plain-text attack. It is a special case of a chosen-plain-text attack. 

Not only can the cryptanalyst choose the plain-text that is encrypted, but he can also 

modify his choice based on the results of previous encryption. In the chosen-plain-text 

attack, a cryptanalyst might just be able to choose one large block of plain-text to be 

encrypted, in an adoptive-chosen-plain-text attack he can choose a smaller block of 

plain-text and then choose another based on the results of the first, and so forth. 

v. Chosen-cipher-text attack. The cryptanalyst can choose different cipher-texts to be 

decrypted and has access to the decrypted plain-text. 

VI. Chose-key attack. The cryptanalyst has some knowledge about the relationship 

between keys (Alhassan and Gbolagade, 2013) 

1.4 Problem Statement 

Many Algorithms for division in RNS are presented in international journals by Parhami 

(1994), Yang et al., (2004) Hiasat and Zohdy (1997). However, most of these algorithms are 

iterative and has the problem of an overall loop and not supporting all numbers in the 

dynamic range as denominator which affects their application to other fields like RSA 

cryptography. This study proposed an efficient RNS implementation of RSA cryptography 

based on a non-iterative and pure RNS division algorithm by Mansoureh and Mohammed 

(2012), which avoids overall loop and support all numbers in the range as denominator. 

6 
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1. To reduce computational time and enhance the efficiency in RNS operations 

involving division and applying it to RSA public key cryptography 

11. To absorb or control the emerging problem of growing key length in RSA 

Ill. To propose a general algorithm that can be applied to RSA cryptography based on the 

division algorithm such that fractions, decimals, integers can all be encrypted and 

decrypted. 

IV. To improve on existing data encryption techniques by developing an efficient 

algorithm. 

1.5 Objectives of the Study 

! 1.5.1 GENERAL OBJECTIVE OF THE STUDY 

The main objective of this study is to use a non-iterative and pure RNS division algorithm by 

Mansoureh and Mohammed (2012) to design an algorithm that can be applied to simplify and 

improve the security in RSA cryptography 

1.5.2 SPECIFIC OBJECTIVES 

The specific objectives of the study are; 

1.6 Research Questions 

1. Can we apply the division algorithm based on a non-iterative and pure RNS division 

algorithm by Mansoureh and Mohammed (2012) to simplify and improve the security 

of RSA public key cryptography? 

11. Will the chosen algorithm be able to absorb or control the emerging problem of 

growing key length in RSA? 

Ill. Can we achieve a general algorithm that can be applied to RSA cryptography based 

on the division algorithm using a non-iterative and pure RNS division algorithm by 

7 
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~ Web servers and browsers used it to secure web traffic, ensure pnvacy and 

authenticity of E-mail, to secure remote login sessions. 

~ Electronic credit-card payment systems. 

Mansoureh and Mohammed (2012)in RNS such that fractions, decimals, integers can 

all be encrypted and decrypted? 

IV. Will the proposed algorithm performed relatively well companng it to existing 

algorithm? 

1. 7 Significance of the Study 

RSA cryptosystem is most commonly used for providing privacy and ensuring authenticity of 

digital data. These days, RSA is found in many commercial systems. Such as-: 

1.8 Definition of Terms 

Algorithm: This is a scientific term for a recipe or step by step procedure. It is a list of 

instructions or things to do in a particular order. An algorithm might have a rigid list of 

commands or it might contain a series of questions and depending on the answers describe 

the appropriate steps to follow. A mathematical algorithm might list the operations to perform 

in a particular order to find a variable. Algorithm- a set of mathematical instructions that 

In summary, RSA is frequently used in applications where security of digital data is concern. 

With the increasing use of digital techniques for transmitting and storing information, the 

fundamental issue of protecting the confidentiality, integrity as well as the authenticity of 

cryptosystem has become a major concern. Various data protection techniques have been 

proposed over the years to solve these problems. The significance of this research is to 

improve on existing data encryption techniques by developing an efficient algorithm. 

8 
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Cryptography: The art and science of keeping messages secure is cryptography, and it is 

practiced by which readable text are turn to gibberish text to prevent anyone from accessing 

to it apart from the one it is intended for. 

must be followed in a fixed order, and that, especially, if given to a computer, will help to 

calculate an answer to a mathematical problem (Steve and Stephen, 2004). 

Key: This is a number or set of numbers which can serve as a password or code. Key is 

simply a number that is used to encrypt or decrypt data (Steve and Stephen 2004). 

Cryptanalysts are practitioners of cryptanalysis, the art and science of breaking cipher-text; 

that is, seeing through the disguise (Steve and Stephen, 2004). 

Encryption and Decryption: A message is plaintext (sometimes called clear text). The 

process of disguising a message in such a way as to hide its substance is encryption. An 

encrypted message is cipher-text. The process of turning cipher text back into plaintext is 

decryption (Steve and Stephen, 2004). 

Cryptology and Cryptologists: The branch of Mathematics encompassmg both 

cryptography and cryptanalysis is cryptology and its practitioners are cryptologists. 

1.9 Organization of the study 

This thesis composed of five chapters. All the chapters are based on the thesis topic, an 

efficient algorithm for RNS implementation of RSA. Lectures and other related works from 

other publishers in the field of RNS division algorithms and their application to RSA 

algorithms. 

Chapter one presents the introduction, objectives, research questions and significances of the 

study. Chapter two deals with the literature review of RNS division algorithms and RSA 

9 
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algorithms and how RNS can be applied to RSA. Chapter three presents the methodology and 

the proposed algorithm. Chapter four presents the discussion and analysis of the results. 

Security analysis, key sensitivity analysis among others were discussed. Chapter five deals 

with the conclusion, summary, recommendations and future research directions. 

10 
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CHAPTER TWO 

LITERA TURE REVIEW 

2.1 The Concept of RNS and Cryptography 

Splitting a large number into a group of small numbers will results in significant 

computational speed (Parhami, 1994). Division in RNS is of much interest because it is one 

of the four basic mathematical operations. Number theory may be one of the "purest" 

branches of Mathematics; it has turned out to be one of the most useful branches when it 

comes to computer security. For instance, number theory helps to protect sensitive data such 

as credit card numbers when you shop online. This is the result of some remarkable 

mathematics research from the 1970s that is now being applied worldwide (Parhami, 1999). 

Sensitive data exchanged between a user and a Web site needs to be encrypted to prevent it 

from being disclosed to or modified by unauthorized parties. 

In traditional cryptography, encryption and decryption operations are performed with the 

same key, that is, symmetric key cryptography. This means that the party encrypting the data 

and the party decrypting it need to share the same decryption key. If two parties already share 

a secret key, they could easily distribute new keys to each other by encrypting them with 

prior keys. From symmetric key encryption, researchers continue to build knowledge towards 

unsymmetrical key encryption. 

Diffie and Hellman (1976) suggested that, encryption and decryption could be done with a 

pair of different keys. The decryption key would be kept secret, and the encryption key could 

be made public. This concept was called public-key cryptography. 

Every computer can use that encryption key to protect data sent to the site. However, only the 

site has the corresponding decryption key that can decrypt the data. 

Diffie and Hellman (1976) introduced the concept of digital signatures. 

11 
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Their key agreement is confronted with the problem of discrete logarithms and integer 

factorization. In 1977, a public key cryptosystem was invented by Rivest et al. (1977), called 

the RSA public key cryptography. However, only integers are encrypted in RSA. Hung and 

Parhami (1994) first wrote on fast RNS division algorithms for fixed divisors with 

application to RSA encryption. Their algorithm was restricted to only division with integer 

quotient. It was having longer time consumption because of its iterative. 

Imbert and Bajard (2004) proposed a full RNS implementation which was based on the CRT, 

MM, and base extension. Gbolagade (2010) mentioned that the main drawback of CRT 

emerges from the required modulo-M operation, which given that M is a rather large number, 

this operation can be time consuming and rather expensive in terms of area and energy 

consumption. Chang and Yang (2013) proposed a division algorithm without using 

CRT/MRC or MM. The authors used the parity checking technique and highest power of 

two's to perform division in RNS, however it is also iterative. A non-iterative and pure RNS 

division algorithm by Mansoureh and Mohammed (2012) was also proposed and this solved 

the looping problem and restriction to integer quotient. 

2.2 Overview of Residue Number System (RNS) 

Residual Number System (RNS) were invented by a third-century Chinese scholar Sun Tzu 

(Omondi et al., 2007). RNS is an integer system which speeds up arithmetic computations by 

splitting numbers into smaller parts in such a way that each part is independent of the other 

(Gbolagade et ai., 2009). 

RNS is suited for the implementation of fast arithmetic and fault-tolerant computing due to 

the following inherent properties-; 

>- Absence of carry-propagation in addition and multiplication 

>- Residual representation carry no weight-information 

12 
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~ There is no significance-ordering of digits in an RNS representation.

These inherent features make RNS to be widely used in Digital Signal Processing (DSP)

applications such as digital filtering, convolution, cryptography etc. (Gbolagade et aI., 2009;

Pemmaraj, 2009). The application ofRNS in cryptography and image processing is been paid

much attention to by researchers (Weyori et aI., 2012; Shahram et aI., 20 12;Talesshmeka et

al., 2012). The aims of such applications are to ensure fast data transmission, conversion of

disk space and optimization of internal memory (Weyori et al., 2012; Shahram et aI., 2012;

Talesshmekael et al., 2012).

2.2.1 FUNDAMENTALS OF RESIDUE NUMBER SYSTEM (RNS)

RNS is defined by a set of relatively prime integers called the moduli. The moduli-set is

denoted by {mp m2 , ••• ,mJwhere m: is the ithmodulus. Each integer X can be represented as a

set of smaller integers called the residues. The residue-set denoted as {Xl' x2, ... ,xJ is the

residue where Xi is ther'" residue. The residue Xi is defined as the least positive remainder

when X is divided by the modulus mi. The notation for this relation can be written based on

the congruence of the form:

(2.1 )

The same congruence can be written in an alternative notation as

(2.2)

The RNS is capable of uniquely representing all integers X that lie in its dynamic range. The

dynamic range is determined by the moduli-set {mJ, 1112 , ... ,m,J and denoted as M where:

(2.3)

13
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s = {m1,mZ} = {3, 7} and M = 3x7 = 21, QCD = (mj,mj) = 1, for i =1= j 

The RNS provides unique representation for all integers in the range between 0 and M-l. If 

the integer is greater than M -1, the RNS representation repeats itself. Therefore, more than 

one integer might have the same residue representation. 

It is important to emphasize that the moduli have to be relatively prime to be able to exploit 

the full dynamic range (Abdelfattah, 2011). 

Let S denote the moduli set, then 

Illustration to Show That RNS has a Unique Representation 

Consider two different residue number systems defined by the two moduli-sets {2,3,5} and 

{2,3,4}. The representation of the numbers in residue format are as shown in Table 1.1. 

14 
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{2,3,S} (2,3,4 } 
X 2 3 5 2 " 4 .) 

0 0 0 0 0 0 0 
1 1 1 1 1 1 1 
2 0 2 2 0 2 2 
3 1 0 " 1 0 3 .) 

4 0 1 4 0 1 0 
5 1 2 0 1 2 1 
6 0 0 1 0 0 2 
7 1 1 2 1 1 3 
8 0 2 3 0 2 0 
9 1 0 4 1 0 1 
10 0 1 0 0 1 2 
11 1 2 1 1 2 3 
12 0 0 2 0 0 0 
13 1 1 " 1 1 1 .) 

14 0 2 4 0 2 2 
15 1 0 0 1 0 3 
16 0 1 1 0 1 0 
17 1 2 2 1 2 
18 0 0 3 0 0 2 
19 1 1 4 1 1 " .) 
20 0 2 0 0 2 0 
21 1 0 1 1 0 1 
22 0 1 2 0 1 2 
23 1 2 3 1 2 " .) 

24 0 0 4 0 0 0 
25 1 1 0 1 1 1 
26 0 2 1 0 2 2 
27 1 0 2 1 0 3 
28 0 1 3 0 1 0 
29 1 2 4 1 2 1 
30 0 0 0 0 0 2 

Table 2.1 Unique Representations of RNS 

Source, Abdelfattah (2011) 

In the first RNS, the moduli-set {2, 3, 5} are relatively prime. The RNS representation is 

unique for all numbers in the range from 0 to 29. Beyond that range, the RNS representation 

repeats itself. For example, the RNS representation of 30 is the same as that of O. 

15 
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In the second RNS, the moduli-set {2, 3, 4} are not relatively prime, since 2 and 4 have a 

common divisor of 2. We see that the RNS representation repeats itself at 12 preventing the 

• 
dynamic range from being fully exploited. Therefore, choosing relatively prime moduli for 

the RNS is necessary to ensure unique representation within the dynamic range. 

In the preceding discussion on RNS, we assumed dealing with unsigned numbers. However, 

some applications require representing negative numbers. To achieve that, we can partition 

the full range [0: M-I] into two approximately equal halves: the upper half represents the 

positive numbers, and the lower half represents the negative numbers. The numbers X that 

can be represented using the new convention have to satisfy the following relations: 

[ -~ ~ - I] IfM is even 
2 ' 2 ' 

[ (M-i) (M+i)] ifM is odd 
2 ' 2 

2.2.2 ARITHMETIC OPERATION IN RNS DOMAIN 

Addition and subtraction 

Congruence with respect to the same modulus may be added or subtracted, and the result will 

be a valid congruence. That is, if 

x = x(modm) 

Y = y(modm) 

then 

x + Y = x+ y(modm) 

16 
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Multiplication 

• 
Congruence with respect to the same modulus may be multiplied, and the result is a valid 

congruence. That is, if 

x = x{modm) 

Y = y{modm) 

then 

x x Y == xx y{modm) 

Extension of sum and product properties 

The properties above for addition and multiplication have two direct extensions. If 

{xpx2···,xJ and {Y"Y2···,yJ are, respectively the residue sets (without any restrictions) of 

X and Y, obtained relative to the moduli m, ,m2, .. m, then, the residue set of 

And that 

Example 2.1 

Suppose X=21, Y=ll and the moduli set is {2, 3, 5} then 

Where 

17 
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and 

x =Ixl i m} 

and 

• 

x = 21 

Y=ll 

Then 

32 == (0,2,2) 

2.3 The Chinese Remainder Theorem (CRT) 

The Chinese Remainder Theorem (CRT) may rightly be viewed as one of the most important 

fundamental results in the theory of residue number systems. It is, for example, what assures 

us that if the moduli of a RNS are chosen appropriately then each number in the dynamic 

range will have a unique representation in RNS and that from such a representation we can 

determine the number represented. The CRT is useful in reverse conversion as well as several 

other operations. Given a set of pair-wise relatively prime moduli.m., m2 ,m3 ... , mn and a 

residue representation ( Xl ,X2 , ... , xn) in that system of some number X, 

That is Xi = IXI ., that number and its residues are related by the equation 
1111 

x = IIn'=1 xilM-1,1 Mil 
1111 M 

(2.4) 

The expression above is the Chinese Remainder Theorem (Omondi and Premkumar, 2007; 

Daabo and Gbolagade, 20 12;Gbolagade and Cotofana 2009). 

Where 
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, (2.5) 

• M= dynamic range and m.= moduli set 

Example 2.2: 

19 

Consider the moduli set {3, 5, 7}, and suppose we wish to find the X whose residue 

representation is {I, 2, 3}. 

Solution 

M = 3x5x7 

Where 

M -1 = 2 M -1 = 1 and M -1 = 1 1 , 2 3 

Then by the CRT, we have (M = 3x5x7) = 105 

X = I If=lXiXi 1105, therefore; X = Ilx35x2 + 2x21x1+3x15xl I 105 i.e. X = 52. 

2.4 Mixed Radix Conversion (MRC) 

Given a set of pair-wise relatively prime moduli {lnJ, 1n2 , ... ,lnn} and a residue representation 

{xJ,x2, ... .x,} in that system of some number X, where x; = \X\II1I' The number X can be 

represented uniquely in mixed-radix form as X = {ZJ,Z2 ... ,ZJ where 
! 
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(2.6) 

• And 

The Mixed-Radix Conversion (MRC) establishes an association between the un-weighted, 

non-positional RNS and a weighted positional mixed-radix system. All what is required is to 

perform the reverse conversion to obtain the values z, (Omondi and Premkumar 2007), 

The z values are obtained as follows: 

(2.7) 

Example 2.3: 

Suppose we wish to find the number, X, whose residue representation is 

{1, 0,4, O} relative to the moduli set {2, 3, 5, 7} 

From the equations above, 

20 
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x == (1,1,1,6)

And for the conventional form, we translate this as

x = 6x2x3x5 + 1x2x3+ 1x2+ 1

= 189

2.5 Review of Some Division Algorithm in RNS

Most division algorithms in RNS are dependent on either the CRT/MRC starting from the

general division. Some of these are discussed below looking forward to constrain and

advantages regarding their application to RSA.

2.5.1 GENERAL DIVISION IN RNS

Division is one of the main obstacles that discourage the use of RNS, in RNS representation,

division is not a simple operation. The analogy between division in conventional

representation and RNS representation does not hold. In conventional representation, we

represent division as follows:

x
-=q
y

(2.8)

This can be written as

y * q = x (2.9)

Where q, is the quotient

In RNS, the congruence:

y * q = xmod(m) (2.10)

Multiplying both sides by the multiplicative inverse ofy, we can write:

q = x * y-1mod(m) (2.] ])

21
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The equation x = q IS equivalent to q = x x Y -I mod m only if it has an integer value. 
y 

Otherwise, multiplying by the multiplicative inverse ill RNS representation will not be 

equivalent to division in conventional representation 

Example 2.4 

Consider an RNS with m =7, we want to compute the following quotient: 

6 6 
(i) 2: (U) '4 

In the first case (i) 

6 
- = q = 6 x 2-1(mod7) = 3 
2 

This is equivalent to division in conventional representation. 

We notice in part (i), that division in RNS is not equivalent to that in conventional 

representation when the quotient is a non-integer value. Due to this fact, division in RNS is 

usually done by converting the residues to conventional representation, performing the 

division, and then converting back to RNS representation. Tedious and complex conversion 

steps result in undesired overhead. This is one of the main drawbacks of RNS representation. 

6 
- = q = 6 x 4-1(mod7) = 5 
4 

However, in cryptography this could serve as an advantage to adding security to 

cryptosystem. 

2.5.2 OTHER DIVISION ALGORITHMS 

Many algorithms for division in RNS are presented. Some of these iterative algorithms work 

by subtracting denominator from numerator in a major loop, until numerator gets less than 

denominator. Quotient is equal to the number of iterations of this major loop. Some of them 

22 
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t use Newton iteration to compute reciprocal and then compute quotient (Ritz and kaltofen, 

1995; Husien et al., 1998). 

Another common way for division is using the definition of division. In this algorithm, first 

the position of the most significant non-zero bit in the divisor and dividend is determined. 

Then, according to difference between these two positions, divisor is shifted to the left and is 

subtracted from dividend. These actions are repeated in a major loop until the result is smaller 

than divisor. In some methods for dividing X to Y, first the proper 2k is detected such that 

Y2k $){-::;.Y2k+i. In the next iterations, these two margins varied until quotient is obtained 

(Mi Lu, 1992). 

There are other methods in which, instead of dividing two proposed numbers, X and Y, two 

different numbers which have the same ratio and are less than X and Y, are chosen. For doing 

this, some new moduli are introduced, and at last, in a major loop, the division result is 

calculated (Berger, 1991; Chang et al., 2004) 

These algorithms have three major deficiencies. 

1. All of them have an overall loop which increases the complexity and delay of the 

algorithm. 

11. Some of these methods exclude some numbers in the range of acceptable inputs as a 

denominator in division operation. 

Ill. The authors have some operations in the binary or mixed radix system or use a lookup 

Table to perform an RNS division. 

In order to solve problems (i) and (ii) stated above under section (2.5.2), a non-iterative 

division algorithm was proposed by Mansoureh and Mohammad (2012). Another method of 

23 
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2.6 Iterative Division Algorithms 

These algorithms are iterative in nature and the authors are dependent on the MM, CRT and 

MRC. Some of them include; the scaling method and Newton's method 

division algorithm which could be efficient in the implementation of RSA using RNS is the 

scaling method an integer division. 

! 

2.6.1 THE SCALING METHOD 

The first scaling scheme has been proposed by Szabo and Tanaka in 1967. The authors 

proposed a scaler that needed n clock cycles for n-bit moduli set. Although scaled residues 

had errors, and the scheme did not provide correct scaled residues, it was a significant stage 

in the development of RNS-based systems Szabo and Tanaka in 1967. In another major study 

in 1973, Okeefe and Wright (1973) designed a faster and more efficient scaler than the Szabo 

scaler. Again the results were not error-free but their approach provided results closer to the 

correct scaled integers. In 1987 lullien was successful in designing an algorithm that needed 

fewer clock cycles, but provided faulty results lullien 1987. In 1981, Taylor and Huang 

proposed a design based on the MRC. It was the first time a scaler based on the MRC was 

proposed. Until then, all designs were based on CRT or base-extension. The CRT-based 

algorithms generally generated fractional errors due to coarse assumptions, while the latter 

approach was error-free but computationally intensive. One year later, Taylor and Huang 

presented a scaler that used a special moduli set and LUTs. However, their design required n 

clock cycles to generate the scaled residues. In 1984, Polky and Miller proposed a design that 

needed (n+ 1) clock cycles but the scaled residues were closer to the correct results. In other 

words, their design provided more accurate scaled residues at the cost of more clock cycles. 

Five years later, Shenoy and Kumarson proposed two scaling techniques (approximate and 

exact), where residues were scaled by the product of a subset of the moduli set. The 
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approximate technique used a redundant residue to eliminate modulo-I'M) operation, while 

the exact technique used a modified version of CRT. The modified CRT states that never 

exceed the dynamic range more than once (M). 

The scaling error in the approximate technique was bounded. 

Ulman published a modified version of the Szabo scaler in 1993 and since then, the results of 

all scalers have errors less than 1.5. 

Scaling is one of the most important units and a necessary module to avoid overflow in a 

RNS-based system. 

Various scalers for three moduli set (211 - 1; 211; 211 + 1) have been developed and introduced in 

literature. Nowadays with the increasing demand for large dynamic range and parallel 

computing, four-moduli set are more attractive. For the first time, design and implementation 

of a four-moduli set RNS scaler is presented (Ulman and Zurada, 1993). In order to retain 

high performance while decreasing hardware complexity, two main points were considered 

by the authors: 

~ First, the four moduli set (211_ 1; 211 + 1; 22n; 2211 + 1) is selected due to its large 

dynamic range and well-formed moduli set. 

~ Second, the Chinese Remainder Theorem with arithmetic simplifications is used to 

reduce complexity. The proposed scaler is synthesized using Synopsys Design 

Compiler (DC) and the Library for n = (4; 8; 16; 32; 64; 128) for all components and 

for separate modular channels. 

Scaler's input and output are both residues considering the moduli set, and a scaler has 

modular channels as many as number of moduli set. Designing complex operations are 

usually performed using algorithms that are used in reverse conversion such as Chinese 
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Remainder Theorem (CRT), conversion III co-based algorithm, and Chinese Remainder 

Theorems 1 and 2. 

One of the common methods to decrease the high power consumption of ROM matrices in 

ROM-based scaling schemes is to replace them by modular multiplexers. This method, 

however, increases the cost of implementation drastically, which would be even worse for 

large moduli sets. Hardware cost of all ROM based scalars increase by increasing the number 

of moduli. Hence, the authors can be manipulated with full adders for less area requirement 

(Ulman and Zurada, 1993) 

26 

In recent years, RNS became very popular in extended use of special-purpose processors, and 

increase in hardware capability of complex operations. 

Optimizing performance of complex operations plays a significant role in the RNS-based 

system performance. A new efficient and low-cost scaler for a 6n bits dynamic range for four 

moduli set 

(Z" -- 1; 2n + 1; 22n; 22n + 1), which is under review was proposed and presented by 

(Ahangaran et aI., 2014), which is designed based on the CRT algorithm, and is simplified to 

an efficient VLSI architecture. Proposing a scaler for larger dynamic ranges will ultimately 

overcome restrictions of using RNS in applications with large dynamic range requirements. 

However until that is than the non-iterative algorithm will achieved efficient time relative to 

the iterative algorithms. 

2.7 Parity Checking 

Before describing parity-checking technique, we define the interval [0, ~] to be positive 

numbers and the interval [~, M ]to be negative numbers in the RNS, besides; we shall also 
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say that two numbers have the same parity if the authors are both even or both odd. Now, we 

describe parity-checking technique in the following. 

Assume that the moduli m1.mz mnare all odd numbers, and X = (x1.xz xn) and 

Y = (Y1YZ Yn) . There are two numbers in the RNS, we have the following theorems. 

Theorem 1 

Let X and Y have the same parities, Z = X - Y then, we haveX ~ Y. If and only if Z is an 

even number. We also have X < Y if and only if Z is an odd number. 

Theorem 2 

Let X and Y have different parities and Z = X - Y . Then, we haveX ~ Y ifand only if Z is 

an odd number. We also have X < Y if and only if Z is an even number. Let the value of X be 

the largest positive number. We can check the sign of Yby applying Theorems 1 and 2. Now, 

an example from (Yang et al., 2004) is given below. 

Assume that the moduli of the RNS are m1 = 3, mz = 5, m3 = 7 Weget M = 105 .The 
positive and negative numbers fall into the interval [0,52] and [53, 104], respectively. 

Solution 

Let X= (1, 2, 3) = 52 and Y = (0, 4,5) = 1-511105 = 1541105. We then say X and Y have the same 

parities. We compute Z = X - Y = (1,3,5) = 11031105. Then, we have< Yfrom Theorem 1. To 

check the number whether it is odd or even, the parity checking stores all the residues of 

those numbers modulo 2 by a Table. We know that a number is even or odd if its residues 

modulo 2 equal 0 or 1. Thus, we can easily get the parity of the number by looking up the 

Table. Furthermore, using Theorems 1 and 2, the parity checking technique makes the 

number comparison and the sign detection in RNS simple and efficient (Yang et aI., 2004). 
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2.8 Review of Some Division Algorithm Dependent on the Parity Checking Technique

These algorithms include: Hiasat and Zohdy (1997), Yang et aI., (2004) and Chang and Yang

(2013).

2.8.1 HIASA T AND ABDEL-ATY -ZOHDY'S DIVISION ALGORITHM IN RNS

(1997)

Hiasat and Abdel-Aty-Zohdy's (1997) were the first to use the parity checking technique to

improve on division algorithms in RNS without using the CRT/MRC. In using parity

checking technique, we can speed-up sign detection in RNS. However their algorithm cannot

take negative dividend and divisor and the temporal quotient in their algorithm is smaller.

This algorithm only uses addition, subtraction, and multiplication operations to solve division

problem in the RNS. Furthermore, the algorithm performs the RNS division efficiently

because it avoids the sign determination and the overflow detection. The following is an

outline of their algorithm.

Step 1: Set the quotient Q = O.

Step 2: Compute j = h(X) and k = heY), where j and k are the highest power of 2 in X and Y,

respectively.

Step 3: If j> k, then we compute Q = Q + 2j-k-l, X = X - 2j-k-l *Y, Q = Q, X =X, and

return to Step 2.

Step 4: Ifj = k, then compute X_ = X - Yandj_ = h(X~. Ifj_ <j then Q = Q + 1 .

Otherwise, Q is unaltered. End procedure.

Step 5: Ifj< k, then Q is unaltered. End procedure.

28
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2.8.2 THE DIVISION ALGORITHM IN RNS BY YANG ET AL., (2004) USING THE 

PARITY CHECKING TECHNIQUE 

Yang et al., (2004) proposed an algorithm using the parity checking technique to improve 

upon Hiasat and Abdel-Aty-Zohdy's (1997) division algorithm. Their algorithm, can speed­ 

up sign detection in RNS and the dividend and divisor can be negative and the temporal 

quotient is also larger than that in Hiasat and Abdel-Aty-Zohdy's division algorithm. 

Approximating the actual quotient by adding the temporal quotients in their algorithm is two 

times faster than that in Hiasat and Abdel-Aty-Zohdy's algorithm. According to their 

simulation results, the authors concluded that their algorithm indeed can reduce the number 

of execution rounds by 50% relative to Hiasat and Zohdy. The authors assume that, if we 

want to compute Q = [~] in the RNS, where X, Y and Q are integers. h (I) is defined to be the 

highest power of 2 in the variable (I), where (I) is an integer. The authors illustrated their 

algorithm with an example. The steps of their algorithm are as follows; 

Example, 

We have htj l.O]') = 3 and h(I-7!) = 2. Besides, we define S(X)to be the sign of variable 

(X). IfS(X)= S(Y), it denotes that X and Yare with the same sign. The algorithm is describe 

as follows 

Steps 

1. Set the quotient Q = 0 and C = 0 

2. Compute j = heX) and k = hey) where j and k are the highest power of 2 in X and 

Y respectively. Then, check the signs of X and Y by parity checking. According to 

the relationships between j and k, we perform one of the following three steps. 

3. If j > k we perform the following operations. Set C = 1 if SeX) = S(Y) Then we 

compute Q = Q + 2j-k, X = X - 2j-k * Y, Q = Q, X = X otherwise we compute 

Q - '2J-k,X'= X + 2j-k * Y, Q = Q and X = X Go step 2 

29 
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4. If j = k, we perform the following operations. If SeX) = S(Y) and C = 1 then we 

compute X = X - Y and j = h(X). If] < } then we compute Q = Q + 1. Otherwise, 

Q is unchanged. End procedure 

IfS(X) *- S(Y)and c = 1, then we compute X'= X + Yand check the sign of X by 

parity checking. If)C > 0 then we computeQ = Q - 1. Otherwise, we 

Set Q = Q - 2. End procedure. If SeX) *- S(Y) and C = 0, then we set Q = -1. End 

procedure. 

5. If j< k, we perform the following operations. If c= 0, then Q is unchanged. End 

procedure. 

2.8.3 CHANG AND YANG DIVISION ALGORITHM (2013) 

After observing Yang et al. (2004) algorithm, Chang and Yang found out that h(I) and 

the parity checking technique is performed twice in each round of that algorithm. So the 

authors realized that if the authors decrease the numbers of these two computations in 

each round, the execution time can further be reduced. So, Chang and Yang then 

proposed a bisection method in RNS to accomplish this purpose. Their algorithm steps 

are shown below: 

Steps; 

Inputs X, Yare expressed in RNS 

Output, Yare expressed in RNS 

1. Compute} = h(X)and k = h(Y).Where (i and k) are the highest powers of two in 

X and Y respectfully. 

2. If} = k, then use the parity checking technique to compare X and Y. if X > Y 

then set Q = 1. Otherwise set Q = O.End program. If} < k, then set Q = O. End 

the program. 

30 

www.udsspace.uds.edu.gh 

 

 

 

 



3. Compute Qu = 2j-k+1 and QL = 2j-k-1 

4. Compute Q = Qu + RNSQL. If Q is odd, then set Q = Q + RNS(l,l, .... l). 
! 

5. Compute Q = Q and Z = X - RNSQ x RNSY. Then use the parity checking 
2 

technique to determine the sign and magnitude of Z. 

6. If Z > Y > 0, then set QL = Q. Go to step 3. 

7. If Z < 0, then set Qu = Q.Go to step 3. 

8. If Y > Z > 0, then Q is the quotient. End the program. 

Example 2.5 

The actual quotient Q = [23538] = 7 in the binary form 7 is represented as 

(111)z = 22 + 21 + 2°. And note that Q was in the interval Qu = 2j+1-k and QL = 2j-k-1. 

Illustration 

[
X] RNS Take the moduli set to be {7,9,11} calculating Q = y where X = 258 ~ (6,6,5) and Y = 

RNS 
33 ~ (5,6,0)computingj = heX) = 8 and k = hey) = 5. Qu = 2j-k +landQL = 2j-k-1 = 
28-5+1 = 24 = 16 andQL = 28-5-1 = 22 = 4 

Hence it is true that Q lies between 16 and 4 which is 7 therefore Q = [23538] = 7. 

31 

2.9 Review of Some Algorithms of RNS Implementation of RSA 

This section reviewed literature on some RNS division algorithm that has been applied to 

RSA. Specifically Imbert and Bajard (2002) and Hung and Parhami (1994) . 

• 
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2.9.1 RSA IMPLEMENTATIONS BY LAURENT IMBERT AND JEAN-CLAUDE 

BAJARD2002 

Laurent Imbert and Jean-Claude Bajard (2002) proposed an efficient hardware 

implementation of RSA based on the Residue Number System (RNS), which allows for fast 

parallel arithmetic. The authors proposed RNS versions of Montgomery multiplication and 

exponentiation algorithms and the authors illustrated the efficiency of their approach with 

two implementations of RSA. The authors compared their work to previously proposed 

methods and their solution requires less elementary operations and is very promising. The 

authors presented their work in two ways. 

~ RSA without conversions 

~ RSA with conversions. 

The authors concluded their work by the analyses that the first solution uses an embedded 

RNS arithmetic, which maps the values in RNS before the computations and convert them 

back in binary at the end. But the real novelty is a full RNS cryptosystem. The message is 

never considered as a binary number but rather in RNS all along the protocol. Thus no 

conversion is needed. This approach requires both parties to agree on a set of RNS 

parameters beforehand. The authors compared their work to previously proposed algorithms 

and their algorithm requires less elementary operations and uses only integer arithmetic 

Besides the conditions on their parameters are easier to satisfy than the ones the authors 

compared with in other methods. However, their algorithm is still having long delay time 

once it has an overall loop because the type of division method the authors adopted is the 

MM. 
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• 
2.10 Chin Yu Hug and Behrooz Parhami (1994) Fast RNS Application to RSA 

Cryptography 

Chin and Behrooz in 1994 considered the problem of division by fixed divisors in RNS. 

Ordinary integer division is performed; i.e., given the dividend X and the divisor D, we wish 

to find the quotient Q = (X/D) and the remainder (R = X - QD). Their idea is to perform 

some operations based on the divisor to improve the on-line speed of divisions. According to 

them several algorithms for general residue division have been proposed in the past under 

the assumption that D is fixed and X is uniformly distributed, the fastest of them has a worst­ 

case time complexity of O(log, X) = O(nb), where n is the number of moduli and b is the 

number of bits in the largest modulus. In their paper the authors presented two division 

algorithms for fixed divisors. 

Encryption and decryption in RSA cryptography are modular exponentiation operations of 

the form Z = XY mod D. For encryption, X is the plain text, Y and D together comprise the 

encryption key, and Z is the ciphered text. For decryption, X is the ciphered text, Y and D the 

decryption key, and Z is the deciphered text. All operands, X, Y, D are potentially very large 

integers, perhaps 1000 bits long. 

•• 

The authors compared their algorithm with existing ones in terms of computation time for 

each modulo D multiplication fixed-divisor algorithms is apply to the modulo D reduction 

step that follows a regular multiplication. The dynamic range of RNS thus needs to be at least 

the square of the modulus (D). We almost always have to compare actual or estimated 

encryption rates of the designs. The authors compared their proposed method with two 

classical sequential methods: one uses a binary version of multiplying by divisor reciprocal 

for modular reduction and the other uses a residue table for modular reduction. With a b-bit 

processor, a modular multiplication takes 9(m/b) 2 and 4(m/b)* steps, respectively. However 

I 
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l. Generate a pair oflarge, random prime's p and q. 

! 
the problem with their algorithm is the division method the authors adopted. The division 

involved is iterative and does not support all integers as divisors within the dynamic range. 

2.11 The Mathematics of the RSA Public-Key Cryptosystem 

RSA public-key cryptosystem was invented at MIT in 1977 by Ronald Rivest, Adi Shamir 

and Leonard Adleman. The public key in this cryptosystem consists of the value n, which is 

called the modulus, and the value e, which is called the public exponent. The private key 

consists of the modulus n and the value d, which is called the private exponent. 

An RSA public-key / private-key pair can be generated by the following steps: 

c = ENCRYPT (m) = rn'imod n. 

2. Compute the modulus n as n = p.q. 

3. Select an odd public exponent e between 3 and n-l that is relatively prime to p-l and q-I. 

4. Compute the private exponent d from e, p and q. 

5. Output (n, e) as the public key and (n, d) as the private key. 

The encryption operation in the RSA cryptosystem is exponentiation to the eth power modulo 

n: 

The input m is the message; the output c is the resulting cipher text. In practice, the message 

m is typically some kind of appropriately formatted key to be shared. The actual message is 

encrypted with the shared key using a traditional encryption algorithm. This construction 

makes it possible to encrypt a message of any length with only one exponentiation. 

The decryption operation is exponentiation to the dth power modulo 11: 

34 

www.udsspace.uds.edu.gh 

 

 

 

 



The fact that the encryption and decryption operations are inverses and operate on the same 

set of inputs also means that the operations can be employed in reverse order to obtain a 

digital signature scheme following Diffie and Hellman's (1976) model. A message can be 

digitally signed by applying the decryption operation to it, i.e., by the exponent to the dth 

power: 

m = DECRYPT (c) = cdmod (n) 

The relationship between the exponents' e and d ensures that encryption and decryption are 

inverses, so that the decryption operation recovers the original message m. Without the 

private key (n, d) (or equivalently the prime factors p and q), it is difficult (by conjecture) to 

recover m from c. Consequently, nand e can be made public without compromising security, 

which is the basic requirement for a public-key cryptosystem. 

In practice, the plaintext m is generally some function of the message, for instance a 

formatted one-way hash of the message. This makes it possible to sign a message of any 

length with only one exponentiation. 

s = SIGN (m) = rrr'mod (n). 

The digital signature can then be verified by applying the encryption operation to it and 

comparing the result with and/or recovering the message: 

m = VERIFY (s) = s'rnodn 
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Table 2.2 The Encryption And Decryptions of Values of M From 0 To 9 and the 

Resulting Cipher Texts. 

Key Pair Key Pair Generation 

Primes: p = 5, q = 11 

Modulus: n = p.q = 55 

Public key: n = 55, e = 3 Public exponent: e = 3 

Private key: n = 55, d = 7 Private exponent: d = 3-1 
mod 20 = 7 

Message Encryption c = rrr' mod n Decryption m = c 7 mod n 

m m2 modn rrr' mod n c2 mod n c3 mod n c6 mod n c7 mod n 

0 0 0 0 0 0 0 

1 1 1 1 1 1 1 

2 4 8 9 17 14 2 
..., 9 27 14 48 49 3 .) 

4 16 9 26 14 31 4 

5 25 15 5 20 15 5 

6 36 51 16 46 26 6 

7 49 13 4 52 9 7 

Source; Burt Kaliski RSA Laboratories 
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From the table 2.2, encryption of values m from 0 to 9 as well as decryptions of the resulting 

cipher texts, the exponentiation is optimized. To compute rrr' mod en), one first computes m2 

mod n with one modular squaring, then rrr' mod n with a modular multiplication by m. The 

decryption is done similarly: One first computes c2 mod n, then c3 mod n, c6 mod n, and c7 

mod n by alternating modular squaring and modular multiplication. 
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CHAPTER THREE 

METHODOLOGY 

3.1 The Algorithm 

We proposed an algorithm based on Mansoureh and Mohammed (2012) Pure RNS Division 

Algorithm. Two different moduli sets were considered that is{2n - 2, 2n - 1, 2n + 1} for 

n = 2 (Mansoureh and Mohammed, 2012), we had (2, 3, 5) and for the second moduli­ 

set] 2n - 1, 2n + 1, 2n + 3} for n = 3 (Yang et al., 2004) we had (7, 9, 11). The dynamic 

ranges are 29 and 692 respectively. We then did our analysis on integer quotient and non­ 

integer quotient for the range of value for within 29 and also for 692. In both cases we run 

several examples for non-integer and integer quotient regarding improper fraction. Finally, 

we compared our algorithm to other state of the art algorithms to draw conclusions. 

38 

3.2 The Pure RNS Division Algorithm by Mansoureh and Mohammad (2012) 

Input: X = (Xl' X2 XL)' Y = (Yv Y2 yd 

Input m1 m2 mL the moduli set 

Output: K=X/Y and R=(X mod Y) in RNS, Condition; all moduli m1,m2 mL are 

relatively prime numbers but 2. 

Steps 

1) Calculate y-I= multiplicative inverse of Y 

2) Calculate R = X mod Y 

3) Calculate K= (X - R). y-I 

4) If any, Yi = 0, then set k, = knmodmi in whichlc; *- O. 

5) End program. 

s. 
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(D(n) = (p - l)(q - 1) (3.1) 

The pure RNS division algorithm by Mansoureh and Mohammad (2012) is similar to 

Chang and Yang (2013) algorithm in terms of generality. Again it's also a non-iterative 

algorithm thus; it is faster than all other division though it also uses the CRT/MRC. It has 

drastically reduced time and as such is a good algorithm that can be applied to the RSA 

cryptosystem without restrictions. 

However there are other division algorithms which did not depend on the traditional 

CRT/MRC. These methods use the parity checking technique, the highest powers of 

two's and the bisection method to perform division in RNS. 

3.3 The RSA Cryptosystem 

This cryptosystem uses computations in a:n where n is the product of two distinct odd primes 

p and q. for such an integer n, note that 

Let n = pq where p and q are primes. Let'P = a:n and define 

x = {(n, p, q, a, b): ab == l(mod)¢(n)} (3.2) 

ForK = (n, p, q, a and b) 

ek(x) = xbmod(n) (3.3) 

(3.4) 

x,y -E a:n 

The values nand b compose the public key, and the values (p, q and a) form the private key. 

3.4 Construction of the Algorithm 

From Equation (3.3) 
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(3.5) 

We let M = (~) where M is the quotient, X is the numerator and Y is the denominator. 

Thus modified as: 

From Equation (3.4) 

Let Q = (%) where Q is the cipher text, D is the dividend and C is the divisor 

Thus becomes 

dk (%) = [%r modCn) (3.6) 

This algorithm maintained the number of keys, both public keys and private keys. 

Thus: (n, b) composed the public keys and (p, q, a) forms the secret keys. By considering the 

Moduli-sets; [Z" - 2, 2n - 1, 2n + 1}. for n=2; (2, 3, 5)and {2n - 1, 2n + 1, 2n + 3}, for 

n=3; (7, 9, 11), we use the following assumptions; 

Assumptions 

The following are assumptions to our proposed algorithm 

~ X>y>O 

~ No denominators or divisors should be a multiple of the chosen moduli set. Else the 

algorithm will break down due to a zero multiplicative inverse in one of the modulus 

~ After going through the division phase of the algorithm, when the CRT display the 

decimal equivalent of the RNS say (k) and its greater than (n),then the expected plain 

text would be (k)n. that is (kjn." mod(n) = (k)bmod(n) 
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ek(M) = Mbmod(n) In the usual RSA encryption 

The Encryption 

Let M = Q = (~) where Q is the quotient, X is the dividend and Y is the divisor 

Steps 

1) Input {mi, mZm3} the moduli set, 

2) Input X and Y express in RNS 

3) Input (n and b) the public keys 

4) ek [~] = [~r mod(n) 

5) Calculate y-I= multiplicative inverse ofY 

6) Calculate R = X mod Y 

! 
Calculate Q= (X - R). v' 7) 

8) If any, Yi = 0, then set Qi = Qnmodmi, Qn"* 0. 

9) Using CRT convert U, k, lhNS to Q i.e. the decimal value 

10) Hence ek(Q) = Qbmod(n) = G 

11) ELSE ek U, k, l) = U, k, l)bmod(n) 

12) End the program. 

Note the Transformation(~) = U, k, l) RNS = Q. Is based on Mansoureh and Mohammed 

(2012), and Q output will appears in RNS representation. 
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End the program. 

THE DECRYPTION 

dk(G); G" mod(n) = Q = M = ~ The cipher text in the usual RSA decryption y 

Steps 

1) Input {ml1 m2m3} the moduli set, 

2) Input (t, f, h )RNS 

3) Input (p, q and a) the secret keys 

4) Using the CRT convert «.t, h) to G the decimal value. 

5) ddG]amod(n) = Q. ELSE 

6) ddt,f,h]a = U,k,l) = M = ~ 
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Table 3.1: Sample of examples for the moduli set (2, 3,5) for values of X and Y ranging 

between (0-29) 

SIN Integer Quotient Non-Integer Proper Fraction 

Quotient 

1 21/7 3/2 5110 

2 25119 6/4 3/9 

3 28/7 29/11 7/28 

4 24113 29/28 2/24 

5 22111 18/17 17/18 

6 20/23 25/23 8/17 

7 25/5 27/8 12114 

8 24/8 13/4 19/20 

9 18/7 16/5 28/29 

10 12117 9/7 15116 
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SIN Integer Quotient Non-Integer Proper Fraction 

Quotient 

1 692/2 69113 9/316 

2 595/5 542/16 15/366 

..., 550/11 597/12 28/448 .) 

4 572/13 578117 99/129 

5 352116 253/18 299/389 

6 616/8 316/9 16/352 

7 354/6 366115 11/550 

8 258/33 448/28 13/570 

9 110/22 129/99 5/595 

10 387/43 389/299 2/692 

Table 3.2: Sample of examples for the moduli set (7, 9, 11) for values of X and Y ranging 

between (0-692) 

Illustrative Example 

The following example illustrates our algorithm. [21578] 

Keys Selection 

This cryptosystem uses computations in In .Let n = p. q where n is the product of two 

distinct odd primes p and q. for this purposes letp = 11 and q = 17 implies n = 187 

calculating (tlCn) = (11 - 1) (17 - 1) = 160. let our moduli set be{7,9,ll} 

x = {(n,p,q,a,b):ab == l(mod)¢Cn)} Calculate ab == l(mod)¢Cn) let b = 7 using the 

extended Euclidean algorithm7 x 7-1 == 1 mod(160) then a = 23. 
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For X = (n, p, q, a, and b) = (187,11,17,7, and 23 ) respectively 

Example 

[S78]fi d di . d an i . 17 ixe rvisor an an integer quotient. 

The Encryption Algorithm 

Let X = 578, Y = 17 

Steps 

1) Input {7,9,11} the moduli set 

RNS RNS 
2) Input X = 578 --t (4,2,6)and Y = 17 --t (3,8,6) 

3) Input (n and b) the public keys n = 187, b =7 

4) ek [S:78] = [S:7Sf mod(lS7) 

5) Calculate y-I= multiplicative inverse of Y Else If any, Yi = 0, then set Qi = 

Qnmodmi in whichQn *" a i.e 17-1 W.r.t (7,9, 11)=(5,8,2) 

RNS 
6) Calculate R = X mod y=(578)17=0 --t (0,0,0) 

7) Calculate Q= (X - R). y-1=[(4,2,6) - (0,0,0)]. [(5,8,2)] = (6,7,1) 

8) Using CRT convert (6,7,lhNs to (34)i.e. the decimal value 

9) Hence ek(34) = 347mod(187) = 34 

10)ELSE ek(6,7,1) = (6,7,1)17mod(187) 

RNS 
11) Hence 34 --t (6,7,1,) is send as the encrypted massage where X and Y or Q is the 

plain text. 

12) End the program. 
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The Decryption Algorithm 
s 

Steps 

Let G = (%) where G is the cipher text, D is the dividend and C is the divisor. 

1) Input {7,9,11} the moduli set, 

2) Input (G)RNS= (6,7,1) 

3) Using the CRT convert (G)RNS= (6,7,1) to decimal 34 

4) Input (p, q and a) = 23 the secret key 

5) dk[6,7,1]23mod(187) = dk[34]23mod(187) = (6,7,1) 

6) Using (CRT)transform (6,7,1)RNs to 34 

7) Hence Q = 34 is decrypted 

8) End the program. 
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CHAPTER FOUR

DISCUSSION AND ANALYSIS OF RESULTS

4.1 Performance Analysis of the Proposed Algorithm

The proposed algorithms discussed in chapter three were simulated and analyzed using C++

and results are summarized below.

4.2 Security Analysis

Security analysis was performed to test the effectiveness of the proposed algorithm on RSA

attacks (key space, and key sensitivity analysis). Experimental results showed that the

proposed algorithm is highly secured against such attacks.,

4.2.1 KEY SPACE ANALYSIS

The brute force attack is computationally infeasible for cryptosystems with sufficiently large

key space. The proposed algorithm is a public key cryptosystem which has

J{ = en, p, q, a, and b ). The proposed algorithm achieves an efficient coding process when

the key space K is large, note; (n) depends on (p) and (q). However, we adopt (1024) bits as

our key space per the Digital encryption standards (DES). This gives us the combination of

choices. k = 2n

21024 = 1.79769313486231590772930519078ge + 308.

Diffie and Hellman (1976) outlined a "brute force" attack on DES. Brute force attack means

trying as many as 256 possible keys before you can decrypt the cipher-text into a sensible

plaintext message. The authors proposed a special purpose "parallel computer using one

million chips to try one million keys each" per second. Our key space is 21024 > 256,

It is obvious here that our key space is greater than that of the brute -force attack key space.
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4.2.2 KEY SENSITIVITY ANALYSIS 

The greatest sensitivity analysis in our algorithm is explained in example 2.3 (a, and b) 

respectively. In (i) division in RNS is equivalent to division in conventional representation. 

Where as in part (ii), we notice that division in RNS is not equivalent to that in conventional 

representation when the quotient is a non-integer value. This can enhance the sensitivity of 

the key because ~ = 3 both in RNS and in conventional but ~ = 5 in RNS but = 1.5 in 
2 4 

conventional representation. That is with respect to mod (7). 

A good cryptosystem should be sensitive to secret keys. A slight Change in the key value 

should lead to a significant Change in either a plain text or a cipher text. The addition of the 

used of the moduli set also help in security of the algorithm. There must be moduli set to be 

agreed on by both parties. The parameters (p, q, n, a, and b) in our examples resulted in 

significant difference with the actual answers during our experiment. The parameters for 

J( = (n,p,q, a, and b) = (35,5,7,17,and 17) respectively which we used in illustrating our 

example as shown in table 4.1. The choice of the moduli set alone could be a very strong 

security feature. This is because the choice may vary from party to party. Again the moduli 

set we used here has a dynamic range of M-1 representation that has to do with the repetition 

of RNS representation outside the dynamic range. 

Besides, negatives numbers are acceptable. Example, the cipher text (0, 4, 5) could be 

(-51)105 or (54)105 and can still has another beyond the dynamic range of 105. 
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Table 4.1 Sensitivity Analysis of Integer and Non-Integer Quotient 
! 

Example Type of Plaintext In Plaintext in RNS Moduli Cipher text 

quotient conventional set 

division 

6/4 Non integer 1.5 RNS (7,9,11) RNS 
19 ~ (5,1,8) 24 ~ (3,6,2) 

6/2 Integer 
,., RNS (7,9,11) RNS -' 3 ~ (3,3,3) 33 ~ (5,6,0) 

258/33 Non integer 7.8181 RNS (7,9,11) RNS 
11 ~ (4,2,0) 16 ~ (2,7,5) 

4.3 Time Complexity Analysis 

Algorithm efficiency is concerned with utilization of two important resources time and space, 

time complexity refers to the time taken by an algorithm to complete and produce a result. An 

improvement in time complexity increases the speed with which the algorithm proceeds to 

completion. Space complexity refers to the amount of space taken by an algorithm to produce 

a result. An improvement in space complexity reduces the amount of space (memory, disk 

space, etc.) taken by an algorithm (Steve and Stephen, 2004) 

We analyzed the time taken for our proposed algorithm to produced results or an output. The 

results reveal that, encryption and decryption time's increases depending on the method of 

RNS division involved, whether iterative or non-iterative. We realized that when encrypting 

with a non-integer quotient encryption time increases as the divisor and dividend becomes 

larger, however larger non-integer quotient still has less executing time relative to smaller 

integer during encryption. However, it was observed that, lesser divisor and lesser dividend in 

non-integer quotient would rather have larger executing time compared to larger dividend and 

divisor. That of integer quotient will still be higher but lesser than smaller values in integer 

decryption. 

49 

www.udsspace.uds.edu.gh 

 

 

 

 



! 

4.4 Executing Time Analysis for the Moduli-set (2,3, 5) 

The freedom of number representation in RNS is limited by the Dynamic range, which is 

dependent on the moduli set. It is observed that when the moduli set is chosen such that it has 

a small dynamic range, the algorithm would be limited to just a few numbers qualified for 

encryption and thus, attackers can easily break the algorithm. The encryption time for these 

moduli set is higher than the decryption time. 

The average time to do a complete encryption and decryption with respect to an integer 

quotient is 16822.3micro seconds, which is approximately 17seconds, and that for a non­ 

integer quotient is 15228.1micro seconds approximately 15seconds. Tables 4.2 and 4.3 

illustrate these. 

Table 4.2: Time Analysis for Integer Quotient in Microseconds. Moduli set (2,3 5) 

SIN Example Encryption Decryption Average 

Time Time Time 

1 21/7 16642 22865 19753.5 

2 14/7 21011 16128 18569.5 

3 28/7 14852 13905 14378.5 

4 26113 21308 13725 17516.5 

5 22/11 13098 14689 13893.5 

Total Average 16822.3 
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Table 4.3: Time Analysis for Non-Integer Quotient. Moduli set (2, 35) 

SIN Example Encryption Decryption Total Time 

Time Time 

1 25/13 19102 15110 17106 

2 29111 16724 13315 15019.5 

,., 
29117 15847 15221 15534 .) 

4 2517 13659 15675 14667 

5 1917 14313 13315 13814 

Total Average 15228.1 
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4.5 Executing Time Analysis for the Moduli-set (7, 9, 11) 

These moduli-set used larger dynamic range, which gives room for larger domain for values 

of X and Y. the average time for integer quotient in this scheme isl6822.3microseconds 

approximately 17seconds and that of non-integer is 15228.1 microseconds approximately 

15sec. as shown in Tables 4.4 and 4.5 respectively. Table 4.6 did the comparison between the 

average times for the two different moduli sets, and it was observed that The authors both 

have almost the same average time, we compared our algorithm to some state of the art 

algorithms, and it revealed that our algorithm has the best average time for both integer and 

non-integer quotient with respect to the two different moduli sets used, as shown in Table 

4.11 showed this whiles Tables 4.7, 4.8, 4.9 and 4.10 showed the average time for the state of 

the art algorithm with respect to the two different moduli set. 
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Table 4.4: Time Analysis for Integer Quotient. Moduli set (7, 9, 11) 
! 

SIN Integer Encryption Decryption Average 

Quotient Time Time Time 

1 692/2 22900 20240 21570 

2 595/5 16817 17042 16929.5 

,., 572/13 18894 16409 17651.5 _, 

4 352/16 19641 19334 19487.5 

5 616/8 17028 21025 19026.5 

Total Average 18933 
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Table 4.5: Time Analysis for Non-Integer Quotient. Moduli set (7,9,11) 

SIN Non-Integer Encryption Decryption A verage Time 

Quotient Time Time 

1 389/299 19773 22615 21194 

2 316/15 13442 20854 17148 

,., 
316/19 18430 20508 19469 _, 

4 448/38 13682 29409 21545.5 

5 129/100 22902 13391 18146.5 

Total Average 19500.6 
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Table 4.6: Average Time Complexity for moduli-sets (2, 3, 5) and (7, 9, 11) in 

microseconds 

Type of Average time Average time 

quotient (7,9,11) (2,3,5) 

Non integer 19500.6 15228.1 

Integer 18933.0 16822.3 

Table 4.7 Average Time Complexity for Chin, Y. H. and Behrooz, P. (1994) for the 

Moduli Set (2,3, 5) Integer Quotient 

SIN Example Encryption Decryption Average 

Time Time Time 

1 2117 21311 19926 20618.5 

2 1417 19265 18453 18859.0 

,.., 2817 18564 21146 19855.0 -' 
4 26/13 22143 20215 21179.0 

5 22111 17231 16432 16831.5 

Total Average 19468.6 
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SIN Example Encryption Decryption Average 
Time Time Time 

1 25113 23451 19867 21659.0 

2 29111 24732 21020 22876.0 

,., 
19/7 22314 19981 21147.5 .) 

4 26/17 19556 18923 19239.5 

5 23111 18312 20013 19162.5 

Total Average 20816.9 

Table 4.8: Average Time Complexity for Chin, Y. H. and Behrooz, P. (1994) for the 
! 

Moduli Set (2, 3, 5) Non-Integer Quotient 
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Table 4.9: Average Time Complexity for Chin, Y. H. and Behrooz, P. (1994) for the 

Moduli Set (7,9, 11) Non-Integer Quotient 

SIN Non-Integer Encryption Decryption Average 
Quotient Time Time Time 

1 389/2 28359 22615 25487.0 

2 316/3 26527 21853 24190.0 

3 316/6 21563 20532 21047.5 

4 448/5 28479 24091 26285.0 

5 129/4 22711 23351 23031.0 

Total Average 24008.1 

www.udsspace.uds.edu.gh 

 

 

 

 



---------------- .....•••• 

SIN Integer Encryption Decryption Average 

Quotient Time Time Time 

1 692/2 23659 21242 22450.5 

2 595/5 26689 22411 24550.0 

3 572/4 25984 23409 24696.5 

4 684/6 26297 20963 23627.5 

5 616/8 25795 21095 23445.0 

Total Average 23753.9 

Table 4.10: Average Time Complexity for Chin, Y. H. and Behrooz, P. (1994) for the 

Moduli Set (7, 9, 11) Integer Quotient 

Table 4.11: Comparison of our average times to some state of the art Algorithm in 

microseconds 

55 

Type of Algorithm Average Time With Respect to Moduli 

Set 

(2,3,5) (7,9,11 ) 

Our Algorithm 

Non-Integer Quotient 15228.1 19500.6 

Integer Quotient 16822.3 18933.0 

Chin, Y. H. and Behrooz, P. (1994) (2,3,5) (7,9,11) 

Non-Integer Quotient 20816.9 24008.1 

Integer Quotient 19468.6 23753.9 
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4.6 Error Analysis of Our Proposed Algorithm 

We did the error analysis on our proposed algorithm in terms of the average executing time. 

This was performed on the different moduli set for (2, 3, 5) and (7, 9, 11). Experimental 

results revealed that, the mean, standard deviation and standard error are very minimal. Table 

4.12 shows these statistics. We assume a significant level of 0.05. 

The confidence interval of the two different moduli sets are shown in table 4.13. 

In Table 4.14 we illustrated the percentage difference between our proposed algorithm and 

that of the state of the art we did the comparison with. The results showed that, our proposed 

algorithm is 7.29%, 15.51 %,11.29% and 1 0.36% better than that of the state of the art we did 

the comparison in terms of the moduli sets and the type of quotient involved. 

Table 4.12: Error Analysis of the Proposed Algorithm 

Descriptive Statistics 

Std. 
N Minimum Maximum Sum Mean Deviation 

Statistic Statistic Statistic Statistic Statistic Std. Error Statistic 

Time Encryption 10 2308 21011 147556 14755.60 1583.749 5008.255 

Time Decryption For 10 1395 22865 141438 14143.80 1662.706 5257.938 

(2,3,5) 

Time Encryption 10 13442 22902 183509 18350.90 1029.528 3255.655 

Time Decryption for 10 13391 29409 200827 20082.70 1346.445 4257.832 

(7,9.11 ) 

Valid N (Listwise) 10 
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Table 4.13: Confidence Interval for the Error in Our proposed Algorithm 
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Moduli Set Confidence Interval 

(2,3,5) Lower bound upper bound 

Encryption 14677.60 14833.60 

Decryption 14063.88 14223.72 

(7,9,11) Lower bound upper bound 

Encryption 18288.01 18413.79 

Decryption 20010.78 20154.62 

Table 4.14: Percentage Difference between the proposed Algorithm and Parhami 

Parhami Proposed Algorithm Percentage Difference 

Quotient (2,3,5) (7,9,11) (2,3,5) (7,9,11) (2,3,5) (7,9,11) 

Delay for 

Integer 19468.6 23753.9 16822.3 18933.0 7.29% 11.29% 

Delay For 

Non-Integer 20816.9 24008.1 15228.1 19500.6 15.51% 10.36% 
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CHAPTER FIVE 

SUMMARY OF FINDING, CONCLUSION AND RECOMMENDATIONS 

5.1 Introduction 

In this chapter, we shall summarize the major features of this work. This work is based on 

construction of a proposed algorithm for RNS implementation of RSA. RNS is used because 

of its benefits of improving parallelization. 

5.2 Summary 

Generally, this thesis presented an efficient RNS division algorithm for RSA implementation 

based on Mansoureh and Mohammed (2012) division algorithm. Two different moduli set 

were used, of which one has a larger dynamic range and the other a smaller. Excellent results 

were obtained in terms of disk space and memory management, time complexity, key space 

and sensitivity analysis. The proposed algorithm can absorb and control the emerging 

problem of growing key length in RSA and it is a general algorithm that can be applied to 

RSA cryptography in RNS such that fractions, decimals, integers can all be encrypted and 

decrypted. The proposed algorithm performed relatively well comparing it to existing state of 

the art algorithms 

5.3 Conclusions 

In this thesis it was identified that Performing division in RNS using the MRC and CRT was 

relatively time consuming compared to performing division in RNS using the parity checking 

technique and the highest powers of two. However some division algorithms are dependent 

on the CRT/MRC but non-iterative. The algorithm by Mansoureh and Mohammed (2012), 

which is non- iterative, is the bases of this algorithm, a comprehensive discussion on the 

proposed algorithm with illustrative examples were presented. We illustrated the RSA 

cryptosystem by showing how keys are generated, the encryption and decryption equation 
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were described and we translated them to the form of division encryption and decryption 

equations. The encryption processes were described through to the encryption algorithm. We 

constructed both the decryption and decryption algorithms and illustrated them with an 

example. Experimental results of our algorithm by comparing the type of quotient, the moduli 

sets, time complexity, key space and sensitivity of the propose algorithm indicates that; 

When using the proposed algorithm; 

);> Choose a larger dynamic range for larger domain 

);> Non-integer quotient is highly secured and sensitive relative to integer quotient, 

and it is having the best time as well. 

);> It was observed that our algorithm is having the best average time for both integer 

and non-integer quotient relative to the state of the art algorithm that we 

compared ours to . 

., The error analysis was performed and we had a negligible error margin to our 

algorithm. 

5.4 Recommendations and Future Work 

This thesis has made some gains. However, development can be looked at in the following 

areas 

.• , 

., The hardware implementation of the proposed system. 

);> Analyzing the performance of the proposed techniques and other division algorithm 

technique. 

>- The moduli set could also be enhanced to increase the dynamic range relative to the 

key space. 

r The proposed algorithm can be tested on other public key cryptosystem like the 

Elgamal. 
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~ With the idea of the proposed algorithm scaling in RNS could also be exploited for 

possible application to RSA 
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• APPENDICES 

APPENDIX A 

The encryption codes Programmed in C++ 

#include <iostream> #include <stdio.h> #include <math.h> #include <time.h>using namespace std; 

/* run this program using the console pauser or add your own getch, system("pause") or input loop 
* I int mdc,mdc1,mdc2,alpha,beta,beta1,alpha1,alpha2,beta2; int modular(int base, unsigned intexp, 
unsigned int mod) { int x = 1; inti; int power = base % mod; for (i = 0; i<sizeof(int) * 8; i++) { 

intleast_sig_bit = Ox00000001 & (exp»i); if (Ieast_sig_bit) x = (x * power) % mod; power = (power * 
power) % mod; } return x;} 

I/chinese Rem Theory 

intmul_inv(int an, intbn) {int bO = bn, t, q; int xO = 0, xl = 1; 

if (bn == 1) return 1; while (an> 1) { q = an Ibn; t = bn, bn = an % bn, an = t;t= xO, xO = xl - q * xO, xl 
• = t; } if (xl < 0) xl += bO; return xl;} intchinese_remainder(int *n, int *an, intlen) 

{int p, i, prod = 1, sum = 0; for (i = 0; i<len; i++) prod *= n[i]; 

for (i = 0; i<len; i++) {p = prod I n[i]; sum += an[i] * mul_inv(p, n[i]) * p;} 

return sum % prod;} I lint m1,m2,m3,q,a,v,s,d,v1,sl,d1,b,n;int main() {clock_t start = clock(); 

int 
a, b, b1, b2, k, k1,k2,q l,q2,q3,q4,q5,q6,x1,x2,x3,x4,x5,x6, y1, y2, y3, y4, y5, y6,q, r,nn,n l,n2, v,s,z,d, v1,sl,d 1, 
m1,m2,m3,temp,temp1,temp2,j,j1,j2,w,e,u,o,ol,o2; 

int ch M,ch1,ch2,ch3, how,now,ga n, fad, va n,sa n,da n,crtt, now1; 

printf("\nlnput moduli set m1: "); scanf("%d",&b); printf("\nlnput moduli set m1 again: "); 
scanf("%d",&k); printf("\nlnput moduli set m2: "); scanf("%d",&b1); 

, 
printf("\nlnput moduli set m2 again: "); scanf("%d",&k1); printf("\nlnput moduli set m3: "); 
scanf("%d",&b2); 

printf("\nlnput moduli set m3 again: "); scanf("%d",&k2); II j=b: j1=b1; j2=b2; 

printf("\nEnter X:"); scanf("%d",&q); printf("\nEnter Y:"]: scanf("%d",&z); printf("\nEnter N:"); 
scanf("%d",&now); printf("\nEnter N:"); scanf("%d",&now1); printf("\nEnter b:"); 
scanf("%d",&how); 

v = q % b; s = q % b1; d = q % b2; a = z % b; sl = z % b1; d1 = z % b2; 

cout« "X expressed in RNS = ("« v «","«S «","« d«")" «endl; 
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• cout« lOy expressed in RNS = ("« a «","«51 «","« d1«")" «endl; 

Ilx mod y 

r=q%z; m1=r%b; m2=r%b1; m3=r%b2; 

cout« "R =:"« r «endl; 

cout« "R expressed in RNS = ("« m1 «","«m2 «","« m3«")" «end I; 

IIX-R 

w=v-rn l: e= s-m2; u=d-ms: nn=w%b; n1=e%b1; n2= u%b2; 

if(b>a) I I fix if not ac-b 

temp=a; a=b : b=temp; x1=1; y1=O; x2=O; y2=1; while(a!=O) {q1=a/b ;a=a%b; 

if(a==O) {I I Last Line,end of the algorithm. rndc=b: alpha=x2; beta=y2 ; break; I I copy the values} 

q2=b/a; b=b%a ; x1=x1-q1 *x2; y1=y1-q1 *y2; x2=x2-q2*x1; y2=y2-q2*y1; if(b==O) {I I Last Line,end of 
the algorithm. 

mdc=a : alpha=x1; beta=y1 ; break; I I copy the values} } 

printf("gcd(a,b) = %d ",mdc); printf("\nalpha=%d ,beta=%d",alpha,beta); 

printf("gcd(a1,b1) = %d ",mdc1); printf("\nalpha1=%d ,beta1=%d",alpha1,beta1); 

cout«endl; 

if (beta<O){beta =k+beta: cout«"beta"«beta«endl;} I /betaz if(b1>sl) I I fix if not a>b 

temp1=sl; sl=b1; b1=temp1; x3=1; y3=O; x4=O; y4=1; while(sl!=O) {q3=sl/b1; sl=sl%b1; 

if(sl==O) { I I Last Line,end of the algorithm. mdc1=b1; alpha1=x4; beta1=y4 ; break; I I copy the 
values} 

q4=b1/s1;b1=b1%sl ;x3=x3-q3 *x4;y3=y3-q3 *y4;x4=x4-q4 *x3;y4=y4-q4 *y3; 

if(b1==O) VI Last Line,end of the algorithm. mdc1=sl ; alpha1=x3; beta1=y3 ; break; II copy the 
values}} /*if (beta1<O){beta1 =k1+beta1;cout«"k1= "«k1«endl;}*1 
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cout«endl; I Iprintf("\nEnter k1:"); scanf("%d",&k1); 

if (beta1<O){beta1 =k1+beta1;cout«"Beta= "«beta1«endl;} Ilbeta3 

if(b2>d1) II fix if not ac-b temp2=d1; d1=b2; b2=temp2; xS=l; yS=O; x6=O; y6=1; 

while(d1!=O) {qS=d1/b2 ;d1=d1%b2 ;if(d1==O) {/I Last Line,end of the algorithm. 

mdc2=b2; alpha2=x6; beta2=y6; break; II copy the values} 

q6=b2/d1;b2=b2%d1 ;xS=xS-qS*x6; yS=yS-qS*y6; x6=x6-q6*xS; y6=y6-q6*yS; 

www.udsspace.uds.edu.gh 

 

 

 

 



• if(b2==0) {I I Last Line,end of the algorithm. 

mdc2=dl; alpha2=xS; beta2=yS; break; II copy the values}} 

printf("gcd(a2,b2) = %d ",mdc2); printf("\nalpha2=%d ,beta2=%d",alpha2,beta2); 

cout«endl; if (beta2<0){beta2 =k2+beta2; cout«"beta2= "«beta2«endl;} 

cout« "yl\-l= : = ("« beta «","«betal «","« beta2«")" «end I; 

o=nn*beta; ol=nl *betal; 02= n2 * beta2; 

j=o%k; jl=ol%kl; j2=02%k2; cout« "(X-R): = ("«nn«","«nl «","« n2«")" «end I; 

cout« "(X-R)*YI\-l: = ("« 0 «","«01 «","« 02«")" «end I; 

cout« "Q=((X-R)*YI\-l): = ("« j «","«jl «","« j2«")" «endl; 

if (l= 0){j=2;} else if (jl==0){jl=2;} else if (j2==0){j2=2;} 

Ilchinese remainder theory; 

chM= k*kl *k2;chl=chM/k;ch2=chM/kl;ch3=chM/k2; 

IIC R T intcrt; int f[3]; f[O]=k; f[l]=kl; f[2]=k2; int t[3]; t[O]=j; t[l]=jl; t[2]=j2;int n[] = { k, kl, k2 }; 

int an[] = { j, jl, j2 };printf("\n Chinese Remainder =%d", chinese_remainder(n, an, 
sizeof(n)/sizeof(n[O]))); crt=chinese_remainder(n, an, sizeof(n)/sizeof(n[O])); Ilcout«crt«endl; if 
(crt> now){ ertt =crt % nowl; eout«" Since CRT is > n expect "«crtt«endl;} printf("\n Y 1\ b mod n 
=%d", modular(crt, how, now)); fad=modular(crt, how, now); Ileout«fad«endl; 

van = modular(crt, how, now) % k;san = modular(ert, how, now) % kl;dan = modular(crt, how, now) 
% k2;cout« " G expressed in RNS = ("« van «","«san «","«dan«")" «end I; 

clock t stop = cloek(); double elapsed (double)(stop start) * 1000.0 I 
CLOCKS_PER_SEC;printf("Time elapsed in ms: %f", elapsed); return O;} 
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APPENDIXB 

The Decryption Codes Programmed in C++ 

#include <stdio.h> #include <iostream> #include <math.h> #include <time.h> using namespace std; 

1* run this program using the console pauser or add your own getch, system("pause") or input loop 
* lint modular(int base, unsigned intexp, unsigned int mod) {int x = l;inti; int power = base % mod; 

for (i = 0; i<sizeof(int) * 8; i++) {intleast_sig_bit = Ox00000001 & (exp»i); if (Ieast_sig_bit) 

x = (x * power) % mod; power = (power * power) % mod; } 

return x;} intmul_inv(int an, intbn){int bO = bn, t, q; int xO = 0, xl = l;if (bn == 1) return 1; 

while (an> 1) {q = an Ibn; t = bn, bn = an % bn, an = t; t = xO, xO = xl - q * xO, xl = t;} 

if (xl < 0) xl += bO; return x1;}intchinese_remainder(int *n, int *an, intlen){int p, i, prod = 1, sum = 0; 

for (i = 0; i<len; i++) prod *= n[i]; for (i = 0; i<len; i++) {p = prod I n[i];sum += an[i] * mul_inv(p, n[i]) * 
p;} return sum % prod;} int mainO { 

clockt start = clockt): int Q,x,y,m1,m2,m3,v,s,d,v1,sl,d1,I,nnn,f1,b,e,t,h,van,dan,san; cout«"input t 
:"; cin» t; cout«"input f :"; cin> f1; cout«"input h :"; cin> h; cout«"lnput moduli set m1: 
";cin»m1; cout«"lnput moduli set m2: ";cin»m2; cout«"lnput moduli set m3: ";cin»m3; 

intcrt; int f[3];f[0]=m1; f[1]=m2; f[2]=m3; int t2[3]; t2[0]=t; t2[1]=f1; t2[2]=h; int n[] = {m1, m2, m3 }; 

int an[]={t,f1,h};printf("%d\nChinese Remainder= :", chinese_remainder(n, an, 
sizeof(n)/sizeof(n[O]))); crt=chinese_remainder(n, an, sizeof(n)/sizeof(n[O])); 

cout«crt«endl; cout« "input n :";cin»nnn; cout«" input a secret keys: " ;cin»b; 

printf("\n V"b mod n =%d ", modular(crt, b, nnn)); 

Q=modular(crt, b, nnn);/ Icout«Q«endl; van = modular(crt, b, nnn) % m1; 

san = modular(crt, b, nnn) % m2; dan = modular(crt, b, nnn) % m3; 

cout« "G expressed in RNS = ("« van «","«san «","«dan«")" «end I; 

clock , t stop = clock(); 

double elapsed = (double)(stop - start) * 1000.0 I CLOCKS_PER_SEC; 

printf("Time elapsed in ms: %f", elapsed);return O;} 
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••...... --------- 

power = (power * power) % mod; }return x;}llchinese Rem Theory 

APPENDIXC 

Codes for Chin, Y. H. and Behrooz, P. (1994) Algorithms 

#include <iostream> #include <stdio.h> #include <rnath.h> #include <time.h> using namespace std; 

1* run this program using the console pauser or add your own getch, system{"pause") or input loop 
* lint mdc,mdcl,mdc2,alpha,beta,betal,alphal,alpha2,beta2;int modular{int base, unsigned intexp, 
unsigned int mod) {int x = 1; inti; int power = base % mod; for (i = 0; i<sizeof{int) * 8; i++) 
{intleast_sig_bit = Ox00000001 & (exp»i); if (Ieast_sig_bit) x = (x * power) % mod; 

intmul_inv{int an, intbn) 

int 
a,al,a2,a3,a4,a11,b,b1,b2,k,k1,k2,q1,q2,q3,q4,qS,q6,x1,x2,x3,x4,xS,x6,y1,y2,y3,y4,yS,y6,r,nn,n1,n2,v 
,s,z,d,v1,sl,d1,M1,M2,M3,m1,m2,m3; 

{int bO = bn, t, q; int xO = 0, xl = 1; if (bn == 1) return 1; while (an> 1) {q = an Ibn; t = bn, bn = an % 
bn, an = t;t = xO, xO = xl - q * xO, xl = t;} 

if (xl < 0) xl += bO; return xl;} intchinese_remainder{int *n, int *an, intlen) {int p, i, prod = 1, sum = 
O;for (i = 0; i<len; i++) prod *= n[i]; for (i = 0; i<len; i++) { 

p = prod I n[i]; sum += an[i] * mul_inv{p, n[i]) * p;} return sum % prod;}int main() {clock_t start = 
clock(); Ilclock_tstartTime = clock(); 

int 
chM,chM1,chM2,ch1,ch2,ch3,how,now,gan,fad,van,san,dan,BigM,Dinv,BZ,beta7,BZ1,BZ2,BZ3,ssl,kk 
l,kk2,KK3,BigY,modf,mods,modd 

int 
q,x,lastx,lastlx, last2x, y, lasty, lastl y, last2y, tem p,tem p1, te mp2, tem p3, tem px, tem px1, te m px2, tempx3, 
bbZ1,bbz1,bbz2,bbz3,aaa;/ /rnodula set 

printf{"\nlnput moduli set ml: "); scanf{"%d",&b); printf{"\nlnput moduli set m1 again: "); 
scanf{"%d",&k); printf{"\nlnput moduli set m2: "); scanf{"%d",&b1); 

printf{"\nlnput moduli set m2 again: "); scanf{"%d",&k1); printf{"\nlnput moduli set m3: "); 
scanf{"%d",&b2);printf{"\nlnput moduli set m3 again: "); scanf{"%d",&k2); 

printf{"\nEnter X:"); scanf{"%d",&fad);printf{"\nEnter Y:"); scanf{"%d",&a);printf{"\nEnter Y 
again:"); scanf{"%d",&a3);printf{"\nEnter Y again:"); scanf{"%d",&sl); 

printf{"\nEnter Y again:"); scanf{"%d",&aaa);printf{"\nEnter n :"); scanf{"%d",&gan);printf{"\nEnter 
b Public Key:"); scanf{"%d",&dan);/ Ifor IIBigM =M and BZ=Z BigM=b*b1 *b2;BZ=BigM%a; 

M1=BigM/k;ml=M1%k;M2=BigM/k1;m2=M2%k1; M3=BigM/k2;m3=M3%k2; now=a-BZ; 

• cout«"BigM = "«BigM«endl; cout«"BZ = "«BZ «end I; //Dinv== 
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-

-

cout« "X expressed in RNS= ("« v «","«5 «","« d«")" «end I;

v = fad % b; 5 = fad % b1; d = fad % b2; all = a % b; 551= a % b1;d1 = a % b2;

cout« "y expressed in RNS= ("« all «","«551 «","« d1«")" «endl;/ /gcdif (b>a) {liwe switch

them temp=a: a=b: b=temp; } Ilbegin function x=O;y=l;lastx=l; lasty=O; while (b!=O) {q= a/b;

temp1= a%b; a=b; b=temp1;temp2=x; x=lastx-q*x; lastx=temp2; temp3=y; y=lasty-q*y;

lasty=temp3; } if (lastx<O ){lastx=lastx+k;}cout« "gcd =:" « a «endl; cout« "x=" «Iastx«endl;

II cout« "v=" «Iasty«endl; int Bk1=-BZ*lastx; kk1=Bk1%k;if (kk1<0){

kk1=kk1+k;} cout« "K1=" « kk1 «endl;bbz1=kk1 *aaa;BZ1=(bbz1+BZ)/k;cout« "Z1=" « BZ1

«endl;/Icout«" a1, b1 "«sl«b1;//SECOND if(b1>sl) II fix if not a>b temp1=sl; sl=b1 ;

b1=temp1 ;

x3=1 ; y3=0;x4=0 ; y4=1;while(sl!=0) {q3=sl/b1 ;sl=sl%b1 ;if(sl==O) { II Last Line,end of the

algorithm. mdc1=b1; alpha1=x4; beta1=y4; break; I I copy the values}

q4=b1/s1;b1=b1%sl ;x3=x3-q3 *x4;y3=y3-q3 *y4;x4=x4-q4 *x3;y4=y4-q4 *y3;

if(b1==0) {II Last Line,end of the algorithm. mdc1=sl ; alpha1=x3; beta1=y3 ; break; II copy the

values}if (beta1<0){beta1 =k1+beta1;cout«"k1= "«k1«endl;}llprintf("gcd(a1,b1) = %d ",mdc1);

r printf("\nalpha1=%d ,beta1=%d",alpha1,beta1); int Bk2=-BZ*beta1;kk2=Bk2%k1;if (kk2<0){

kk2=kk2+k1;}cout« "Kk1=" « kk2 «end I; bbz2=kk2*aaa; BZ2=(bbz2+BZ)/k1;

cout« "Z2=" « BZ2 «end I;

Ilbeta3 if(b2>d1) II fix if not a.-b temp2=d1; d1=b2; b2=temp2;

xS=l; yS=0;x6=0; y6=1; while(d1!=0) {qS=d1/b2 ;d1=d1%b2;

if(d1==0) { II Last Line,end of the algorithm. mdc2=b2; alpha2=x6; beta2=y6 ; break; II copy the

values}q6=b21 d1;b2=b2%d1 ;xS=xS-qS*x6 ;yS=yS-q5*y6;x6=x6-q6* xS;y6=y6-q6 *yS;

if(b2==0) {II Last Line,end of the algorithm. mdc2=d1 ; alpha2=xS; beta2=yS ; break; I I copy the

values}}llprintf("gcd(a2,b2) = %d ",mdc2);printf("\nalpha2=%d ,beta2=%d",alpha2,beta2);

cout«endl; if (beta2<0){beta2 =k2+beta2;cout«" beta2= "«beta2«endl;}

int Bk3=-BZ*beta2; int kk3=Bk3%k2;if (kk3<0){kk3=kk3+k2;}cout« " Kk3= "« kk3 «endl;

bbz3=kk3*aaa;BZ3=(bbz3+BZ)/k2; cout« "Z3="« BZ3 «end I;

intcrt; int f[3]; f[O]=k; f[1]=k1;f[2]=k2;int t2[3];

t2[0]=m1; t2[1]=m2; t2[2]=m3;int n[] = { k, k1, k2 };int an[] = { m1, m2, m3 };

printf("\nChinese Remainder= : %d", chinese_remainder(n, an, sizeof(n)/sizeof(n[O])));
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double elapsed1=pow(elapsed,2); printf("Time elapsed in ms: %f", elapsed); printf("Time elapsed in 
ms: %f", elapsed1);! /cout«double( clock() - startTime ) / (double)CLOCKS_PER_SEC« " seconds." 

«endl;cout«"try again"«endl; cin»gan; if (gan==l){ goto start;}else{return O;)} 

crt=chinese_remainder(n, an, sizeof(n)/sizeof(n[0)));how=crt%693;· 

• 
int BX"'crt-how; int BZZ=BZ1 +BZ2+BZ3;ch1=(v*lastx)%k; ch2=(s*betal)%k1; ch3=(d*beta2)%k2;int 
add=ch I+ch l+ch.Z: chM=add*BZ1;chMl=add*BZ2;chM2=add*BZ3;int addl=chM+chM1+chM2; 

BigY=add1-(BX*now);!/cout«how «end I; cout«"B(X) = "«BX «endl; int fine=fad%aaa; if (fine 
!=O){cout«"Y = "«BigY«endl; printf("%d\nYAb mod n = ", modular(BigY, dan, gan)); 

fad=modular(BigY, dan, gan); modf=fad%k; mods=fad%k1;modd=fad%k2; 

cout« "y expressed in RNS = ("«modf«","«mods «","«modd«")" «endl; }else{ nn=(fad-fine 
)*aaa; r=nn%BigM;} clock_t stop = clock(); double elapsed = (double)(stop - start) * 1000.0 / 
CLOCKS_PER_SEC; 
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