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ABSTRACT 

Unsteady heat and mass transfers are important transport phenomena that are 

found in many engineering and industrial applications. In such systems, the 

variations in the fluid flow result in variations in the heat flux for fluid-solid 

temperature difference. In this study, analytical and theoretical investigations 

of some non-linear problems arising from unsteady heat and mass transfer 

through porous media are considered. Analytical models are developed. 

These are non-linear mathematical models for unsteady boundary layer flow 

past a vertical plate in the presence of heat source and transverse magnetic 

field embedded in a porous medium; non-linear mathematical models for 

unsteady hydromagnetic convective heat and mass transfer past an  

impulsively  started  infinite vertical  surface with  Newtonian  heating in 

porous medium; and non-linear mathematical models for unsteady 

hydromagnetic boundary layer flow over an exponentially stretching flat 

surface in a porous chemically reactive medium. These mathematical models 

are developed to measure the effects of  unsteadiness and other physio-

chemical parameters (such as radiation effects, mass diffusion, buoyancy 

forces, Lorentz force, velocity ratio, momentum diffusion, porous medium, 

chemical species, etc.) in the flow in order to understand heat and mass flow 

in porous media and to be able to predict related processes. These models are 

solved in exact form employing Laplace Transform Techniques. One major 

observation is that the magnetic field parameter is effective in reducing flow.  

The study concluded that all the controlling parameters have effects on the 

flow and can be used to control the flow kinematics in practice. 
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NOMENCLATURE 

𝑦∗   Coordinate axis normal to the plate [m] 

𝑦  Dimensionless  coordinate axis normal to 

the plate [-] 

𝑥∗  Coordinate axis in the direction of the plate 

[m] 

𝑥  Dimensionless coordinate axis in the 

direction of the  plate [-] 

𝑢∗  Velocity component in 𝑥∗ direction [𝑚𝑠−1] 

u  Dimensionless velocity in 𝑥 direction [-] 

v*  Velocity component in 𝑦∗direction  [𝑚𝑠−1] 

v  Dimensionless velocity in 𝑦 direction[-] 
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𝑡∗  Time (s) 

𝑡  Dimensionless time [-] 

𝑇∗   Fluid temperature near the plate [𝐾] 

𝑇𝑤
∗    Fluid temperature at the plate surface [ 𝐾]  

𝑇∞
∗    Temperature of the free stream [ 𝐾]  

𝑔   The acceleration due to gravity [𝑚𝑠−2] 

𝐶∗  Concentration in the fluid [Kmol𝑚−3] 
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𝐶∞
∗   Concentration far away from the plate 

[Kmol𝑚−3] 

𝐶𝑤
∗   Concentration at the plate surface 

[Kmol𝑚−3] 

𝑎∗  Absorption parameter [-] 

𝑎  Acceleration parameter [-] 

D Chemical molecular diffusivity [𝑚−2𝑠−1] 

𝐶𝑝  Specific heat at constant pressure 

[𝐽𝐾𝑔−1𝐾−1] 

𝐾𝑐
∗   Rate of chemical reaction [-] 

𝐾𝑐  Dimensionless rate of chemical reaction [-] 

𝑘∗  Permeability co-efficient of the porous 

medium [𝑚2] 

𝑘  Dimensionless permeability co-efficient of 

the porous medium [-] 

𝑞𝑟  Radiation heat flux [-] 

 𝑄   Heat source parameter  [-] 

𝐹   Radiation parameter [-] 

M  Magnetic parameter [-] 

H Heat absorption parameter [-] 

A  Constant [-] 

𝐵0  Uniform external magnetic field [Telsa] 
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𝑆0  Soret number [-] 

𝑆𝑐    Schmidt number [-] 

𝑃𝑟  Prandtl number [-] 

𝑁𝑢    Nusselt number [-] 

Gr  Thermal Grashof number [-] 

                  Gc Mass Grashof number [-] 

𝐸𝑐  Eckert number [-] 

                Erf Error function [-] 

               Erfc Complementary error function [-] 

𝛽𝑇  Thermal expansion coefficient [ 𝐾−1] 

𝛽𝐶  Concentration expansion co-efficient [𝐾−1] 

𝜌    Fluid density [𝑘𝑔𝑚−3] 

𝑣  Kinematic viscosity [𝑚2𝑠−1]  

                 ∝ Thermal diffusivity [𝑚2𝐾−1] 

𝜃  Dimensionless temperature [-] 

∅  Dimensionless concentration [-] 

𝜇  Dynamic viscosity [𝑘𝑔𝑚−1𝑠−1] 

𝜏  Skin friction coefficient [-] 

𝜎  Electrical conductivity [𝑠𝑚−1]  

𝐾   Thermal conductivity of the fluid 

[𝑊𝑚−1𝑘−1] 
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ACRONYMS  

MHD: Magnetohydrodynamics 

HM:  Hydromagnetic 

BL:   Boundary Layer 

BLF:  Boundary Layer Flow 

𝐿:  Laplace Transform 

1L : Inverse Laplace Transform 

LTT:  Laplace Transform Technique 

LTM:  Laplace Transform Method 

s:  Laplace transform parameter   

ODEs: Ordinary Differential Equations 

PDEs: Partial Differential Equations    

𝛿:   Dirac delta function 
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CHAPTER ONE 

INTRODUCTION AND BACKGROUND STUDIES 

1.0 Introduction 

Heat and mass transfer occur naturally in almost all physical phenomena in life. 

It is argued that no meaningful work can be done without the transfer of heat and 

mass. In many situations, the transfer of heat and mass occur with varying time 

which results in unsteady processes.  

Heat transfer can be defined as a process of transporting heat from a high 

temperature reservoir to a low temperature reservoir. In terms of 

the thermodynamic system, heat transfer is the movement of heat across the 

boundary of the system due to temperature difference between the system and 

the surroundings. Heat transfer can also take place within the system due to 

temperature differences at various points inside the system. The difference in 

temperature provides the potential for the heat to flow and the heat itself is called 

a flux, Figure 1.1. 

 

 

 

 

 Figure 1. 1 Heat Transfer between two Objects 
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The effects of heat and mass transfers on unsteady flow of fluid in porous media 

have a wide range of engineering and industrial applications. It is commonly 

encountered in the flow of molten iron, recovery extraction of crude oil and in 

geothermal systems (Kathyayani et al., 2016). Free convection flow induced by 

thermal and solutal buoyancy forces acting over bodies with different geometries 

in a fluid saturated porous medium in the presence of magnetic field is also 

prevalent in many physical presence of pure air or varied and wide range of 

industrial applications. For example, in atmospheric flows, the presence of pure 

air or water is impossible because some foreign mass may be present either 

naturally or mixed over various geometrical bodies with air or water due to 

industrial emissions (Barik, 2016). 

 

Figure 1. 2 Heat Flux through Porous Media 

 

Also, during manufacturing processes, stretching sheets (metallic and polymer) interact 

with the ambient fluid thermally and mechanically. Both the kinematics of stretching 
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and simultaneous heating or cooling during such process has direct influences on the 

quality of the final products (Magyari &  Keller, 1999, Ali et al., 2014). 

Rout and Pattanayak (2013) indicated that MHD flow with heat and mass transfer 

in the presence of chemical reactions are of importance in many practical 

processes such as distribution of temperature and moisture over agricultural 

fields, energy transfer in wet tower and in the method of generating and 

extracting power from moving fluids.  

In most cases, the processes involve unsteady flow due to the time dependence 

factor. Some researchers and scientist have developed different control strategies 

to understand the dynamics of unsteady process. However, it is a unending effort 

as many cases of varied conditions are still facing industry players. Unsteady 

boundary layer flow has become topical in recent times due to its numerous 

applications. It is encountered in the design and operation of heat exchangers, 

thermal power plants, boilers, fins, condensers, solar radiation devices, etc.  

Unsteady (time-varying) heat transfer is also important in transport phenomena 

found in many engineering devices such as microscale cooling schemes for 

microprocessor chips, conventional internal combustion engines, compressors 

and expanders (Mathie et al., 2012). Furthermore, in many transportation 

processes where heat and mass transfer occur simultaneously as a result of 

thermal diffusion and diffusion of chemical species, the combined action of 

buoyancy forces occur. These processes are observed in the nuclear reactor 
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safety and combustion systems, solar collectors, and in metallurgical and 

chemical engineering processes (Barik, 2016). 

The appreciation of unsteady heat and mass transfer effects is a significant factor 

in the development of a number of clean and renewable energy technologies 

(Mathie et al., 2012). The relevance of these devices in industrial or domestic 

settings will increase as the cost of conventional energy sources continue to rise 

due to the ever increasing price of oil (Darby, 1982, Adelman, 1991).  

The unsteady boundary layer flow is relevant in several engineering problems 

like start-up processes, periodic fluid motion and in the area of convective heat 

and mass transfer.  During unsteady flow, the boundary layer exhibits different 

behaviors owing to the inclusion of time dependent parameters which influence 

the pattern of fluid motion leading to boundary layer separation which creates 

complexity in the solution system. These flows exhibit other interesting 

phenomena which will be discussed in this study. 

Many research works have reported solved problems involving two dimensional 

unsteady flow cases for different flow configurations. However, the solutions are 

often mainly restricted to similarity or self-similar ones because of the 

consequence of the mathematical difficulties involved in achieving the non-

similarity solutions though some few research is available using the non-similar 

solutions. Fluid properties often vary significantly with respect to temperature in 

the circumstances where large or moderate temperature gradients exist across the 
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fluid medium. Also, different studies have been reported for variable fluid 

properties (Das et al., 2012, Misra et al., 2012, Ali et al., 2014 ). 

Mass transfer from a wall slot into the boundary layer is of interest for various 

prospective applications together with thermal protections, energizing the inner 

portion of boundary layer in adverse pressure gradient and skin friction reduction 

on control surfaces. The effect of uniform mass transfer applied in an unsteady 

convection boundary layer flow with variable viscosity has also been 

investigated by some authors (Ali, 2006, Chin et al., 2007). The effects of porous 

media are however an emerging area where more research is continuing.  

This study aims at developing a simple mathematical framework to understand 

and predict unsteady heat and mass transfer in porous media. This framework is 

applied to several hydromagnetic convection flows. The study builds on the 

works of Chaudhary and Jain (2006), Misra et al., (2012) and Chamkha et. al. 

(2016). 

Chaudhary and Jain (2006) studied unsteady free convection boundary layer flow 

past an impulsively started vertical surface with Newtonian heating. The thesis 

extends this work to include porous medium with chemical species concentration 

and transverse magnetic field. 

   Chamkha et al. (2016) studied unsteady MHD free convection flow past an 

exponentially accelerated vertical plate with mass transfer, chemical and 

thermal radiation. This study extends their work by incorporating a nonlinear 
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velocity term with MHD in the temperature equation as it is of practical 

importance in many industrial applications. 

Misra et al. (2012) studied unsteady boundary layer flow past a stretching plate 

and heat transfer with variable thermal conductivity. The study extends their 

work to include chemical reactants and permeability of the medium on a 

stretching surface. 

1.1 Background to the Study 

Unsteady flow problems are encountered in flow over helicopter blades in 

translational motion, flow over blades of turbines and compressors, flow over 

the aerodynamic surfaces of vehicles in manned flight, etc. ( Chaudhary & Jain, 

2006). 

 

Figure 1. 3 Helicopter flight controls ( source:en.Wikipedia.org) 

 

 

 

Figure 1. 4  Helicopter in translation motion (source: www.pilotfriend.com ) 
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When an helicopter takes off, air builds around it resulting into unsteady 

processes. This mass flow of air needs to be determined by unsteady flow 

analysis so as to ensure that the helicopter attains a translational motion (Figure 

1.3 & Figure 1.4). Translating motion is defined as the tendency for a single rotor 

helicopter to drift laterally, due to tail rotor thrust. 

 

 

 

 

Figure1.5 Jet engine compressor design 

   (source: www.aerospaceengineringblog.com) 
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Figure 1. 6 A schematic diagram of a high bypass turbofan engine (source: 

turbofan-wikipedia) 

 

In figure 1.5, the mass flow of the gas is directed toward a stationary inlet guide 

vanes. The rotor blades control the direction of the gas flow hence build unsteady 

processes that need to be determined for the compressor to function effectively. 

In figure 1.6, air flows in the turbine. The non- uniform cross section of the 

turbine brings about unsteady processes that must be controlled. 

Also, mass transfer from a wall slot into the boundary layer is of interest for 

various prospective applications (see figure 1.7). 
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Figure 1. 7 Mass transfer from a slot to a boundary layer                   
  ( source:en.Wikipedia.org) 

 

The injection of fluid from a wall slot into the boundary layer, viscosity 

interaction is experienced hence producing turbulence which results in unsteady 

processes. 

Analytical models are developed for the unsteady heat and mass transfer 

problems instead of numerical methods since numerical methods make 

parametric investigation difficult due to the long execution time. 

 

1.2  Categories of Flow 

1.2.1 Steady flow 

 If a flow is such that the properties at every point in the flow do not vary over 

time, then the flow is said to be a steady flow. Mathematically,   

www.udsspace.uds.edu.gh 

 

 



                                                          10 

 

  

0




t

P
 

where P is any property like pressure, velocity or density. Thus,  

).,( zyxPP   

 

1.2.2 Unsteady flow 

Unsteady or non-steady flow is one where the properties change over time. 

That is 0




t

P
 and ),.,( tzyxPP   

The unsteadiness in the flow field is caused either by time dependent motion of 

the external stream or by impulsive motion of the external stream. When the fluid 

motion over a body is created impulsively, the inviscid flow over the body is 

developed instantaneously but the viscous layer near the body is developed 

slowly and it becomes fully developed steady state viscous flow after certain 

instant of time (Chaudhary & Jain, 2006). 

Unsteadiness in heat transfer introduces several effects into the heat transfer 

problem. The first effect is ‘augmentation’; an improvement or deterioration in 

heat transfer performance relative to an equivalent steady problem. The other 

effect is ‘conjugation’ which occurs when the temperature fluctuations in solid 

domain as well as the fluid domain become important in the solution of the heat 

transfer problem. These two effects combined with boundary conditions make 
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unsteady heat transfer more challenging compared to steady problems (Mathie 

et al., 2012). 

 

1.2.3 Pseudosteady  Flow 

Some flows, though unsteady, become steady under certain frames of reference. 

These are called pseudosteady flows.  

Unsteady flows are undoubtedly difficult to solve while with steady flows, we 

have one degree of freedom less complexity. 

 

1.2.4 Uniform and Non-uniform flow  

The flow is uniform when in the flow field the velocity and other hydrodynamic 

parameters do not change from point to point at any instant of time. For uniform 

flow, the velocity is a function of time only. Thus; 

)(tvv    

 

1.3 Heat and Mass Transfer 

Heat transfer is the exchange of thermal energy between physical systems. The 

rate of heat transfer is dependent on the temperatures of the systems and the 

properties of the intervening medium through which the heat is transferred. Mass 

transfer is the net movement of mass from one location, usually meaning stream, 
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phase, fraction or component, to another. Mass transfer occurs in many 

processes, such as absorption, evaporation, adsorption, drying, precipitation, 

membrane filtration, and distillation. 

 

1.4  Porous Media 

A porous medium or a porous material is a material containing pores (voids). 

The skeletal portion of the material is often called the "matrix" or "frame" (figure 

1.7). The pores are typically filled with a fluid (liquid or gas). The skeletal 

material is usually a solid, but structures like foams are often also usefully 

analyzed using concept of porous media. 

A porous medium is most often characterised by its porosity. Other properties of 

the medium (e.g., permeability, tensile strength, electrical conductivity) can 

sometimes be derived from the respective properties of its constituents (solid 

matrix and fluid) and the media porosity and pores structure, but such a 

derivation is usually complex. Even the concept of porosity is only 

straightforward for a poro-elastic medium. 
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Figure 1. 8  Porous medium (source en.Wikipedia.org) 

 

The use of porous materials as efficient and compact heat exchangers for heat 

dissipation is under extensive research. Amongst these, high porosity, open cell 

metal foams shown in Fig.1.8 has emerged as one of the most promising 

materials for thermal management applications where a large amount of heat 

needs to be transferred over a small volume. This is attributed to the high 

surface area to volume ratio as well as enhanced flow mixing (convection) due 

to the tortuosity of metal foams in Fig. 1.9. The surface area to density ratio of 

metal foams is roughly 1000–3000 m2/m3 ( Bhaskar and Chaudhary, 2016). 
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Figure 1. 9  Heat transfer application of metal foam (Bhaskar and 

Chaudhary 2016) 

          

 
 

Figure 1. 10 A foam sample manufactured by sintering route (Bhaskar and 

Chaudhary 2016) 

 

Natural and artificial porous materials encountered in practice are soil, 

sandstone, limestone, ceramics, foam, rubber, bread, lungs, and kidneys. 
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Aquifers (from where water is pumped), sand filters (for purifying water), 

reservoirs (which yield oil or gas), packed and fluidized beds in the chemical 

engineering and the root zone in agricultural industry may serve as additional 

examples of porous media domains (Amhalhel & Furmanski, 1997). 

The study of transport phenomena in porous materials has attracted 

considerable attention, and has been motivated by a broad range of engineering 

applications including: 

1. Agricultural applications: e.g. fermentation process in food industries, freeze 

drying of food products, grain storage, soil heating to increase the growing 

season. 

2. Environmental applications: e.g. ground water pollution, ground water 

systems, storage of radioactive waste, water movement in geothermal 

reservoirs. 

3. Industrial applications: e.g. artificial freezing of ground as a structural 

support and as a water barrier for construction and mining purposes, crude oil 

production and recovery systems, porous radiant burners (PRBs), post accident 

heat removal (PAHR), solidification of castings, study of heat transfer 

phenomenon of buried electrical cables and transformer cables, fluidized bed 

combustion. 
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4. Thermal conversion and storage systems: e.g. catalytic reactors, geothermal 

systems, packed beds, fluidized bed, heat pipes, sensible, latent and thermo 

chemical energy storage systems (Amhalhel  & Furmanski, 1997). 

 

1.5  Problem statement 

There are several heat and mass transfer problems already tackled in the 

literature. However, there are many areas in which research is continuing 

especially with respect to unsteady flow conditions as it is the most common 

flow situation in many industrial and manufacturing processes. The use of 

magnetic fields in flow control find applications in magneto-hydrodynamics, 

generators, plasma studies, nuclear technology, geothermal energy extractions, 

continuous coating, rolling and extrusion in manufacturing processes. The 

boundary layer along a film in condensation processes and the aerodynamic 

extrusion of plastic sheets are areas of active research. The unsteady heat and 

mass transfer through a porous medium is still undergoing extensive research 

which this study aims to contribute to.     

 

1.6  Aim of study 

The aim of the study is to investigate theoretically some nonlinear problems 

arising from unsteady boundary layer flow in porous media. 
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1.6.1 Specific Objectives  

Specifically, the study will 

 Develop a non-linear mathematical model for unsteady boundary layer 

flow past an exponentially accelerated vertical plate in the presence of 

transverse magnetic field and heat source embedded in a porous medium. 

 Develop non-linear mathematical model for unsteady hydromagnetic 

convective heat and mass transfer past an impulsively started infinite 

vertical surface with Newtonian heating in porous medium in industrial 

and engineering systems. 

 Develop a non-linear mathematical model for unsteady hydromagnetic 

boundary layer flow over an exponentially stretching flat surface in a 

porous chemically reactive medium. 

 Provide analytical solutions for nonlinear systems of differential 

equations modeling boundary layer flow in porous media. 

 Develop a theoretical framework for predicting the effects of 

controlling parameters on the velocity, thermal and concentration 

boundary layer thicknesses of unsteady flow. 
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1.7 Significance of study 

Boundary layer has a pronounced effect upon any object which is immersed in a 

fluid. Drag on airplanes or ships and friction in pipes are common manifestations 

of boundary layer. There has been great interest in the study of 

magnetohydrodynamics (MHD) flow interaction with heat and mass transfer in 

any medium due to the effects of magnetic field on the boundary layer flow 

control and on the performance of many systems using electrically conducting 

fluids. Studying this type of flow is significant due to its applications in many 

engineering problems. Understandably, boundary layer research has become a 

very important branch of fluid dynamics. 

 

1.8  Expected Contribution 

This study makes the following contributions: 

 Investigate the unsteady boundary layer flow in a porous medium. The 

study investigated some problems arising from laminar unsteady 

boundary layer flow interaction with heat and mass transfer in a porous 

medium as it finds practical application in areas such as in mechanical, 

mining process and chemical engineering.  

 Provide information on the nature of unsteady boundary layer developed 

on heated porous plate in the presence of chemical contaminants.  
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 Serve as reference material for future works in the areas of nuclear 

studies, manufacturing, mining, petro-chemical, aerospace and 

automotive sectors. 

 

1.9 Organization of Thesis 

This thesis is organized in seven chapters. In chapter 1, the background, 

importance of the problem chosen and clear statement of the problem are 

established. A brief review of literature on heat and mass transfer as well as 

porous media is discussed in this chapter. The objectives of the study; 

significance of the study and expected contribution are also discussed in this 

chapter. 

In chapter 2, a detail literature review on heat and mass flow in porous media; 

free convection over flat surfaces; hydromagnetic flow in porous media; flow 

control strategies as well as unsteady flow in porous media are presented. 

Chapter 3 shows the development of mathematical models. The flow boundary 

layer equations such as the continuity equation, momentum equation, energy 

equation and the concentration equation are derived in this part. The dimensional 

partial differential equations are transformed into dimensionless equations using 

dimensionless variables and parameters. Laplace transform technique is 

employed to solve the dimensionless equations in exact form.  
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Chapter 4 presents unsteady boundary layer past a vertical plate in the presence 

of magnetic field and heat source embedded in a porous medium.  

Chapter 5 deals with unsteady hydromagnetic convective heat and mass transfer 

past an impulsively started infinite vertical surface with Newtonian heating in a 

porous medium.  

Chapter 6 discusses unsteady boundary layer flow over an exponentially 

stretching flat surface in a chemically reactive porous medium. 

Summary, conclusions and recommendations are provided in chapter 7. The 

thesis ended in this chapter with summary of key findings, contribution to 

knowledge and recommendations for future research. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.0  Introduction 

The chapter presents a review of research on heat and mass transfer through a 

porous media. It highlights the various research results reported by different 

authors. The review focuses on flow in porous media, free convection, 

hydromagnetic fluid flow, unsteady flow in porous media, flow on stretching 

surfaces and flow control strategies. The review identifies some gaps in 

knowledge and presents how this thesis will address those gaps. 

 

2.1  Overview of Heat and Mass Transfer in Porous Media  

Heat and mass transfer occur simultaneously in several processes such as hot 

rolling, wire drawing, continuous casting, fiber drawing, evaporation of water at 

surfaces, drying etc. Heat and mass transfer characteristics are dependent on the 

thermal boundary conditions. In general, there are four common heating 

processes specifying the wall-to-ambient temperature distributions, prescribed 

surface heat flux distributions, conjugate conditions where heat is specified 

through a bounding surface of finite thickness and finite heat capacity. The 

interface temperature is not known a priori but depends on the intrinsic properties 
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of the system, namely the thermal conductivity of the fluid and solid (Chaudhary 

& Jain, 2006).  

Megahed et al. (2011) investigated the effects of thermal-diffusion (Soret) and 

the diffusion-thermo (Dufour) effects, temperature-dependent viscosity, thermal 

conductivity on Falkner-Skan heat and mass transfer flow of a viscous, 

incompressible and electrically conducting fluid over a wedge immersed in a 

porous media. The results showed that the velocity profiles decrease with 

increasing Dufour number (or decreasing Soret number) for all  values. The 

temperature increases whilst the concentration decreases with increasing Dufour 

number (or decreasing Soret number). 

Samiulhaq et al. (2012) studied radiation and porosity effects on the 

magnetohydrodynamic flow past an oscillating vertical plate with uniform heat 

flux using Laplace transforms. It was observed that the radiation parameter 

reduces the temperature of the fluid. Bhattacharyya (2012) conducted a research 

on slip effects on steady boundary layer flow and mass transfer with chemical 

reaction over a permeable flat plate in a porous medium using shooting method 

to solve the resulting equation. It was observed that the momentum boundary 

layer thickness is reduced for increased in permeability and suction parameters, 

whereas it increases with blowing parameter. The increase of velocity slip 

parameter reduces the momentum boundary layer thickness and also enhances 
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the mass transfer from the plate. Also, due to increase of mass slip, the 

concentration and mass transfer decreased. 

Aziz et al. (2014) studied steady boundary layer slip flow along with heat and 

mass transfer over a flat porous plate embedded in a porous medium. The 

similarity variables were employed to transform the governing partial differential 

equations (PDEs) into ordinary differential equations (ODEs) which were solved 

numerically using specific method implemented in MATLAB. The results 

showed that an increase in permeability of porous medium increases the velocity 

and decreases the temperature profile. This happened due to a decreased in drag 

of the fluid flow. In case of heat transfer, the increase in permeability and slip 

parameter caused an increase in heat transfer. However for the case of increase 

in thermal slip parameter, there is a decrease in heat transfer. An increase in mass 

slip parameter causes a decrease in the concentration field.                       

Etwire et al. (2015) investigated the MHD thermal boundary layer flow over a 

flat plate with internal heat generation, viscous dissipation and convective 

surface boundary conditions using the fourth order Runge Kutta algorithm with 

a shooting method. It was realized that the velocity boundary layer thickness 

decreases as the magnetic field parameter increases. Also increasing the Biot 

number, internal heat generation parameter, Prandtl number and Brinkman 

number have no effect on the skin friction coefficient whilst increasing the 

magnetic field parameter decreases the skin friction coefficient. 
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Recently, Barman et al. (2017) studied heat transfer through porous media using 

Newton’s Law of cooling and Fourier’s Law. It was seen that with increases of 

thickness of porous layer and Reynolds number, the rate of heat transfer 

increases along the flow direction. All these studies dealt with steady flow. In 

this work, unsteady heat and mass transfer through porous media is considered. 

 

2.2 Unsteady Flow in Porous Media 

With the exception of a small number of cases involving steady flows, majority 

of flows in industrial and engineering applications are unsteady. Bala et al. 

(2012) studied the radiation effects on unsteady MHD flow past an 

exponentially accelerated isothermal vertical plate embedded in porous 

medium in the presence of heat source and chemical reaction using a crank-

Nicolson’s type of implicit finite difference method with a tri-diagonal matrix 

manipulation and an iterative procedure in the solution. Their study established 

a direct correlation between the Grashof number, 𝐺𝑟 and the velocity of the 

flow.  Rout and Pattanayak (2013) extended the problem to include variable 

temperature embedded in a porous medium using Laplace transform techniques 

and observed that the temperature of the fluid increases with increasing 

radiation parameters.  

Chiem and Zhao (2004) conducted a research on numerical study of 

steady/unsteady flow and heat transfer in porous media using a characteristics-
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based matrix-free implicit Finite-Volume (FV) method on unstructured grids. 

Hydrodynamic and heat transfer results were reported for both steady and 

transient flow cases. The effects of Darcy and Reynolds numbers on heat transfer 

augmentation and pressure loss were studied. At high Reynolds numbers the flow 

in the porous channel exhibits cyclic characteristics although unlike the non-

porous channel flow, the cyclic vortex development is only restricted to small 

area behind the last solid block, while temperature changes more slowly and do 

not exhibit cyclic variations over a long period of time. 

Mishra et al. (2015) conducted a research on numerical investigation on unsteady 

heat and mass transfer effect of micro-polar fluid over a stretching sheet through 

porous media. Similarity transformations were used to convert the governing 

time dependent, non-linear boundary layer equations into a system of non-linear 

ordinary differential equations that were solved numerically using Runge-Kutta 

fourth order method with shooting technique. They observed that the buoyancy 

force retards the fluid near the velocity boundary layer in case of opposing flow 

and is favourable for assisting flow. In case of assisting flow, the absence of 

porous matrix enhances the flow.  Also, Hussanan et al. (2016) studied unsteady 

heat and mass transfer in a micro-polar fluid with Newtonian heating. Exact 

solutions were obtained using Laplace transform technique. It was observed that 

plate executes cosine type oscillations. Chamkha et al. (2016) studied unsteady 

MHD free convection flow past an exponentially accelerated vertical plate with 
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mass transfer, chemical and thermal radiation using Laplace transform 

technique. The fluid considered in their study was gray gas, absorbing/emitting 

radiation but non scattering medium. They concluded that the velocity increased 

with increase in either the acceleration coefficient ‘𝑎’ or the Soret number 𝑆0. 

Uddin et al. (2015) studied similarity solution of an unsteady heat and mass 

transfer boundary layer flow over a continuous layer flow in a porous medium 

with hydromagnetic field using similarity solution coupled with shooting 

technique. It was realized that the velocity and temperature in the unsteady case 

is observed to be lesser than those of the steady case. Also, an increase in 

unsteadiness parameter increases the Prandtl number  (Pr) and decreases the 

Eckert number (Ec).The heat transfer rate increases rapidly with the increase of 

the power law index of the surface temperature variation whereas when the 

magnetic parameter increases the heat transfer rate decreases. 

Kathyayani et al. (2016) studied heat and mass transfer on unsteady MHD 

oscillatory flow of non-Newtonian fluid through porous medium in parallel plate 

channel. A mathematical model was developed and analyzed by using 

perturbation technique. The results showed that the lower the permeability the 

lesser the fluid speed in the entire fluid region. Also, the temperature reduces 

with increasing radiation parameter (F), whereas the reversal behaviour is 

observed throughout the fluid region with increasing Prandtl number (Pr). 
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In the foregone studies, it is obvious that research in unsteady 

magnetohydrodynamic (MHD) through porous media is continuing due to its 

emerging industrial relevance. This thesis therefore considers unsteady boundary 

layer flow past a vertical plate in the presence of transverse magnetic field and 

heat source embedded in porous medium which has not been documented in the 

literature to the best of my knowledge. The problem would be investigated using 

Laplace transform techniques.                                

                                                                                                                                                                                                                                    

 2.3 Free Convection Flow on Flat Surfaces 

Theoretical studies on the laminar natural convection heat transfer on flat 

surfaces continue to receive attention in the literature due to their industrial and 

technological applications. Siegel (1958) studied the unsteady free convection 

flow past a semi-infinite vertical plate under step-change in wall temperature or 

surface heat flux using the momentum integral method. He observed that the 

initial behaviour of the temperature and velocity fields for semi-infinite vertical 

flat plate is the same for double infinite vertical flat plate. Martynenko et al. 

(1984) extended Siegel work to include a constant temperature of the plate which 

is also the temperature of the surrounding stationary fluid.  

Gupta et al. (1979) employed the perturbation method to investigate the free 

convection flow past a linearly accelerated vertical plate in the presence of 

viscous dissipation with Kafousias and Raptis (1981) extending it to include 
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mass transfer effects subject to variable suction. Arthur et al. (2015) investigated 

the MHD convective boundary layer flow towards a vertical surface in a porous 

medium with radiation, chemical reaction and internal heat generation using the 

Newton Raphson shooting method alongside the Fourth-order Runge - Kutta 

algorithm and concluded that the magnetic parameter and all the controlling 

parameters identified directly influence the flow around the boundary and hence 

can be controlled to achieve desired product characteristics.  

At high temperatures, heat transfer caused by radiation is very crucial in many 

industrial applications such as in rocket propulsion systems, plasma physics, and 

in aerothermodynamics. As a result, some researchers have considered radiation 

effects in convection flows. It must be noted that heat transfer characteristics are 

dependent on the thermal boundary conditions. Hence in Newtonian heating, the 

rate of heat transfer from the boundary surface with finite heat capacity is 

proportional to the local surface temperature and this process is called conjugate 

convective flow. This configuration occurs in many engineering devices such as 

heat exchangers, fins and solar radiation devices (Chaudhary & Jain, 2006). In 

these cases, it is necessary to consider convective flows with Newtonian heating.  

Chaudhary and Jain  (2006) studied the unsteady free convection boundary-layer 

flow past an impulsively started vertical surface with Newtonian heating using 

the Laplace transform techniques and observed that the increase of Prandtl 

number results in decrease in temperature distribution.  
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Narahari and Nayan (2011) considered the free convection flow past an 

impulsively started infinite vertical plate with Newtonian heating in the presence 

of thermal radiation and mass diffusion. The exact solutions in a closed-form 

were obtained by the Laplace transform method with an observation that the 

velocity increased for aiding flows but decreased for opposing flows. Radiation 

effects on unsteady free convection flow past a vertical plate with Newtonian 

heating was reported by Das et al. (2012). The governing equations were solved 

numerically by implicit finite difference method of Crank-Nicolson’s type. It 

was observed that the velocity decreases near the plate and increases away from 

the plate with increasing Prandtl number or radiation parameter. Sharidan et al. 

(2014) studied the slip effects on unsteady free convective heat and mass transfer 

with Newtonian heating using the Laplace transform method and observed that 

the presence of the slip parameter reduces the fluid velocity. 

Hussanan et al. (2014) studied unsteady boundary layer flow and heat transfer of 

a Casson fluid past an oscillating vertical plate with Newtonian heating using 

laplace transform technique. It was observed that velocity decreases as casson 

parameters increases and the thermal boundary layer thickness increases with 

increasing Newtonian heating parameter.  

In the literature, it is obvious that most of the studies focused on radiation effects 

on convection flows. Heat and mass transfer of unsteady hydromagnetic 

convection flows with Newtonian in porous medium has not been reported. In 
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this thesis, it is proposed to study the unsteady hydromagnetic convective heat 

and mass transfer flow past an impulsively started infinite vertical plate with 

Newtonian heating in porous medium. This is an extension of research done by 

Chaudhary and Jain (2006) to include porous medium, concentration, chemical 

species and transverse magnetic field. 

 

2.4 Flows on Stretching Surfaces 

Fluid flow over a stretching surface has numerous applications in many 

engineering processes such as wire drawing, paper production, hot rolling, glass 

fibre production, manufacturing of plastic and rubber sheets, cooling of hot metal 

plates, etc. These processes require the material to be stretched and involve heat 

transfer between the sheet and the fluid medium. The quality of the final product 

largely depends on the rate at which the cooling and stretching occurs. 

Furthermore, the mechanical properties of the final product depend on the 

thermal conductivity which is assumed to vary linearly with temperature 

(Chaudhary and Jain, 2006). 

Sakiadis (1961) pioneered the research in the boundary layer flow over a 

continuous solid surface moving with constant velocity. Crane (1970) extended 

the study of Sakiadis (1961) to the flow on an elastic sheet moving in its own 

plane with a velocity linear to the distance from a fixed point. 
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 Chiam (1998) studied the boundary layer flow of viscous fluid over a porous 

stretching sheet and heat transfer with variable thermal conductivity using 

shooting method and noticed that thermal conductivity enhances the temperature 

of the fluid.  Misra et al. (2012) extended the work of Chiam (1998) by 

considering the heat flow problem in two ways. That is, Prescribed Stretching 

Surface Temperature (PST) and Prescribed Stretching Heat Flux (PHF).  

Chen (1998) studied the fluid flow and heat transfer on a stretching plate. Ishak 

et al. (2008) extended the work of Chen (1998) to hydromagnetic flow and heat 

transfer and they observed that as the magnetic field increases, the skin friction 

coefficient and the Nusselt number decreased. 

Dandpat and Chakraborthy (2010) studied the effects of variable fluid properties 

on thin liquid film flow over an unsteady heated stretching sheet. It was observed 

that the effect of variable fluid viscosity on velocity profile of the fluid flow 

increases when viscosity decreases due to decrease of temperature along the 

stretching surface. Hsiao (2011) studied the MHD stagnation point flow of visco-

elastic fluid on thermal forming stretching sheet with viscous dissipation effect 

and observed that the rate of heat transfer decreased with the increasing magnetic 

field.  

Nadeem et al. (2013) discussed the fluid properties of MHD casson fluid past a 

linearly stretched sheet in porous medium using Runge-Kutta-Fehlberg method. 

They observed that the presence of the transverse magnetic field decreases the 
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velocity of the fluid flow. Seini (2013) studied the flow over an unsteady 

stretching surface with chemical reaction and non-uniform heat source using the 

Runge–Kutta–Fehlberg method with the shooting techniques and observed that 

heat and mass transfer rates as well as the skin friction coefficient increased as 

the unsteadiness parameter increases and decreased as the space-dependent and 

temperature-dependent parameters for heat source/sink increased.  

Seini and Makinde (2013) studied MHD boundary layer flow due to exponential 

stretching surface with radiation and chemical reaction using Runge–Kutta–

Fehlberg method with the shooting techniques. A nonlinear velocity term with 

MHD was present in the temperature equation due to the presence of the 

magnetic field. It was found that the rate of heat transfer at the surface decreases 

with increasing values of the transverse magnetic field and the radiation 

parameter. 

Ali et al. (2014) studied heat transfer boundary layer flow past an inclined 

stretching sheet in presence of magnetic field using Runge-Kutta fourth-fifth 

(RK-45) order method along shooting technique, where the flow was generated 

due to linear stretching sheet. Again, a nonlinear velocity term with MHD was 

present in the temperature equation due to the magnetic effects in the flow. It 

was found that velocity profile decreases due to increase of magnetic parameter, 

Prandtl number and Eckert number whilst velocity increases for increasing 

values of Grashof number. On the other hand the temperature profile increases 
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in the presence of the magnetic parameter, angle of inclination, Prandtl number, 

Eckert number and Chandrasekhar number whilst temperature decreases for 

increasing Grashof number. The results have possible technological applications 

in liquid-based systems involving stretchable materials 

Recently, Sahoo and Biswal (2015) studied MHD visco-elastic boundary layer 

flow past a stretching plate with heat transfer and concluded that higher Prandtl 

number fluid causes a fall in temperature due to low thermal diffusivity.  

The focus of thesis is to investigate the unsteady boundary layer flow past a 

stretching plate in the presence of transverse magnetic field with heat and mass 

transfer in a porous medium, which is an extension of the work done by Ali et 

al. (2014) to include unsteady parameter, porous medium and chemical species 

in the flow. 

 

2.5  Hydromagnetic Flow in Porous Media 

Hassanien (1989) studied oscillatory hydromagnetic flow through a porous 

medium in the presence of free convection and mass transfer flow using Laplace 

transform technique. It was found that the velocity increases when the 

permeability of porous medium ( k) increases. Also, the velocity increases when 

the concentration difference between the surface and the free stream increases 

whilst the magnetic parameter (M) increases the velocity decreases. 
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Kamel (2000) examined thermal-diffusion effect on rotating hydromagnetic flow 

in porous media. A complete analytical solution was obtained for the 

temperature, concentration and velocity fields using Laplace transformation and 

the method of direct integration by means of the matrix exponential (state space 

approach) in the case when the plate oscillates in its plane.  The results showed 

that Prandtl number (Pr) makes the temperature distribution concentrate near the 

boundary layer and the flow field is greatly affected by the variation of the 

rotating parameter near the plate.                              

Ramakrishnan and Shailendhra (2011) investigated theoretically hydromagnetic 

flow through uniform channel bounded by porous media. The fluid flowing in 

the channel was assumed to be homogenous, incompressible and Newtonian. 

Analytical solutions were constructed for the governing equations using 

Beavers- Joseph slip boundary conditions.  It was observed that the axial velocity 

of the fluid is reduced by porous parameter, Hartman number and slip parameter. 

It was also noticed that there was a reversal of the flow near the wall due to 

change in the Darcy velocity and slip velocity. Shear stress, however, shows an 

increasing porous parameter and a decreasing trend with the increasing Hartman 

number. 

Norzieha et al. (2012) conducted a research on hydromagnetic rotating flow in a 

porous medium with slip condition and hall current. The closed form solution 

was obtained using Laplace transform technique. It was found that the magnetic 
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field and slip parameter decreased the velocity magnitude whereas permeability 

and Hall parameter increased it. The slip and magnetic field play an important 

role in retarding the growth of both the primary and secondary flows, whereas 

Hall parameter enhances the flow. 

Chand et. al (2012) examined hydromagnetic oscillatory flow through a porous 

medium bounded by two vertical porous plates with heat source and Soret effect. 

The plates of the channel were subjected to constant injection and suction 

velocities. Close form solutions were obtained. The results shown that the 

velocity profiles increase with increasing Reynolds number (𝑅𝑒 ) which is in 

confirmation with the fact that if  𝑅𝑒  is large the inertial forces will be 

predominant and the effect of viscosity will confined only to the thin region 

adjacent to the solid surface. Also, for heavier species, i.e. increasing Schmidt 

number (Sc=0.22 for hydrogen and Sc=0.66 for oxygen), the velocity decreases. 

The temperature profile increases with increasing heat source parameter and the 

frequency of oscillation 𝜔 and it decreases with increasing Prandtl number (Pr).       

Gireesha et al. (2015) studied numerical solution for hydromagnetic boundary 

layer flow and heat transfer past a stretching surface embedded in non-Darcy 

porous medium with fluid particle suspension. The time–dependent equations, 

governing the flow and heat transfer were reduced into a set of non-linear 

ordinary differential equations with the aid of suitable similarity transformations. 

The transformed equations were numerically integrated using forth- fifth order 
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Runge-Kutta-Fehlbeg method. It was observed that by suspending fine dust 

particles in the clean fluid reduces the thermal boundary layer thickness. 

Therefore, the dusty fluids are preferable in engineering and scientific 

applications involving cooling processes.    

Kan et al. (2015) studied hydromagnetic flow and heat transfer over a porous 

oscillating stretching surface in a visco-elastic fluid with porous medium. This 

system was solved numerically using the finite difference scheme, in which a 

coordinate transformation is used to transform the semi-infinite physical space 

to a bounded computational domain. The study reveals that an oscillatory sheet 

embedded in the saturated porous medium generates oscillatory motion in the 

fluid. It was also found that the amplitude of the flow velocity increases with 

increasing visco-elastic and mass suction/injection parameters but decreases 

with increasing strength of the applied magnetic field. Moreover, the temperature 

of the fluid is a decreasing function of visco-elastic parameter, mass 

suction/injection parameter and Prandtl number. 

 

2.6 Flow Control Strategies  

Flow control strategies imply a small change of configuration serving an ideally 

large engineering benefit, like drag reduction, lift increase, mixing enhancement 

or noise reduction (Wikipedia, the free encyclopedia, 2017). 
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A new change in research in fluid dynamics is to take a step from analyzing and 

predicting the flow field to actively controlling it. In fluid dynamics systems, 

variations of flow parameters may be achieved by local perturbations using 

devices sensing and acting on some critically chosen parts of the flow, the 

process often requiring small amounts of energy. Such control devices can be 

used to obtain drag reduction on bodies, heat and mass transfer reduction or 

enhancement, increase propulsion efficiency, increase lift on wings, control of 

generation of sound, control of combustion instabilities etc (Engineering 

Archives). 

In fact the ability to manipulate a flow field to effect a desired change is of 

immerse practical importance. Flow control is perhaps more hotly pursued by 

scientists and engineers than other areas in fluid mechanics (Gal-el-Hak, 1996). 

It might be worth recalling that a mere 10% reduction in the total drag of an 

aircraft translates into a saving of one billion dollars in annual fuel cost for the 

commercial fleet in the United States alone ( Gal-el-Hak, 1996). 

The science of flow control originated with Prandtl, who in a mere 8-page 

manuscript introduced the boundary layer theory, explaining the physics of the 

separation phenomena and described several experiments in which a boundary 

layer was controlled. Gad-el-Hak (1996) studied modern developments in flow 

control. The study concluded that the developments in chaos control, micro-

fabrication and neural networks are making it more feasible to perform reactive 

www.udsspace.uds.edu.gh 

 

 



                                                          38 

 

  

control of turbulent flows. Also, flow control is most effective when applied near 

the transition or separation points or near the critical regimes where flow 

instabilities magnify quickly. 

Meunier (2009) studied stimulation and optimization of flow control strategies 

for Novel High-lift configurations using a Kriging-based optimization algorithm. 

It was found that a careful parameterization of the jet is capable of an efficient 

control strategy and leads to a complete reattachment of the flap flow, with 

considerable gains in lift and aerodynamic efficiency. 

Mathelin et al. (2010) studied closed-loop fluid flow control using a low 

dimensional model. Their main objective was to develop a control strategy to 

minimize the drag of a bluff body in a 2-D flow. A reduced model was obtained 

using a robust statistical reduction approach and an optimal orbit in the phase 

space was determined using an open-loop control strategy. The non-linear 

reduced order model was linearized around a set of points defining a series of  

‘trust-regions’ along the closed trajectory and the problem was  put under a linear 

varying parameter form, allowing for the use of an efficient control law 

synthesis. 

Sipp and Schmid (2013) examined closed-loop control of fluid flow, a review of 

linear approaches and tools for the stabilization of the transitional flows. Two 

generic flow configurations were considered: the two-dimensional flow over an 

open cavity, which is above a critical Reynolds number is globally unstable and 
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the two-dimensional flow over a backward –facing step, which is globally stable 

but acts as an amplifier of ambient noise sources. However, the study concluded 

that Galerkin-based approached is efficient for globally unstable flows, where an 

internal instability synchronizes the flow and makes it insensitive to external 

noise sources. Also, a data-based model is suitable for globally stable noise-

amplifier flows. 

Oruc (2017) conducted a research on strategies for the applications of flow 

control downstream of a bluff body. The problem is unsteady and vortical flow 

structure developing downstream of the body. The chaotic flow structure in the 

wake causes serious structural deformation on the body hence the flow is 

intended to be suppressed downstream of the body. It was found that suppression 

of vortex shedding can be achieved adopting flow control techniques such as 

passive or active control schemes which are effective tools for taming the flow.                                                                                                                                                                                                                       
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CHAPTER THREE 

METHODOLOGY 

3.0 Introduction 

In this chapter, various models such as the continuity equation, momentum 

equation, energy equation and concentration equation are developed. These 

equations are modified in subsequent chapters to model the unsteady heat and 

mass transfer through porous media. The governing partial differential equations 

are developed and transformed to dimensionless equations using suitable 

dimensionless parameters and variables. These dimensionless equations are 

solved in exact form using Laplace transform technique. The results of these 

models are presented graphically and quantitatively in subsequent chapters using 

MATLAB computer software. 

 

3.1  Assumptions Made in Models Development 

In developing the appropriate mathematical models, the following assumptions 

are made: 

 The flow is unsteady. 

 A magnetic field of uniform strength 𝐵0 is applied transversely to the 

plate.  

 The flow is assumed to be in the 𝑥∗ − 𝑎𝑥𝑖𝑠 direction. 
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  The 𝑦∗ −axis is taken to be normal to the plate.  

 The temperature of the plate and the ambient fluid are 𝑇𝑤
∗(𝑥) and 𝑇∞

∗  

respectively. Initially, the plate and the fluid are at the same temperature 

𝑇∞
∗   with concentration level 𝐶∞

∗  at all points. 

 The fluid physical properties such as viscosity and thermal conductivity 

shall be assumed constant. 

 Reynolds number and viscous dissipation are also assumed to be 

negligible.  

 Since the plate is infinite along the  𝑥∗ direction, all the physical 

variables are the functions of  𝑦∗  and  𝑡∗ only. 

 Using Boussinesq approximation, neglecting the inertia terms,  Soret and 

Dufour effects, under these assumptions, the boundary layer equations 

governing the unsteady flow process can be modeled as shown in the 

following sections and subsequent chapters:  

 

3.1.1 The Continuity Equation  

The continuity equation is obtained in Cartesian coordinates as (see Appendix I, 

A1.6) 

 
𝜕𝜌

𝜕𝑡∗
+

𝜕𝜌𝑢∗

𝜕𝑥∗
+

𝜕𝜌𝑣∗

𝜕𝑦∗
+

𝜕𝜌𝑤∗

𝜕𝑧∗
= 0.               (3.1) 

Introducing the gradient operator, ∇, which in rectangular coordinates, is  
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Therefore, the non-conservation form of the continuity equation is 

         
𝐷𝜌

𝐷𝑡∗
+ 𝜌∇.𝑈∗ = 0.                                                                            (3.3) 

Where the velocity field, 



 jviuU ***
+𝑤



k ;  ∇. 𝑈∗ is the divergence 

of the velocity and  𝜌 is fluid density. 

 

3.1.2 The Momentum Equation 

The momentum equation is obtained from Navier-Stokes equations in 

conservation form (see Appendix I, A1.29) as 

𝜌
𝐷𝑈∗

𝐷𝑡∗ = −∇𝑝 + 𝜌𝘨 + 𝜇∇2𝑈∗.                                                            (3.4) 

In component form, 

 𝜌
𝐷𝑢∗

𝐷𝑡∗ = −
𝜕𝑝

𝜕𝑥∗ +
𝜕𝑥∗𝑥∗

𝜕𝑥∗ +
𝜕𝜏𝑦∗𝑥∗

𝜕𝑦∗ +
𝜕𝑧∗𝑥∗

𝜕𝑧∗ + 𝜌𝙜𝑥∗.                                   (3.5) 

 𝜌
𝐷𝑣∗

𝐷𝑡∗ = −
𝜕𝑝

𝜕𝑦∗ +
𝜕𝜏𝑥∗𝑦∗

𝜕𝑥∗ +
𝜕𝜏𝑦∗𝑦∗

𝜕𝑦∗ +
𝜕𝑧∗𝑦∗

𝜕𝑧∗ + 𝜌𝙜𝑦∗ .                   (3.6) 

 𝜌
𝐷𝑤∗

𝐷𝑡∗ = −
𝜕𝑝

𝜕𝑧∗ +
𝜕𝜏𝑥∗𝑧∗

𝜕𝑥∗ +
𝜕𝜏𝑦∗𝑧∗

𝜕𝑦∗ +
𝜕𝜏𝑧∗𝑧∗

𝜕𝑧∗ + 𝜌𝙜𝑧∗.                           (3.7) 

where  𝜏𝑥∗𝑥∗ , 𝜏𝑦∗𝑥∗ , 𝜏𝑧∗𝑥∗, 𝜏𝑥∗𝑦∗ , 𝜏𝑦∗𝑦∗ , 𝜏𝑧∗𝑦∗ , 𝜏𝑥∗𝑧∗ , 𝜏𝑦∗𝑧∗ , 𝜏𝑧∗𝑧∗   are shear stress 

components. 
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Equations (3.5) - (3.7) are scalar equations and are also called Navier-Strokes 

equations. Since the flow is taken along the vertical surface in the upward 

direction, the force of gravity is crucial as it produces buoyancy effects in the 

flow. The atmospheric pressure is distributed equally in all directions in a free 

stream flow and hence can be considered negligible. The Navier-Stokes 

equation, in that case, reduces to 

 𝜌 (
𝜕𝑢∗

𝜕𝑡∗ + 𝑢
𝜕𝑢∗

𝜕𝑥∗ + 𝑣
𝜕𝑢∗

𝜕𝑦∗) = −
𝜕𝑝

𝜕𝑥∗ + 𝜇
𝜕2𝑢∗

𝜕𝑦∗2 + 𝜌𝘨.                                    (3.8) 

The fluid flow experiences Lorenz force which impedes the fluid velocity due to 

the presence of the magnetic field. As a result, the charged particles in the fluid 

experienced an induced electric field, 𝑢∗ × 𝐵0. Using Ohm’s law and neglecting 

the Hall effects, the magnitude of the current density for the weakly ionized fluid 

is given by  

 𝑗 = 𝜎(−𝑢∗ × 𝐵0).                 (3.9) 

In this thesis, a magnetic field of uniform strength 𝐵0 is applied transversely to 

the plate. Also, assuming that 𝑈∗ and 𝜎 are uniform, then  

 𝑗 = 𝜎𝐵0𝑢
∗.                                (3.10)  

 The presence of the transverse magnetic field causes movements of a conducting 

material in fluid which generates electric current, 𝑗. Each unit volume of the 

liquid having 𝑗 current and 𝐵0 magnetic field strength experiences MHD force,  

𝑗 × 𝐵0 called Lorenz force which reduces the motion of the fluid flow to 
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 𝑗 × 𝐵0 = 𝜎𝐵0
2𝑢∗.                                                        (3.11)     

3.1.3 The Energy Equation 

The rate of change of energy inside the fluid element for incompressible 

viscous fluid flow is given (see Appendix I, A1.47) by 

𝜌
𝐷𝑒∗

𝐷𝑡∗ = 𝜌𝑞̇ + 𝐾 (
𝜕2𝑇∗

𝜕𝑥∗2 +
𝜕2𝑇∗

𝜕𝑦∗2 +
𝜕2𝑇∗

𝜕𝑧∗2) +  .    (3.12) 

           

 Where           

   is the dissipation function, which, in rectangular coordinates is 

 = 2𝜇 [(
𝜕𝑢∗

𝜕𝑥∗)
2

+ (
𝜕𝑣∗

𝜕𝑦∗)
2

+ (
𝜕𝑤∗

𝜕𝑧∗)
2

+
1

2
(
𝜕𝑢∗

𝜕𝑦∗ +
𝜕𝑣∗

𝜕𝑥∗)
2

+
1

2
(
𝜕𝑢∗

𝜕𝑧∗ +
𝜕𝑤∗

𝜕𝑥∗)
2

+

           
1

2
(
𝜕𝑣∗

𝜕𝑧∗ +
𝜕𝑤∗

𝜕𝑦∗)
2

] −  (
𝜕𝑢∗

𝜕𝑥∗ +
𝜕𝑣∗

𝜕𝑦∗ +
𝜕𝑤∗

𝜕𝑧∗)
2

.      (3.13) 

 Where   

      𝑞̇ is the rate of volumetric heat addition per unit mass, 

 𝑒∗ is the internal energy per unit mass of the moving fluid, 

   is the bulk viscosity coefficient and 

      𝜇 the shear viscosity coefficient. 

 

3.1.4 The Concentration Equation 

In vector form, the concentration equation (see Appendix I, A1.52) is 
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𝜕𝐶∗

𝜕𝑡∗ = 𝑑𝑖𝑣(𝐷 𝑔𝑟𝑎𝑑 𝐶∗).               (3.14) 

 
𝐷𝐶∗

𝐷𝑡∗ = 𝐷∇2𝐶∗2
 𝑟̇.                    (3.15) 

Where 𝐶∗ is the species concentration, 𝐷 is the mass diffusivity and   𝑟̇ is the 

rate of species generation (+𝑟) or destruction (−𝑟)  which is included due to 

the chemical species in the fluid.  

3.2 Dimensionless variables and parameters                 

The following dimensionless variables and parameters are used to transform the 

problem from dimensional equations to dimensionless equations; 

  𝑢 =
𝑢∗

𝑈0
, 𝑣 =

𝑣∗

𝑈0
,   𝑦 =

𝑈0𝑦∗

𝑣
 , 𝑄 =

𝑣𝑄0

𝑈0
2𝜌𝐶𝑝

, 𝜃 =
𝑇∗−𝑇∞

∗

𝑇𝑤
∗ −𝑇∞

∗  ,  𝑡 =
𝑡∗𝑈0

2

𝑣 
 ,  𝑘 =

𝑈0
2𝑘∗

𝑣 2
,  

∅ =
𝐶∗−𝐶∞

∗

𝐶𝑤
∗ −𝐶∞

  , 𝑃𝑟 =
𝜇𝐶𝑝

𝑘
 or 𝑃𝑟 =

𝑣

∝
,  𝑀 =

𝜎𝐵0
2𝑣 

𝜌𝑈0
2  ,  𝐺𝑟 =

𝑣 𝑔𝛽𝑇(𝑇𝑤
∗ −𝑇∞

∗ )

𝑈0
3  ,  𝐺𝐶 =

𝑣 𝑔𝛽𝑐(𝐶𝑤
∗ −𝐶∞

∗ )

𝑈0
3  𝑘𝑐 =

𝑣 𝑘𝑐
∗

𝑈0
2  ,   𝑆0 =

𝐷1(𝑇𝑤
∗ −𝑇∞

∗ )

𝑣 (𝐶𝑤
∗ −𝐶∞

∗ )
 ,   𝐻 =

𝑄𝑣 2

𝑘𝑈0
2 ,    𝑎 =

𝑎∗𝑣 

𝑈0
2  , 

  𝐴 =
𝑈0

2

𝑣
, 𝐹 =

16𝜎𝑎∗𝑣 2𝑇∞
∗3

𝐾𝑈0
2  ,  𝑆𝑐 =

𝑣

𝐷
,     𝐸𝑐 =

𝑢2

𝐶𝑝(𝑇𝑤 
∗ −𝑇∞

∗)
       

                                   (3.16) 

3.3  Transformation of the Problem 

The transformation process of the problem starts by substituting relevant 

dimensionless variables and parameters into the governing dimensional partial 

differential equations as well as the boundary conditions to obtain the 
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dimensionless temperature, concentration, velocity as well as skin friction, 

Nusselt number and Sherwood number. 

3.4  Analytical Procedure               

The non-linear differential equations governing the flow with their 

corresponding boundary conditions are solved in exact form using Laplace 

transform technique. 

3.4.1 Laplace Transform Technique 

 To solve differential equations by Laplace transforms, four (4) distinct stages 

are observed: 

 Rewrite the equation in terms of Laplace transform with one of the 

variables taken as a dummy variable. 

 Apply the initial conditions. 

 Rearrange the equation algebraically to give the transform of the solution 

 Determine the inverse transform to obtain the general solution. 

This procedure is used to solve the models in subsequent chapters. 
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CHAPTER FOUR 

UNSTEADY BOUNDARY LAYER FLOW PAST A VERTICAL PLATE 

IN THE PRESENCE OF TRANSVERSE MAGNETIC FIELD AND 

HEAT SOURCE EMBEDDED IN A POROUS MEDIUM 

 

4.1  Introduction 

An investigation into the unsteady boundary layer flow past a vertical plate in 

the presence of transverse magnetic field and heat source embedded in a porous 

medium is studied.  The fluid under consideration is gray gas which absorbs or 

emits heat. The governing differential equations are transformed using suitable 

dimensionless parameters. The dimensionless equations were solved using the 

Laplace transform technique and results illustrated graphically for the velocity, 

temperature and concentration profiles as well as the Skin friction, Sherwood 

number and Nusselt number. The study concludes by exploring the effects of 

certain controlling parameters on the flow and how these can be used to control 

the flow kinematics. 
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4.2 Mathematical Formulation of Unsteady Boundary Layer Flow Past a 

Vertical Plate 

Consider the unsteady boundary layer flow past a vertical plate in the presence 

of transverse magnetic field and heat source embedded in a porous medium. In 

addition to the general models’ assumptions in chapter three, the flow is assumed 

to be in the 𝑥∗ − 𝑎𝑥𝑖𝑠 direction which is taken along the vertical plate in the 

upward direction. At time  𝑡∗ > 0, the plate is exponentially accelerated with a 

velocity  𝑢∗ = 𝑈0𝑒
𝑎∗𝑡∗

 in its own plane and the plate temperature is raised 

linearly with time 𝑡 and the level of concentration near the plate is raised to 𝐶𝑤
∗ . 

The physical system of the flow is shown in fig. 4.1.  
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Figure 4. 1  Flow configuration and coordinate system 

 

Under these assumptions, the boundary layer equations governing the unsteady 

flow process can be modeled as shown in the following sections:  

 

4.2.1 The Continuity Equation of Unsteady Boundary Layer Flow Past a 

Vertical Plate 

The continuity equation of fluid flow is derived in (3.3) as 

𝐷𝜌

𝐷𝑡∗
+ 𝜌∇.𝑈∗ = 0                    

Considering the substantial derivative (3.1) 

𝑥∗ 

𝑦∗ 

𝑢∗ 

0 

𝑇𝑤
∗  𝑇∞

∗  

𝐶𝑤
∗  

𝑇∗ 

𝐶∗ 
𝐶∞

∗  

velocity, thermal 

and concentration 

boundary layers 

𝑞𝑟 

𝐵0 

𝑔 
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𝐷

𝐷𝑡∗ =
𝜕

𝜕𝑡∗ +
𝜕

𝜕𝑥∗ +
𝜕

𝜕𝑦∗ +
𝜕

𝜕𝑧∗                 

𝜕

𝜕𝑧∗ = 0 since the problem is two-dimensional (2D) hence (3.1) reduces to 

𝐷

𝐷𝑡∗ =
𝜕

𝜕𝑡∗ +
𝜕

𝜕𝑥∗ +
𝜕

𝜕𝑦∗             (4.1) 

With corresponding 2D velocity field, 



 jviuU ***
 and its divergence 











 j

y
i

x **
 

For incompressible fluid, 
𝐷𝜌

𝐷𝑡∗ = 0   (i.e. the density following the path of a fluid 

element is constant) and by dividing through by 𝜌, (3.3) becomes ∇. 𝑈∗ = 0 

Hence continuity equation given in equation (4.1) now simplifies to 

 
𝜕𝑢∗

𝜕𝑥∗ +
𝜕𝑣∗

𝜕𝑦∗ = 0.                                   (4.2) 

Since the plate is infinite along the 𝑥∗ − direction, all the physical variables are 

functions of 𝑦∗ and 𝑡∗ only. 

Hence the continuity equation in (4.2) reduces to 

 
𝜕𝑣∗

𝜕𝑦∗ = 0.                        (4.3) 

 

4.2.2 The Momentum Equation of Unsteady Boundary Layer Flow Past a 

Vertical Plate  

From the Navier-Stokes equation in (3.8)  
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 𝜌 (
𝜕𝑢∗

𝜕𝑡∗
+ 𝑢

𝜕𝑢∗

𝜕𝑥∗
+ 𝑣

𝜕𝑢∗

𝜕𝑦∗
) = −

𝜕𝑝

𝜕𝑥∗
+ 𝜇

𝜕2𝑢∗

𝜕𝑦∗2
+ 𝜌𝘨,                               

one introduces the fluid pressure, −
𝜕𝑝

𝜕𝑥∗ = 𝑢
𝜕𝑢∗

𝜕𝑥∗ + 𝑣
𝜕𝑢∗

𝜕𝑦∗,  thermal buoyancy,    

*)*( TTg T ,  concentration buoyancy, )**( CCg C , magnetic force,  

𝜎𝐵0
2𝑢∗   and porosity term, *

*
u

k


  into the flow field (3.8) reduces to the 

momentum equation      

**)**(*)*(
*

*

*

*
*

2

0

2

2

u
k

u
B

CCgTTg
y

u

t

u
CT






 









 .        (4.4) 

 

4.2.3 The Energy Equation of Unsteady Boundary Layer Flow Past a 

Vertical Plate 

The rate of change of energy inside the fluid element for incompressible viscous 

fluid flow was derived in as (3.12): 

𝜌
𝐷𝑒∗

𝐷𝑡∗ = 𝜌𝑞̇ + 𝐾 (
𝜕2𝑇∗

𝜕𝑥∗2 +
𝜕2𝑇∗

𝜕𝑦∗2 +
𝜕2𝑇∗

𝜕𝑧∗2) +       

     

In (3.12), the left hand side represents the material derivative whilst the right 

hand is the rate of change of energy inside the fluid element. 

Thus equation (3.12) can be expanded in 2D as 

𝜕𝑇∗

𝜕𝑡∗ + (𝑢
𝜕𝑇∗

𝜕𝑥∗ + 𝑣
𝜕𝑇∗

𝜕𝑦∗) =∝ (
𝜕2𝑇∗

𝜕𝑥∗2 +
𝜕2𝑇∗

𝜕𝑦∗2) +  .                      (4.5) 
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Since the flow is along the 𝑥∗ −  direction, all the physical variables are  

functions of 𝑦∗ and 𝑡∗ only. Hence for the unsteady flow with magnetic field and 

radiative heat flux, (4.5) is modified to become 

2

2

0

2

2

*)**(
*

1

*

*

*

*
u

c

B
TT

c

Q

ycy

T

t

T

pp

r

p

q





 














 .        (4.6) 

 

4.2.4 The Concentration Equation of Unsteady Boundary Layer Flow Past 

a Vertical Plate 

The concentration equation was derived in (3.15) in vector form as 

 
𝜕𝐶∗

𝜕𝑡∗ = 𝐷∇2𝐶∗ ± 𝑟̇                 

In components form, (3.15) is modified to become 

    )**(
*

*

*

* *

2

2










CCK

y

C
D

t

C
C

                (4.7) 

 

Summary of boundary layer model of flow past a vertical plate is  

0
*

*






y

v                               (4.3) 
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**)**(*)*(
*

*

*

*
*

2

0

2

2

u
k

u
B

CCgTTg
y

u

t

u
CT






 









       (4.4)                                                                 

2

2

0

2

2

*)**(
*

1

*

*

*

*
u

c

B
TT

c

Q

ycy

T

t

T

pp

r

p

q





 














                           (4.6)  

)**(
*

*

*

* *

2

2










CCK

y

C
D

t

C
C

                                    (4.7) 

All the physical variables are defined in the Nomenclature in page xxii. 

 

4.2.5 Associated Boundary Conditions of Unsteady Boundary Layer Flow 

Past a Vertical Plate 

The associated boundary conditions for the problem are necessary to obtain a 

complete solution. Under the assumptions of the problem, the boundary 

conditions governing the unsteady flow process are  

𝑢∗ = 0, 𝑇∗ = 𝑇∞
∗ ,   𝐶∗ = 𝐶∞

∗  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑦∗ ≥ 0, 𝑡∗ ≤ 0, 

𝑢∗ = 𝑈0𝑒
𝑎∗𝑡∗

, 𝑇∗ = 𝑇∞
∗ + (𝑇𝑤

∗ − 𝑇∞
∗ )𝐴𝑡 ∗, 𝐶∗ = 𝐶𝑤

∗   𝑎𝑡 𝑦 ∗= 0, 𝑡 ∗> 0,       (4.8)      

𝑢∗ → 0, 𝑇∗ → 𝑇∞
∗ , 𝐶∗ → 𝐶∞

∗   𝑎𝑠 𝑦 ∗→ ∞, 𝑡 ∗> 0.                                                                                                                                            
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4.2.6 Dimensionless Transformation of the Problem of Unsteady Boundary 

Layer Flow Past a Vertical Plate              

The transformation of the problem starts by substituting the necessary dimensionless 

variables and parameters into the dimensional continuity equation, momentum 

equation, energy equation and the concentration equation. Thus, the dimensionless 

variables and parameters in (3.16) are introduced to transform the dimensional 

boundary layer equations (4.3), (4.4), (4.6) and (4.7) with boundary conditions (4.8) 

to dimensionless equations. 

 

4.2.7 Dimensionless Continuity Equation of Unsteady Boundary Layer 

Flow Past a Vertical Plate 

The appropriate dimensionless quantities in (3.16) for the continuity equation are  

as follows: 

For 𝑣 =
𝑣∗

𝑈0
,   one has;      

𝜕𝑣∗

𝜕𝑡∗ = 
𝑈𝑜𝜕𝑣

𝜕𝑡∗   and  
𝜕𝑣∗

𝜕𝑦∗ = 
𝑈𝑜𝜕𝑣

𝜕𝑦∗               (4.9) 

                   For 𝑦 =
𝑈0𝑦∗

𝑣
, one has;    𝑦∗ =

𝑣𝑦

𝑈0
      and  𝜕𝑦∗ = 

𝑣

𝑈0
 𝜕𝑦   (4.10) 

𝜕𝑣∗

𝜕𝑦∗
= 

𝑈𝑜𝜕𝑣

𝜕𝑦∗
=  

𝑈𝑜𝜕𝑣
𝑣

𝑈𝑜
𝜕𝑦

= 
𝑈0

2

𝑣
 
𝜕𝑣

𝜕𝑦
                          (4.11) 

Substituting (4.11) into (4.3) gives the dimensionless continuity equation 
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0




y

v                          (4.12)

  

4.2.8 Dimensionless Momentum Equation of Unsteady Boundary Layer 

Flow Past a Vertical Plate               

The suitable dimensionless quantities in (3.16) for the momentum equation are  

as follows: 

𝑢 =
𝑢∗

𝑈0
            ⇒ 𝑢∗ =  𝑈0𝑢  ⟹  

𝜕𝑢∗

𝜕𝑡∗
= 

𝑈𝑜𝜕𝑢

𝜕𝑡∗
 ⟹  

𝜕𝑢∗

𝜕𝑦∗
= 

𝑈𝑜𝜕𝑢

𝜕𝑦∗
 

   𝑡 =
𝑡∗𝑈0

2

𝑣 
        ⟹𝑡∗ = 

𝑣

𝑈0
2  𝑡    ⟹ 𝜕𝑡∗ = 

𝑣

𝑈0
2  𝜕𝑡  

𝑦 =
𝑈0𝑦∗

𝑣
     ⟹𝑦∗ =

𝑣𝑦

𝑈0
 ⟹𝜕𝑦∗ = 

𝑣

𝑈0
 𝜕𝑦      

                    (4.13) 

Now   

 
𝜕𝑢∗

𝜕𝑡∗ =
𝑈0𝜕𝑢

𝜕𝑡∗ =
𝑈0𝜕𝑢
𝑣

𝑈0
2 𝑑𝑡

= 
𝑈0

3

𝑣
 
𝜕𝑢

𝜕𝑡
, 

𝜕𝑢∗

𝜕𝑦∗ = 
𝑈𝑜𝜕𝑢

𝜕𝑦∗ =  
𝑈𝑜𝜕𝑢
𝑣

𝑈𝑜
𝜕𝑦

= 
𝑈0

2

𝑣
 
𝜕𝑢

𝜕𝑦
,                                                                   (4.14)    

𝜕2𝑢∗

𝜕𝑦∗2 = 
𝑈0

3

𝑣2  
𝜕2𝑢

𝜕𝑦2 .         

                              

Using (4.13) and (4.14) in equation (4.4), produces the dimensionless momentum 

equation;  
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𝑈𝑜
3

𝑣
 
𝜕𝑢

𝜕𝑡
= 𝑣 

𝑈0
3

𝑣2  
𝜕2𝑢

𝜕𝑦2 + 𝑔𝛽𝑇 (𝑇𝑤
∗ − 𝑇∞

∗)𝜃 + 𝑔𝛽𝑐(𝐶𝑤
∗ − 𝐶∞

∗)∅ − 
𝜎𝐵𝑜

2

𝜌
 𝑢𝑈0 −

𝑣

𝑘
𝑢𝑈0.  

𝜕𝑢

𝜕𝑡
=  

𝜕2𝑢

𝜕𝑦2
+ 𝑣𝑔𝛽𝑇  

(𝑇𝑤
∗ − 𝑇∞

∗)

𝑈0
3 𝜃 + 𝑣𝑔𝛽𝑐

(𝐶𝑤
∗ − 𝐶∞

∗)

𝑈0
3 ∅ − 

𝜎𝐵𝑜
2𝑣

𝜌
 
𝑈𝑜𝑢

𝑈0
3

−
𝑣

𝑘
𝑢𝑈0

𝑣

𝑈0
3 

 
𝜕𝑢

𝜕𝑡
= 

𝜕2𝑢

𝜕𝑦2 +  
𝑣𝑔𝛽𝑇(𝑇𝑤

∗ − 𝑇∞
∗)

𝑈0
3 𝜃 + 

𝑣𝑔𝛽𝑐(𝐶𝑤
∗ − 𝐶∞

∗ )

𝑈0
3 ∅ − 

𝜎𝐵𝑜
2𝑣

𝜌𝑈0
2 𝑢 −

𝑣2

𝑘𝑢0
2 𝑢   

𝜕𝑢

𝜕𝑡
= 

𝜕2𝑢

𝜕𝑦2 +  𝐺𝑟𝜃 + 𝐺𝑐∅ − 𝑀1𝑢                 (4.15) 

(4.15) modeled the dimensionless momentum equation. 

 Where 
k

MM
1

1   

 

4.2.9  Dimensionless Energy Equation of Unsteady Boundary Layer Flow 

Past a Vertical Plate  

Using the Rosseland approximation gives 

𝜕𝑞𝑟

𝜕𝑦∗ = −4𝑎∗𝜎(𝑇∞
∗4 − 𝑇∗4) ,               (4.16) 

where 𝑎∗ = Rosseland mean absorption co-efficient, 𝜎 = Stefan-Boltzmann 

constant and 𝑞𝑟 = radiative heat flux. 

Assuming that the temperature differences with the flow are sufficiently small 

such that 𝑇∗4 is expressed as a linear function of the temperature. Then by Taylor 
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series expansion and neglecting the higher order terms, 𝑇∗4 is expressed as a 

linear function of the temperature in the form 

    𝑇∗4 ≈ 4𝑇∞
∗3𝑇∗ − 3𝑇∞

∗4.             (4.17) 

Substituting (4.17) into (4.16) results in  

𝜕𝑞𝑟

𝜕𝑦∗ = −4𝑎∗𝜎(𝑇∞
∗4 − 4𝑇∞

∗3𝑇∗ + 3𝑇∞
∗4)    

= −4𝑎∗𝜎(4𝑇∞
∗4 − 4𝑇∞

∗3𝑇∗)  

= −16𝑎∗𝜎(𝑇∞
∗4 − 𝑇∞

∗3𝑇∗)  

𝜕𝑞𝑟

𝜕𝑦∗ = −16𝑎∗𝜎𝑇∞
∗3(𝑇∞

∗ − 𝑇∗)                                     (4.18)             

The dimensionless quantities in (3.16) suitable for the energy equation are 

differentiated as: 

𝜕𝑇∗

𝜕𝑡∗ = (𝑇𝑤
∗ − 𝑇∞

∗)
𝜕𝜃

𝜕𝑡∗  and  𝜕𝑡∗ =
𝑣

𝑈0
2 𝜕𝑡  

𝜕𝑇∗

𝜕𝑡∗ =
𝑈0

2

𝑣
(𝑇𝑤

∗ − 𝑇∞
∗)

𝜕𝜃

𝜕𝑡
                    (4.19) 

Similarly 
𝜕𝑇∗

𝜕𝑦∗ = (𝑇𝑤
∗ − 𝑇∞

∗)
𝜕𝜃

𝜕𝑦∗  and 𝜕𝑦∗ =
𝑣

𝑈0
𝜕𝑦  

⟹ 
𝜕𝑇∗

𝜕𝑦∗ =
𝑈0

𝑣
(𝑇𝑤

∗ − 𝑇∞
∗)

𝜕𝜃

𝜕𝑦
 

⟹ 
𝜕2𝑇∗

𝜕𝑦∗2
=

𝑈0
2

𝑣2
(𝑇𝑤

∗ − 𝑇∞
∗)

𝜕2𝜃

𝜕𝑦2
                        (4.20)  

Putting (3.16), (4.18), (4.19) and (4.20) in (4.6)   
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𝑈0
2

𝑣
(𝑇𝑤

∗ − 𝑇∞
∗)

𝜕𝜃

𝜕𝑡
= 𝛼

𝑈0
2

𝑣2
(𝑇𝑤

∗ − 𝑇∞
∗)

𝜕2𝜃

𝜕𝑦2 +
1

𝜌𝐶𝑝
16𝑎∗𝜎𝑇∞

∗3(𝑇∞
∗ − 𝑇∗) −

𝑄

𝜌𝐶𝑃
(𝑇𝑤

∗ −

𝑇∞
∗)𝜃 +

𝜎𝐵0
2

𝜌𝐶𝑝
𝑢2𝑈0

2,  

𝜕𝜃

𝜕𝑡
=

∝

𝑣

𝜕2𝜃

𝜕𝑦2
+

 16𝑣𝑎∗𝜎𝑇∞
∗3(𝑇∞

∗−𝑇∗)

𝜌𝐶𝑝𝑈0
2(𝑇𝑤

∗ −𝑇∞
∗)

−
𝑄𝑣

𝜌𝐶𝑃𝑈0
2 𝜃 +

𝜎𝐵0
2𝑣

𝜌𝐶𝑝

𝑢2

(𝑇𝑤
∗ −𝑇∞

∗)
   but  𝑃𝑟 =

𝑣

∝
 

     =
1

𝑃𝑟

𝜕2𝜃

𝜕𝑦2
−

 16𝑣𝑎∗𝜎𝑇∞
∗3(𝑇𝑤

∗ −𝑇∞
∗)

𝜌𝐶𝑝𝑈0
2(𝑇𝑤

∗ −𝑇∞
∗)

𝜃 −
𝑄𝑣

𝜌𝐶𝑃𝑈0
2 𝜃 +

𝜎𝐵0
2𝑣

𝜌𝐶𝑝

𝑢2

(𝑇𝑤
∗ −𝑇∞

∗)
     but   𝑣 =

𝜇

𝜌
 

     =
1

𝑃𝑟

𝜕2𝜃

𝜕𝑦2 −
 16𝑣2𝑎∗𝜎𝑇∞

∗3

𝜇𝐶𝑝𝑈0
2 𝜃 −

𝑄𝑣

𝜌𝐶𝑃𝑈0
2 𝜃 +

𝜎𝐵0
2𝑣

𝜌𝐶𝑝

𝑢2

(𝑇𝑤
∗ −𝑇∞

∗)
   but  𝑃𝑟 =

𝜇𝐶𝑝

𝑘
 

     =
1

𝑃𝑟

𝜕2𝜃

𝜕𝑦2 −
1

𝑃𝑟
𝐹𝜃 −

1

𝑃𝑟
𝐻𝜃 +

𝜎𝐵0
2𝑣

𝜌𝐶𝑝

𝑢2

(𝑇𝑤
∗ −𝑇∞

∗)
     

     =
1

𝑃𝑟

𝜕2𝜃

𝜕𝑦2 −
1

𝑃𝑟
𝐹1𝜃 +

𝜎𝐵0
2𝑣

𝜌𝑈0
2

𝑈0
2

𝐶𝑝(𝑇𝑤
∗ −𝑇∞

∗)
u2     

     
𝜕𝜃

𝜕𝑡
=

1

𝑃𝑟

𝜕2𝜃

𝜕𝑦2 −
 1

𝑃𝑟
𝐹1𝜃 + 𝑀𝐸𝑐𝑢

2    where 𝐹1 = 𝐹 + 𝐻      (4.21) 

(4.21) modeled the dimensionless energy equation. 

 

4.2.10 Dimensionless Concentration Equation of Unsteady Boundary 

Layer Flow Past a Vertical Plate           

The appropriate dimensionless quantities in (3.16) are differentiated for the 

concentration equation as: 

𝜕𝐶∗

𝜕𝑡∗
= (𝐶𝑤

∗ − 𝐶∞
∗)

𝜕∅

𝜕𝑡∗
  and  𝜕𝑡∗ =

𝑣

𝑈0
2 𝜕𝑡  

𝜕𝐶∗

𝜕𝑡∗ =
𝑈0

2

𝑣
(𝐶𝑤

∗ − 𝐶∞
∗)

𝜕∅

𝜕𝑡
                   (4.22) 
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Similarly 
𝜕𝐶∗

𝜕𝑦∗ = (𝐶𝑤
∗ − 𝐶∞

∗)
𝜕∅

𝜕𝑦∗  and 𝜕𝑦∗ =
𝑣

𝑈0
𝜕𝑦  

⟹
𝜕𝐶∗

𝜕𝑦∗
=

𝑈0

𝑣
(𝐶𝑤

∗ − 𝐶∞
∗)

𝜕∅

𝜕𝑦
 

⟹ 
𝜕2𝐶∗

𝜕𝑦∗2
=

𝑈0
2

𝑣2
(𝐶𝑤

∗ − 𝐶∞
∗)

𝜕2∅

𝜕𝑦2
                          (4.23) 

Putting (3.16), (4.22) and (4.23) into (4.7)   

𝑈0
2

𝑣
(𝐶𝑤

∗ − 𝐶∞
∗)

𝜕∅

𝜕𝑡
= 𝐷

𝑈0
2

𝑣2
(𝐶𝑤

∗ − 𝐶∞
∗)

𝜕2∅

𝜕𝑦2 − 𝑘𝑐
∗(𝐶𝑤

∗ − 𝐶∞
∗)∅,    

𝜕∅

𝜕𝑡
=

𝐷

𝑣

𝜕2∅

𝜕𝑦2 − 𝑘𝑐
∗ 𝑣

𝑈0
2 ∅,  

 
𝜕∅

𝜕𝑡
=

1

𝑆𝐶

𝜕2∅

𝜕𝑦2 − 𝑘𝐶∅.                          (4.24) 

The dimensionless concentration equation is modeled in (4.24).  

 

Now the boundary layer equations governing the unsteady flow past a vertical 

plate in dimensionless form are; 

𝜕𝑢

𝜕𝑡
= 

𝜕2𝑢

𝜕𝑦2 +  𝐺𝑟𝜃 + 𝐺𝑐∅ − 𝑀1𝑢  in (4.15);                            

  
𝜕𝜃

𝜕𝑡
=

1

𝑃𝑟

𝜕2𝜃

𝜕𝑦2 −
 1

𝑃𝑟
𝐹1𝜃 + 𝑀𝐸𝑐𝑢

2 in (4.21);               

𝜕∅

𝜕𝑡
=

1

𝑆𝐶

𝜕2∅

𝜕𝑦2 − 𝑘𝐶∅ in (4.24).                           
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4.2.11 Associated Dimensionless Boundary conditions of Unsteady 

Boundary Layer Flow Past a Vertical Plate              

The corresponding dimensionless boundary conditions are now: 

                                                   𝑢 = 0, 𝜃 = 0, ∅ = 0   𝑓𝑜𝑟 𝑎𝑙𝑙    𝑦 ≥ 0, 𝑡 ≤ 0; 

                                                   𝑢 = 𝑒𝑎𝑡  , 𝜃 = 1, ∅ = 1   𝑎𝑡   𝑦 = 0, 𝑡 > 0;    (4.25) 

                           𝑢 → 0, 𝜃 → 0, ∅ → 0     𝑎𝑠    𝑦 → ∞, 𝑡 > 0.                            

                      

4.3  Analytical Solution of Unsteady Boundary Layer Flow Past a Vertical 

Plate                          

The non-linear differential equations (4.15), (4.21) and (4.24) with boundary 

conditions (4.25) are solved in exact form using the Laplace transform 

techniques. 

4.3.1 Laplace Transform Technique of Unsteady Boundary Layer Flow 

Past a Vertical Plate              

The Laplace transforms of (4.15), (4.21) and (4.24) and the boundary conditions 

(4.25) are given as: 

In the temperature (4.21), the Laplace transform of the temperature boundary 

conditions is given as;  

𝜃(𝑦, 0) = 0    𝑓𝑜𝑟 𝑎𝑙𝑙   𝑦 ≥ 0, 𝑡 ≤ 0 𝜃̅(𝑦, 0) = 0; 

𝜃(0, 𝑡) = 1  𝑎𝑡   𝑦 = 0, 𝑡 > 0               𝜃̅(0, 𝑠) =
1

𝑠
 ;   (4.26) 
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𝜃(𝑦, 𝑡) → 0   𝑎𝑠    𝑦 → ∞, 𝑡 > 0 .  𝜃̅(𝑦, 𝑠) → 0.     

           Where 𝑠 is a Laplace transform parameter. 

Taking Laplace transform of (4.21) gives (See Appendix A2.3) 

 
1

𝑃𝑟

𝜕2𝜃̅

𝜕𝑦2 − 𝑠𝜃̅(𝑦, 𝑠) + 𝜃(𝑦, 0) =
𝐹1

𝑃𝑟
𝜃̅(𝑦, 𝑠) − 𝑀𝐸𝑐𝐿[𝑢2] . 

 But 𝑢 ≠constant, since 𝑢 is a function of space and time. i.e. 𝑢(𝑦, 𝑡). 

 Also from the boundary condition  𝜃(𝑦, 0) = 0    𝑓𝑜𝑟 𝑎𝑙𝑙   𝑡 ≤ 0, implies 

        
𝜕2𝜃̅
𝜕𝑦2

− 𝑃𝑟 (𝑠 +
𝐹1

𝑃𝑟
) 𝜃̅ = −𝑃𝑟𝑀𝐸𝑐 𝐿[𝑢2(𝑦, 𝑡)].        (4.27) 

The general solution of (4.27) can be written as; 

𝜃̅(𝑦, 𝑠) = 𝜃̅ℎ(𝑦, 𝑠) + 𝜃̅𝑝(𝑦, 𝑠).             (4.28) 

Where  𝜃̅ℎ (𝑦, 𝑠) is the general solution of the homogeneous problem. 

𝜃̅𝑝(𝑦, 𝑠) is any particular solution of the non-homogeneous problem. 

Considering the homogeneous problem of the LHS of (4.27), the general solution    

(see Appendix A3.5) is  

 𝜃̅ℎ(𝑦, 𝑠) =𝐴(𝑠)𝑒−𝑦√𝑃𝑟𝑠+𝐹1 + 𝐵(𝑠)𝑒𝑦√𝑃𝑟𝑠+𝐹1 .       (4.29) 

Using method of undetermined coefficients, guessing the form of the particular 

solution in (4.27) to be 

        𝜃̅𝑝(𝑦, 𝑠) = 𝐴; 

       𝜃̅𝑝
′ (𝑦, 𝑠) = 0; 

       𝜃̅𝑝
′′(𝑦, 𝑠) = 0; substituting into (4.27) gives 
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      0 − (𝑃𝑟𝑠 + 𝐹1)𝐴 = −𝑃𝑟𝑀𝐸𝑐 𝐿[𝑢2(𝑦, 𝑡)]      

𝐴 =
𝑃𝑟𝑀𝐸𝑐

𝑃𝑟𝑠+𝐹1
𝐿[𝑢2(𝑦, 𝑡)].        (4.30) 

Adding the particular solution (4.30) to (4.29) gives  the general solution  

𝜃̅(𝑦, 𝑠)==𝐴(𝑠)𝑒−𝑦√𝑃𝑟𝑠+𝐹1 + 𝐵(𝑠)𝑒𝑦√𝑃𝑟𝑠+𝐹1 +
𝑃𝑟𝑀𝐸𝑐

𝑃𝑟𝑠+𝐹1
𝐿[𝑢2(𝑦, 𝑡)].           (4.31) 

Since 𝜃(𝑦, 𝑡) → 0 𝑎𝑠  𝑦 → ∞, 𝑡 > 0    ⟹ 𝜃̅(𝑦, 𝑠) = 0 and 𝐵(𝑠) = 0 in (4.31). 

Now (4.31) reduces to   

                  𝜃̅(𝑦, 𝑠)=𝐴(𝑠)𝑒−𝑦√𝑃𝑟𝑠+𝐹1 +
𝑃𝑟𝑀𝐸𝑐

𝑃𝑟𝑠+𝐹1
𝐿[𝑢2(𝑦, 𝑡)].        (4.32) 

𝜃(0, 𝑡) = 1   𝑎𝑡   𝑦 = 0, 𝑡 > 0    𝜃̅(0, 𝑠) =
1

𝑠
 

From (4.32), 
1

𝑠
= 𝐴(𝑠) +

𝑃𝑟𝑀𝐸𝑐

𝑃𝑟𝑠+𝐹1
𝐿[𝑢2(𝑦, 𝑡)]   

Thus, 𝜃̅(𝑦, 𝑠)=(
1

𝑠
−

𝑃𝑟𝑀𝐸𝑐

𝑃𝑟𝑠+𝐹1
𝐿[𝑢2(𝑦, 𝑡)]) 𝑒−√𝑃𝑟𝑠+𝐹1 𝑦 +

𝑃𝑟𝑀𝐸𝑐

𝑃𝑟𝑠+𝐹1
𝐿[𝑢2(𝑦, 𝑡)]         

                    𝜃̅(𝑦, 𝑠)= 
1

𝑠
𝑒−√𝑃𝑟𝑠+𝐹1 𝑦 + 𝐿[𝑢2(𝑦, 𝑡)]𝑃𝑟𝑀𝐸𝑐 (

1

𝑃𝑟𝑠+𝐹1
−

1

𝑃𝑟𝑠+𝐹1
𝑒−√𝑃𝑟𝑠+𝐹1 𝑦). (4.33) 

Equation (4.33) is the general solution of the temperature model in Laplace 

domain whose inverse will be determined later when the velocity function 

𝑢2(𝑦, 𝑡) is known. 

      

Now considering the dimensionless concentration equation (4.24) which is  




Kc
ySct










2

21
.          
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Subjected to the boundary conditions in Laplace domain: 

∅(𝑦, 0) = 0    𝑓𝑜𝑟 𝑎𝑙𝑙   𝑦 ≥ 0, 𝑡 ≤ 0 ∅̅(𝑦, 0) =;    

∅(0, 𝑡) = 1  𝑎𝑡   𝑦 = 0, 𝑡 > 0  ∅̅(0, 𝑠) =
1

𝑠
 ;     (4.34) 

                     ∅(𝑦, 𝑡) → 0   𝑎𝑠    𝑦 → ∞, 𝑡 > 0     ∅̅(𝑦, 𝑠) → 0.               

        Taking Laplace of (4.24)  (See Appendix (A2.4)) gives  

1

𝑆𝑐

𝜕2∅̅

𝜕𝑦2
 −𝑠∅̅(𝑦, 𝑠) + ∅(𝑦, 0)= 𝐾𝑐∅̅.       (4.35) 

But ∅(𝑦, 0) = 0   

𝜕2∅̅

𝜕𝑦2 −𝑆𝑐(𝑠 + 𝐾𝑐)∅̅=0.        (4.36)     

Equation (4.36) is linear homogenous second order ordinary differential 

equation. 

The general solution of the homogeneous problem in (4.36) (see Appendix 

A3.6) is 

∅̅(𝑦, 𝑠) = 𝐴(𝑠)𝑒−𝑦√𝑆𝑐𝑠+𝑆𝑐𝐾𝑐 + 𝐵(𝑠)𝑒𝑦√𝑆𝑐𝑠+𝑆𝑐𝐾𝑐 .       (4.37) 

Since ∅(𝑦, 𝑡) → 0 𝑎𝑠    𝑦 → ∞, 𝑡 > 0      ∅̅(𝑦, 𝑠) = 0 and 𝐵(𝑠) = 0 in (4.37). 

 Then (4.37) reduces to   

              ∅̅(𝑦, 𝑠) = 𝐴(𝑠)𝑒−𝑦√𝑆𝑐𝑠+𝑆𝑐𝐾𝑐 .        (4.38) 

But  ∅(0, 𝑡) = 1   𝑎𝑡   𝑦 = 0, 𝑡 > 0   ∅̅(0, 𝑠) =
1

𝑠
 

From equation (4.38), 
1

𝑠
 =𝐴(𝑠) 

www.udsspace.uds.edu.gh 

 

 



                                                          64 

 

  

                  ∅̅(𝑦, 𝑠)= 
1

𝑠
𝑒−√𝑆𝑐𝑠+𝑆𝑐𝐾𝑐 𝑦.       (4.39) 

Standard inverse Laplace transform of (4.39) is taken from tables in Appendix II 

as well as the use of convolution theorem in Appendix IV. Hence the general 

solution of (4.39) (see convolution theorem in Appendix IV, (A4.3)) becomes 

∅(𝑦, 𝑡) =
1

2
[𝑒−𝑦√𝑆𝑐𝐾𝑐𝑒𝑟𝑓𝑐 (

2𝑡√𝐾𝑐−𝑦√𝑆𝑐

2√𝑡
) + 𝑒𝑦√𝑆𝑐𝐾𝑐𝑒𝑟𝑓𝑐 (

2𝑡√𝐾𝑐+𝑦√𝑆𝑐

2√𝑡
)]    (4.40) 

Where erf is the error function; erfc is the complementary error function. 

 𝑒𝑟𝑓𝑐(𝑥) = 1 − erf(𝑥), 𝑒𝑟𝑓𝑐(0) = 1, 𝑒𝑟𝑓𝑐(∞) = 0,   𝑒𝑟𝑓(0) = 0,    

𝑒𝑟𝑓(∞) = 1, erf(𝑧) =
2

√𝜋
∫ 𝑒−𝑡2

𝑑𝑡,   
𝑧

0
 
𝜕

𝜕𝑧
erf(𝑧) =

2

√𝜋
𝑒−𝑧2

. 

Equation (4.40) is general solution for the concentration profile at 𝑡 > 0. 

 

From the dimensionless momentum equation (4.15) i.e 

 
𝜕𝑢

𝜕𝑡
= 

𝜕2𝑢

𝜕𝑦2 +  𝐺𝑟𝜃 + 𝐺𝑐∅ − 𝑀1𝑢           

Subject to the boundary conditions in Laplace domain as: 

𝑢(𝑦, 0) = 0    𝑓𝑜𝑟 𝑎𝑙𝑙    𝑦 ≥ 0, 𝑡 ≤ 0 𝑢̅(𝑦, 0) = 0; 

𝑢(0, 𝑡) = 𝑒𝑎𝑡   𝑎𝑡   𝑦 = 0, 𝑡 > 0  𝑢̅(0, 𝑠) =
1

𝑠−𝑎
 ;        (4.41) 

 𝑢(𝑦, 𝑡) → 0   𝑎𝑠    𝑦 → ∞, 𝑡 > 0   𝑢̅(𝑦, 𝑠) → 0.      

Taking Laplace transform of (4.15) results in (see Appendix A2.5) 

 
𝜕2u̅

𝜕𝑦2
− 𝑠𝑢̅ + 𝑢(𝑦, 0) = −𝐺𝑟𝜃̅ − 𝐺𝑐∅̅ + 𝑀1𝑢̅.   
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But 𝑢(𝑦, 0) = 0 

𝜕2u̅

𝜕𝑦2 − 𝑠𝑢̅ = −𝐺𝑟𝜃̅ − 𝐺𝑐∅̅ + 𝑀1𝑢̅.                (4.42) 

𝜕2u̅

𝜕𝑦2 − (𝑠+𝑀1)𝑢̅ = −𝐺𝑟𝜃̅ − 𝐺𝑐∅̅.                (4.43)   

Equation (4.43) is linear non-homogenous second order ordinary differential 

equation. 

Considering the homogeneous problem of the LHS of (4.43) the general solution 

is (see Appendix A3.7)          

 𝑢̅ℎ(𝑦, 𝑠) = 𝐴(𝑠)𝑒−√𝑠+𝑀1 𝑦 + 𝐵(𝑠)𝑒√𝑠+𝑀1 𝑦.     (4.44) 

Using method of undetermined coefficients, guessing the form of the particular 

solution in (4.43) to be 

        𝑢̅𝑝(𝑦, 𝑠) = 𝐴; 

       𝑢̅𝑝
′ (𝑦, 𝑠) = 0; 

       𝑢̅𝑝
′′(𝑦, 𝑠) = 0; substituting in (4.43) gives 

      0 − (𝑠 + 𝑀1)𝐴 == −𝐺𝑟𝜃̅ − 𝐺𝑐∅̅ 

𝐴 =
𝐺𝑟

𝑠+𝑀1
𝜃̅ +

𝐺𝑐

𝑠+𝑀1
∅̅.           (4.45) 

Adding the particular solution ((4.45)to (4.44) yields  

        𝑢̅(𝑦, 𝑠) = 𝐴(𝑠)𝑒−√𝑠+𝑀1 𝑦 + 𝐵(𝑠)𝑒√𝑠+𝑀1 𝑦+
𝐺𝑟

𝑠+𝑀1
𝜃̅ +

𝐺𝑐

𝑠+𝑀1
∅̅.     (4.46) 

Since 𝑢(𝑦, 𝑡) → 0 𝑎𝑠    𝑦 → ∞, 𝑡 > 0      𝑢̅(𝑦, 𝑠) = 0 
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From (4.46), 𝐵(𝑠) = 0 . Now (4.46) reduces to   

 𝑢̅(𝑦, 𝑠) = 𝐴(𝑠)𝑒−𝑦√𝑠+𝑀1 +
𝐺𝑟

𝑠+𝑀1
𝜃̅ +

𝐺𝑐

𝑠+𝑀1
∅̅.           (4.47) 

Since 𝑢(0, 𝑡) = 𝑒𝑎𝑡    𝑎𝑡   𝑦 = 0, 𝑡 > 0  ⟹ 𝑢̅(0, 𝑠) =
1

𝑠−𝑎
 

 
1

𝑠−𝑎
= 𝐴(𝑠 ) +

𝐺𝑟

𝑠+𝑀1
𝜃̅ +

𝐺𝑐

𝑠+𝑀1
∅̅  

𝑢̅(𝑦, 𝑠) = ( 
1

𝑠−𝑎
−

𝐺𝑟

𝑠+𝑀1
𝜃̅ −

𝐺𝑐

𝑠+𝑀1
∅̅ ) 𝑒−𝑦√𝑠+𝑀1 +

𝐺𝑟

𝑠+𝑀1
𝜃̅ +

𝐺𝑐

𝑠+𝑀1
∅̅  

𝑢̅(𝑦, 𝑠) =
1

𝑠−𝑎
𝑒−𝑦√𝑠+𝑀1 + 𝐺𝑟𝜃̅ (

1

𝑠+𝑀1
−

1

𝑠+𝑀1
𝑒−𝑦√𝑠+𝑀1 ) + 𝐺𝑐∅̅ (

1

𝑠+𝑀1
−

1

𝑠+𝑀1
𝑒−𝑦√𝑠+𝑀1 ).         (4.48) 

                   

Taking inverse Laplace transform from tables in Appendix II and the use of 

convolution theorem in Appendix IV, the general solution of the velocity 

equation (4.48) (see convolution theorem in Appendix IV, (A4.6) and (A4.8)) is 

𝑢(𝑦, 𝑡) = −
1

2
𝑒𝑎𝑡−𝑦√𝑎+𝑀1𝑒𝑟𝑓𝑐 (

2𝑡√𝑎+𝑀1−𝑦

2√𝑡
) +

1

2
𝑒𝑎𝑡+𝑦√𝑎+𝑀1𝑒𝑟𝑓𝑐 (

2𝑡√𝑎+𝑀1+𝑦

2√𝑡
) + (𝐺𝑟𝜃(𝑦, 𝑡) + 𝐺𝑐∅(𝑦, 𝑡)) (𝑒−𝑀1𝑡 −

𝑒−𝑀1𝑡𝑒𝑟𝑓𝑐 (
𝑦

2√𝑡
)).                    (4.49) 

Equation (4.49) is the general solution for the velocity profile at 𝑡 > 0. 

Where 𝑀1 = 𝑀 +
1

𝑘
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            ∅(𝑦, 𝑡) =
1

2
[𝑒−𝑦√𝑆𝑐𝐾𝑐𝑒𝑟𝑓𝑐 (

2𝑡√𝐾𝑐−𝑦√𝑆𝑐

2√𝑡
) + 𝑒𝑦√𝑆𝑐𝐾𝑐𝑒𝑟𝑓𝑐 (

2𝑡√𝐾𝑐+𝑦√𝑆𝑐

2√𝑡
)]. 

                              𝜃(𝑦, 𝑡) is yet to be determined. 

 

Now, knowing the general solution of the velocity model, the general solution of 

the temperature model can be obtained as; 

From the temperature equation in (4.33) which is 

𝜃̅(𝑦, 𝑠)= 
1

𝑠
𝑒−√𝑃𝑟𝑠+𝐹1 𝑦 + 𝐿[𝑢2(𝑦, 𝑡)]𝑃𝑟𝑀𝐸𝑐 (

1

𝑃𝑟+𝐹1
−

1

𝑃𝑟+𝐹1
𝑒−√𝑃𝑟𝑠+𝐹1 𝑦). 

In finding the Laplace transform of the velocity function 𝑢2(𝑦, 𝑡), the following 

properties of Laplace transform are used; 

 𝐿[𝑢2(𝑦, 𝑡)] ≠ 𝐿[𝑢(𝑦, 𝑡)] × 𝐿[𝑢(𝑦, 𝑡)] ≠ 𝑢̅2(𝑦, 𝑠). 

 If the 𝐿[𝑢2(𝑦, 𝑡)] = 𝐿[𝑢(𝑦, 𝑡) × 𝑢(𝑦, 𝑡)] = 𝑢̅2(𝑦, 𝑠), then  

 𝐿−1[𝑢̅2(𝑦, 𝑠) ] = 𝑢2(𝑦, 𝑡).  

                   𝜃̅(𝑦, 𝑠)= 
1

𝑠
𝑒−𝑦√𝑃𝑟𝑠+𝐹1 +

𝑃𝑟𝑀𝐸𝑐

𝑃𝑟+𝐹1
𝑢̅2(𝑦, 𝑠) (1 − 𝑒−𝑦√𝑃𝑟𝑠+𝐹1 ).   (4.50) 

Taking inverse Laplace transform from tables in Appendix II and the use of 

convolution theorem in Appendix IV. 

The general solution of the temperature model (4.50) (see convolution theorem 

in Appendix IV, (A4.11) and (A4.15)) is 
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      𝜃(𝑦, 𝑡) =
1

2
[−𝑒−𝑦√𝐹1𝑒𝑟𝑓𝑐 (

2𝑡√
𝐹1
𝑃𝑟

−𝑦√𝑃𝑟

2√𝑡
) + 𝑒𝑦√𝐹1𝑒𝑟𝑓𝑐 (

2𝑡√
𝐹1
𝑃𝑟

+𝑦√𝑃𝑟

2√𝑡
)] +

                                       𝑢2(𝑦, 𝑡)𝑀𝐸𝑐 (𝑒
−

𝐹1
𝑃𝑟

𝑡
− 𝑒

−
𝐹1
𝑃𝑟

𝑡
𝑒𝑟𝑓𝑐 (

𝑦√𝑃𝑟

2√𝑡
)).                                      (4.51)In 

In substituting 𝑢2(𝑦, 𝑡)  (see Appendix IV (A4.17)) in the temperature equation (4.51), the 

non-linear term 𝜃2(𝑦, 𝑡) is considered negligible since an early assumption was made in the 

study when determining the dimensionless temperature model that the temperature 

differences in the flow are sufficiently small. i.e. if 𝜃(𝑦, 𝑡) is small then 𝜃2(𝑦, 𝑡) becomes 

much smaller. This conforms in practice because, in engineering practice the emphasis is on 

the effect of sufficiently small change in physical quantities. Hence the general solution of 

the temperature model at 𝑡 > 0 is  

𝜃(𝑦, 𝑡) = [1 − 𝑀𝐸𝑐𝑒
−

𝐹1
𝑃𝑟

𝑡
(1 − 𝑒𝑟𝑓𝑐 (

𝑦√𝑃𝑟

2√𝑡
)) [2𝐺𝑟𝐺𝑐∅(𝑦, 𝑡)𝑒−2𝑀1𝑡 (1 −

2𝑒𝑟𝑓𝑐 (
𝑦

2√𝑡
) + (𝑒𝑟𝑓𝑐 (

𝑦

2√𝑡
))

2

) + 𝐺𝑟 (𝑒−𝑀1𝑡 −

𝑒−𝑀1𝑡𝑒𝑟𝑓𝑐 (
𝑦

2√𝑡
)) (−𝑒𝑎𝑡−𝑦√𝑎+𝑀1𝑒𝑟𝑓𝑐 (

2𝑡√𝑎+𝑀1−𝑦

2√𝑡
) +

𝑒𝑎𝑡+𝑦√𝑎+𝑀1𝑒𝑟𝑓𝑐 (
2𝑡√𝑎+𝑀1+𝑦

2√𝑡
))]]

−1

[−
1

2
𝑒−𝑦√𝐹1𝑒𝑟𝑓𝑐 (

2𝑡√
𝐹1
𝑃𝑟

−𝑦√𝑃𝑟

2√𝑡
) +

1

2
𝑒𝑦√𝐹1𝑒𝑟𝑓𝑐 (

2𝑡√
𝐹1
𝑃𝑟

+𝑦√𝑃𝑟

2√𝑡
) + 𝑀𝐸𝑐𝑒

−
𝐹1
𝑃𝑟

𝑡
(1 −
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𝑒𝑟𝑓𝑐 (
𝑦√𝑃𝑟

2√𝑡
)) [

1

4
𝑒2(𝑎𝑡−𝑦√𝑎+𝑀1) (𝑒𝑟𝑓𝑐 (

2𝑡√𝑎+𝑀1−𝑦

2√𝑡
))

2

+

1

4
𝑒2(𝑎𝑡+𝑦√𝑎+𝑀1) (𝑒𝑟𝑓𝑐 (

2𝑡√𝑎+𝑀1+𝑦

2√𝑡
))

2

+ 𝐺𝑐
2∅2(𝑦, 𝑡)𝑒−2𝑀1𝑡 (1 − 2𝑒𝑟𝑓𝑐 (

𝑦

2√𝑡
) +

(𝑒𝑟𝑓𝑐 (
𝑦

2√𝑡
))

2

) −
1

2
𝑒2𝑎𝑡𝑒𝑟𝑓𝑐 (

2𝑡√𝑎+𝑀1−𝑦

2√𝑡
) 𝑒𝑟𝑓𝑐 (

2𝑡√𝑎+𝑀1+𝑦

2√𝑡
) +

𝐺𝑐∅(𝑦, 𝑡) (𝑒−𝑀1𝑡 − 𝑒−𝑀1𝑡𝑒𝑟𝑓𝑐 (
𝑦

2√𝑡
)) (−𝑒𝑎𝑡−𝑦√𝑎+𝑀1𝑒𝑟𝑓𝑐 (

2𝑡√𝑎+𝑀1−𝑦

2√𝑡
) +

𝑒𝑎𝑡+𝑦√𝑎+𝑀1𝑒𝑟𝑓𝑐 (
2𝑡√𝑎+𝑀1+𝑦

2√𝑡
))]].      (4.52) 

Where  

∅(𝑦, 𝑡) = 
1

2
[𝑒−𝑦√𝑆𝑐𝐾𝑐𝑒𝑟𝑓𝑐 (

2𝑡√𝐾𝑐−𝑦√𝑆𝑐

2√𝑡
) + 𝑒𝑦√𝑆𝑐𝐾𝑐𝑒𝑟𝑓𝑐 (

2𝑡√𝐾𝑐+𝑦√𝑆𝑐

2√𝑡
)]. 

 

𝜃(𝑦, 𝑡) = 𝑏0
−1 [−

1

2
𝑒−𝑦√𝐹1𝑒𝑟𝑓𝑐 (

2𝑡√
𝐹1
𝑃𝑟

−𝑦√𝑃𝑟

2√𝑡
) +

1

2
𝑒𝑦√𝐹1𝑒𝑟𝑓𝑐 (

2𝑡√
𝐹1
𝑃𝑟

+𝑦√𝑃𝑟

2√𝑡
) +

𝑀𝐸𝑐𝑒
−

𝐹1
𝑃𝑟

𝑡
(1 − 𝑒𝑟𝑓𝑐 (

𝑦√𝑃𝑟

2√𝑡
)) [

1

4
𝑒2(𝑎𝑡−𝑦√𝑎+𝑀1) (𝑒𝑟𝑓𝑐 (

2𝑡√𝑎+𝑀1−𝑦

2√𝑡
))

2

+

1

4
𝑒2(𝑎𝑡+𝑦√𝑎+𝑀1) (𝑒𝑟𝑓𝑐 (

2𝑡√𝑎+𝑀1+𝑦

2√𝑡
))

2

+

𝑒−2𝑀1𝑡 𝐺𝑐
2

4
[𝑒−𝑦√𝑆𝑐𝐾𝑐𝑒𝑟𝑓𝑐 (

2𝑡√𝐾𝑐−𝑦√𝑆𝑐

2√𝑡
) + 𝑒𝑦√𝑆𝑐𝐾𝑐𝑒𝑟𝑓𝑐 (

2𝑡√𝐾𝑐+𝑦√𝑆𝑐

2√𝑡
)]

2

(1 −
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2𝑒𝑟𝑓𝑐 (
𝑦

2√𝑡
) + (𝑒𝑟𝑓𝑐 (

𝑦

2√𝑡
))

2

) −
1

2
𝑒2𝑎𝑡𝑒𝑟𝑓𝑐 (

2𝑡√𝑎+𝑀1−𝑦

2√𝑡
) 𝑒𝑟𝑓𝑐 (

2𝑡√𝑎+𝑀1+𝑦

2√𝑡
) +

𝐺𝑐

2
[𝑒−𝑦√𝑆𝑐𝐾𝑐𝑒𝑟𝑓𝑐 (

2𝑡√𝐾𝑐−𝑦√𝑆𝑐

2√𝑡
) + 𝑒𝑦√𝑆𝑐𝐾𝑐𝑒𝑟𝑓𝑐 (

2𝑡√𝐾𝑐+𝑦√𝑆𝑐

2√𝑡
)] (𝑒−𝑀1𝑡 −

𝑒−𝑀1𝑡𝑒𝑟𝑓𝑐 (
𝑦

2√𝑡
)) (−𝑒𝑎𝑡−𝑦√𝑎+𝑀1𝑒𝑟𝑓𝑐 (

2𝑡√𝑎+𝑀1−𝑦

2√𝑡
) +

𝑒𝑎𝑡+𝑦√𝑎+𝑀1𝑒𝑟𝑓𝑐 (
2𝑡√𝑎+𝑀1+𝑦

2√𝑡
))]].                                    (4.53) 

        

Where, 

𝑏0 = 1 − 𝑀𝐸𝑐𝑒
−

𝐹1
𝑃𝑟

𝑡
(1 −

𝑒𝑟𝑓𝑐 (
𝑦√𝑃𝑟

2√𝑡
)) [𝐺𝑟𝐺𝑐𝑒

−2𝑀1𝑡 [𝑒−𝑦√𝑆𝑐𝐾𝑐𝑒𝑟𝑓𝑐 (
2𝑡√𝐾𝑐−𝑦√𝑆𝑐

2√𝑡
) +

𝑒𝑦√𝑆𝑐𝐾𝑐𝑒𝑟𝑓𝑐 (
2𝑡√𝐾𝑐+𝑦√𝑆𝑐

2√𝑡
)] (1 − 2𝑒𝑟𝑓𝑐 (

𝑦

2√𝑡
) + (𝑒𝑟𝑓𝑐 (

𝑦

2√𝑡
))

2

) + 𝐺𝑟 (𝑒−𝑀1𝑡 −

𝑒−𝑀1𝑡𝑒𝑟𝑓𝑐 (
𝑦

2√𝑡
)) (−𝑒𝑎𝑡−𝑦√𝑎+𝑀1𝑒𝑟𝑓𝑐 (

2𝑡√𝑎+𝑀1−𝑦

2√𝑡
) +

𝑒𝑎𝑡+𝑦√𝑎+𝑀1𝑒𝑟𝑓𝑐 (
2𝑡√𝑎+𝑀1+𝑦

2√𝑡
))].    

Equation (4.53) is the general solution of the temperature profile for 𝑡 > 0. 

However, there is other possible solution if 𝜃2(𝑦, 𝑡) ≠ 0 but the presence of the 
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discriminant, 𝑏2 − 4𝑎𝑐 in the solution of the resulting quadratic equation makes 

𝜃(𝑦, 𝑡) not defined for higher physical values of the controlling parameters.   

 

4.4   Dimensionless Fluxes of Unsteady Boundary Layer Flow Past a 

Vertical Plate 

4.4.1 The Rate of Heat Transfer Coefficient of Unsteady Boundary Layer 

Flow Past a Vertical Plate 

Having obtained the temperature field, the rate of heat transfer coefficient at 

the vertical plate characterised by the Nusselt number can be studied. The effects 

of 𝑡, ,𝑀, 𝐹, 𝐻, 𝐸𝑐  and 𝑃𝑟 on Nusselt number will be considered. In dimensionless 

form, the Nusselt number is given by 

𝑁𝑢 = −
𝜕𝜃

𝜕𝑦
|
𝑦=0

 =𝑏0
−2 [

𝑀1𝐸𝑐

2√𝜋3𝑡7
𝐺𝑐𝑒

−2𝑀1𝑡−
𝐹1𝑡

𝑃𝑟 (√𝜋𝑡(8𝑀1𝑡 + 12)) 𝑒𝑟𝑓𝑐 (
2𝑡√𝐾𝑐

2√𝑡
) −

     
 √𝑆𝑐

√𝜋𝑡
𝐺𝑐

2𝑒−4𝑡𝐾𝑐−2𝑀1𝑡 + √𝑆𝑐𝐾𝑐𝐺𝑐
2𝑒−2𝑀1𝑡𝑒𝑟𝑓𝑐 (

2𝑡√𝐾𝑐

2√𝑡
) +

√𝑆𝑐

√𝜋𝑡
𝑒−

2𝑡√𝐾𝑐+𝑀1𝑡

4𝑡 +

      √𝑆𝑐𝐾𝑐𝑒
𝑀1𝑡𝑒𝑟𝑓𝑐 (

2𝑡√𝐾𝑐

2√𝑡
)].                                                                       (4.54)                                                                           

                              

4.4.2 The Rate of Mass Transfer Coefficient of Unsteady Boundary Layer 

Flow Past a Vertical Plate 

Knowing the concentration field, the rate of mass transfer coefficient at the 

vertical plate described by the Sherwood number can be studied. The effects of 

𝑡, 𝑆𝑐 and 𝐾𝑐 on Sherwood number will be examined. In dimensionless form, the 

Sherwood number is given by 
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𝑠ℎ = −(
𝜕∅

𝜕𝑦
)
𝑦=0

   =−
√𝑆𝑐

√𝜋𝑡
𝑒−4𝑡𝐾𝑐 + √𝑆𝑐𝐾𝑐 (

2𝑡√𝐾𝑐

2√𝑡
).    (4.55) 

         

4.4.3 The Skin Friction Coefficient of Unsteady Boundary Layer Flow Past 

a Vertical Plate 

Also, having obtained the velocity field, it is significant to study changes in the 

skin friction due to the effects of the physical parameters 𝑡, 𝐹, 𝐻,𝑀, 𝑃𝑟 , 𝐾𝑐 and 𝑘. 

In dimensionless form, the skin friction is given by 

𝜏 = −
𝜕𝑢

𝜕𝑦
|
𝑦=0

= −
1

√𝜋𝑡
𝑒

−𝑀1
4 𝑒𝑟𝑓𝑐 (

2𝑡√
𝐹1
𝑃𝑟

2√𝑡
) +

1

√𝜋𝑡
𝑒

−𝑀1
4 𝑒𝑟𝑓𝑐 (

2𝑡√𝐾𝑐

2√𝑡
) +

1

√𝜋𝑡
𝑒

−𝑀1𝑡

4𝑡2 (𝐺𝑟𝜃(𝑦, 𝑡) + 𝐺𝑐∅(𝑦, 𝑡)).       (4.56) 

          

4.5 Results and Discussion 

In order to understand the physical dynamics of the problem, the effects of the 

controlling parameters on the Temperature (𝜃), Concentration(∅) and Velocity 

(𝑢) profiles are illustrated graphically using MATLAB. 

4.5.1  Graphical Results 

4.5.1.1 Temperature Profiles 

Fig. 4.2 illustrates the effects of Prandtl number (𝑃𝑟) on the temperature profiles. 

Although, smaller value of 𝑃𝑟 means increasing the thermal conductivities which 
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enable diffusion of more heat (Rout & Pattanayak, 2013), the presence of the 

magnetic field delay the convection motion of the fluid. Therefore, it is observed 

that decreasing 𝑃𝑟 decreases the temperature of the fluid. Fig. 4.3, 4.4, 4.5 and 

4.6 exhibit the effects of Heat absorption parameter (𝐻), Radiation Parameter 

(𝐹 ), Magnetic parameter (𝑀 ) and Eckert number (𝐸𝑐 ) on the temperature 

profiles. It is observed that increase in either 𝐻 or 𝐹 increases the temperature of 

the fluid flow. This is true because, in practice the job of thermal radiation is to 

increase the thermal boundary layer thickness of a fluid. However, increase in 𝑀 

or 𝐸𝑐 decreases the temperature of the flow. This is as a result of the presence of 

magnetic field in the flow which produces Lorentz force which decays the 

thermal boundary layer thickness.  

 

  

 

 

 

 

 

 

 

Figure 4. 2 Effects of 𝑷𝒓 on the temperature profiles when 𝑮𝒓 = 𝟓,𝑮𝒄 = 𝟓, 

 𝒕 = 𝟎. 𝟐, 𝒌 = 𝟏,𝑲𝒄 = 𝟏, 𝑺𝒄 = 𝟐. 𝟎𝟏, 𝒂 = 𝟎. 𝟐, 𝑬𝒄 = 𝟐,𝑴 = 𝟐, 𝑭 = 𝟐  and 𝑯 = 𝟐. 
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Figure 4. 3 Effects of 𝑯 on the temperature profiles when 𝑮𝒓 = 𝟓,𝑮𝒄 = 𝟓, 

𝒕 = 𝟎. 𝟐, 𝒌 = 𝟏,𝑲𝒄 = 𝟏, 𝑺𝒄 = 𝟐. 𝟎𝟏, 𝒂 = 𝟎. 𝟐, 𝑬𝒄 = 𝟐,𝑴 = 𝟐, 𝑭 = 𝟐  and 𝑷𝒓 = 𝟎. 𝟕𝟏. 

 

Figure 4. 4 Effects of 𝑭 on the temperature profiles when 𝑮𝒓 = 𝟓,𝑮𝒄 = 𝟓, 

𝒕 = 𝟎. 𝟐, 𝒌 = 𝟏,𝑲𝒄 = 𝟏, 𝑺𝒄 = 𝟐. 𝟎𝟏, 𝒂 = 𝟎. 𝟐, 𝑬𝒄 = 𝟐,𝑴 = 𝟐,𝑷𝒓 = 𝟎. 𝟕𝟏  and 𝑯 = 𝟐 
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𝜃 

Figure 4. 5 Effects of 𝑴 on the temperature profiles when 𝑮𝒓 = 𝟓,𝑮𝒄 = 𝟓, 

𝒕 = 𝟎. 𝟐, 𝒌 = 𝟏,𝑲𝒄 = 𝟏, 𝑺𝒄 = 𝟐. 𝟎𝟏, 𝒂 = 𝟎. 𝟐, 𝑬𝒄 = 𝟐,𝑷𝒓 = 𝟎. 𝟕𝟏, 𝑭 = 𝟐  and 𝑯 = 𝟐 

Figure 4. 6 Effects of 𝑬𝒄 on the temperature profiles when 𝑮𝒓 = 𝟓,𝑮𝒄 = 𝟓,  

𝒕 = 𝟎. 𝟐, 𝒌 = 𝟏,𝑲𝒄 = 𝟏, 𝑺𝒄 = 𝟐. 𝟎𝟏, 𝒂 = 𝟎. 𝟐, 𝑷𝒓 = 𝟎. 𝟕𝟏,𝑴 = 𝟐, 𝑭 = 𝟐 and 𝑯 = 𝟐 
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4.5.1.2  Concentration Profiles 

Fig. 4.7 and 4.8 show the effects of Chemical reaction parameter (𝐾𝑐 ) and 

Schmidt number (𝑆𝑐) respectively on the concentration profiles. It is observed 

that an increase in the chemical reaction parameter, 𝐾𝑐 decreases the 

concentration boundary layer thickness. Also, it is observed that the 

concentration distribution increases at all points of the flow field with increasing 

values of 𝑆𝑐. 
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Figure 4. 7 Effects of 𝑲𝒄 parameter on the concentration profiles when 

𝒕 = 𝟎. 𝟐 and 𝑺𝒄 = 𝟐. 𝟎𝟏. 
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4.5.1.3 Velocity Profiles 

Fig. 4.9 – Fig. 4.14 illustrate the effects of 𝐾𝑐, 𝑆𝑐, 𝐺𝑐, 𝑃𝑟 , 𝑀  and 𝐺𝑟  on the 

velocity profiles respectively. It is observed that an increase in either 𝐾𝑐, 𝑀 or 

𝐺𝑐 leads to decrease in the velocity of the fluid flow whilst an increase in 𝐺𝑟, 𝑃𝑟  

or 𝑆𝑐 leads to increase in the velocity of the flow as depicted in the diagrams. 

 

Fig. 4.8 Effects of 𝑺𝒄 on the concentration profiles when 

  𝑲𝒄 = 𝟏 and 𝒕 = 𝟎. 𝟐. 
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Figure 4. 9 Effects of 𝑲𝒄 on the velocity profiles when 𝑮𝒓 = 𝟓,𝑮𝒄 = 𝟓, 𝑬𝒄 = 𝟐 

𝒕 = 𝟎. 𝟐, 𝒌 = 𝟏, 𝑺𝒄 = 𝟐. 𝟎𝟏, 𝒂 = 𝟎. 𝟐, 𝑷𝒓 = 𝟎. 𝟕𝟏,𝑴 = 𝟐, 𝑭 = 𝟐 and 𝑯 = 𝟐 

  

Figure 4. 10 Effects of 𝑴 on the velocity profiles when 𝑮𝒓 = 𝟓,𝑮𝒄 = 𝟓,  

𝒕 = 𝟎. 𝟐, 𝒌 = 𝟏,𝑲𝒄 = 𝟏, 𝑺𝒄 = 𝟐. 𝟎𝟏, 𝒂 = 𝟎. 𝟐, 𝑷𝒓 = 𝟎. 𝟕𝟏,𝑬𝒄 = 𝟐, 𝑭 = 𝟐 and 𝑯 = 𝟐 
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Figure 4. 11 Effects of 𝑮𝒓 on the velocity profiles when 𝑴 = 𝟐, 𝑮𝒄 = 𝟓,  

𝒕 = 𝟎. 𝟐, 𝒌 = 𝟏,𝑲𝒄 = 𝟏, 𝑺𝒄 = 𝟐. 𝟎𝟏, 𝒂 = 𝟎. 𝟐, 𝑷𝒓 = 𝟎. 𝟕𝟏,𝑬𝒄 = 𝟐, 𝑭 = 𝟐 and 𝑯 = 𝟐 
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Figure 4. 12 Effects of 𝑮𝒄 on the velocity profiles when 𝑴 = 𝟐, 𝑮𝒓 = 𝟓,  

𝒕 = 𝟎. 𝟐, 𝒌 = 𝟏,𝑲𝒄 = 𝟏, 𝑺𝒄 = 𝟐. 𝟎𝟏, 𝒂 = 𝟎. 𝟐, 𝑷𝒓 = 𝟎. 𝟕𝟏,𝑬𝒄 = 𝟐, 𝑭 = 𝟐 and 𝑯 = 𝟐 
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Figure 4.13 Effects of 𝑷𝒓 of on the velocity profiles when 𝑴 = 𝟐,𝑮𝒓 = 𝟓,  

𝒕 = 𝟎. 𝟐, 𝒌 = 𝟏,𝑲𝒄 = 𝟏, 𝑺𝒄 = 𝟐. 𝟎𝟏, 𝒂 = 𝟎. 𝟐, 𝑮𝒄 = 𝟓, 𝑬𝒄 = 𝟐, 𝑭 = 𝟐 and 𝑯 = 𝟐 

 

    Fig. 4.14 Effects of 𝑺𝒄 on the velocity profiles when 𝑴 = 𝟐,𝑮𝒓 = 𝟓,  

𝒕 = 𝟎. 𝟐, 𝒌 = 𝟏,𝑲𝒄 = 𝟏,𝑷𝒓 = 𝟎. 𝟕𝟏, 𝒂 = 𝟎. 𝟐, 𝑮𝒄 = 𝟓, 𝑬𝒄 = 𝟐, 𝑭 = 𝟐 and 𝑯 = 𝟐 
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4.5.1.4    Nusselt Number Profiles 

Fig. 4.15, 4.16, 4.17, 4.18 and 4.19 show the effects of Prandtl number (𝑃𝑟), 

Magnetic parameter (𝑀), Eckert number  (𝐸𝑐), Radiation parameter (𝐹) and Heat 

absorption parameter (𝐻 ) on the Nusselt number profiles respectively. It is 

observed that increase in 𝑀 or 𝐸𝑐  leads to decrease in the Nusselt number whilst 

increase in either 𝑃𝑟  𝑜𝑟 𝐹 or 𝐻 leads to increase in the Nusselt number. 
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Figure 4. 15 The effects of 𝑷𝒓 on the Nusselt number profiles when 𝑴 = 𝟐,  

𝒕 = 𝟎. 𝟐, 𝒌 = 𝟏,𝑲𝒄 = 𝟏, 𝑮𝒄 = 𝟓, 𝑬𝒄 = 𝟐, 𝑭 = 𝟐 and 𝑯 = 𝟐 
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Figure 4.16 The effects of M on the Nusselt number profiles when 𝑷𝒓 = 𝟎. 𝟕𝟏,  

𝒕 = 𝟎. 𝟐, 𝒌 = 𝟏,𝑲𝒄 = 𝟏, 𝑮𝒄 = 𝟓, 𝑬𝒄 = 𝟐, 𝑭 = 𝟐 and 𝑯 = 𝟐 
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Figure 4. 17 The effects of Ec on the Nusselt number profiles when 𝑷𝒓 = 𝟎. 𝟕𝟏,  

𝒕 = 𝟎. 𝟐, 𝒌 = 𝟏,𝑲𝒄 = 𝟏, 𝑮𝒄 = 𝟓, 𝑴 = 𝟐, 𝑭 = 𝟐 and 𝑯 = 𝟐 
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  Figure 4.18 The effects of F on the Nusselt number profiles when 𝑷𝒓 = 𝟎. 𝟕𝟏,  

𝒕 = 𝟎. 𝟐, 𝒌 = 𝟏,𝑲𝒄 = 𝟏, 𝑮𝒄 = 𝟓, 𝑬𝒄 = 𝟐, 𝑭 = 𝟐 and 𝑯 = 𝟐 

 

Figure 4. 19 The effects of 𝑯 on the Nusselt number profiles when 𝑷𝒓 = 𝟎. 𝟕𝟏,  

𝒕 = 𝟎. 𝟐, 𝒌 = 𝟏,𝑲𝒄 = 𝟏, 𝑮𝒄 = 𝟓, 𝑬𝒄 = 𝟐, 𝑭 = 𝟐 and 𝑴 = 𝟐. 
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4.5.1.5    Sherwood Number Profiles 

Fig. 4.20 and 4.21 show the effects of Schmidt number (Sc) and Chemical 

reaction parameter (Kc) on the Sherwood number profiles respectively. It is 

observed that an increase in Sc results in increase in the Sherwood Number whilst 

increase in  Kc decreases the Sherwood number profile. 
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  Figure 4. 20 Effects of on the Sherwood number profiles when 𝒕 = 𝟎. 𝟐 𝐚𝐧𝐝 𝑲𝒄 = 𝟏.   
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4.5.1.6    Skin Friction Profiles 

Fig. 4.22 and 4.23 show the effects of permeability of porous medium (𝑘) and 

Magnetic parameter (𝑀 ) on the Skin Friction coefficient respectively. It is 

noticed that an increase in 𝑀 results in decrease in the Skin Friction coefficient 

whilst increase in 𝑘 results in increase in the Skin Friction coefficient. 
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Figure 4. 21 Effects of Kc on the Sherwood number profiles when 𝒕 = 𝟎. 𝟐 𝐚𝐧𝐝 𝑺𝒄 = 𝟐. 𝟎𝟏. 
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Figure 4. 22 Effects of k on the Skin Friction coefficient when 

𝒕 = 𝟎. 𝟐, 𝑲𝒄 = 𝟏,𝑯 = 𝟐, 𝑭 = 𝟐, 𝑷𝒓 = 𝟎. 𝟕𝟏 and 𝑴 = 𝟐. 

 

Figure 4.23 Effects of 𝑴 on the Skin Friction coefficient profiles when 

𝒕 = 𝟎. 𝟐, 𝑲𝒄 = 𝟏,𝑯 = 𝟐, 𝑭 = 𝟐, 𝑷𝒓 = 𝟎. 𝟕𝟏 and 𝒌 = 𝟏. 
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4.5.2  Numerical Results 

Table 4.1-4.3 show the behaviour of skin friction coefficient, −𝒖′(𝟎) , 

Sherwood number, −∅′(𝟎) and  Nusselt number, – 𝜽′(𝟎) for various values 

of time (𝑡), magnetic  parameter (𝑀), dimensionless chemical reaction parameter 

(𝐾𝑐), Eckert number (𝐸𝑐), Eckert number (𝐸𝑐), Schmidt number (𝑆𝑐), Prandtl 

number (𝑃𝑟 ), radiation parameter (𝐹 ), dimensionless permeability of porous 

medium and heat absorption coefficient (𝐻). From Table 4.1, it is noted that the 

skin friction coefficient, −𝑢′(0) decreases for increasing values of  𝑡,𝑀, 𝑃𝑟 and 

𝑘𝑐 but increases with increasing values of 𝑘, 𝐹 and 𝐻. From Table 4.2, Sherwood 

number, −∅′(0) decreases with increasing values of 𝑡 and 𝑘𝑐 but increases with 

increasing values of 𝑆𝑐 . From Table 4.3, Nusselt number , – 𝜃′(0) decreases 

with increasing values of 𝑡,𝑀, 𝐸𝑐  but increases with increasing values of and 

 𝑃𝑟, 𝐹, 𝐺𝑐, 𝐾𝑐and 𝑆𝑐. 

In order to measure the accuracy of the results obtained, comparison of the 

present study is made with results of Chamkha et al. (2016) which shown a good 

agreement in Table 4.4. 
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Table 4. 1:The Skin friction coefficient,  -u' (0) at the wall, for various values 

of 𝒕,𝑴, 𝒌, 𝑭,𝑯, 𝑷𝒓 and 𝑲𝒄. 

𝒕 𝑴 𝒌 𝑭 𝑯 𝑷𝒓 𝑲𝒄 −𝒖′(𝟎) 

0.2 1.0 1.0 1.0 1.0 1.0 1.0 0.1194 

0.4 1.0 1.0 1.0 1.0 1.0 1.0 0.0894 

0.6 1.0 1.0 1.0 1.0 1.0 1.0 0.0671 

0.2 1.5 1.0 1.0 1.0 1.0 1.0 0.1053 

0.2 2.0 1.0 1.0 1.0 1.0 1.0 0.0930 

0.2 2.5 1.0 1.0 1.0 1.0 1.0 0.0820 

0.2 1.0 2 1.0 1.0 1.0 1.0 0.1353 

0.2 1.0 4 1.0 1.0 1.0 1.0 0.1440 

0.2 1.0 6 1.0 1.0 1.0 1.0 0.1469 

0.2 1.0 1.0 2 1.0 1.0 1.0 0.1942 

0.2 1.0 1.0 2.5 1.0 1.0 1.0 0.2222 

0.2 1.0 1.0 3 1.0 1.0 1.0 0.2458 
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0.2 1.0 1.0 1.0 2 1.0 1.0 0.1942 

0.2 1.0 1.0 1.0 2.5 1.0 1.0 0.2222 

0.2 1.0 1.0 1.0 3 1.0 1.0 0.2458 

0.2 1.0 1.0 1.0 1.0 0.71 1.0 0.1826 

0.2 1.0 1.0 1.0 1.0 1.0 1.0 0.1194 

0.2 1.0 1.0 1.0 1.0 1.5 1.0 0.0473 

0.2 1.0 1.0 1.0 1.0 1.0 0.2 0.3108 

0.2 1.0 1.0 1.0 1.0 1.0 0.4 0.2434 

0.2 1.0 1.0 1.0 1.0 1.0 0.6 0.1937 
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Table 4. 2:Sherwood number, -∅' (0) at the wall, for various values of 𝒕, 𝑺𝒄 

and 𝑲𝒄. 

𝒕  𝑺𝒄 𝑲𝒄  −∅′(𝟎)  

0.2 1.0 1.0 1.0141 

0.4 1.0 1.0 0.8126 

0.6 1.0 1.0 0.8047 

0.2 0.2 1.0 0.4535 

0.2 0.4 1.0 0.6414 

0.2 0.6 1.0 0.7855 

0.2 1.0 0.2 1.1645 

0.2 1.0 0.4 1.0950 

0.2 1.0 0.6 1.0490 
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Table 4. 3:The Local Nusselt number,  -θ' (0) at the wall, for various values 

of 𝒕,𝑴, 𝑬𝒄, 𝑮𝒄, 𝑭, 𝑷𝒓, 𝑲𝒄, 𝑺𝒄 when 𝒌 = 𝟏 and 𝑯 = 𝟏 

𝒕 𝑴 𝑬𝒄 𝑮𝒄 𝑭 𝑷𝒓 𝑲𝒄 𝑺𝒄 −𝜽′(𝟎) 

0.2 1 1 1 1 1 1 1 1.7623 

0.4 1 1 1 1 1 1 1 0.6154 

0.6 1 1 1 1 1 1 1 0.2877 

0.2 2 1 1 1 1 1 1 0.6075 

0.2 4 1 1 1 1 1 1 0.0482 

0.2 6 1 1 1 1 1 1 0.0037 

0.2 1 0.2 1 1 1 1 1 1.0574 

0.2 1 0.4 1 1 1 1 1 0.7049 

0.2 1 0.6 1 1 1 1 1 0.3525 

0.2 1 1 5 1 1 1 1 0.6611 

0.2 1 1 7 1 1 1 1 0.6943 

0.2 1 1 9 1 1 1 1 1.3111 

0.2 1 1 1 2 1 1 1 0.000052 

0.2 1 1 1 4 1 1 1 0.0056 

0.2 1 1 1 6 1 1 1 0.6075 

0.2 1 1 1 1 0.71 1 1 0.0898 
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0.2 1 1 1 1 1.0 1 1 0.6075 

0.2 1 1 1 1 1.2 1 1 0.3251 

0.2 1 1 1 1 1 0.2 1 0.0458 

0.2 1 1 1 1 1 0.4 1 0.1192 

0.2 1 1 1 1 1 0.6 1 0.2338 

0.2 1 1 1 1 1 1 2 0.3372 

0.2 1 1 1 1 1 1 3 0.4107 

0.2 1 1 1 1 1 1 4 0.4778 

 

 

Table 4. 4:Comparison of results for a reduced Nusselt number (-θ(0))  when       

𝑴 = 𝑬𝒄 = 𝟎.  

Pr                                  Chamkha et al.(2012)                          Present study 

0.71                                          0.5694                                               0.5689 

1.0                                            0.6295                                                0.6294 

3.0                                             0.6727                                               0.6718 

10                                              0.9978                                                0.9967 
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4.6    Conclusion 

The MHD unsteady boundary layer flow in the presence heat generation in 

porous medium has been investigated. The non-linear partial differential 

equations have been modeled and transformed to dimensionless differential 

equations using the dimensionless variables. The Laplace transform techniques 

were employed to solve the resulting dimensionless differential equations 

directly and results illustrated graphically. From the results obtained, the 

following conclusions can be drawn: 

1. The thermal boundary layer thickness diminishes with the magnetic parameter 

(M) or Eckert number (Ec) but increases with the Prandtl number (Pr) or the heat 

absorption parameter (H) or the radiation parameter (F).  

2. The concentration boundary layer thickness increases with the Schmidt number 

(𝑆𝑐) whilst the chemical reaction parameter (𝐾𝑐) causes a reduction in the species 

concentration in the fluid. 

3. The velocity of flow decreases with increase in either Chemical reaction 

parameter (𝐾𝑐) or Magnetic parameter (M) or Mass Grashof number (Gc) but 

increases with an increase in Grashof number (Gr) or Schmidt number (Sc). 

4. The Nusselt number decreases in either Magnetic parameter (M) or Eckert 

number (Ec) but increases with increase in the Prandtl number (Pr) or  Radiation 

parameter (F) or Heat absorption parameter (H). 
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5.  The Sherwood number decreases with time (t) or the chemical reaction 

parameter (Kc) but increases with the Schmidt number (Sc).      

6. The Skin Friction coefficient decreases with increase in time (t), Magnetic 

parameter (M), Prandtl number (Pr), Chemical reaction parameter (Kc) but 

increases with increase in Permeability of porous medium (k), Radiation 

parameter (F) and Heat absorption parameter (H). 
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CHAPTER FIVE 

UNSTEADY HYDROMAGNETIC CONVECTIVE HEAT AND MASS 

TRANSFER PAST AN IMPULSIVELY STARTED INFINITE 

VERTICAL SURFACE WITH NEWTONIAN HEATING IN A POROUS 

MEDIUM 

5.1  Introduction 

In this chapter, unsteady hydromagnetic convective heat and mass transfer past 

an impulsively started infinite vertical surface with Newtonian heating in a 

porous medium  is studied. Three (3) fluids are considered in this study namely 

air, electrolyte solution and water. These fluids physical  Prandtl numbers ( air 

(Pr = 0.71), electrolyte solution (Pr = 1.0) and water ( Pr = 7.0)) in practice are 

used for the analysis. The governing differential equations are transformed using 

suitable dimensionless parameters. The dimensionless equations are solved using 

the Laplace transform techniques and results are illustrated graphically for the 

velocity, temperature and concentration profiles. Numerical results are also 

provided for the Nusselt number, Skin friction and Sherwood number.  
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5.2 Mathematical Formulation of Unsteady Hydromagnetic Convective 

Heat and Mass Transfer 

Consider the unsteady hydromagnetic convective heat and mass transfer past an 

impulsively started infinite vertical surface with Newtonian heating. In addition 

to the models’ assumptions, the flow is assumed to be in the 𝑥∗ − 𝑎𝑥𝑖𝑠 direction 

which is taken along the plate in the vertical upward direction. At time 𝑡∗ > 0, 

the plate is subjected to an impulsive motion in vertically upward direction with 

a uniform velocity 𝑈0 and at a temperature 𝑇𝑤
∗  and the concentration level near 

the plate is raised to 𝐶𝑤
∗  . The physical system of the flow is shown in Fig. 5.1.  

 

 

 

 

 

 

 

 

                    

𝑥∗ 

 

 
 

𝑈0 

 

 

𝑇∞
∗  

𝐶∞
∗  

𝑇𝑤
∗  

𝐶𝑤
∗  

𝑇∗ 

𝐶∗ 

Impulsively started 

𝑞𝑟 

𝐵0 

𝑦∗ 

velocity, thermal and  

concentration boundary  

layers  

0 

 

𝑔 

Figure 5. 1 Flow configuration and coordinate system 
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The boundary layer equations governing the unsteady flow process can be 

modeled as shown in the following sections:  

 

5.2.1 The Continuity Equation of Unsteady Hydromagnetic Convective 

Heat and Mass Transfer  

Since the plate is infinitely along the 𝑥∗ − direction, all the physical variables 

are functions of 𝑦∗ and 𝑡∗ only aand hence the continuity equation was derived 

in (4.3) as 

 
𝜕𝑣∗

𝜕𝑦∗ = 0               

5.2.2 The Momentum Equation of Unsteady Hydromagnetic Convective 

Heat and Mass Transfer 

The momentum equation was derived in (3.8) as 

𝜌 (
𝜕𝑢∗

𝜕𝑡∗ + 𝑢
𝜕𝑢∗

𝜕𝑥∗ + 𝑣
𝜕𝑢∗

𝜕𝑦∗) = −
𝜕𝑝

𝜕𝑥∗ + 𝜇
𝜕2𝑢∗

𝜕𝑦∗2 + 𝜌𝘨                 

Introducing the fluid pressure, −
𝜕𝑝

𝜕𝑥∗ = 𝑢
𝜕𝑢∗

𝜕𝑥∗ + 𝑣
𝜕𝑢∗

𝜕𝑦∗,  thermal buoyancy, 

*)*( TTg T ,  concentration buoyancy, )**( CCg C  and magnetic force,  

𝜎𝐵0
2𝑢∗ into the flow field in (3.8) reduces to the momentum equation    

*

2

0

2

2

)**(*)*(
*

*

*

*
u

B
CCgTTg

y

u

t

u
CT




 











                 (5.1) 
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5.2.3 The Energy Equation of Unsteady Hydromagnetic Convective Heat 

and Mass Transfer 

In (3.12), the energy equation was derived as 

𝜕𝑇∗

𝜕𝑡∗ + (𝑢
𝜕𝑇∗

𝜕𝑥∗ + 𝑣
𝜕𝑇∗

𝜕𝑦∗ + 𝑤
𝜕𝑇∗

𝜕𝑧∗) =∝ (
𝜕2𝑇∗

𝜕𝑥∗2 +
𝜕2𝑇∗

𝜕𝑦∗2 +
𝜕2𝑇∗

𝜕𝑧∗2) +                      

Since the flow is along the 𝑥∗ − direction, all the physical variables are the 

functions of 𝑦∗ and 𝑡∗ only. Hence for the unsteady flow with magnetic field and 

radiative heat flux, (3.12) is modified to become     

2*2

02

2

**

*

*

*
uB

yy

T
k

t

T q
c

r

p
 














                (5.2)  

5.2.4 The Concentration Equation of Unsteady Hydromagnetic Convective 

Heat and Mass Transfer 

The concentration equation was derived in vector form in (3.15) as 

 
𝜕𝐶∗

𝜕𝑡∗ = 𝐷∇2𝐶∗ + 𝑟̇                

In component form, (3.15) is modified to become 

  )**(
*

*

*

*
2

2










CCK

y

C
D

t

C
C

   ( as in (4.7)) .           

Now the boundary layer equations governing the unsteady flow process modeled 

in dimensional form are 

𝜕𝑣∗

𝜕𝑦∗ = 0  ( as in (4.3)).                           
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*

2

0

2

2

)**(*)*(
*

*

*

*
u

B
CCgTTg

y

u

t

u
CT




 











 .              (5.1) 

2*2

02

2

**

*

*

*
uB

yy

T
k

t

T q
c

r

p
 














.           (5.2) 

)**(
*

*

*

*
2

2










CCK

y

C
D

t

C
C

.                                          

5.2.5 Associated Boundary Conditions of Unsteady Hydromagnetic 

Convective Heat and Mass Transfer 

Under the assumptions of the problem, the boundary conditions governing the 

unsteady flow process are                     

𝑢∗ = 0, 𝑇∗ = 𝑇∞
∗  𝐶∗ = 𝐶∞

∗   𝑓𝑜𝑟 𝑎𝑙𝑙   𝑦∗ ≥ 0, 𝑡∗ ≤ 0; 

𝑢∗ = 𝑈0, 𝑇∗ = 𝑇𝑤
∗ , 𝐶∗ = 𝐶𝑤

∗    𝑎𝑡  𝑦∗ = 0, 𝑡∗ > 0;   (5.3) 

𝑢∗ → 0, 𝑇∗ → 𝑇∞
∗ , 𝐶∗ → 𝐶∞

∗    𝑎𝑠  𝑦∗ → ∞ , 𝑡∗ > 0.                                             

                    

5.2.6 Dimensionless Transformation of Unsteady Hydromagnetic 

Convective Heat and Mass Transfer 

The dimensionless temperature, concentration, velocity as well as skin friction, 

Nusselt number and Sherwood number are obtained using the following 

dimensionless parameters. 
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5.2.7 The Dimensionless Variables of Unsteady Hydromagnetic Convective 

Heat and Mass Transfer 

The dimensionless equalities in (3.16) similar to dimensionless parameters used 

by Narahari et al. (2011), Sharidan et al. (2014), Chaudhary et al. (2006) are 

introduced. 

 

5.2.8 Dimensionless Continuity Equation of Unsteady Hydromagnetic 

Convective Heat and Mass Transfer 

The dimensionless continuity equation was derived in (4.12) as 

.0




y

v     

                 

5.2.9 The Dimensionless Momentum Equation of Unsteady Hydromagnetic 

Convective Heat and Mass Transfer 

Substituting the partial derivatives of the dimensionless quantities for the 

momentum equation in (4.9), (4.13) and (4.14) into (5.1) give 

𝑈𝑜
3

𝑣
 
𝜕𝑢

𝜕𝑡
= 𝑣 

𝑈0
3

𝑣2  
𝜕2𝑢

𝜕𝑦2 + 𝑔𝛽𝑇 (𝑇𝑤
∗ − 𝑇∞

∗ )𝜃 + 𝑔𝛽𝑐(𝐶𝑤
∗ − 𝐶∞

∗ )∅ − 
𝜎𝐵𝑜

2

𝜌
 𝑢𝑈0 , 

 
𝜕𝑢

𝜕𝑡
= 

𝜕2𝑢

𝜕𝑦2 + 𝑣𝑔𝛽𝑇  
(𝑇𝑤

∗ − 𝑇∞
∗ )

𝑈0
3 𝜃 + 𝑣𝑔𝛽𝑐

(𝐶𝑤
∗ − 𝐶∞

∗ )

𝑈0
3 ∅ − 

𝜎𝐵𝑜
2𝑣

𝜌
 
𝑈𝑜𝑢

𝑈0
3 , 

 
𝜕𝑢

𝜕𝑡
= 

𝜕2𝑢

𝜕𝑦2 +  
𝑣𝑔𝛽𝑇(𝑇𝑤

∗ − 𝑇∞
∗ )

𝑈0
3 𝜃 + 

𝑣𝑔𝛽𝑐(𝐶𝑤
∗ − 𝐶∞

∗ )

𝑈0
3 ∅ − 

𝜎𝐵𝑜
2𝑣

𝜌𝑈0
2 𝑢 , 
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𝜕𝑢

𝜕𝑡
= 

𝜕2𝑢

𝜕𝑦2
+  𝐺𝑟𝜃 + 𝐺𝑐∅ − 𝑀𝑢.                  (5.4) 

5.2.10 The Dimensionless Energy Equation of Unsteady Hydromagnetic 

Convective Heat and Mass Transfer 

Using Rosseland approximation in (4.18) and by substituting the partial 

derivatives of the dimensionless quantities for the energy equation  (4.19) and 

(4.20) into (5.2) gives 

𝑈0
2

𝑣
(𝑇𝑤

∗ − 𝑇∞
∗ )

𝜕𝜃

𝜕𝑡
=

𝑣

𝑃𝑟

𝑈0
2

𝑣2
(𝑇𝑤

∗ − 𝑇∞
∗ )

𝜕2𝜃

𝜕𝑦2
+

1

𝜌𝐶𝑝
 16𝑎∗𝜎𝑇∞

∗3(𝑇∞
∗ − 𝑇∗) +

𝜎𝐵0
2

𝜌𝐶𝑝
𝑢2𝑈0,

2   

𝜕𝜃

𝜕𝑡
=

1

𝑃𝑟

𝜕2𝜃

𝜕𝑦2 +
 16𝑣𝑎∗𝜎𝑇∞

∗3(𝑇∞
∗ −𝑇∗)

𝜌𝐶𝑝𝑈0
2(𝑇𝑤

∗ −𝑇∞
∗ )

+
𝜎𝐵0

2

𝜌𝐶𝑝
𝑢2𝑈0

2 𝑣

𝑈0
2(𝑇𝑤

∗ −𝑇∞
∗ )

 , 

     =
1

𝑃𝑟

𝜕2𝜃

𝜕𝑦2 −
 16𝑣𝑎∗𝜎𝑇∞

∗3(𝑇𝑤
∗ −𝑇∞

∗ )

𝜌𝐶𝑝𝑈0
2(𝑇𝑤

∗ −𝑇∞
∗ )

𝜃 +
𝜎𝐵0

2

𝜌𝐶𝑝
𝑢2𝑈0

2 𝑣

𝑈0
2(𝑇𝑤

∗ −𝑇∞
∗ )

     since   𝑣 =
𝜇

𝜌
, 

     =
1

𝑃𝑟

𝜕2𝜃

𝜕𝑦2 −
 16𝑣2𝑎∗𝜎𝑇∞

∗3

𝜇𝐶𝑝𝑈0
2 𝜃 +

𝜎𝐵0𝑣
2

𝜌𝑈0
2

𝑈0
2

𝐶𝑝(𝑇𝑤 
∗ −𝑇∞

∗ )
𝑢2,  

     =
1

𝑃𝑟

𝜕2𝜃

𝜕𝑦2 −
 16𝑣2𝑎∗𝜎𝑇∞

∗3

𝑃𝑟𝑘𝑈0
2 𝜃 + 𝑀𝐸𝑐𝑢

2,  

     =
1

𝑃𝑟

𝜕2𝜃

𝜕𝑦2 −
 1

𝑃𝑟
𝐹𝜃 + 𝑀𝐸𝑐𝑢

2 , 

     =
1

𝑃𝑟
(
𝜕2𝜃

𝜕𝑦2 − 𝐹𝜃) + 𝑀𝐸𝑐𝑢
2.                (5.5) 

 

www.udsspace.uds.edu.gh 

 

 



                                                          102 

 

  

5.2.11 The Dimensionless Concentration Equation of Unsteady   

Convective Heat and Mass Transfer 

Since the concentration boundary layer equation is the same as in (4.7), by 

substituting the partial derivatives of the dimensionless quantities for the 

concentration equation in (4.22) and (4.23) into (4.7) resulted in  

𝜕∅

𝜕𝑡
=

1

𝑆𝐶

𝜕2∅

𝜕𝑦2 − 𝑘𝐶∅  (see (4.24)).         

Now the boundary layer equations governing the unsteady flow process modeled 

in dimensionless form are (5.4), (5.5) and (4.24). 

     

5.2.12 Associated Dimensionless Boundary Conditions of Unsteady 

Hydromagnetic Convective Heat and Mass Transfer 

The corresponding boundary conditions in dimensionless form are 

𝑢 = 0     𝜃 = 0   ∅ = 0  for all 𝑦 ≥ 0, 𝑡 ≤ 0; 

𝑢 = 1      𝜃 = 0,    ∅ = 1  for all 𝑦 = 0, 𝑡 > 0;          (5.6) 

𝑢 → 0     𝜃 → 0     ∅ → 0  as 𝑦 → ∞, 𝑡 > 0.      
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5.3 Analytical Solution of Unsteady Hydromagnetic Convective Heat and 

Mass Transfer 

The non-linear differential equations (5.4), (5.5) and (4.24) with boundary 

conditions (5.6) are solved in exact form using Laplace transform technique as 

shown below.  

 

5.3.1 Laplace Transform Technique of Unsteady Hydromagnetic 

Convective Heat and Mass Transfer 

In the energy model (5.5) subject to the boundary conditions in (5.6)  

In Laplace domain, the boundary conditions can be written as: 

𝜃(𝑦, 0) = 0    𝑓𝑜𝑟 𝑎𝑙𝑙   𝑦 ≥ 0, 𝑡 ≤ 0 𝜃̅(𝑦, 0) = 0;   

𝜃(0, 𝑡) = 0   𝑎𝑡   𝑦 = 0, 𝑡 > 0       𝜃̅(0, 𝑠) = 0;  (5.7) 

𝜃(𝑦, 𝑡) → 0   𝑎𝑠    𝑦 → ∞, 𝑡 > 0          𝜃̅(𝑦, 𝑠) → 0.   

Taking Laplace transform of (5.5) results in 

 
1

𝑃𝑟

𝜕2𝜃̅

𝜕𝑦2 − 𝑠𝜃̅(𝑦, 𝑠) + 𝜃(𝑦, 0) =
𝐹

𝑃𝑟
𝜃̅(𝑦, 𝑠) − 𝑀𝐸𝑐𝐿[𝑢2] .   (5.8) 

 Also from the boundary condition  𝜃(𝑦, 0) = 0    𝑓𝑜𝑟 𝑎𝑙𝑙   𝑡 ≤ 0, implies 

        
𝜕2𝜃̅
𝜕𝑦2 − 𝑃𝑟 (𝑠 +

𝐹

𝑃𝑟
) 𝜃̅ = −𝑃𝑟𝑀𝐸𝑐 𝐿[𝑢2(𝑦, 𝑡)].       (5.9) 

Considering the homogeneous problem of the LHS of (5.9), the general solution    

is  
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 𝜃̅ℎ(𝑦, 𝑠) =𝐴(𝑠)𝑒−𝑦√𝑃𝑟𝑠+𝐹 + 𝐵(𝑠)𝑒𝑦√𝑃𝑟𝑠+𝐹 .       (5.10) 

Using method of undetermined coefficients, guessing the form of the particular 

solution in (5.9) to be 

        𝜃̅𝑝(𝑦, 𝑠) = 𝐴; 

       𝜃̅𝑝
′ (𝑦, 𝑠) = 0; 

       𝜃̅𝑝
′′(𝑦, 𝑠) = 0; substituting in (5.9) gives 

      0 − (𝑃𝑟𝑠 + 𝐹)𝐴 = −𝑃𝑟𝑀𝐸𝑐  𝐿[𝑢2(𝑦, 𝑡)]      

𝐴 =
𝑃𝑟𝑀𝐸𝑐

𝑃𝑟𝑠+𝐹
𝐿[𝑢2(𝑦, 𝑡)].        (5.11) 

Adding the particular solution (5.11) to (5.10) gives  the general solution  

𝜃̅(𝑦, 𝑠)==𝐴(𝑠)𝑒−𝑦√𝑃𝑟𝑠+𝐹 + 𝐵(𝑠)𝑒𝑦√𝑃𝑟𝑠+𝐹 +
𝑃𝑟𝑀𝐸𝑐

𝑃𝑟𝑠+𝐹
𝐿[𝑢2(𝑦, 𝑡)].           (5.12) 

Since 𝜃(𝑦, 𝑡) → 0 𝑎𝑠  𝑦 → ∞, 𝑡 > 0    ⟹ 𝜃̅(𝑦, 𝑠) = 0 and 𝐵(𝑠) = 0 in (5.12). 

Now (5.12) reduces to   

                  𝜃̅(𝑦, 𝑠)=𝐴(𝑠)𝑒−𝑦√𝑃𝑟𝑠+𝐹 +
𝑃𝑟𝑀𝐸𝑐

𝑃𝑟𝑠+𝐹
𝐿[𝑢2(𝑦, 𝑡)].        (5.13) 

𝜃(0, 𝑡) = 0   𝑎𝑡   𝑦 = 0, 𝑡 > 0    𝜃̅(0, 𝑠) = 0 

From (5.13), 0 = 𝐴(𝑠) +
𝑃𝑟𝑀𝐸𝑐

𝑃𝑟𝑠+𝐹
𝐿[𝑢2(𝑦, 𝑡)]   

 𝜃̅(𝑦, 𝑠)=−𝐿[𝑢2(𝑦, 𝑡)]𝑃𝑟𝑀𝐸𝑐
𝑒−𝑦√𝑃𝑟𝑠+𝐹 

𝑃𝑟𝑠+𝐹
 +𝐿[𝑢2(𝑦, 𝑡)]𝑃𝑟𝑀𝐸𝑐

1

𝑃𝑟𝑠+𝐹
.       (5.14) 

 𝜃̅(𝑦, 𝑠) = 𝑢̅2(𝑦, 𝑠)𝑃𝑟𝑀𝐸𝑐 (
1

𝑃𝑟𝑠+𝐹
−

1

𝑃𝑟𝑠+𝐹
𝑒−𝑦√𝑃𝑟𝑠+𝐹 ).   (5.15) 

 Equation (5.15) is the solution of the temperature model in Laplace domain.  
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Again, the velocity term is coupled in the temperature equation, the general 

solution of the velocity equation is obtained upon which the general solution of 

the temperature equation can be determined. 

 

Now considering the dimensionless concentration equation (4.24) which is  




Kc
ySct










2

21
.          

Subjected to the boundary conditions in Laplace domain: 

∅(𝑦, 0) = 0    𝑓𝑜𝑟 𝑎𝑙𝑙   𝑦, 𝑡 ≤ 0  ∅̅(𝑦, 0) = 0;    

∅(0, 𝑡) = 1  𝑎𝑡   𝑦 = 0, 𝑡 > 0  ∅̅(0, 𝑠) =
1

𝑠
 ;   

                     ∅(𝑦, 𝑡) → 0   𝑎𝑠    𝑦 → ∞, 𝑡 > 0     ∅̅(𝑦, 𝑠) → 0.      

Also, since the concentration boundary conditions is the same as in (4.34), the 

general solution of the concentration profile at 𝑡 > 0  (see (4.40)) is        

∅(𝑦, 𝑡) =
1

2
[𝑒−𝑦√𝑆𝑐𝐾𝑐𝑒𝑟𝑓𝑐 (

2𝑡√𝐾𝑐−𝑦√𝑆𝑐

2√𝑡
) + 𝑒𝑦√𝑆𝑐𝐾𝑐𝑒𝑟𝑓𝑐 (

2𝑡√𝐾𝑐+𝑦√𝑆𝑐

2√𝑡
)].     

                 

Similarly, in momentum model (5.4) subject to the boundary conditions in (5.6). 

In Laplace domain, the momentum boundary conditions can be written as: 

   

𝑢(𝑦, 0) = 0    𝑓𝑜𝑟 𝑎𝑙𝑙    𝑦 ≥ 0, 𝑡 ≤ 0 𝑢̅(𝑦, 0) = 0; 
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𝑢(0, 𝑡) = 1  𝑎𝑡   𝑦 = 0, 𝑡 > 0  𝑢̅(0, 𝑠) =
1

𝑠
 ;         (5.16) 

 𝑢(𝑦, 𝑡) → 0   𝑎𝑠    𝑦 → ∞, 𝑡 > 0   𝑢̅(𝑦, 𝑠) → 0.      

Taking Laplace transform of (5.4) results in 

  
𝜕2u̅

𝜕𝑦2
− 𝑠𝑢̅ + 𝑢(𝑦, 0) = −𝐺𝑟𝜃̅ − 𝐺𝑐∅̅ + 𝑀𝑢̅.   

But 𝑢(𝑦, 0) = 0 

𝜕2u̅

𝜕𝑦2
− 𝑠𝑢̅ = −𝐺𝑟𝜃̅ − 𝐺𝑐∅̅ + 𝑀𝑢̅.                (5.17) 

𝜕2u̅

𝜕𝑦2 − (𝑠 + 𝑀)𝑢̅ = −𝐺𝑟𝜃̅ − 𝐺𝑐∅̅.                (5.18)   

Equation (5.18) is linear non-homogenous second order ordinary differential 

equation. 

Considering the homogeneous problem of the LHS of (5.18) the general solution 

is  

 𝑢̅ℎ(𝑦, 𝑠) = 𝐴(𝑠)𝑒−𝑦√𝑠+𝑀 + 𝐵(𝑠)𝑒𝑦√𝑠+𝑀 .     (5.19) 

Using method of undetermined coefficients, guessing the form of the particular 

solution in (5.18) to be 

        𝑢̅𝑝(𝑦, 𝑠) = 𝐴; 

       𝑢̅𝑝
′ (𝑦, 𝑠) = 0; 

       𝑢̅𝑝
′′(𝑦, 𝑠) = 0; substituting in (5.18) gives 

      0 − (𝑠 + 𝑀)𝐴 == −𝐺𝑟𝜃̅ − 𝐺𝑐∅̅ 
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𝐴 =
𝐺𝑟

𝑠+𝑀
𝜃̅ +

𝐺𝑐

𝑠+𝑀
∅̅.           (5.20) 

Adding the particular solution (5.20) to (5.19) yields  

 𝑢̅(𝑦, 𝑠) = 𝐴(𝑠)𝑒−𝑦√𝑠+𝑀 + 𝐵(𝑠)𝑒𝑦√𝑠+𝑀 +
𝐺𝑟

𝑠+𝑀
𝜃̅ +

𝐺𝑐

𝑠+𝑀
∅̅.       (5.21) 

Since 𝑢(𝑦, 𝑡) → 0 𝑎𝑠    𝑦 → ∞, 𝑡 > 0      𝑢̅(𝑦, 𝑠) = 0 

From (5.21), 𝐵(𝑠) = 0 . Now (2.21) reduces to   

 𝑢̅(𝑦, 𝑠) = 𝐴(𝑠)𝑒−𝑦√𝑠+𝑀 +
𝐺𝑟

𝑠+𝑀
𝜃̅ +

𝐺𝑐

𝑠+𝑀
∅̅.          (5.22) 

Since 𝑢(0, 𝑡) = 1   𝑎𝑡   𝑦 = 0, 𝑡 > 0  ⟹ 𝑢̅(0, 𝑠) = 1 

 1 = 𝐴(𝑠 ) +
𝐺𝑟

𝑠+𝑀
𝜃̅ +

𝐺𝑐

𝑠+𝑀
∅̅  

𝑢̅(𝑦, 𝑠) = ( 1 −
𝐺𝑟

𝑠+𝑀
𝜃̅ −

𝐺𝑐

𝑠+𝑀
∅̅ ) 𝑒−𝑦√𝑠+𝑀 +

𝐺𝑟

𝑠+𝑀
𝜃̅ +

𝐺𝑐

𝑠+𝑀
∅̅  

𝑢̅(𝑦, 𝑠) = 𝑒−𝑦√𝑠+𝑀 + 𝐺𝑟𝜃̅ (
1

𝑠+𝑀
−

1

𝑠+𝑀
𝑒−𝑦√𝑠+𝑀 ) + 𝐺𝑐∅̅ (

1

𝑠+𝑀
−

1

𝑠+𝑀
𝑒−𝑦√𝑠+𝑀 ).            (5.23) 

Taking inverse Laplace transform of (5.23), the general solution (see convolution 

theorem in Appendix IV, (A4.4) and (A4.8)) is 

𝑢(𝑦, 𝑡) =
𝑦𝑒

−
𝑦2

4𝑡
−𝑡𝑀

2√𝜋𝑡3
+ 𝐺𝑟𝜃(𝑦, 𝑡) (𝑒−𝑀𝑡 − 𝑒−𝑀𝑡𝑒𝑟𝑓𝑐 (

𝑦

2√𝑡
)) +

𝐺𝑐∅(𝑦, 𝑡) (𝑒−𝑀𝑡 − 𝑒−𝑀𝑡𝑒𝑟𝑓𝑐 (
𝑦

2√𝑡
)).  
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                  𝑢(𝑦, 𝑡) =
𝑦𝑒

−
𝑦2

4𝑡
−𝑡𝑀

2√𝜋𝑡3
+ (𝐺𝑟𝜃(𝑦, 𝑡) + 𝐺𝑐∅(𝑦, 𝑡)) (𝑒−𝑀𝑡 − 𝑒−𝑀𝑡𝑒𝑟𝑓𝑐 (

𝑦

2√𝑡
)).   (5.24) 

   

Equation (5.24) is the general solution for the velocity profile at 𝑡 > 0. 

Now, knowing the general solution of the velocity model, the general solution of 

the temperature model can be obtained as; 

From the temperature equation in (5.15) which is 

𝜃̅(𝑦, 𝑠) = 𝑢̅2(𝑦, 𝑠)𝑃𝑟𝑀𝐸𝑐 (
1

𝑃𝑟𝑠+𝐹
−

1

𝑃𝑟𝑠+𝐹
𝑒−𝑦√𝑃𝑟𝑠+𝐹 ).      

Taking inverse Laplace transform of (5.15) from tables in Appendix II and the 

use of convolution theorem in Appendix IV, the general solution (see, 

convolution theorem in Appendix IV, (A4.12) and (A4.15)) is 

      𝜃(𝑦, 𝑡) =  𝑢2(𝑦, 𝑡)𝑀𝐸𝑐 (𝑒
−

𝐹

𝑃𝑟
𝑡
− 𝑒

−
𝐹

𝑃𝑟
𝑡
𝑒𝑟𝑓𝑐 (

𝑦√𝑃𝑟

2√𝑡
)).                                (5.25) 

In substituting 𝑢2(𝑦, 𝑡)  (see  Appendix IV, (A4.19)) in the temperature equation 

(5.25), the non-linear term 𝜃2(𝑦, 𝑡) is considered negligible since the temperature 

differences in the flow are sufficiently small. Hence, the general solution of the 

temperature model is 
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𝜃(𝑦, 𝑡) = [1 − 𝑀𝐸𝑐𝑒
−

𝐹

𝑃𝑟
𝑡
(1 − 𝑒𝑟𝑓𝑐 (

𝑦√𝑃𝑟

2√𝑡
)) [

𝑦𝑒
−

𝑦2

4𝑡
−𝑡𝑀

√𝜋𝑡3
𝐺𝑟 (𝑒−𝑀𝑡 −

𝑒−𝑀𝑡𝑒𝑟𝑓𝑐 (
𝑦

2√𝑡
)) + 2𝐺𝑟𝐺𝑐∅(𝑦, 𝑡)𝑒−2𝑀𝑡 (1 − 𝑒𝑟𝑓𝑐 (

𝑦

2√𝑡
))

2

]]

−1

[𝑀𝐸𝑐𝑒
−

𝐹

𝑃𝑟
𝑡
(1 −

𝑒𝑟𝑓𝑐 (
𝑦√𝑃𝑟

2√𝑡
)) [

𝑦2𝑒
−

𝑦2

2𝑡
−2𝑡𝑀

4𝜋𝑡3
+

𝑦𝑒
−

𝑦2

4𝑡
−𝑡𝑀

√𝜋𝑡3
𝐺𝑐∅(𝑦, 𝑡) (𝑒−𝑀𝑡 − 𝑒−𝑀𝑡𝑒𝑟𝑓𝑐 (

𝑦

2√𝑡
)) +

𝐺𝑐
2∅2(𝑦, 𝑡)𝑒−2𝑀𝑡 (1 − 𝑒𝑟𝑓𝑐 (

𝑦

2√𝑡
))

2

]].        (5.26)    

But ∅(𝑦, 𝑡) =
1

2
[𝑒−𝑦√𝑆𝑐𝐾𝑐𝑒𝑟𝑓𝑐 (

2𝑡√𝐾𝑐−𝑦√𝑆𝑐

2√𝑡
) + 𝑒𝑦√𝑆𝑐𝐾𝑐𝑒𝑟𝑓𝑐 (

2𝑡√𝐾𝑐+𝑦√𝑆𝑐

2√𝑡
)]. 

𝜃(𝑦, 𝑡) = 𝑎0
−1 [𝑀𝐸𝑐𝑒

−
𝐹

𝑃𝑟
𝑡
(1 − 𝑒𝑟𝑓𝑐 (

𝑦√𝑃𝑟

2√𝑡
)) [

𝑦2𝑒
−

𝑦2

2𝑡
−2𝑡𝑀

4𝜋𝑡3 +

𝑦𝑒
−

𝑦2

4𝑡
−𝑡𝑀

2√𝜋𝑡3
𝐺𝑐 [𝑒−𝑦√𝑆𝑐𝐾𝑐𝑒𝑟𝑓𝑐 (

2𝑡√𝐾𝑐−𝑦√𝑆𝑐

2√𝑡
) + 𝑒𝑦√𝑆𝑐𝐾𝑐𝑒𝑟𝑓𝑐 (

2𝑡√𝐾𝑐+𝑦√𝑆𝑐

2√𝑡
)] (𝑒−𝑀𝑡 −

𝑒−𝑀𝑡𝑒𝑟𝑓𝑐 (
𝑦

2√𝑡
)) +

1

2
𝐺𝑐

2𝑒−2𝑀𝑡 [𝑒−𝑦√𝑆𝑐𝐾𝑐𝑒𝑟𝑓𝑐 (
2𝑡√𝐾𝑐−𝑦√𝑆𝑐

2√𝑡
) +

𝑒𝑦√𝑆𝑐𝐾𝑐𝑒𝑟𝑓𝑐 (
2𝑡√𝐾𝑐+𝑦√𝑆𝑐

2√𝑡
)] (1 − 𝑒𝑟𝑓𝑐 (

𝑦

2√𝑡
))

2

]].     (5.27) 

        

 

 

www.udsspace.uds.edu.gh 

 

 



                                                          110 

 

  

Where 

𝑎0 = 1 − 𝑀𝐸𝑐𝑒
−

𝐹

𝑃𝑟
𝑡
(1 − 𝑒𝑟𝑓𝑐 (

𝑦√𝑃𝑟

2√𝑡
)) [

𝑦𝑒
−

𝑦2

4𝑡
−𝑡𝑀

√𝜋𝑡3
𝐺𝑟 (𝑒−𝑀𝑡 −

𝑒−𝑀𝑡𝑒𝑟𝑓𝑐 (
𝑦

2√𝑡
)) + 𝐺𝑟𝐺𝑐𝑒

−2𝑀𝑡 [𝑒−𝑦√𝑆𝑐𝐾𝑐𝑒𝑟𝑓𝑐 (
2𝑡√𝐾𝑐−𝑦√𝑆𝑐

2√𝑡
) +

𝑒𝑦√𝑆𝑐𝐾𝑐𝑒𝑟𝑓𝑐 (
2𝑡√𝐾𝑐+𝑦√𝑆𝑐

2√𝑡
)] (1 − 𝑒𝑟𝑓𝑐 (

𝑦

2√𝑡
))

2

]. 

 

Equation (5.27) is the general solution of the temperature profile for 𝑡 > 0.  

Other possible solution exist for 𝜃2(𝑦, 𝑡) ≠ 0  but limited in application in 

practice due to the presence of the discriminant in the solution of the resulting 

quadratic equation which makes 𝜃(𝑦, 𝑡)  not defined for higher values of the 

controlling parameters. 

                 

Knowing the temperature model, other possible solutions exist for the velocity   

model in (5.24) as follows. 

 

5.3.2 Other Possible Solutions for velocity model 

Since Prandtl number is ratio of momentum diffusivity to thermal diffusivity of 

the fluid, 𝑃𝑟 = 1  refers to those fluids whose momentum and thermal boundary 

layer thickness are of magnitude of the same order, and  the temperature 𝜃(𝑦, 𝑡) 
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solution in (5.26) is valid for all values of 𝑃𝑟  except 𝑃𝑟 = 0 , which is not 

practically possible. Other possible solutions of the velocity model are: 

Case 1. When 𝑃𝑟 = 1 and 𝑆𝑐 = 1 

    𝑢(𝑦, 𝑡) =
𝑦𝑒

−
𝑦2

4𝑡
−𝑡𝑀

2√𝜋𝑡3
+

[
 
 
 

[1 − 𝑀𝐸𝑐𝑒
−𝐹𝑡 (1 −

𝑒𝑟𝑓𝑐 (
𝑦

2√𝑡
)) [

𝑦𝑒
−

𝑦2

4𝑡
−𝑡𝑀

√𝜋𝑡3
𝐺𝑟 (𝑒−𝑀𝑡 − 𝑒−𝑀𝑡𝑒𝑟𝑓𝑐 (

𝑦

2√𝑡
)) +

𝐺𝑟𝐺𝑐𝑒
−2𝑀𝑡 [𝑒−𝑦√𝐾𝑐𝑒𝑟𝑓𝑐 (

2𝑡√𝐾𝑐−𝑦

2√𝑡
) + 𝑒𝑦√𝐾𝑐𝑒𝑟𝑓𝑐 (

2𝑡√𝐾𝑐+𝑦

2√𝑡
)] (1 −

𝑒𝑟𝑓𝑐 (
𝑦

2√𝑡
))

2

]]

−1

[𝑀𝐸𝑐𝑒
−𝐹𝑡 (1 − 𝑒𝑟𝑓𝑐 (

𝑦

2√𝑡
)) [

𝑦2𝑒
−

𝑦2

2𝑡
−2𝑡𝑀

4𝜋𝑡3 +

𝑦𝑒
−

𝑦2

4𝑡
−𝑡𝑀

2√𝜋𝑡3
[𝑒−𝑦√𝐾𝑐𝑒𝑟𝑓𝑐 (

2𝑡√𝐾𝑐−𝑦

2√𝑡
) + 𝑒𝑦√𝐾𝑐𝑒𝑟𝑓𝑐 (

2𝑡√𝐾𝑐+𝑦

2√𝑡
)] (𝑒−𝑀𝑡 −

𝑒−𝑀𝑡𝑒𝑟𝑓𝑐 (
𝑦

2√𝑡
)) +

1

2
𝐺𝑐

2𝑒−2𝑀𝑡 [𝑒−𝑦√𝐾𝑐𝑒𝑟𝑓𝑐 (
2𝑡√𝐾𝑐−𝑦

2√𝑡
) +

𝑒𝑦√𝐾𝑐𝑒𝑟𝑓𝑐 (
2𝑡√𝐾𝑐+𝑦

2√𝑡
)] (1 − 𝑒𝑟𝑓𝑐 (

𝑦

2√𝑡
))

2

]] +
1

2
[𝑒−𝑦√𝐾𝑐𝑒𝑟𝑓𝑐 (

2𝑡√𝐾𝑐−𝑦

2√𝑡
) +

𝑒𝑦√𝐾𝑐𝑒𝑟𝑓𝑐 (
2𝑡√𝐾𝑐+𝑦

2√𝑡
)]

]
 
 
 

(𝑒−𝑀𝑡 − 𝑒−𝑀𝑡𝑒𝑟𝑓𝑐 (
𝑦

2√𝑡
)).      (5.28)  

                                   

Case 2. When 𝑃𝑟 = 1 and 𝑆𝑐 ≠ 1 
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𝑢(𝑦, 𝑡) =
𝑦𝑒

−
𝑦2

4𝑡
−𝑡𝑀

2√𝜋𝑡3
+

[
 
 
 

[1 − 𝑀𝐸𝑐𝑒
−𝐹𝑡 (1 −

𝑒𝑟𝑓𝑐 (
𝑦

2√𝑡
)) [

𝑦𝑒
−

𝑦2

4𝑡
−𝑡𝑀

√𝜋𝑡3
𝐺𝑟 (𝑒−𝑀𝑡 − 𝑒−𝑀𝑡𝑒𝑟𝑓𝑐 (

𝑦

2√𝑡
)) +

𝐺𝑟𝐺𝑐𝑒
−2𝑀𝑡 [𝑒−𝑦√𝑆𝑐𝐾𝑐𝑒𝑟𝑓𝑐 (

2𝑡√𝐾𝑐−𝑦√𝑆𝑐

2√𝑡
) + 𝑒𝑦√𝑆𝑐𝐾𝑐𝑒𝑟𝑓𝑐 (

2𝑡√𝐾𝑐+𝑦√𝑆𝑐

2√𝑡
)] (1 −

𝑒𝑟𝑓𝑐 (
𝑦

2√𝑡
))

2

]]

−1

[𝑀𝐸𝑐𝑒
−𝐹𝑡 (1 − 𝑒𝑟𝑓𝑐 (

𝑦

2√𝑡
)) [

𝑦2𝑒
−

𝑦2

2𝑡
−2𝑡𝑀

4𝜋𝑡3 +

𝑦𝑒
−

𝑦2

4𝑡
−𝑡𝑀

2√𝜋𝑡3
[𝑒−𝑦√𝑆𝑐𝐾𝑐𝑒𝑟𝑓𝑐 (

2𝑡√𝐾𝑐−𝑦√𝑆𝑐

2√𝑡
) + 𝑒𝑦√𝑆𝑐𝐾𝑐𝑒𝑟𝑓𝑐 (

2𝑡√𝐾𝑐+𝑦√𝑆𝑐

2√𝑡
)] (𝑒−𝑀𝑡 −

𝑒−𝑀𝑡𝑒𝑟𝑓𝑐 (
𝑦

2√𝑡
)) +

1

2
𝐺𝑐

2𝑒−2𝑀𝑡 [𝑒−𝑦√𝑆𝑐𝐾𝑐𝑒𝑟𝑓𝑐 (
2𝑡√𝐾𝑐−𝑦√𝑆𝑐

2√𝑡
) +

𝑒𝑦√𝑆𝑐𝐾𝑐𝑒𝑟𝑓𝑐 (
2𝑡√𝐾𝑐+𝑦√𝑆𝑐

2√𝑡
)] (1 − 𝑒𝑟𝑓𝑐 (

𝑦

2√𝑡
))

2

]] +

1

2
[𝑒−𝑦√𝑆𝑐𝐾𝑐𝑒𝑟𝑓𝑐 (

2𝑡√𝐾𝑐−𝑦√𝑆𝑐

2√𝑡
) + 𝑒𝑦√𝑆𝑐𝐾𝑐𝑒𝑟𝑓𝑐 (

2𝑡√𝐾𝑐+𝑦√𝑆𝑐

2√𝑡
)]

]
 
 
 

(𝑒−𝑀𝑡 −

𝑒−𝑀𝑡𝑒𝑟𝑓𝑐 (
𝑦

2√𝑡
)).          (5.29)   
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5.3.3 Dimensionless Fluxes of Unsteady Hydromagnetic Convective Heat 

and Mass Transfer 

5.3.3.1 The Rate of Heat Transfer Coefficient of Unsteady Hydromagnetic 

Convective Heat and Mass Transfer 

Having obtained the temperature field, the rate of heat transfer coefficient at 

the impulsively started infinite vertical plate in terms of the Nusselt number can 

be studied. In dimensionless form, the Nusselt number is given by 

 

  𝑁𝑢 = −
𝜕𝜃

𝜕𝑦
|
𝑦=0

=𝑎0
−2 [

𝑀𝐸𝑐

2√𝜋3𝑡7
𝐺𝑐𝑒

−2𝑀𝑡−
𝐹𝑡

𝑃𝑟𝑒𝑟𝑓𝑐 (
2𝑡√𝐾𝑐

2𝑡
) −

√𝑆𝑐

√𝜋𝑡
𝐺𝑐

2𝑒−4𝑡𝐾𝑐−2𝑀𝑡 +

√𝑆𝑐𝐾𝑐𝐺𝑐
2𝑒−2𝑀𝑡𝑒𝑟𝑓𝑐 (

2𝑡√𝐾𝑐

2√𝑡
) +

√𝑆𝑐

√𝜋𝑡
𝑒−

2𝑡√𝐾𝑐+𝑀𝑡

4𝑡 + √𝑆𝑐𝐾𝑐𝑒
𝑀𝑡𝑒𝑟𝑓𝑐 (

2𝑡√𝐾𝑐

2√𝑡
)].   

                                                                                           (5.30) 

           

5.3.3.2 The Rate of Mass Transfer Coefficient of Unsteady Hydromagnetic 

Convective Heat and Mass Transfer 

Knowing the concentration field, the rate of mass transfer coefficient at the 

impulsively started infinite vertical plate in terms of the Sherwood number can 

be studied. In dimensionless form, the Sherwood number is given by 

𝑠ℎ = −(
𝜕∅

𝜕𝑦
)
𝑦=0

= −
√𝑆𝑐

√𝜋𝑡
𝑒−4𝑡𝐾𝑐 + √𝑆𝑐𝐾𝑐 (

2𝑡√𝐾𝑐

2√𝑡
).    (5.31) 
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5.3.3.3 The Skin Friction Coefficient of Unsteady Hydromagnetic 

Convective Heat and Mass Transfer 

Also, having obtained the velocity field, it is significant to study changes in the 

skin friction due to the effects of the physical parameters 𝑡, 𝐾𝑐  and 𝑀 . In 

dimensionless form, the skin friction is given by 

𝜏 = −
𝜕𝑢

𝜕𝑦
|
𝑦=0

=
1

2√𝜋𝑡3
𝑒

−1

16𝑀𝑡 −
𝑒−𝑀𝑡

2√𝜋𝑡
𝑒𝑟𝑓𝑐 (

2𝑡√𝐾𝑐

2√𝑡
) +

1

√𝜋𝑡
𝑒

−𝑀𝑡

4𝑡2 (𝐺𝑟𝜃(𝑦, 𝑡) +

𝐺𝑐∅(𝑦, 𝑡)).       (5.32) 

            

5.4 Results and Discussion  

In order to determine the effects of the physical parameters such as 

𝑡, 𝑃𝑟 , 𝑆𝑐, 𝐺𝑟 , 𝐺𝐶 , 𝑀, 𝐸𝑐 and 𝐾𝑐 on the hydromagnetic convection flow, the numeric 

values of the temperature field, concentration field and velocity field were 

computed and shown in the figures. Three (3) fluids were considered in this study 

namely air, electrolyte solution and water. The values of the Prandtl number 

(𝑃𝑟) are taken as 0.71 (for air), 1.0 (for electrolyte solution) and 7.0 (for water) 

and the values of the Schmidt number (𝑆𝑐)  are taken as 0.24 (air), 0.67 

(electrolyte solution) and 0.62 (water), which are the physical values of 𝑃𝑟 and 

𝑆𝑐 of these fluids. However, the value Sc = 0.67 (electrolyte solution) is used in 

the analysis since in electrolyte solutions the Sc is usually large. 
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5.4.1 Graphical Results 

5.4.1.1 Temperature Profiles 

Fig. 5.2a shows the effect of the Prandtl number on the temperature profile for 

electrolyte solution (Pr=1.0), air (Pr=0.71) and water (Pr=7.0). Although, smaller 

Prandtl numbers give greater thermal boundary layer thickness (Chaudhary, et 

al. (2006) and Narahari et al.  (2011), however, the present of the magnetic field 

delay the convection motion. Since the molecules of water are closer to each 

other than air, they get heated or charged up faster than air in the presence of 

magnetic field hence the reverse process occurred. Therefore, it is observed that 

the thermal boundary layer thickness is greater for water (Pr = 7.0) as compared 

to air (Pr =0.71) and electrolyte solution (Pr = 1.0). Thus, the temperature falls 

more rapidly for air than water and electrolyte solution. Also, the thermal 

boundary layer thickness decreases with increase in time. 
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Figure 5. 2b:Chaudhary et al. (2006). Temperature profile (In the absence of 

Magnetic field) 

 

 𝑃𝑟              t 

0.71         0.2 

0.71         0.4 

1.0           0.2 

1.0            0.4 

7.0            0.2 

7.0            0.4 

Figure 5. 2a  (Present study in the presence of  magnetic field). Temperature profile for 

electrolyte solution (𝑷𝒓=1.0), air (𝑷𝒓=0.71) and water (𝑷𝒓=7.0) when 𝑮𝒓 = 𝟓,𝑮𝒄 =
𝟓,𝑲𝒄 = 𝟏, 𝑺𝒄 = 𝟐. 𝟎𝟏, 𝑬𝒄 = 𝟐,𝑴 = 𝟐 𝐚𝐧𝐝 𝑭 = 𝟐. 
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Fig. 5.3, 5.4 and 5.5 represent the effect of Eckert number Ec on the temperature 

profile for electrolyte solution (Pr =1.0), air (Pr = 0.71) and water (Pr = 7.0) 

respectively. It is observed that as the time passes, the temperature falls for the 

positive values of Ec whilst for the negative values of Ec the reverse occurred.   
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Figure 5. 3 Temperature profile of the effect of 𝑬𝒄  on the electrolyte solution (Pr=1.0) 

when 𝑮𝒓 = 𝟓,𝑮𝒄 = 𝟓,𝑲𝒄 = 𝟏, 𝑺𝒄 = 𝟐. 𝟎𝟏,𝑴 = 𝟐 𝐚𝐧𝐝 𝑭 = 𝟐. 
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Figure 5. 4 Temperature profile of the effect of  𝑬𝒄  on air (Pr=0.71) when  𝑮𝒓 = 𝟓,𝑮𝒄 =
𝟓,𝑲𝒄 = 𝟏, 𝑺𝒄 = 𝟐. 𝟎𝟏,𝑴 = 𝟐 𝐚𝐧𝐝 𝑭 = 𝟐. 
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Fig. 5.6 illustrates the effect of the magnetic parameter M on the temperature 

profile for electrolyte solution (Pr =1.0), air (Pr = 0.71) and water (Pr =7.0). It 

is noticed that the thermal boundary layer thickness is greater for water (Pr =7.0) 

than electrolyte solution (Pr =1.0) and air (Pr = 0.71) as the magnetic parameter 

M increases. 
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Figure 5. 5 Temperature profile of the effect of 𝑬𝒄 on water (Pr=7.0) when 𝑮𝒓 =
𝟓,𝑮𝒄 = 𝟓,𝑲𝒄 = 𝟏, 𝑺𝒄 = 𝟐. 𝟎𝟏,𝑴 = 𝟐 𝐚𝐧𝐝 𝑭 = 𝟐. 
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5.4.1.2 Concentration Profiles 

Fig. 5.7 shows the effect of the Schmidt number Sc on the concentration profile 

for electrolyte solution (Sc = 0.67), air (Sc = 0.24) and water (Sc = 0.62). It is 

realized that concentration is high for electrolyte solution (Sc = 0.67) as 

compared to water (Sc = 0.62) and air (Sc = 0.24). However, the concentration 

decreases faster for electrolyte solution (Sc = 0.67) as compared to water (Sc = 

0.62) and air (Sc = 0.24) as time passes. 
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             2          7.0 
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Figure 5. 6 Temperature profile of the effect of M on electrolyte solution (Pr=1.0), air 

(Pr=0.71) and water (Pr=7.0) when  𝑮𝒓 = 𝟓,𝑮𝒄 = 𝟓,𝑲𝒄 = 𝟏, 𝑺𝒄 = 𝟐. 𝟎𝟏, 𝑬𝒄 = 𝟐, 𝑭 =
𝟐, 𝐚𝐧𝐝 𝒕 = 𝟎. 𝟐. 
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In fig. 5.8, the effect of rate of chemical reaction Kc on air (Sc = 0.24), electrolyte 

solution (Sc = 0.67) and water (Sc = 0.62)  is considered. Again, concentration is 

high for electrolyte solution (Sc = 0.67) as compared to water (Sc = 0.62) and air 

( Sc = 0.24). Also, as time goes on, concentration decreases faster for electrolyte 

solution ( Sc =0.67) as compared to water (Sc = 0.62) and air (Sc = 0.24). 
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Figure 5. 7 Concentration profile for air (Sc = 0.24), electrolyte solution (Sc = 0.67) 

and water (Sc = 0.62)  when Kc = 1. 
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5.4.1.3  Velocity Profiles 

Fig. 5.9 illustrates velocity profile for air (Pr = 0.71), electrolyte solution (Pr = 

1.0) and water (Pr = 7.0). It is noticed that increase in velocity is greater for 

water (Pr = 7.0) as compared to electrolyte solution (Pr = 1.0) and air (Pr = 

0.71). The velocity however, decreases for all the three (3) fluids as time passes. 
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Figure 5. 8 Concentration profile of the effect of Rate of Chemical reaction (Kc) on 

air (Sc = 0.21), electrolyte solution (Sc = 0.67) and water (Sc = 0.62) when t=0.2. 
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Fig. 5.10a, 5.11a and 5.12a represent the effect of Grashof number Gr on the 

velocity profile for electrolyte solution (Pr = 1.0), air (Pr = 0.71) and water (Pr 

= 7.0) respectively. Though, the effect of an increase in Grashof number is to 

raise the velocity values. Due to the presence of the magnetic field, it is observed 

that as time goes on, the velocity decreases for positive values of Gr but increases 

for negative values of Gr. However, the velocity remains positive for 𝐺𝑟 > 0 and 

negative for 𝐺𝑟 < 0.  
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Figure 5. 9 Velocity profile for air (Pr=0.71), electrolyte solution (Pr=1.0) and 

water (Pr = 7.0) when 𝑮𝒓 = 𝟓,𝑮𝒄 = 𝟓,𝑲𝒄 = 𝟏, 𝑺𝒄 = 𝟐. 𝟎𝟏, 𝑬𝒄 = 𝟐,𝑴 = 𝟐 𝐚𝐧𝐝 𝑭 =
𝟐. 
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Figure 5. 10a Velocity profile of the effect of Grashof number Gr on electrolyte solution 

(Pr=1.0) in the present of magnetic field when 𝑮𝒄 = 𝟓,𝑲𝒄 = 𝟏, 𝑺𝒄 = 𝟐. 𝟎𝟏, 𝑬𝒄 = 𝟐,𝑴 =
𝟐 𝐚𝐧𝐝 𝑭 = 𝟐. [Present study]. 

  

Fig. 5.10b Chaudhary et al. (2006). Velocity profile for electrolyte                

solution Pr=1.0 (In the absence of Magnetic field) 
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Figure 5. 11a Velocity profile of the effect of Gr on air (Pr = 0.71) in the 

present of magnetic field when  𝑮𝒄 = 𝟓,𝑲𝒄 = 𝟏, 𝑺𝒄 = 𝟐. 𝟎𝟏, 𝑬𝒄 = 𝟐,𝑴 =
𝟐 𝐚𝐧𝐝 𝑭 = 𝟐. [Present study]. 

Fig. 5.11b Chaudhary et al. (2006). Velocity profile for air  Pr = 0.71 

(In the absence of Magnetic field). 
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Figure 5. 12a  (Present study). Velocity profile of the effect of Gr on 

water (Pr = 7.0) in the present of magnetic field when  𝑮𝒄 = 𝟓,𝑲𝒄 =
𝟏, 𝑺𝒄 = 𝟐. 𝟎𝟏, 𝑬𝒄 = 𝟐,𝑴 = 𝟐 𝐚𝐧𝐝 𝑭 = 𝟐. 

Fig. 5.12b Chaudhary et al. (2006). Velocity profile for water                 

Pr = 7.0 (In the absence of Magnetic field) 

 

www.udsspace.uds.edu.gh 

 

 



                                                          127 

 

  

Fig. 5.13, 5.14 and 5.15 show the effect of mass Grashof number Gc on the 

velocity profile for electrolyte solution (Pr=1.0), air (Pr=0.71) and water (Pr=7.0) 

respectively. It is noticed that the velocity decreases as time goes on. However, 

the velocity increases for 𝐺𝑟 < 0 and decreases for 𝐺𝑟 > 0. 
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Figure 5. 13 Velocity profile of the effect of Gc on electrolyte solution 

(Pr=1.0) when  𝑮𝒓 = 𝟓,𝑲𝒄 = 𝟏, 𝑺𝒄 = 𝟐. 𝟎𝟏, 𝑬𝒄 = 𝟐,𝑴 = 𝟐 𝐚𝐧𝐝 𝑭 = 𝟐. 

www.udsspace.uds.edu.gh 

 

 



                                                          128 

 

  

         

    

   

        

 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 
y 

u 

  

  

1 

2 

3 

4 

5 

6 

7 

0 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

y 

u 

  

1 

2 

3 

4 

5 

6 

7 

0 

                    𝐺𝑐               t 

10       0.2                                               

10       0.4 

                  5      0.2 

                   5      0.4 

                -10      0.2 

    -10            0.4 

     -5              0.2 

                   -5              0.4 

 

Figure 5. 14  Velocity profile of the effect of Gc on air (Pr=0.71) 

when  𝑮𝒓 = 𝟓,𝑲𝒄 = 𝟏, 𝑺𝒄 = 𝟐. 𝟎𝟏, 𝑬𝒄 = 𝟐,𝑴 = 𝟐 𝐚𝐧𝐝 𝑭 = 𝟐. 

Figure 5. 15  Velocity profile of the effect of Gc on water 

(Pr=7.0) when  𝑮𝒓 = 𝟓,𝑲𝒄 = 𝟏, 𝑺𝒄 = 𝟐. 𝟎𝟏, 𝑬𝒄 = 𝟐,𝑴 =
𝟐 𝐚𝐧𝐝 𝑭 = 𝟐. 
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In Fig. 5.16, the effect of the magnetic parameter, M on the velocity  profile for 

electrolyte solution (Pr = 1.0), air (Pr = 0.71) and water (Pr = 7.0) is considered. 

It revealed that the velocity increases for all the three (3) fluids as the magnetic 

parameter M increases. However, the increase in velocity of water (Pr = 7.0) is 

greater as compared to air (Pr = 0.71) and electrolyte solution (Pr = 1.0). 

           

 

 

Fig. 5.17 illustrates the effect of the Eckert number on the velocity profile for 

electrolyte solution (Pr=1.0), air (Pr=0.71) and water (Pr=7.0).  The velocity 

increases with increase in Eckert number for all the fluids. However, the velocity 

increased is greater for water (Pr=7.0) than air (Pr=0.71) and electrolyte solution 

(Pr=1.0). 
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 Figure 5. 16  Velocity profile of the effect M on electrolyte 

solution (Pr = 1.0), air (Pr = 0.71) and water (Pr = 7.0) when 

 𝑮𝒄 = 𝟓,𝑲𝒄 = 𝟏, 𝑺𝒄 = 𝟐. 𝟎𝟏, 𝑬𝒄 = 𝟐, 𝑮𝒓 = 𝟐 𝐚𝐧𝐝 𝑭 = 𝟐.  
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In Fig. 5.18, the effect of the rate of chemical reaction Kc on the velocity profile 

for electrolyte solution (Pr = 1.0), air (Pr = 0.71) and water (Pr = 7.0) is 

determined. It is noticed that the velocity decreases with increase in the rate of 

chemical reaction, Kc. 
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Figure 5. 17 Velocity profile of the effect of 𝑬𝒄 on electrolyte 

solution (Pr = 1.0), air (Pr = 0.71) and water (Pr = 7.0) when 

𝑮𝒄 = 𝟓,𝑲𝒄 = 𝟏, 𝑺𝒄 = 𝟐. 𝟎𝟏, 𝑴 = 𝟐, 𝑮𝒓 = 𝟐 𝐚𝐧𝐝 𝑭 = 𝟐. 
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5.4.2  Numerical Results 

5.4.2 Numerical Results 

Table 5.1-5.3 show the behaviour of skin friction coefficient, −𝒖′(𝟎) , 

Sherwood number, −∅′(𝟎) and  Nusselt number, – 𝜽′(𝟎) for various values 

of time (𝑡) , magnetic  parameter (𝑀 ), Eckert number (𝐸𝑐 ), dimensionless 

chemical reaction parameter (𝐾𝑐), Schmidt number (𝑆𝑐), radiation parameter (𝐹), 

thermal Grashof number (𝐺𝑐) and mass Grashof number ( 𝐺𝑐). From Table 5.1, 

it is noted that the skin friction coefficient, −𝑢′(0) decreases for increasing 

values of  𝑡 and 𝑀 but increases for increasing values of 𝑘𝑐. From Table 5.2, 

Sherwood number, −∅′(0)  decreases with increasing values of 𝑡  or 𝑘𝑐 but 
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Figure 5. 18 Velocity profile of the effect of Kc on air (Pr = 0.71), 

electrolyte solution (Pr = 1.0) and water (Pr = 7.0) when 𝑮𝒄 = 𝟓, 𝑬𝒄 = 𝟐,
𝑺𝒄 = 𝟐. 𝟎𝟏, 𝑴 = 𝟐, 𝑮𝒓 = 𝟐 𝐚𝐧𝐝 𝑭 = 𝟐.  
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increases for increase values of 𝑆𝑐. From Table 5.3, Nusselt number , – 𝜃′(0) 

dereases with increasing values of 𝑡, 𝑀, 𝐸𝑐  but increases with increasing values  

𝐺𝑐 F, 𝑃𝑟 , 𝐾𝑐 and 𝑆𝑐. 

 
 

Table 5. 1:The Skin friction coefficient,  -u' (0) at the wall, for various values of 

𝒕,𝑴 and 𝑲𝒄. 

𝒕 𝑴 𝑲𝒄 −𝒖′(𝟎) 

0.2 1.0 1.0 2.0352 

0.4 1.0 1.0 0.8428 

0.6 1.0 1.0 0.4923 

0.2 0.2 1.0 1.5786 

0.2 0.4 1.0 1.1371 

0.2 0.6 1.0 0.3417   

0.2 1.0 0.2 1.9060 

0.2 1.0 0.4 1.9515 

0.2 1.0 0.6 1.9851 
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Table 5. 2: Sherwood number, -∅' (0) at the wall, for various values of 𝒕, 𝑺𝒄 

and 𝑲𝒄. 

𝒕  𝑺𝒄 𝑲𝒄  −∅′(𝟎)  

0.2 1.0 1.0 1.0141 

0.4 1.0 1.0 0.8126 

0.6 1.0 1.0 0.8047 

0.2 0.2 1.0 0.4535 

0.2 0.4 1.0 0.6414 

0.2 0.6 1.0 0.7855 

0.2 1.0 0.2 1.1645 

0.2 1.0 0.4 1.0950 

0.2 1.0 0.6 1.0490 
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Table 5. 3:The Local Nusselt number,  -θ' (0) at the wall, for various values 

of 𝒕,𝑴, 𝑬𝒄, 𝑮𝒄, 𝑭, 𝑷𝒓, 𝑲𝒄 and 𝑺𝒄. 

𝒕 𝑴 𝑬𝒄 𝑮𝒄 𝑭 𝑷𝒓 𝑲𝒄 𝑺𝒄 −𝜽′(𝟎) 

0.2 1 1 1 1 1 1 1 2.8484      

0.4 1 1 1 1 1 1 1 2.0236 

0.6 1 1 1 1 1 1 1 0.2977 

0.2 1.5 1 1 1 1 1 1 0.6260 

0.2 2 1 1 1 1 1 1 0.5888 

0.2 2.5 1 1 1 1 1 1 0.5280 

0.2 1 1.5 1 1 1 1 1 1.071 

0.2 1 2 1 1 1 1 1 0.8570 

0.2 1 2.5 1 1 1 1 1 0.6427 

0.2 1 1 5 1 1 1 1 1.6648 

0.2 1 1 7 1 1 1 1 1.6652 

0.2 1 1 9 1 1 1 1 1.8120 

0.2 1 1 1 2 1 1 1 0.2529 

0.2 1 1 1 4 1 1 1 0.3123 

0.2 1 1 1 6 1 1 1 0.3856 

0.2 1 1 1 1 0.71 1 1 0.4096 
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0.2 1 1 1 1 1 1 1 0.4285 

0.2 1 1 1 1 7 1 1 0.4690 

0.2 1 1 1 1 1 0.2 1 0.2816 

0.2 1 1 1 1 1 0.4 1 0.3412 

0.2 1 1 1 1 1 0.6 1 0.3814 

0.2 1 1 1 1 1 1 2 0.6593 

0.2 1 1 1 1 1 1 3 0.9176 

0.2 1 1 1 1 1 1 4 1.2131 

 

 

5.5   Conclusion 

Unsteady hydromagnetic convective heat and mass transfer with Newtonian 

heating in a porous medium has been investigated. The governing non-linear 

partial differential equations have been derived and transformed into 

dimensionless differential equations using the dimensionless variables.  Laplace 

transform technique was used to solve the dimensionless differential equations 

and results shown graphically. The following conclusions can be drawn from the 

results obtained: 

www.udsspace.uds.edu.gh 

 

 



                                                          136 

 

  

1. In the presence of magnetic field, the thermal boundary layer thickness is greater 

for water (Pr = 7.0) as compared to air (Pr =0.71) and electrolyte solution (Pr = 

1.0) but diminishes with increase in time. 

2. Concentration is high for electrolyte solution (Sc=0.67) as compared to water 

(Sc=0.62) and air (0.24) but diminishes faster for electrolyte solution (Sc=0.67) 

as compared to water (Sc=0.62) and air (0.24) as time passes. 

3.  The velocity increases with increase in Eckert number (Ec), Magnetic parameter 

(M) but decreases with increase in rate of chemical reaction (Kc)  for all the three 

(3) fluids. 

4. Though, the effect of an increase in Grashof number is to raise the velocity 

values. Due to the presence of the magnetic field, it is observed that as time goes 

on, the velocity decreases for positive values of Gr but increases for negative 

values of Gr. However, the velocity remains positive for 𝐺𝑟 > 0 and negative for 

𝐺𝑟 < 0. 

  

  

. 
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CHAPTER SIX 

UNSTEADY HYDROMAGNETIC BOUNDARY LAYER FLOW OVER 

AN EXPONENTIALLY STRETCHING FLAT SURFACE IN A 

CHEMICALLY REACTIVE POROUS MEDIUM 

 

6.1 Introduction 

Unsteady boundary layer flow past a stretching surface in the presence of 

magnetic field with heat and mass transfer in a porous medium is studied. The 

fluid under consideration is quiescent viscous incompressible fluid. The 

boundary layer equations are transformed into dimensionless equations. The 

dimensionless equations are solved in exact form using the Laplace transform 

techniques and results are shown graphically for the velocity, thermal boundary 

layer thicknesses and concentration boundary layer thicknesses. Also, numerical 

values are obtained for the skin friction coefficient, Sherwood number as well as 

the Nusselt number. 

6.2  Mathematical Formulation of Unsteady Hydromagnetic Boundary 

Layer Flow over a Flat Surface 

Consider an unsteady boundary layer flow past a stretching surface with heat and 

mass transfer in a porous medium, where 𝑥∗ −axis is along the stretching plate. 

In addition to the models’ assumptions, at time 𝑡∗ > 0, the surface is moving 
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continuously with the velocity 𝑢∗ = 𝑈w(𝑥) = 𝑈0(1 − 𝑒−𝑎𝑡) in the positive 

𝑥∗ −direction and the plate temperature is raised linearly with 𝑡∗ and the level of 

concentration near the plate is raised to 𝐶𝑤
∗ . The physical system of the flow is 

shown in fig. 6.1. 

 

 

 

 

 

 

 

 

                            

                Figure 6. 1  Flow configuration and coordinate system 

Under these assumptions, the governing boundary layer equations are: 

 

6.2.1 The Continuity Equation of Unsteady Hydromagnetic Boundary 

Layer Flow over a Flat Surface 

The continuity equation was derived in (4.2) as 

𝜕𝑢∗

𝜕𝑥∗
+

𝜕𝑣∗

𝜕𝑦∗
= 0                                         

𝑥∗ 

𝑦∗ 

 

𝐵0 𝑞𝑟 

𝐶𝑤
∗  

𝐶∞
∗  

𝑇𝑤
∗  

𝑇∞
∗  

velocity, thermal and 

concentration boundary layers 

 

𝑔 

𝑈w(𝑥) 

0 
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6.2.2 The Momentum Equation of Unsteady Hydromagnetic Boundary 

Layer Flow over a Flat Surface 

The momentum equation was derived in (3.8) as 

𝜌 (
𝜕𝑢∗

𝜕𝑡∗ + 𝑢
𝜕𝑢∗

𝜕𝑥∗ + 𝑣
𝜕𝑢∗

𝜕𝑦∗) = −
𝜕𝑝

𝜕𝑥∗ + 𝜇
𝜕2𝑢∗

𝜕𝑦∗2 + 𝜌𝘨                

Introducing the fluid pressure, −
𝜕𝑝

𝜕𝑥∗
= 𝑢

𝜕𝑢∗

𝜕𝑥∗
+ 𝑣

𝜕𝑢∗

𝜕𝑦∗
,  thermal buoyancy, 

*)*( TTg T ,  concentration buoyancy, )**( CCg C , magnetic force,  

𝜎𝐵0
2𝑢∗ and the porosity term, *

*
u

k


 into the flow field in (3.8) reduces to the 

momentum equation    

**)**(*)*(
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*
*
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






 

                             (6.1) 

6.2.3 The Energy Equation of Unsteady Hydromagnetic Boundary Layer 

Flow over a Flat Surface 

The energy was derived in (3.12) as  

𝜕𝑇∗

𝜕𝑡∗ + (𝑢
𝜕𝑇∗

𝜕𝑥∗ + 𝑣
𝜕𝑇∗

𝜕𝑦∗ + 𝑤
𝜕𝑇∗

𝜕𝑧∗) =∝ (
𝜕2𝑇∗

𝜕𝑥∗2 +
𝜕2𝑇∗

𝜕𝑦∗2 +
𝜕2𝑇∗

𝜕𝑧∗2) +                     

Since temperature field varies with regard to 𝑦∗only, so 
𝜕𝑇∗

𝜕𝑥∗ = 0. 

Hence for the unsteady flow with magnetic field and radiative heat flux, (3.12) 

is modified to become 
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                                                                                                             (6.2) 

6.2.4 The Concentration Equation of Unsteady Hydromagnetic Boundary 

Layer Flow over a Flat Surface 

The concentration equation was derived in (3.15) in vector form as 

 
𝜕𝐶∗

𝜕𝑡∗
= 𝐷∇2𝐶∗ + 𝑟̇              

In components form, (3.15) is modified to become 

     )**(
*

*

*

* *

2

2

*

*



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





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
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y

C
D

y

c
V

t

C
C

                                           (6.3) 

6.2.5 Associated Boundary Conditions of Unsteady Hydromagnetic 

Boundary Layer Flow over a Flat Surface              

The associated boundary conditions are 

𝑦∗ ≥ 0, 𝑡∗ ≤ 0:        𝑢∗ = 0,       v∗ = 0         𝑇∗ = 𝑇∞
∗ , 𝐶∗ = 𝐶∞,

∗  

𝑦∗ = 0, 𝑡∗ > 0:        𝑢∗ = 𝑈w(𝑥) = 𝑈0(1 − 𝑒−𝑎𝑡),     𝑇∗ = 𝑇𝑤
∗ , 𝐶∗ = 𝐶𝑤

∗ ,     (6.4)   

𝑦∗ → ∞, 𝑡∗ > 0:      𝑢∗ → 0, 𝑇∗ → 𝑇∞
∗ , 𝐶∗ → 𝐶∞.

∗                                                              
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6.2.6 Transformation of Unsteady Hydromagnetic Boundary Layer Flow 

over a Flat Surface 

6.2.6.1 The Dimensionless Variables of Unsteady Hydromagnetic 

Boundary Layer Flow over a Flat Surface 

The following dimensionless variables and parameters similar to (3.16) are 

introduced: 
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                                              (6.5)  

All the physical variables are defined in the Nomenclature 

 

6.2.6.2 Dimensionless Continuity Equation of Unsteady Hydromagnetic 

Boundary Layer Flow over a Flat Surface 

The suitable dimensionless quantities in (6.5) for the continuity equation in (4.2) 

are differentiated as: 

𝑢 =
𝑢∗

𝑉
             ⇒ 𝑢∗ =  Vv   ⇒ 

𝜕𝑢∗

𝜕𝑥∗
= V

𝜕𝑢

𝜕𝑥∗
       

⇒ 
𝜕𝑢∗

𝜕𝑦∗ = V
𝜕𝑢

𝜕𝑦∗ 
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⇒ 
𝜕𝑢∗

𝜕𝑡∗ = V
𝜕𝑢

𝜕𝑡∗    

 

𝑣 =
𝑣∗

𝑉
             ⇒ 𝑣∗ =  Vv   ⇒ 
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𝜕𝑦∗
= V
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𝜕𝑦∗
   

                  𝑦 =
𝑉𝑦∗

𝑣
                   ⟹𝑦∗ =

𝑣

𝑉
𝑦      ⟹𝜕𝑦∗ =

𝑣

𝑉
 𝜕𝑦 

                  𝑥 =
𝑉𝑥∗

𝑣
                   ⟹𝑥∗ =

𝑣

𝑉
𝑥      ⟹𝜕𝑥∗ =

𝑣

𝑉
 𝜕𝑥 

                  𝑡 =
𝑡∗𝑉2

𝑣
                   ⟹𝑡∗ =

𝑣

𝑉2 𝑡      ⟹𝜕𝑡∗ =
𝑣

𝑉2  𝜕𝑡 

 

                (6.6)

                                                                                                                       

Now 

𝜕𝑣∗

𝜕𝑦∗ = V
𝜕𝑣

𝜕𝑦∗ =
𝑉2

v

𝜕𝑣

 𝜕𝑦
     

𝜕𝑢∗

𝜕𝑥∗ = V
𝜕𝑢

𝜕𝑥∗ =
𝑉2

v

𝜕𝑢

𝜕𝑥
          

                       (6.7) 

Substituting (6.7) in continuity equation (4.2) gives 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0                                                                                             (6.8)                               

(6.8) models the dimensionless continuity equation. 
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6.2.6.3 The Dimensionless Momentum Equation of Unsteady 

Hydromagnetic Boundary Layer Flow over a Flat Surface 

       Similarly, 

         
𝜕𝑢∗

𝜕𝑡∗ = V
𝜕𝑢

𝜕𝑡∗ =
𝑉3

v

𝜕𝑢

 𝜕𝑡
     

                                    
𝜕𝑢∗

𝜕𝑦∗
= V

𝜕𝑢

𝜕𝑦∗
=

𝑉2

v

𝜕𝑢

𝜕𝑦
     

                                    
𝜕2𝑢∗

𝜕𝑦∗2 =
𝑉3

𝑣2

𝜕2𝑢

𝜕𝑦2                             (6.9) 

         

Substituting (6.5) and (6.9) in the momentum model (6.1) give 

𝑉3

v

∂u

∂t
− v

𝑉2

v

𝜕𝑢

 𝜕𝑦
= 𝑣

𝑉3

𝑣2

𝜕2𝑢

 𝜕𝑦2 + 𝑔𝛽𝑇 (𝑇𝑤
∗ − 𝑇∞

∗ )𝜃 + 𝑔𝛽𝑐(𝐶𝑤
∗ − 𝐶∞

∗ )∅ −
𝜎𝐵0

2

𝜌
uV −

𝑣

k
uv  

∂u

∂t
−

𝜕𝑢

 𝜕𝑦
=

𝜕2𝑢

 𝜕𝑦2 + v𝑔𝛽𝑇
(𝑇𝑤

∗ −𝑇∞
∗ )

𝑉3 𝜃 + 𝑣𝑔𝛽𝑐
(𝐶𝑤

∗ −𝐶∞
∗ )

𝑉3 ∅ −
𝜎𝐵0

2𝑣

𝜌𝑉2 u −
𝑣2

k𝑉2 𝑢  

∂u

∂t
−

𝜕𝑢

 𝜕𝑦
=

𝜕2𝑢

 𝜕𝑦2 + 𝐺𝑟𝜃 + 𝐺𝑐∅ − 𝑀1𝑢              (6.10) 

where  𝑀1 = 𝑀 +
1

𝐾
  

Equation (6.10) models the dimensionless momentum equation. 
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6.2.6.4 The Dimensionless Energy Equation of Unsteady Hydromagnetic 

Boundary Layer Flow over a Flat Surface 

The appropriate dimensionless quantities in (6.5) for the energy equation are 

differentiated as: 

𝜕𝑇∗

𝜕𝑡∗ = (𝑇𝑤
∗ − 𝑇∞

∗ )
𝜕𝜃

𝜕𝑡∗  and  𝜕𝑡∗ =
𝑣

𝑉2 𝜕𝑡    

⟹
𝜕𝑇∗

𝜕𝑡∗ =
𝑉2

𝑣
(𝑇𝑤

∗ − 𝑇∞
∗ )

𝜕𝜃

𝜕𝑡
         

𝜕𝑇∗

𝜕𝑦∗
= (𝑇𝑤

∗ − 𝑇∞
∗ )

𝜕𝜃

𝜕𝑦∗
  and 𝜕𝑦∗ =

𝑣

V
𝜕𝑦  

⟹ 
𝜕𝑇∗

𝜕𝑦∗ =
V

𝑣
(𝑇𝑤

∗ − 𝑇∞
∗ )

𝜕𝜃

𝜕𝑦
 

⟹ 
𝜕2𝑇∗

𝜕𝑦∗2 =
𝑉2

𝑣2
(𝑇𝑤

∗ − 𝑇∞
∗ )

𝜕2𝜃

𝜕𝑦2                       

                 (6.11)  

Substituting (6.5), (6.11) and Roseland approximation (4.18) in  (6.2) 

𝑉2

𝑣
(𝑇𝑤

∗ − 𝑇∞
∗ )

𝜕𝜃

𝜕𝑡
− v

V

𝑣
(𝑇𝑤

∗ − 𝑇∞
∗ )

𝜕𝜃

𝜕𝑦
=

𝑣

𝑃𝑟

𝑉2

𝑣2
(𝑇𝑤

∗ − 𝑇∞
∗ )

𝜕2𝜃

𝜕𝑦2 +
𝑣

𝐶𝑝
(
𝑉2

𝑣

𝜕𝑢

𝜕𝑦
)
2

+

𝑣

𝑘∗𝐶𝑝
𝑉2𝑢2 +

𝜎𝐵0
2

𝜌𝐶𝑝
𝑉2𝑢2 +

1

𝜌𝐶𝑝
16𝑎∗𝜎𝑇∞

∗3(𝑇∞
∗ − 𝑇∗) −

𝑄

𝜌𝐶𝑝
(𝑇𝑤

∗ − 𝑇∞
∗ )𝜃   

But 𝑣 =
𝜇

𝜌
  

 
𝜕𝜃

𝜕𝑡
−

𝜕𝜃

𝜕𝑦
=

1

𝑃𝑟

𝜕2𝜃

𝜕𝑦2 +
𝑉2

𝐶𝑝(𝑇𝑤
∗ −𝑇∞

∗ )
(
𝜕𝑢

𝜕𝑦
)
2

+
𝑣2

𝑘∗𝐶𝑝𝑉2(𝑇𝑤
∗ −𝑇∞

∗ )
𝑉2𝑢2 +

𝜎𝐵0v
2

𝜌𝑉2

𝑉2

𝐶𝑝(𝑇𝑤
∗ −𝑇∞

∗ )
𝑢2 +

1

𝜇𝐶𝑝𝑉2(𝑇𝑤
∗ −𝑇∞ )

16𝑎∗𝑣2𝜎𝑇∞
∗3(𝑇w

∗ − 𝑇∞
∗ )θ −

𝑄𝑣

𝜌𝐶𝑝𝑉2 𝜃  
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But 𝑃𝑟 =
𝜇𝐶𝑝

𝐾∗  

𝜕𝜃

𝜕𝑡
−

𝜕𝜃

𝜕𝑦
=

1

𝑃𝑟

𝜕2𝜃

𝜕𝑦2 + 𝐸𝑐 (
𝜕𝑢

𝜕𝑦
)
2

+ 𝐸𝑐𝑀1𝑢
2 −

1

𝑃𝑟
𝐹𝜃 − 𝐻𝜃  

𝜕𝜃

𝜕𝑡
−

𝜕𝜃

𝜕𝑦
=

1

𝑃𝑟

𝜕2𝜃

𝜕𝑦2 + 𝐸𝑐 (
𝜕𝑢

𝜕𝑦
)
2

+ 𝐸𝑐𝑀1𝑢
2 −

1

𝑃𝑟
𝐹1𝜃        (6.12) 

where  𝐹1 = 𝐹 + 𝐻  

The dimensionless energy equati0n is modeled in (6.12)    

    

6.2.6.5 The Dimensionless Concentration Equation of Unsteady 

Hydromagnetic Boundary Layer Flow over a Flat Surface 

The suitable dimensionless quantities in (6.5) for the concentration equation are 

differentiated as 

𝜕𝐶∗

𝜕𝑡∗ = (𝐶𝑤
∗ − 𝐶∞

∗ )
𝜕∅

𝜕𝑡∗  and  𝜕𝑡∗ =
𝑣

𝑉2 𝜕𝑡  

⟹
𝜕𝐶∗

𝜕𝑡∗ =
𝑉2

𝑣
(𝐶𝑤

∗ − 𝐶∞
∗ )

𝜕∅

𝜕𝑡
         

Similarly 
𝜕𝐶∗

𝜕𝑦∗ = (𝐶𝑤
∗ − 𝐶∞

∗ )
𝜕∅

𝜕𝑦∗  and 𝜕𝑦∗ =
𝑣

V
𝜕𝑦  

⟹ 
𝜕𝐶∗

𝜕𝑦∗ =
V

𝑣
(𝐶𝑤

∗ − 𝐶∞
∗ )

𝜕∅

𝜕𝑦
  

⟹ 
𝜕𝐶∗2

𝜕𝑦∗2
=

𝑉2

𝑣2
(𝐶𝑤

∗ − 𝐶∞
∗ )

𝜕2∅

𝜕𝑦2
                                             (6.13)

  

Putting (6.5) and (6.13) in (6.3)     
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𝑉2

𝑣
(𝐶𝑤

∗ − 𝐶∞
∗ )

𝜕∅

𝜕𝑡
− V

𝑉

𝑣
(𝐶𝑤

∗ − 𝐶∞
∗ )

𝜕∅

𝜕𝑡
= 𝐷

𝑉2

𝑣2
(𝐶𝑤

∗ − 𝐶∞
∗ )

𝜕2∅

𝜕𝑦2
− 𝑘𝑐

∗(𝐶𝑤
∗ − 𝐶∞

∗ )∅   

  

𝜕∅

𝜕𝑡
−

𝜕∅

𝜕𝑦
=

𝐷

𝑣

𝜕2∅

𝜕𝑦2 − 𝑘𝑐
∗ 𝑣

V
∅  

 
𝜕∅

𝜕𝑡
−

𝜕∅

𝜕𝑦
=

1

𝑆𝐶

𝜕2∅

𝜕𝑦2 − 𝑘𝐶∅           (6.14) 

Equation (6.14) models the dimensionless concentration. 

 

6.2.6.6 Associated Dimensionless Boundary Conditions of Unsteady 

Hydromagnetic Boundary Layer Flow over a Flat Surface 

The dimensionless momentum, energy and concentration equations in (6.10), 

(6.12) and (6.14) respectively are subjected to the boundary conditions in 

dimensionless form as 

0  0,y      ,0   ,0   ,0  tforu                       

       0   ,0   allfor      ,1     ,1    ),1(   tyeu mt 

 

 

0   ,       ,0,0,0  tyasu       

                 (6.15) 
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6.3 Analytical Solution of Unsteady Hydromagnetic Boundary Layer Flow 

over a Flat Surface 

The coupled differential equations (6.10), (6.12) and (6.14) with boundary 

conditions (6.15) are solve in exact form using Laplace transform technique as 

shown below.  

6.3.1 Laplace Transform Technique of Unsteady Hydromagnetic 

Boundary Layer Flow over a Flat Surface 

In energy model (6.12) subject to the boundary conditions in (6.15). 

In Laplace domain, the boundary conditions for the energy equation can be 

written as: 

𝜃(𝑦, 0) = 0        𝑓𝑜𝑟 𝑎𝑙𝑙   𝑦 ≥ 0, 𝑡 ≤ 0  𝜃̅(𝑦, 0) = 0;   

𝜃(0, 𝑡) = 1             𝑎𝑡   𝑦 = 0, 𝑡 > 0  𝜃̅(0, 𝑠) =
1

𝑠
;          (6.16) 

𝜃(𝑦, 𝑡) → 0   𝑎𝑠    𝑦 → ∞, 𝑡 > 0      𝜃̅(𝑦, 𝑠) → 0. 

Taking Laplace transform of both sides of (6.12) results in 

                   
𝜕2𝜃̅

𝜕𝑦2 + 𝑃𝑟
𝜕𝜃̅

𝜕𝑦
− 𝑃𝑟(𝑠 +

𝐹1

𝑃𝑟
)𝜃̅ = −𝑃𝑟𝐸𝑐𝐿 [(

𝜕𝑢(𝑦,𝑡)

𝜕𝑦
)
2

] − 𝑃𝑟𝑀1𝐸𝑐𝑢̅
2(𝑦, 𝑠).      (6.17)                   

             

Considering the homogeneous problem in the LHS of (6.17) the general solution 

is (see Appendix IV (A3.11)). 

𝜃̅ℎ(𝑦, 𝑠)=𝐴(𝑠)e
−𝑃𝑟−√𝑃𝑟

2+4(𝑃𝑟𝑠+𝐹1)

2
y + 𝐵(𝑠)e

−𝑃𝑟+√𝑃𝑟
2+4(𝑃𝑟𝑠+𝐹1)

2
y
             (6.18) 
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Guessing the form of the particular solution to be  

𝜃̅𝑝(𝑦, 𝑠) = 𝐴;  

𝜃̅𝑝
′
(𝑦, 𝑠) = 0;  

𝜃̅𝑝
′′
(𝑦, 𝑠) = 0;  substituting all in (6.17) gives 

0 + 0 − (𝑃𝑟𝑠 + 𝐹1)𝐴 = −𝑃𝑟𝐸𝑐𝐿 [(
𝜕𝑢(𝑦,𝑡)

𝜕𝑦
)
2

] − 𝑃𝑟𝑀1𝐸𝑐𝑢̅
2(𝑦, 𝑠)  

𝐴 =
𝑃𝑟𝐸𝑐𝐿[(

𝜕𝑢(𝑦,𝑡)

𝜕𝑦
)
2
]

𝑃𝑟𝑠+𝐹1
+

𝑃𝑟𝑀1𝐸𝑐𝑢
2(𝑦,𝑠)

𝑃𝑟𝑠+𝐹1
      (6.19) 

       

  Adding the particular solution (6.19) to (6.18) gives 

𝜃̅(𝑦, 𝑠) = 𝐴(𝑠)e

−𝑃𝑟−√𝑃𝑟
2+4(𝑃𝑟𝑠+𝐹1)

2
 y

+ 𝐵(𝑠)e

−𝑃𝑟+√𝑃𝑟
2+4(𝑃𝑟𝑠+𝐹1)

2
 y

+

𝑃𝑟𝐸𝑐𝐿[(
𝜕𝑢(𝑦,𝑡)

𝜕𝑦
)

2

]

𝑃𝑟𝑠+𝐹1

+
𝑃𝑟𝑀1

𝐸𝑐𝑢̅
2
(𝑦,𝑠)

𝑃𝑟𝑠+𝐹1

.                                                       (6.20)                   

Since 𝜃(y, 𝑡) → 0 ,   𝑎𝑠   𝑦 → ∞, 𝑡 > 0,   𝜃̅(y, 𝑠) = 0  an  𝐵(𝑠) = 0. Now (6.20) 

reduces to 

 𝜃̅(𝑦, 𝑠) = 𝐴(𝑠)e
−𝑃𝑟−√𝑃𝑟

2+4(𝑃𝑟𝑠+𝐹1)

2
y

+
1

𝑃𝑟𝑠+𝐹1

𝑃𝑟𝐸𝑐𝐿 [(
𝜕𝑢(𝑦,𝑡)

𝜕𝑦
)

2

] +

1

𝑃𝑟𝑠+𝐹1

𝑃𝑟𝑀1
𝐸𝑐𝑢̅

2(𝑦, 𝑠)                    (6.21) 
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               From the boundary conditions   𝜃(0, 𝑡) = 1    𝑎𝑡  𝑦 = 𝑜,   𝑡 > 0        𝜃̅(0, 𝑠) =
1

𝑠
  put 

 in (6.21) gives 

                
1

𝑠
 =𝐴(𝑠) +

𝑃𝑟𝐸𝑐𝐿[(
𝜕𝑢(𝑦,𝑡)

𝜕𝑦
)
2
]

𝑃𝑟𝑠+𝐹1
+

𝑃𝑟𝑀1𝐸𝑐𝑢
2(𝑦,𝑠)

𝑃𝑟𝑠+𝐹1
.     (6.22) 

 Put (6.22) in (6.21). 

 𝜃̅(𝑦, 𝑠) = (
1

𝑠
−

𝑃𝑟𝐸𝑐𝐿[(
𝜕𝑢(𝑦,𝑡)

𝜕𝑦
)

2

]

𝑃𝑟𝑠+𝐹1

−
𝑃𝑟𝑀1

𝐸𝑐𝑢̅
2
(𝑦,𝑠)

𝑃𝑟𝑠+𝐹1

) e
−𝑃𝑟−√𝑃𝑟

2+4(𝑃𝑟𝑠+𝐹1)

2
y

+

                   
𝑃𝑟𝐸𝑐𝐿[(

𝜕𝑢(𝑦,𝑠)

𝜕𝑦
)

2

]

𝑃𝑟𝑠+𝐹1

+
𝑃𝑟𝑀1

𝐸𝑐𝑢̅
2(𝑦,𝑠)

𝑃𝑟𝑠+𝐹1

.                         (6.23)

            

𝜃̅(𝑦, 𝑠) =
1

𝑠
e

−𝑃𝑟−√𝑃𝑟
2+4(𝑃𝑟𝑠+𝐹1)

2
y

+ 𝐿 [(
𝜕𝑢(𝑦,𝑡)

𝜕𝑦
)

2

] 𝑃𝑟𝐸𝑐 (
1

𝑃𝑟𝑠+𝐹1

−

 
1

𝑃𝑟𝑠+𝐹1

 e
−𝑃𝑟−√𝑃𝑟

2+4(𝑃𝑟𝑠+𝐹1)

2
y) + 𝑢̅

2(𝑦  𝑠)𝑃𝑟𝑀1
𝐸𝑐 (

1

𝑃𝑟𝑠+𝐹1

−

1

𝑃𝑟𝑠+𝐹1

e
−𝑃𝑟−√𝑃𝑟

2+4(𝑃𝑟𝑠+𝐹1)

2
y).                                                                          (6.24) 

       

In the concentration model (6.14) subject to the boundary conditions in (6.15),  
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in Laplace domain, the boundary conditions for the dimensionless concentration 

can be written as 

∅(𝑦, 0) = 0      𝑓𝑜𝑟 𝑎𝑙𝑙  𝑡 ≤ 0                     ∅̅(𝑦, 0) = 0 ;  

∅(0, 𝑡) = 1     𝑎𝑡   𝑦 = 0, 𝑡 > 0   ∅̅(0, 𝑠) =
1

𝑠
 ;                               (6.25) 

∅(𝑦, 𝑡) → 0   𝑎𝑠    𝑦 → ∞, 𝑡 > 0     ∅̅(𝑦, 𝑠) → 0. 

          

 Taking Laplace transform of both sides of (6.14) gives 

1

𝑆𝑐

𝜕2∅̅

𝜕𝑦2 −𝑠∅̅(𝑦, 𝑠) + ∅(𝑦, 0) +
𝜕∅̅

𝜕𝑦
= 𝐾𝑐∅ ̅(𝑦, 𝑠)       (6.26) 

But  ∅(𝑦, 0) = 0. 

𝜕2∅̅

𝜕𝑦2 +𝑆𝑐
𝜕∅̅

𝜕𝑦
− 𝑆𝑐(𝑠 + 𝐾𝑐)∅̅=0.              (6.27)      

Equation (6.27) is linear second order homogeneous differential equation. 

Considering the homogeneous problem of (6.27) the general solution (see 

Appendix III, (A3.15)) is 

∅̅(𝑦, 𝑠)=𝐴(𝑠)𝑒
−𝑆𝑐−√𝑆𝑐

2+4(𝑆𝑐𝑠+𝑆𝑐𝐾𝑐)

2
 𝑦 + 𝐵(𝑠)𝑒

−𝑆𝑐+√𝑆𝑐
2+4(𝑆𝑐𝑠+𝑆𝑐𝐾𝑐)

2
 𝑦.        (6.28) 

Since ∅(𝑦, 𝑡) → 0 𝑎𝑠    𝑦 → ∞, 𝑡 > 0     ⟹ ∅̅(𝑦, 𝑠) = 0, in (6.28), 𝐵(𝑠) = 0 

Now (6.28) reduces to   

∅̅(𝑦, 𝑠)= 𝐴(𝑠)𝑒
−𝑆𝑐−√𝑆𝑐

2+4(𝑆𝑐𝑠+𝑆𝑐𝐾𝑐)

2
 𝑦

       (6.29) 

 ∅(0, 𝑡) = 1   𝑎𝑡   𝑦 = 0, 𝑡 > 0  ⟹ ∅̅(0, 𝑠) =
1

𝑠
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In (6.29),  
1

𝑠 
=𝐴(𝑠) 

∅̅(𝑦, 𝑠) =  
1

𝑠 
𝑒

−𝑆𝑐−√𝑆𝑐
2+4(𝑆𝑐𝑠+𝑆𝑐𝐾𝑐)

2
 𝑦.

     (6.30)  

Taking inverse Laplace Transform, from tables in Appendix II and the use of 

convolution theorem in Appendix IV, the general solution of the concentration 

equation (6.30) 𝑎𝑡 𝑡 > 0 (see convolution theorem in Appendix IV, (A4.23))  is 

∅(𝑦, 𝑡) =
1

2 
𝑒

−𝑦𝑆𝑐−𝑦√𝑆𝑐
2+4𝑆𝑐𝐾𝑐

2 (−𝑒𝑟𝑓𝑐 (
𝑡√𝑆𝑐+4𝐾𝑐−𝑦√𝑆𝑐

2√𝑡
) +

𝑒
𝑦√𝑆𝑐

2+4𝑆𝑐𝐾𝑐𝑒𝑟𝑓𝑐 (
𝑡√𝑆𝑐+4𝐾𝑐+𝑦√𝑆𝑐

2√𝑡
)).       (6.31) 

  

Similarly, in the momentum model (6.10) subject to the boundary conditions in 

(6.15).  

In Laplace domain, the boundary conditions for the dimensionless momentum 

equation can be written as: 

𝑢(𝑦, 0) = 0    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≤ 0               𝑢̅(𝑦, 0) = 0; 

𝑢(0, 𝑡) =  (1 − 𝑒−𝑚𝑡) at   𝑦 = 0, 𝑡 > 0 𝑢̅(0, 𝑠) =

𝑠

−


𝑠+𝑚
;        (6.32) 

𝑢(𝑦, 𝑡) → 0   𝑎𝑠    𝑦 → ∞, 𝑡 > 0      𝑢̅(𝑦, 𝑠) → 0.         

Taking Laplace transform of (6.10) gives  
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𝜕2𝑢

 𝜕𝑦2
− 𝑠𝑢̅ + 𝑢(𝑦, 0) +

𝜕𝑢

 𝜕𝑦
= −𝐺𝑟𝜃̅ −  𝐺𝑐∅̅ + 𝑀1𝑢.̅           (6.33)

  But  𝑢(𝑦, 0) = 0   

𝜕2𝑢

 𝜕𝑦2 +
𝜕𝑢

𝜕𝑦
− (𝑠 + 𝑀1)𝑢̅ = −𝐺𝑟𝜃̅ −  𝐺𝑐∅.̅                                         (6.34) 

Considering the homogeneous problem in the LHS of (6.34) the general solution 

is      

                    𝑢̅ℎ(𝑦, 𝑠) = 𝐴(𝑠)e
−1−√1+4(𝑠+𝑀1)

2
y + 𝐵(𝑠)e

−1+√1+4(𝑠+𝑀1)

2
y.     (6.35) 

Guessing the form of the particular solution to be  

𝑢̅𝑝(𝑦, 𝑠) = 𝐴;   

𝑢̅𝑝
′(𝑦, 𝑠) = 0;  

𝑢̅𝑝
′′(𝑦, 𝑠) = 0;  substituting all in (6.34) gives 

0 + 0 − (𝑠 + 𝑀1)𝐴 = −𝐺𝑟𝜃̅ −  𝐺𝑐∅̅.         (6.36)  

Adding the particular solution   (6.36) to  (6.35) gives the general solution 

 𝑢̅(𝑦, 𝑠) = 𝐴(𝑠)e
−1−√1+4(𝑠+𝑀1)

2
y + 𝐵(𝑠)e

−1+√1+4(𝑠+𝑀1)

2
y +

𝐺𝑟𝜃̅

𝑠+𝑀1
 +

𝐺𝑐∅̅

𝑠+𝑀1
.      (6.37) 

Since 𝑢(y, 𝑡) → 0  as  𝑦 → ∞, 𝑡 > 0     ⟹ 𝑢̅(y, 𝑠) = o and 𝐵(𝑠) = 0 in (6.37) 

Now (6.37) reduces to 

𝑢̅(𝑦, 𝑠) = 𝐴(𝑠)e
−1−√1+4(𝑠+𝑀1)

2
y +

𝐺𝑟𝜃̅

𝑠+𝑀1
 +

𝐺𝑐∅̅

𝑠+𝑀1
            (6.38) 

But 𝑢(0, 𝑡) =  (1 − 𝑒−𝑚𝑡) at   𝑦 = 0, 𝑡 > 0    𝑢̅(0, 𝑠) =

𝑠

−


𝑠+𝑚
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 𝐴(𝑠) =

𝑠

−


𝑠+𝑚
−

𝐺𝑟𝜃̅

𝑠+𝑀1
 -

𝐺𝑐∅̅

𝑠+𝑀1
.           (6.39) 

 Puttting (6.39)  in (6.38) gives 

𝑢̅(𝑦, 𝑠) = (

𝑠

−


𝑠+𝑚
) e

−1−√1+4(𝑠+𝑀1)

2
y + 𝐺𝑟𝜃̅ (

1

𝑠+𝑀1
−

1

𝑠+𝑀1
e

−1−√1+4(𝑠+𝑀1)

2
y) +

𝐺𝑐∅̅ (
1

𝑠+𝑀1
−

1

𝑠+𝑀1
e

−1−√1+4𝑀1
2

y).             (6.40)                

               

Taking inverse Laplace Transform, from tables in Appendix II and the use of 

convolution theorem in Appendix IV, the general solution of the velocity model 

(6.40) 𝑎𝑡 𝑡 > 0 (see convolution theorem in Appendix IV, (A4.25), (A4.29) and 

(A4.32))  is 

𝑢(𝑦, 𝑡) =

2

e
−y−y√1+4𝑀1

2 [−𝑒𝑟𝑓𝑐 (
−y+t√1+4𝑀1

2√𝑡
) +

ey√1+4𝑀1𝑒𝑟𝑓𝑐 (
y+t√1+4𝑀1

2√𝑡
)] −


2

e
−y−y√1+4(𝑚+𝑀1)+1

2
−𝑚𝑡 [−𝑒𝑟𝑓𝑐 (

−y+t√−4(𝑚+𝑀1)+1

2√𝑡
) +

ey√−4(𝑚+𝑀1)+1𝑒𝑟𝑓𝑐 (
y+t√−4(𝑚+𝑀1)+1

2√𝑡
)] + (𝐺𝑟𝜃(𝑦, 𝑡) + 𝐺𝑐∅(𝑦, 𝑡)) [𝑒−𝑀1𝑡 +

1

 2
𝑒−𝑀1𝑡−𝑦𝑒𝑟𝑓𝑐 (

t−y

2√𝑡
) −

1

 2
𝑒−𝑀1𝑡erfc (

t+y

2√𝑡
)].                                             (6.41) 

 Where 
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 ∅(𝑦, 𝑡) =
1

2 
𝑒

−𝑦𝑆𝑐−𝑦√𝑆𝑐
2+4𝑆𝑐𝐾𝑐

2 (−𝑒𝑟𝑓𝑐 (
𝑡√𝑆𝑐+4𝐾𝑐−𝑦√𝑆𝑐

2√𝑡
) +

𝑒
𝑦√𝑆𝑐

2+4𝑆𝑐𝐾𝑐𝑒𝑟𝑓𝑐 (
𝑡√𝑆𝑐+4𝐾𝑐+𝑦√𝑆𝑐

2√𝑡
)).    

Equation (6.41) is the general solution for the velocity profile at 𝑡 > 0. 

                      

Now, knowing the general solution of the velocity model, the general solution of 

the temperature model can be obtained as; 

From the temperature equation in (6.24) which is 

 𝜃̅(𝑦, 𝑠) =
1

𝑠
e

−𝑃𝑟−√𝑃𝑟
2+4(𝑃𝑟𝑠+𝐹1)

2
y + (

𝜕𝑢(𝑦,𝑠)

𝜕𝑦
)
2

𝑃𝑟𝐸𝑐 (
1

𝑃𝑟𝑠+𝐹1
−

 
1

𝑃𝑟𝑠+𝐹1
  e

−𝑃𝑟−√𝑃𝑟
2+4(𝑃𝑟𝑠+𝐹1)

2
y) + 𝑢̅2(𝑦, 𝑠)𝑃𝑟𝑀1𝐸𝑐 (

1

𝑃𝑟𝑠+𝐹1
−

1

𝑃𝑟𝑠+𝐹1
e

−𝑃𝑟−√𝑃𝑟
2+4(𝑃𝑟𝑠+𝐹1)

2
y).   

In finding the Laplace transform of the velocity function (
𝜕𝑢(𝑦,𝑡)

𝜕𝑦
)
2

, the following 

properties of Laplace transform are used; 
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 If the 𝐿 [(
𝜕𝑢(𝑦,𝑡)

𝜕𝑦
)
2

 ] = (
𝜕𝑢(𝑦,𝑠)

𝜕𝑦
)
2

, then 𝐿−1 [(
𝜕𝑢(𝑦,𝑠  )

𝜕𝑦
)
2

 ] = (
𝜕𝑢(𝑦,𝑡)

𝜕𝑦
)
2

. 

 

Taking inverse Laplace transform of the temperature equation (6.24) from tables 

in Appendix II and the use of convolution theorem in Appendix IV, the general 

solution (see, convolution theorem in Appendix IV, (A4.12), (A4.35) and 

(A4.38)) is 

 𝜃(𝑦, 𝑡) = −
1

2
𝑒

−𝑃𝑟
2

−𝑦√4𝐹1+𝑃𝑟
2

𝑒𝑟𝑓𝑐 (
𝑡√

4𝐹1
𝑃𝑟

+𝑃𝑟−𝑦√𝑃𝑟

2√𝑡
) +

1

2
𝑒

−𝑃𝑟
2

+𝑦√𝐹1+
1

4
𝑃𝑟

2

𝑒𝑟𝑓𝑐 (
𝑡√

4𝐹1
𝑃𝑟

+𝑃𝑟+𝑦√𝑃𝑟

2√𝑡
) + (

𝜕𝑢(𝑦,𝑡)

𝜕𝑦
)
2

𝑃𝑟𝐸𝑐 [
1

𝑃𝑟
𝑒

−𝐹1𝑡

𝑃𝑟 +

1

2𝑃𝑟
𝑒

−𝐹1
𝑃𝑟

+𝑦𝑃𝑟𝑒𝑟𝑓𝑐 (
𝑡√𝑃𝑟−𝑦√𝑃𝑟

2√𝑡
) −

1

2
𝑒

−𝐹1
𝑃𝑟

+2𝑦𝑃𝑟𝑒𝑟𝑓𝑐 (
𝑡√𝑃𝑟+𝑦√𝑃𝑟

2√𝑡
)] +

𝑢2(𝑦, 𝑡)𝑃𝑟𝐸𝑐𝑀1 [
1

𝑃𝑟
𝑒

−𝐹1𝑡

𝑃𝑟 +
1

2𝑃𝑟
𝑒

−𝐹1
𝑃𝑟

+𝑦𝑃𝑟𝑒𝑟𝑓𝑐 (
𝑡√𝑃𝑟−𝑦√𝑃𝑟

2√𝑡
) −

1

2
𝑒

−𝐹1
𝑃𝑟

+2𝑦𝑃𝑟𝑒𝑟𝑓𝑐 (
𝑡√𝑃𝑟+𝑦√𝑃𝑟

2√𝑡
)].       (6.42) 

Where  𝑢2(𝑦, 𝑡) and (
𝜕𝑢(𝑦,𝑡)

𝜕𝑦
)
2

 are shown in (Appendix IV, (A4.39) and (A4.41) 

respectively). 

 In substituting 𝑢2(𝑦, 𝑡) and  (
𝜕𝑢(𝑦,𝑡)

𝜕𝑦
)
2

 (see Appendix IV, (A4.39) and 

(A4.41)) in the temperature equation (6.24), the non-linear term 𝜃2(𝑦, 𝑡)  is 
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considered negligible due to the temperature differences in the flow being 

sufficiently small. Therefore,  the general solution of the temperature model for 

𝑡 > 0 is   

 

𝜃(𝑦, 𝑡) = 𝑏1
−1 [−

1

2
𝑒

−𝑃𝑟
2

−𝑦√4𝐹1+𝑃𝑟
2

𝑒𝑟𝑓𝑐 (
𝑡√

4𝐹1
𝑃𝑟

+𝑃𝑟−𝑦√𝑃𝑟

2√𝑡
) +

1

2
𝑒

−𝑃𝑟
2

+𝑦√𝐹1+
1

4
𝑃𝑟

2

𝑒𝑟𝑓𝑐 (
𝑡√

4𝐹1
𝑃𝑟

+𝑃𝑟+𝑦√𝑃𝑟

2√𝑡
) + 𝑏2𝑃𝑟𝐸𝑐 [

1

𝑃𝑟
𝑒

−𝐹1𝑡

𝑃𝑟 +

1

2𝑃𝑟
𝑒

−𝐹1
𝑃𝑟

+𝑦𝑃𝑟𝑒𝑟𝑓𝑐 (
𝑡√𝑃𝑟−𝑦√𝑃𝑟

2√𝑡
) −

1

2
𝑒

−𝐹1
𝑃𝑟

+2𝑦𝑃𝑟𝑒𝑟𝑓𝑐 (
𝑡√𝑃𝑟+𝑦√𝑃𝑟

2√𝑡
)] +

𝑏3𝑃𝑟𝐸𝑐𝑀1 (
1

𝑃𝑟
𝑒

−𝐹1𝑡

𝑃𝑟 +
1

2𝑃𝑟
𝑒

−𝐹1
𝑃𝑟

+𝑦𝑃𝑟𝑒𝑟𝑓𝑐 (
𝑡√𝑃𝑟−𝑦√𝑃𝑟

2√𝑡
) −

1

2
𝑒

−𝐹1
𝑃𝑟

+2𝑦𝑃𝑟𝑒𝑟𝑓𝑐 (
𝑡√𝑃𝑟+𝑦√𝑃𝑟

2√𝑡
))].           (6.43)

 Where 

 𝑏1 = 1 − 𝑃𝑟𝐸𝑐 [
1

𝑃𝑟
𝑒

−𝐹1𝑡

𝑃𝑟 +
1

2𝑃𝑟
𝑒

−𝐹1
𝑃𝑟

+𝑦𝑃𝑟𝑒𝑟𝑓𝑐 (
𝑡√𝑃𝑟−𝑦√𝑃𝑟

2√𝑡
) −

1

2
𝑒

−𝐹1
𝑃𝑟

+2𝑦𝑃𝑟𝑒𝑟𝑓𝑐 (
𝑡√𝑃𝑟+𝑦√𝑃𝑟

2√𝑡
)] [

1

2√𝜋𝑡
𝑒

−𝑀1𝑡−(𝑡−𝑦)2

4𝑡−𝑦 −
1

2
𝑒𝑟𝑓𝑐 (

𝑡−𝑦

2√𝑡
) 𝑒−𝑀1𝑡−𝑦 +

1

2√𝜋𝑡
𝑒

−𝑀1𝑡−(𝑡−𝑦)2

4𝑡−𝑦 ]

4

[−


2√𝜋𝑡
e

−y−y√1+4𝑀1
2

−
(−𝑦+𝑡√4𝑀1+1)

2

4𝑡 −

4

(−1 −
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√4𝑀1 + 1)e
−y−y√1+4𝑀1

2 𝑒𝑟𝑓𝑐 (
−𝑦+𝑡√4𝑀1+1

2√𝑡
) −


2√𝜋𝑡

e
−y+y√1+4𝑀1

2
−

(𝑦+𝑡√4𝑀1+1)
2

4𝑡 +


4

(−1 + √4𝑀1 + 1)e
−y+y√1+4𝑀1

2 𝑒𝑟𝑓𝑐 (
𝑦+𝑡√4𝑀1+1

2√𝑡
)] [


4

(−1 −

√1 − 4(𝑚 + 𝑀1)e
−2mt−y−y√1−4(𝑚+𝑀1)

2 𝑒𝑟𝑓𝑐 (
−𝑦+𝑡√1−4(𝑚+𝑀1)

2√𝑡
) +


2√𝜋𝑡

e
−2mt−y−y√1−4(𝑚+𝑀1)

2
−

(−𝑦+𝑡√1−4(𝑚+𝑀1))
2

4𝑡 +


2√𝜋𝑡

e
−2mt−y+y√1−4(𝑚+𝑀1)

2
−

(𝑦+𝑡√1−4(𝑚+𝑀1))
2

4𝑡 −

4

(−1 +

√1 − 4(𝑚 + 𝑀1)e
−2mt−y+y√1−4(𝑚+𝑀1)

2 𝑒𝑟𝑓𝑐 (
𝑦+𝑡√1−4(𝑚+𝑀1)

2√𝑡
)] −

2𝑃𝑟𝐸𝑐𝑀1𝐺𝑟𝐺𝑐∅(𝑦, 𝑡) [
1

𝑃𝑟
𝑒

−𝐹1𝑡

𝑃𝑟 +
1

2𝑃𝑟
𝑒

−𝐹1
𝑃𝑟

+𝑦𝑃𝑟𝑒𝑟𝑓𝑐 (
𝑡√𝑃𝑟−𝑦√𝑃𝑟

2√𝑡
) −

1

2
𝑒

−𝐹1
𝑃𝑟

+2𝑦𝑃𝑟𝑒𝑟𝑓𝑐 (
𝑡√𝑃𝑟+𝑦√𝑃𝑟

2√𝑡
)] [−

1

4
(−2𝑒−𝑀1𝑡 − 𝑒−𝑀1𝑡−𝑦)2 (−𝑒𝑟𝑓𝑐 (

𝑡−𝑦

2√𝑡
) +

𝑒𝑟𝑓𝑐 (
𝑡+𝑦

2√𝑡
))

2

]

2

e
−y−y√1+4𝑀1

2 [−𝑒𝑟𝑓𝑐 (
−y+t√1+4𝑀1

2√𝑡
) +

𝑒𝑦√1+4𝑀1𝑒𝑟𝑓𝑐 (
y+t√1+4𝑀1

2√𝑡
)] [

2𝑒−𝑀1𝑡−𝑒−𝑀1𝑡−𝑦

2
(−𝑒𝑟𝑓𝑐 (

𝑡−𝑦

2√𝑡
) + 𝑒𝑟𝑓𝑐 (

𝑡+𝑦

2√𝑡
) 𝑒𝑦)]   


2

e
−2mt−y−y√−4(𝑚+𝑀1)+1

2 [−𝑒𝑟𝑓𝑐 (
−y+t√−4(𝑚+𝑀1)+1

2√𝑡
) +

𝑒𝑦√−4(𝑚+𝑀1)+1𝑒𝑟𝑓𝑐 (
y+t√−4(𝑚+𝑀1)+1

2√𝑡
)] [

2𝑒−𝑀1𝑡−𝑒−𝑀1𝑡−𝑦

2
(−𝑒𝑟𝑓𝑐 (

𝑡−𝑦

2√𝑡
) +

𝑒𝑟𝑓𝑐 (
𝑡+𝑦

2√𝑡
) 𝑒𝑦)].   

www.udsspace.uds.edu.gh 

 

 



                                                          158 

 

  

The terms 𝑏2and  𝑏3 are shown (see Appendix IV).  

There exist other possible solution for 𝜃2(𝑦, 𝑡) ≠ 0 but limited in application in 

practice due to the presence of the discriminant in the solution of the resulting 

quadratic equation which makes 𝜃(𝑦, 𝑡)  not defined for higher values of the 

controlling parameters. 

 

6.3.2 Dimensionless Fluxes of Unsteady Hydromagnetic  Boundary Layer 

Flow over a Flat Surface 

6.3.2.1 The Rate of Heat Transfer Coefficient of Unsteady Hydromagnetic 

Boundary Layer Flow over a Flat Surface 

Having obtained the temperature field, the rate of heat transfer coefficient at 

the flat surface in terms of the Nusselt number can be studied. The effects of 𝑡,

𝑀, 𝐹, 𝐻, 𝐸𝑐  and 𝑃𝑟 on Nusselt number will be considered. In dimensionless form, 

the Nusselt number is given by 

𝑁𝑢 = −
𝜕𝜃

𝜕𝑦
|
𝑦=0
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                    = 𝑏1
−2 [

1

4
𝑃𝑟√4𝐹1 + 𝑃𝑟

2𝑒𝑟𝑓𝑐 (
𝑡√

4𝐹1
𝑃𝑟

+𝑃𝑟

2√𝑡
) −

1

2
𝑒𝑟𝑓𝑐 (

𝑡√
4𝐹1
𝑃𝑟

+𝑃𝑟

2√𝑡
) −

𝜆𝑡(8(𝑚+𝑀1)−1)

4√𝜋𝑡3
𝑒−

𝑡2(4𝑚+4𝑀1−1)2

4𝑡 +
1

4
𝑃𝑟𝐸𝑐𝜆

2(√𝑀1 + 1 − 1)𝑒𝑓𝑟𝑐 (
4𝑀1𝑡+𝑡

2√𝑡
)
2

+

2

√𝜋
𝑒−

(4𝑀1𝑡−𝑡)2

4𝑡 ].        (6.43) 

                                                                                                                                                                     

6.3.2.2 The Rate of Mass Transfer Coefficient of Unsteady Hydromagnetic 

Boundary Layer Flow over a Flat Surface 

Knowing the concentration field, the rate of mass transfer coefficient at the flat 

surface in terms of the Sherwood number can be studied. The effects of 𝑡, 𝑆𝑐  

and 𝐾𝑐  on Sherwood number will be examined. In dimensionless form, the 

Sherwood number is given by 

𝑠ℎ = −(
𝜕∅

𝜕𝑦
)
𝑦=0

  

     =
1

4
(𝑆𝑐 + √𝑆𝑐(4𝐾𝑐 + 𝑆𝑐))𝑒𝑟𝑓𝑐 (

𝑡√4𝐾𝑐+𝑆𝑐

2√𝑡
) −

√𝑆𝑐

8√𝜋𝑡
𝑒−𝑡2(4Kc+Sc) +

(−
1

4
(−𝑆𝑐 + √𝑆𝑐(4𝐾𝑐 + 𝑆𝑐)) + √𝑆𝑐(4𝐾𝑐 + 𝑆𝑐)) 𝑒𝑟𝑓𝑐 (

𝑡√4𝐾𝑐+𝑆𝑐

2√𝑡
) −

√𝑆𝑐

√𝜋𝑡
(

1

2
+

𝑦√4𝐾𝑐𝑆𝑐 + 𝑆𝑐
2) 𝑒

−𝑡2(4Kc+Sc)

4𝑡
.
           (6.44) 
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6.3.2.3 Skin Friction Coefficient of Unsteady Hydromagnetic Boundary Layer 

Flow over a Flat Surface 

Also, having obtained the velocity field, it is significant to study changes in the 

skin friction due to the effects of the physical parameters 𝑡,𝑀,𝐻, 𝐸𝑐, 𝑃𝑟 , 𝐾𝑐, 𝐺𝑟 

and 𝐺𝑐. In dimensionless form, the skin friction is given by 

𝜏 = −
𝜕𝑢

𝜕𝑦
|
𝑦=0

=
𝜆

4
((1 + √4𝑀1)𝑒𝑟𝑓𝑐 (

√4𝑀1+1

2√𝑡
) −

2

√𝜋𝑡
𝑒

(4𝑀1+1)

4𝑡 ) + (
𝜆

4
(−1 −

√4𝑀1 + 1) + √4𝑀1 + 1) 𝑒𝑟𝑓𝑐 (
√4𝑀1+1

2√𝑡
) −

𝜆

2√𝜋𝑡
𝑒

(4𝑀1+1)

4𝑡 +

𝜆

2√𝜋𝑡
𝑒−

𝑡2(1−4(𝑚+𝑀1))

4𝑡 +
𝜆

4
(−1 − √4(𝑚+𝑀1) + 2)𝑒𝑟𝑓𝑐 (

𝑡√1−4(𝑚+𝑀1)

2√𝑡
) −

(
𝜆

4
(−1 − √4(𝑚+𝑀1) + 2) + √1 − 4(𝑚 + 𝑀1)) 𝑒𝑟𝑓𝑐 (

√1−4(𝑚+𝑀1)

2√𝑡
) +

1

√𝜋𝑡
𝑒−

𝑡2(1−4(𝑚+𝑀1))

4𝑡 (
𝜆

2
− 𝑚𝑡) + (𝐺𝑟𝜃(𝑦, 𝑡) + 𝐺𝑐∅(𝑦, 𝑡)) [(

1

2

1

√𝜋𝑡
𝑒−

−𝑡2

4𝑡 −

1

2
𝑒𝑟𝑓𝑐 (

𝑡

2√𝑡
)) 𝑒−𝑀1𝑡 −

1

2

1

√𝜋𝑡
𝑒

−𝑀1𝑡−𝑡2

4𝑡 ] + (𝐺𝑟
𝜕𝜃

𝜕𝑦
+ 𝐺𝑐

𝜕∅

𝜕𝑦
) 𝑒−𝑀1𝑡.    (6.45) 

       

6.4  Results and Discussion  

To understand the physical dynamics of the problem, the effects of the 

controlling parameters on the Temperature (𝜃), Concentration(∅) and Velocity 

(𝑢) profiles are illustrated graphically using MATLAB. 
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6.4.1 Graphical Results 

6.4.1.1 Temperature Profiles 

Fig. 6.2 illustrates the effects of time ( 𝑡)on the temperature profiles. It is 

observed as time passes, the temperature of the fluid decreases. Fig. 6.3, 6.4 and 

6.5 exhibit the effects of Prandtl number (Pr), Magnetic parameter (M) and 

Eckert number (Ec), respectively on the temperature profiles. It is also observed 

that increase in either Magnetic parameter (M) or Eckert number (Ec) decreases 

the temperature of the fluid whilst decrease in 𝑃𝑟 decreases the temperature. 

 

 

 

 

 

       

 

 

 

  

 

 

Figure 6. 2 Temperature field for different instance of time t when M=2, 

Ec=2 Pr=0.71, H=2, F=1 k=1, m=1, Gr=5, Gc=5 Kc=1, Sc=2.01 and ⋋=1 
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Figure 6. 3  Temperature field for different values of Prandtl number Pr when 

M=2, Ec=2, t=0.2, H=2, F=1, k=1, m=1, Kc=1, Gc=5, Gr=5, Sc=2.01 and ⋋=1 

 Figure 6.4 Temperature field for different values of magnetic parameters, M when 

  t=0.2, Pr=0.71, Ec=2,  H=2, F=1, Gc=5, Gr=5, Kc=1, Sc=2.01, k=1, m=1 and ⋋=1 
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Fig.6.6 and Fig. 6.7 show the effects of Radiation parameter and Heat (F) 

absorption parameter (H) on the temperature profile respectively. It is noticed 

that increase in either F or H increases the thermal boundary thickness of the 

fluid.  

 

 

 

Figure 6. 5 Temperature field for different values of Eckert number Ec when M=2, 

Pr=0.7, t=0.2, H=2, F=1, k=1, m=1, Gr=5, Gc=5,  Kc=1, Sc=2.01 and ⋋=1. 
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  Figure 6.7 Temperature field for different values of Heat absorption parameter H when 

M=2, Pr=0.71, t=0.2, M=2, Ec=2, F=1, Gr=5, Gc=5, m=1, Sc=2.01, Kc=1and ⋋=1 

Figure 6. 6 Temperature field for different values of Radiation parameter F when 

M=2, Pr=0.71, t=0.2, M=2, Ec=2, H=2 , Gr=5, Gc=5, Kc=1, Sc=2.01, m=1 and ⋋=1 
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6.4.1.2Concentration Profiles 

In Fig. 6.8, 6.9 and 6.10, the effects of  𝑡, Sc and Kc on the concentration profiles 

respectively are considered. It is observed that as time passes, the concentration 

of the fluid decreases hence reduction in permeability of the porous medium. 

However, increase in either Sc or Kc increases the concentration of the flow, 

however at the twist of the flow the concentration decreases for further increase 

in values of Sc due to the unsteadiness in the flow. Also, in the case of 

concentration field for the different values of Kc, the fluid converged at 

termination point as depicted in the diagram. 

 

 

  

 

 

 

 

 

 

 

 

Figure 6.8 Concentration field for different values of time t when Sc=2.01, Kc=1.5. 
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Figure 6.10 Concentration field for different values of Kc when Sc=2.01 and t=0.2 

 

∅ 

Figure 6. 9 Concentration field for different values of Sc when t=0.2 and Kc=1 
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6.4.1.3 Velocity Profiles 

Fig. 6.11 – Fig. 6.13 illustrate the effects of Gr, Gc and M on the velocity profiles 

respectively. Though with an increase in the of values of Gr, the flow is 

accelerated due to the intensity in the buoyancy force influencing the velocity 

within the boundary layer to increase however, in fig. 6.11, the velocity of the 

fluid decreases with increase in Grashof number Gr due to the presence of the 

magnetic field which delays the convection motion of the fluid. Similarly, in fig. 

6.12, an increased in Gc led to decrease in the velocity of the flow but both fluids 

converged at termination point as depicted in the diagrams. This is in good 

agreement with Ali et al. (2014). Also, in Fig. 6.13, an increase in M decreases 

the velocity of the flow. This true in practice because magnetic field retards a 

free convective flow.  
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            Figure 6.11:Velocity field for different values of  Thermal Grashof   

 number Gr when      t=0.75, M=2, Ec=2,  k=1, Kc=1.5, Gc=5, Pr=0.71,   

 Ec=2, Sc=2.01, F=1, H=2, m=1 and ⋋=1 
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Figure 6.13:Velocity field for different values of Magnetic parameter M when t=0.75,  

Ec=2, k=1, Kc=1.5,Gr=5,  Gc=5, Pr=0.71, Ec=2, Sc=2.01, F=1, H=2, m=1 and ⋋=1 

 

 

Figure 6.12:Velocity field for different values of  Mass Grashof number Gc when   t=0.75, 

M=2, Ec=2,  k=1, Kc=1.5, Gr=5, Pr=0.71, Ec=2, Sc=2.01, F=1, H=2, m=1 and ⋋=1 
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6.5 Numerical Results 

Table 6.1-6.3 show the behaviour of skin friction coefficient, −𝒖′(𝟎) , 

Sherwood number, −∅′(𝟎) and  Nusselt number, –𝜽′(𝟎) for various values 

of time ( 𝑡) , magnetic  parameter (M), Eckert number (Ec), dimensionless 

chemical reaction parameter (kc), Schmidt number (Sc), prandtl number (Pr), 

dimensionless permeability coefficient of the porous medium (k), Heat 

absorption parameter (H), radiation parameter (F), thermal Grashof number 

(Gr), Mass Grashof number (Gc)  . From Table 6.1, it is noted that the skin 

friction coefficient, −𝑢′(0)  decreases for increasing values of 𝑡, 𝑀, 𝐸𝑐 , 𝑃𝑟 ,

 𝐺𝑟 and 𝐺𝑐  but increases for increasing values of  𝐻, 𝐹, 𝑆𝑐,   𝑘𝑐, 𝑘 and 𝐹.  From 

Table 6.2, Sherwood number, −∅′(0) decreases with increasing values of 𝑡  but 

increases for increase values of 𝑆𝑐  and 𝑘𝑐  .From Table 6.3, Nusselt number , 

– 𝜃′(0) decreases with increasing values of 𝑡,𝑀, 𝐸𝑐, Gr, Gc  and 𝑃𝑟 but increases 

with increase values of 𝐻, 𝑘, 𝐾𝑐,  Sc and 𝐹. Also in Table 6.4, order to measure 

the accuracy of the results obtained, a comparison is made with Misra et al. 

(2012) which shown a good agreement. 
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Table 6. 1: The Skin friction coefficient, -u' (0) at the wall, for various of t, M, 

H, Ec, Pr, Kc, Gr, k, F , Gc when m = 1 and 𝛌=1.  

𝒕 𝑴 𝑯 𝑬𝒄 𝑷𝒓 𝑮𝒓 𝑮𝒄 𝑺𝒄 𝒌𝒄 𝒌 𝑭 −𝒖′(𝟎) 

0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0    1.5561 

0.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0     0.5533  

0.2 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0    1.5511 

0.2 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0    1.5458 

0.2 1.0 0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0   1.3038  

0.2 1.0 0.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0    1.3669 

0.2 1.0 1.0 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0    1.5458 

0.2 1.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0     1.5354  

0.2 1.0 1.0 1.0 0.71 1.0 1.0 1.0 1.0 1.0 1.0 1.6276 

0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.5561 

0.2 1.0 1.0 1.0 1.0 0.5 1.0 1.0 1.0 1.0 1.0    2.0188 

0.2 1.0 1.0 1.0 1.0 1.5 1.0 1.0 1.0 1.0 1.0    1.0934 
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0.2 1.0 1.0 1.0 1.0 1.0 0.5 1.0 1.0 1.0 1.0     1.8715 

0.2 1.0 1.0 1.0 1.0 1.0 1.5 1.0 1.0 1.0 1.0     1.2408 

0.2 1.0 1.0 1.0 1.0 1.0 1.0 2.0 1.0 1.0 1.0     1.8174 

0.2 1.0 1.0 1.0 1.0 1.0 1.0 2.5 1.0 1.0 1.0    1.9227 

0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.1 1.0 1.0    1.2723 

0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.2 1.0 1.0   1.3038 

0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.2 1.0   1.5147 

0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.4 1.0    1.5406 

0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.2 0.2   1.3038 

0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.4 0.4    1.3669 
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Table 6. 2: Sherwood number,  -∅' (0) at the wall, for various values of 

t, Sc and Kc. 

𝒕 𝑺𝑪 𝑲𝒄 −∅′(𝟎) 

0.2 0.5 0.5 0.3345 

0.4 0.5 0.5 0.1183 

0.2 0.24 0.5 0.2318 

0.2 0.62 0.5 0.3725 

0.2 0.5 0.4 0.3122 

0.2 0.5 0.6 0.3568 
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Table 6.3: The Local Nusselt number, -θ' (0) at the wall, for various of t, M, 

H, Ec, Pr, Kc, Gr, k, F, Gc when , m = 1 and 𝛌 = 1. 

𝒕 𝑴 𝑯 𝑬𝒄 𝑷𝒓 𝑮𝒓 𝑮𝒄 𝑺𝒄 𝒌𝒄 𝒌 𝑭 -θ' (0) 

0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0     0.9254 

0.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0    0.3103 

0.2 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0    0.9233 

0.2 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0    0.9150 

0.2 1.0 0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0     0.6731 

0.2 1.0 0.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0    0.7362 

0.2 1.0 1.0 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0    0.9212 

0.2 1.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0    0.9047 

0.2 1.0 1.0 1.0 0.71 1.0 1.0 1.0 1.0 1.0 1.0   0.9254 

0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0  1.0004 

0.2 1.0 1.0 1.0 1.0 0.5 1.0 1.0 1.0 1.0 1.0  0.7362 

0.2 1.0 1.0 1.0 1.0 1.5 1.0 1.0 1.0 1.0 1.0  0.6731 
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0.2 1.0 1.0 1.0 1.0 1.0 0.5 1.0 1.0 1.0 1.0  0.9308 

0.2 1.0 1.0 1.0 1.0 1.0 1.5 1.0 1.0 1.0 1.0 0.9284 

0.2 1.0 1.0 1.0 1.0 1.0 1.0 2.0 1.0 1.0 1.0 0.6342 

0.2 1.0 1.0 1.0 1.0 1.0 1.0 2.5 1.0 1.0 1.0 0.8421 

0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.1 1.0 1.0 0.8463 

0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.2 1.0 1.0 0.9120 

0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.2 1.0 0.5924 

0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.4 1.0 0.7801 

0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.2 0.2 0.8332 

0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.4 0.4 0.9036 
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Table 6. 4:Comparison of wall temperature gradient, -θ' (0) for different 

values of Pr when M=0 and  Ec=0. 

Pr                                           Misra et al. (2012)                         Present study 

0.71                                         0.2754                                               0.2746 

1.0  0.2811                                              0.2803 

2.0                                            0.3173                                             0.3171 

3.0                                             0.3492                                              0.3490 

 

6.6 Conclusion 

A hydromagnetic unsteady boundary layer flow past an exponentially stretching 

surface in a chemically reactive porous medium has been investigated. The non-

linear partial differential equations have been modeled and transformed to 

dimensionless differential equations using the dimensionless variables. The 

Laplace transform techniques are employed to solve the resulting dimensionless 

differential equations directly and results illustrated graphically. From the results 

obtained, the following conclusions can be drawn: 

1. The thermal boundary layer thickness diminishes with time, magnetic parameter 

and Eckert number but increases with the Prandtl number, radiation parameter 

and the heat absorption parameter. 

2. The concentration boundary layer thickness decreases along with time whilst 

increasing with the Schmidt number and the rate of chemical reaction in the fluid. 

However, at the twist of the flow, the Schmidt number causes a reduction in the 

species concentration in the fluid

3.  The velocity decreases with increasing values of the thermal Grashof number, the 

mass Grashof number and the magnetic parameter. 
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CHAPTER SEVEN 

              SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

7.1 Summary 

Unsteady MHD heat and mass transfer through porous media has been 

investigated. There are several heat and mass transfer problems already tackled 

in the literature. However, there are many areas in which research is continuing 

especially with respect to unsteady flow conditions as it is the most common 

flow situation in many industrial and manufacturing processes.  The aim of the 

study was to investigate theoretically some nonlinear problems arising from 

unsteady boundary layer flow in porous media. The specific objectives of the 

study were to develop a: 

 non-linear mathematical model for unsteady boundary layer flow past an 

exponentially accelerated vertical plate in the presence of heat source and 

transverse magnetic field embedded in a porous medium. 

 non-linear mathematical model for unsteady hydromagnetic convective heat 

and mass transfer past an  impulsively  started  infinite vertical  surface with  

Newtonian  heating in porous medium. 

 non-linear mathematical model for unsteady hydromagnetic boundary layer 

flow over an exponentially stretching flat surface in a porous chemically 

reactive medium. 
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The non-linear partial differential equations had been modelled and transformed 

to dimensionless differential equations using the dimensionless variables. The 

Laplace transform techniques were employed to solve the resulting 

dimensionless differential equations directly and results illustrated graphically 

using MATLAB. 

 

7.2 Conclusions 

Base on the results obtained, the following conclusions can be drawn: 

• A theoretical framework has been developed and used to predict the 

influence of various controlling parameters on the velocity, thermal and 

concentration boundary layers. 

• The magnetic field parameter is effective in reducing the flow as it 

introduces an induced force known as the Lorenz force which tends to 

attract charged particles. 

• For an exponentially stretching surface, the magnetic field parameter 

leads to decreasing thermal boundary layer thickness whilst the effect of 

increasing the radiation parameter leads to increasing thermal boundary 

layer thickness. 

• Although, low Prandtl numbers give greater thermal boundary layer 

thickness, the presence of the magnetic field delay the convection motion. 
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Hence the thermal boundary layer thickness is greater for large Prandtl 

numbers such as water (Pr = 7.0) as compared to air (Pr = 0.71) and 

electrolyte solution (Pr = 1.0) but decreases with  time. 

• Concentration is high for large values of Schmidt numbers such as 

electrolyte solution (Sc = 0.67) compared to water (Sc = 0.62) and air ( 

Sc = 0.24) but diminished faster for electrolyte solution of high Schmidt 

number with time. This relates well with physical situation because 

Schmidt number physically relates to the relative thickness of 

hydrodynamic layer and mass-transfer boundary layer. 

 

7.4 Contribution to Knowledge and Recommendations 

The study made the following novel contributions: 

• Water, air and electrolytes cool objects differently. Hence a choice of 

fluid will determine the level of cooling to achieve.  

• Magnetic field strengths can be used to influence the kinematics of flow. 

• Heat transfer in porous media can be controlled with system parameters 

to achieve a desired product.  

Future research can be considered in the following areas: 

  Unsteady boundary layer flow interaction with heat and mass transfer in 

a circular conduits.  
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 Chemically reactive unsteady flow in a nuclear reactor 

 Unsteady MHD boundary layer flow on curved surfaces as is encountered 

in aircraft wing design and other industrial machinery. 

 

The research is also recommended for 

 practical applications in unsteady processes in the areas such as 

mechanical, electrical, automobile, mining, manufacturing, chemical 

engineering etc since most of these industrial processes are time 

dependent. 

  information on the nature of unsteady boundary layer developed on 

heated porous plate in the presence of chemical contaminants.  

 engineering systems or devices that require magnetic systems.  

 Serve as reference material for future works in the areas of nuclear studies, 

manufacturing, mining, petro-chemical, aerospace and automotive 

sectors. 

 More importantly, the exact solutions obtained in the study will serve as 

accuracy standards for approximate methods. 
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APPENDIX I 

MODELS’ DERIVATIONS 

                   DERIVATION OF CONTINUITY EQUATION 

The continuity equation is an expression of a fundamental mass conservation. 

All fluid particles that flow into any fluid region must flow out. Consider a 

cubical control volume inside a fluid in figure A1.1. All fluid that is accumulated 

inside the control volume + all fluid that is flowing into the control volume must 

be equal to the amount of fluid flowing out of the control volume. Thus 

Accumulation + Flow In = Flow Out  

 

                             

Figure A1.1 Mass flux through each of the six faces of a control volume of 

fluid (Saad, 2009) 

 

Introducing ‘*’ on the variables in figure A1.1 for uniqueness of variables and 

parameters already used in the study. The mass of the control volume at some 

time 𝑡∗ is 
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 𝑀𝑡∗ = 𝜌𝛿𝑥∗𝛿𝑦∗𝛿𝑧∗                (A1.1) 

The time rate of change of mass in the control volume is 

 
𝜕𝜌

𝜕𝑡∗
𝛿𝑥∗𝛿𝑦∗𝛿𝑧∗                           (A1.2) 

Now we can compute the net flow through the control volume faces. Starting 

with the 𝑥 direction, the net flow is 

 (𝜌𝑢∗ +
𝜕𝜌𝑢∗

𝜕𝑥∗ 𝛿𝑥∗) 𝛿𝑦∗𝛿𝑧∗ − 𝜌𝑢∗𝛿𝑦∗𝛿𝑧∗ =
𝜕𝜌𝑢∗

𝜕𝑥∗ 𝛿𝑥∗𝛿𝑦∗𝛿𝑧∗         (A1.3) 

Similarly, the net flow through the 𝒚 and z faces are respectively 

 
𝜕𝜌𝑣∗

𝜕𝑦∗ 𝛿𝑥∗𝛿𝑦∗𝛿𝑧∗                 (A1.4) 

 
𝜕𝜌𝑤∗

𝜕𝑧∗ 𝛿𝑥∗𝛿𝑦∗𝛿𝑧∗               (A1.5) 

Mass conservation requires that the net flow through the control volume is zero. 

By adding up the resulting net flow and dividing by the volume of the fluid  

element ( 𝛿𝑥∗𝛿𝑦∗𝛿𝑧∗ ), the continuity equation is obtained in Cartesian 

coordinates as 

 
𝜕𝜌

𝜕𝑡∗ +
𝜕𝜌𝑢∗

𝜕𝑥∗ +
𝜕𝜌𝑣∗

𝜕𝑦∗ +
𝜕𝜌𝑤∗

𝜕𝑧∗ = 0                (A1.6) 
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DERIVATION OF MOMENTUM EQUATION 

The derivation of the momentum equation relies heavily on the Newton’s 2nd 

Law of motion. Consider a moving fluid element in figure A1.2 below 

                                  

Figure A1. 2  Infinitesimally small moving fluid element showing only the 

forces in the x direction (Anderson, 2009) 

 

Introducing ‘*’ on the variables in figure A1.2 for uniqueness of variables and 

parameters already used in the study. The Newton’s 2nd law, when applied to the 

moving fluid element says that the net force on the fluid element equals its mass 

times the acceleration of the element. This is a vector relation, and hence can be 

split into three scalar relations along the 𝑥∗, 𝑦∗, and 𝑧∗-axes.  

Consider the 𝑥∗ −component of Newton’s 2nd law  

 𝐹𝑥∗ = 𝑚𝑎𝑥∗                (A1.7) 
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This means that a moving fluid experiences forces whose magnitude depends on 

the acceleration in its direction of motion. These forces are made up of body 

forces and surface forces.  

Denoting the body force per unit mass acting on the fluid by 𝘨 and its 

𝑥∗ −component by 𝗀𝑥∗ , the volume of the fluid element is (𝑑𝑥∗𝑑𝑦∗𝑑𝑧∗) hence 

{
𝐵𝑜𝑑𝑦 𝑓𝑜𝑟𝑐𝑒 𝑜𝑛 𝑡ℎ𝑒 𝑓𝑙𝑢𝑖𝑑 𝑒𝑙𝑒𝑚𝑒𝑛𝑡

 𝑎𝑐𝑡𝑖𝑛𝑔 𝑖𝑛 𝑡ℎ𝑒 𝑥∗ − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛
} = 𝜌𝘨𝑥∗(𝑑𝑥∗𝑑𝑦∗𝑑𝑧∗)                (A1.8) 

On the face 𝑎𝑏𝑐𝑑, the only force due to shear stress  𝜏𝑦∗𝑥∗𝑑𝑥∗𝑑𝑧∗ acts in the 

negative 𝑥∗direction whilst the shear force [𝜏𝑦∗𝑥∗ + (𝜕𝜏𝑦∗𝑥∗/𝜕𝑦∗)𝑑𝑦∗]𝑑𝑥∗𝑑𝑧∗ 

acts in the positive 𝑥∗ −direction on the face 𝑒𝑓𝑔ℎ which is at a distance of 𝑑𝑦 

above the face  𝑎𝑏𝑐𝑑 . Similarly, on the face 𝑑𝑐𝑔ℎ , 𝜏𝑧∗𝑥∗𝑑𝑥∗𝑑𝑦∗  acts in the 

negative 𝑥∗ − direction whereas on the face 𝑎𝑏𝑓𝑒 , [𝜏𝑧∗𝑥∗ + (𝜕𝜏𝑧∗𝑥∗/

𝜕𝑧∗)𝑑𝑧∗]𝑑𝑥∗𝑑𝑦 ∗ acts in the positive 𝑥∗ −direction. On the face 𝑎𝑑ℎ𝑒, which is 

perpendicular to the 𝑥∗ −aixs, the forces in the 𝑥∗ −direction are the pressure 

force 𝑝𝑑𝑥∗𝑑𝑧∗  which acts in the direction into the fluid element and 

𝜏𝑥∗𝑥∗𝑑𝑥∗𝑑𝑦∗  which is in the negative 𝑥∗ −direction. In contrast, on the face 

𝑏𝑐𝑔𝑓, the pressure force [𝑝 + (𝜕𝑝/𝜕𝑥∗)𝑑𝑥∗]𝑑𝑦∗𝑑𝑧∗ presses inward on the fluid 

element in the negative 𝑥∗ −direction and there is a suction due to the viscous 

normal stress which  tries to pull the element to the right in the positive 

𝑥∗ −direction with a force equal to [𝜏𝑥∗𝑥∗ + (𝜕𝜏𝑥∗𝑥∗/𝜕𝑥∗)𝑑𝑥∗]𝑑𝑦∗𝑑𝑧∗. Hence 

for the moving fluid element 
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{
𝑁𝑒𝑡 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑓𝑜𝑟𝑐𝑒
𝑖𝑛 𝑡ℎ𝑒 𝑥∗ − direction

} = [𝑝 − (𝑝 +
𝜕𝑝

𝜕𝑥∗ 𝜕𝑥∗)] 𝑑𝑦∗𝑑𝑧∗ + [(𝜏𝑥∗𝑥∗ +

𝜕𝜏𝑥∗𝑥∗

𝜕𝑥∗ 𝜕𝑥∗) − 𝜏𝑥∗𝑥∗] 𝑑𝑦∗𝑑𝑧∗ + [(𝜏𝑦∗𝑥∗ +
𝜕𝜏𝑦∗𝑥∗

𝜕𝑦∗ 𝜕𝑦∗) − 𝜏𝑦∗𝑥∗] 𝑑𝑥∗𝑑𝑧∗ +

[(𝜏𝑧∗𝑥∗ +
𝜕𝜏𝑧∗𝑥∗

𝜕𝑧∗ 𝜕𝑧∗) − 𝜏𝑧∗𝑥∗] 𝑑𝑥∗𝑑𝑦∗                                                       (A1.9)     

Where 𝜏𝑦∗𝑥∗ and 𝜏𝑧∗𝑥∗ are the shear stress components. 𝜏𝑥∗𝑥∗ is the normal 

stress in the 𝑥∗ − direction.  

The total force in the 𝑥∗ −direction ( 𝐹𝑥∗  ) is the sum of (A1.8) and (A1.9). 

Simplifying terms give 

    𝐹𝑥 = (−
𝜕𝑝

𝜕𝑥∗ +
𝜕𝜏𝑥∗𝑥∗

𝜕𝑥∗ +
𝜕𝜏𝑦∗𝑥∗

𝜕𝑦∗ +
𝜕𝜏𝑧∗𝑥∗

𝜕𝑧∗ ) 𝑑𝑥∗𝑑𝑦∗𝑑𝑧∗ + 𝜌𝘨𝑥∗(𝑑𝑥∗𝑑𝑦∗𝑑𝑧∗) (A1.10) 

Now considering the RHS of (A1.7), the mass of the fluid element is fixed and 

is given by 

 𝑚 = 𝜌𝑑𝑥∗𝑑𝑦∗𝑑𝑧∗               (A1.11) 

Also, the acceleration of the fluid element is the time rate of change of its 

velocity and is given by the substantial derivative 

             𝑎𝑥∗ =
𝐷𝑢∗

𝐷𝑡∗                 (A1.12) 

Substituting all terms into (A1.7) result in 

                     𝜌
𝐷𝑢∗

𝐷𝑡∗ = −
𝜕𝑝

𝜕𝑥∗ +
𝜕𝜏𝑥∗𝑥∗

𝜕𝑥∗ +
𝜕𝜏𝑦∗𝑥∗

𝜕𝑦∗ +
𝜕𝜏𝑧∗𝑥∗

𝜕𝑧∗ + 𝜌𝘨𝑥∗                  (A1.13) 
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Equation (A1.13) is the 𝑥∗-component form of the momentum equation for a 

viscous flow. Similarly, the 𝑦∗ and 𝑧∗ components can be obtained respectively 

as 

                     𝜌
𝐷𝑣∗

𝐷𝑡∗
= −

𝜕𝑝

𝜕𝑦∗
+

𝜕𝜏𝑥∗𝑦∗

𝜕𝑥∗
+

𝜕𝜏𝑦∗𝑦∗

𝜕𝑦∗
+

𝜕𝜏𝑧∗𝑦∗

𝜕𝑧∗
+ 𝜌𝘨𝑦∗            (A1.14) 

         𝜌
𝐷𝑤∗

𝐷𝑡∗ = −
𝜕𝑝

𝜕𝑧∗ +
𝜕𝜏𝑥∗𝑧∗

𝜕𝑥∗ +
𝜕𝜏𝑦∗𝑧∗

𝜕𝑦∗ +
𝜕𝜏𝑧∗𝑧∗

𝜕𝑧∗ + 𝜌𝘨𝑧∗                    (A1.15) 

where  𝜏𝑥∗𝑥∗ , 𝜏𝑦∗𝑥∗ , 𝜏𝑧∗𝑥∗, 𝜏𝑥∗𝑦∗ , 𝜏𝑦∗𝑦∗ , 𝜏𝑧∗𝑦∗ , 𝜏𝑥∗𝑧∗ , 𝜏𝑦∗𝑧∗ , 𝜏𝑧∗𝑧∗   are shear stress 

components. 

Since the fluid element is moving with the flow, equations (A1.13) - (A1.15) are 

in non-conservation form. They are scalar equations, and are called the Navier-

Stokes equations in honour of the two men, the Frenchman M. Navier and the 

Englishman G. Stokes, who independently obtained the equations in the first half 

of the nineteenth century (source en.Wikipedia.org). 

The Navier-Stokes equations can be obtained in conservation form in terms of 

the substantial derivative as 

 𝜌
𝐷𝑢∗

𝐷𝑡∗ = 𝜌
𝜕𝑢∗

𝜕𝑡∗ + 𝜌𝑈∗. ∇𝑢∗                       (A1.16) 

Expanding the following derivative 

 
𝜕(𝜌𝑢∗)

𝜕𝑡∗
= 𝜌

𝜕𝑢∗

𝜕𝑡∗
+ 𝑢∗ 𝜕𝜌

𝜕𝑡∗
 ⇒  𝜌

𝜕𝑢∗

𝜕𝑡∗
=

𝜕(𝜌𝑢∗)

𝜕𝑡∗
− 𝑢∗ 𝜕𝜌

𝜕𝑡∗
       (A1.17) 

The vector identity for the divergence of the product of scalar times a vector is 

 𝑈∗. (𝜌𝑢∗𝑈∗) = 𝑢∗∇. (𝜌𝑈∗) + (𝜌𝑈∗). ∇𝑢∗    
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 𝜌𝑈∗. ∇𝑢∗ = 𝑈∗. (𝜌𝑢∗𝑈∗)−𝑢∗∇. (𝜌𝑈∗)                      (A1.18)     

Substituting gives   

                𝜌
𝐷𝑢∗

𝐷𝑡∗
=

𝜕(𝜌𝑢∗)

𝜕𝑡∗
− 𝑢∗ 𝜕𝜌

𝜕𝑡∗
−𝑢∗∇. (𝜌𝑈∗) + 𝑈∗. (𝜌𝑢∗𝑈∗)   

                 𝜌
𝐷𝑢∗

𝐷𝑡∗ =
𝜕(𝜌𝑢∗)

𝜕𝑡∗ − 𝑢∗ (
𝜕𝜌

𝜕𝑡∗ + ∇. (𝜌𝑈∗)) + 𝑈∗. (𝜌𝑢∗𝑈∗)              (A1.19) 

The term 
𝜕𝜌

𝜕𝑡∗
+ ∇. (𝜌𝑈∗) is the continuity equation in (3.3), hence it is zero. 

Thus, (A1.19) reduces to 

        𝜌
𝐷𝑢∗

𝐷𝑡∗ =
𝜕(𝜌𝑢∗)

𝜕𝑡∗ + 𝑈∗. (𝜌𝑢∗𝑈∗)                                                 (A1.20) 

This yield for the x* direction 

  
𝜕(𝜌𝑢∗)

𝜕𝑡∗ + 𝑈∗. (𝜌𝑢∗𝑈∗) = −
𝜕𝑝

𝜕𝑥∗ +
𝜕𝜏𝑥∗𝑥∗

𝜕𝑥∗ +
𝜕𝜏𝑦∗𝑥∗

𝜕𝑦∗ +
𝜕𝜏𝑧∗𝑥∗

𝜕𝑧∗ + 𝜌𝘨𝑥∗      (A1.21)    

Similarly, for the y* and z* directions,               

  
𝜕(𝜌𝑣∗)

𝜕𝑡∗ + 𝑈∗. (𝜌𝑣∗𝑈∗) = −
𝜕𝑝

𝜕𝑦∗ +
𝜕𝜏𝑥∗𝑦∗

𝜕𝑥∗ +
𝜕𝜏𝑦∗𝑦∗

𝜕𝑦∗ +
𝜕𝜏𝑧∗𝑦∗

𝜕𝑧∗ + 𝜌𝘨𝑦∗       (A1.22)   

𝜕(𝜌𝑤∗)

𝜕𝑡∗ + 𝑈∗. (𝜌𝑤∗𝑈∗) = −
𝜕𝑝

𝜕𝑧∗ +
𝜕𝜏𝑥∗𝑧∗

𝜕𝑥∗ +
𝜕𝜏𝑦∗𝑧∗

𝜕𝑦∗ +
𝜕𝜏𝑧∗𝑧∗

𝜕𝑧∗ + 𝜌𝘨𝑧∗       (A1.23)  

Equations (A1.21) – (A1.23) are the Navier-Stokes equations in conservation 

form. In the late seventeenth century, Sir Isaac Newton observed that the shear 

stress, 𝜏 , in a fluid was proportional to the time rate of strain, i.e. velocity 

gradients. Such fluids are called Newtonian fluids. In virtually all practical 

aerodynamics problems, the fluid can be assumed to be Newtonian. For such 

fluids, Stokes (1845) obtained: 
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 𝜏𝑥∗𝑥∗ = ∇. 𝑈∗ + 2𝜇
𝜕𝑢∗

𝜕𝑥∗ ;         𝜏𝑦∗𝑦∗ = ∇.𝑈∗ + 2𝜇
𝜕𝑣∗

𝜕𝑦∗  

𝜏𝑧∗𝑧∗ = ∇.𝑈∗ + 2𝜇
𝜕𝑤∗

𝜕𝑧∗
;          𝜏𝑥∗𝑦∗ = 𝜏𝑦∗𝑥∗ = 𝜇 (

𝜕𝑣∗

𝜕𝑥∗
+

𝜕𝑢∗

𝜕𝑦∗
) 

 𝜏𝑥∗𝑧∗ = 𝜏𝑧∗𝑥∗ = 𝜇 (
𝜕𝑢∗

𝜕𝑧∗ +
𝜕𝑤∗

𝜕𝑥∗) ;   𝜏𝑦∗𝑧∗ = 𝜏𝑧∗𝑦∗ = 𝜇 (
𝜕𝑤∗

𝜕𝑦∗ +
𝜕𝑣∗

𝜕𝑧∗)      (A1.24) 

Where   = −
2

3
𝜇                                                                                     (A1.25) 

The complete Navier- Stokes equations in conservation form is thus obtained as 

𝜕(𝜌𝑢∗)

𝜕𝑡∗
+

𝜕(𝜌𝑢∗2)

𝜕𝑥∗
+

𝜕(𝜌𝑢∗𝑣∗)

𝜕𝑦∗
+

𝜕(𝜌𝑢∗𝑤∗)

𝜕𝑧∗
= −

𝜕𝑝

𝜕𝑥∗
+

𝜕

𝜕𝑥∗
(∇.𝑈∗ + 2𝜇

𝜕𝑢∗

𝜕𝑥∗
) +  

                                                     
𝜕

𝜕𝑦∗ [𝜇 (
𝜕𝑣∗

𝜕𝑥∗ +
𝜕𝑢∗

𝜕𝑦∗)] +
𝜕

𝜕𝑧∗ [𝜇 (
𝜕𝑢∗

𝜕𝑧∗ +
𝜕𝑤∗

𝜕𝑥∗)] + 𝜌𝘨𝑥∗          

          (A1.26)     

𝜕(𝜌𝑣∗)

𝜕𝑡∗ +
𝜕(𝜌𝑢∗𝑣∗)

𝜕𝑥∗ +
𝜕(𝜌𝑣∗2)

𝜕𝑦∗ +
𝜕(𝜌𝑣∗𝑤∗)

𝜕𝑧∗ = −
𝜕𝑝

𝜕𝑦∗ +
𝜕

𝜕𝑥∗ [𝜇 (
𝜕𝑣∗

𝜕𝑥∗ +
𝜕𝑢∗

𝜕𝑦∗)]  

                                            +
𝜕

𝜕𝑦∗ (∇. 𝑈∗ + 2𝜇
𝜕𝑣∗

𝜕𝑦∗) +
𝜕

𝜕𝑧∗ [𝜇 (
𝜕𝑤∗

𝜕𝑦∗ +
𝜕𝑣∗

𝜕𝑧∗)] + 𝜌𝘨𝑦∗             

          (A1.27) 

𝜕(𝜌𝑤∗)

𝜕𝑡∗ +
𝜕(𝜌𝑢∗𝑤∗)

𝜕𝑥∗ +
𝜕(𝜌𝑣∗𝑤∗)

𝜕𝑦∗ +
𝜕(𝜌𝑤∗2)

𝜕𝑧∗ = −
𝜕𝑝

𝜕𝑧∗ + 
𝜕

𝜕𝑥∗ [𝜇 (
𝜕𝑢∗

𝜕𝑧∗ +
𝜕𝑤∗

𝜕𝑥∗)] 

               +
𝜕

𝜕𝑦∗ [𝜇 (
𝜕𝑤∗

𝜕𝑦∗ +
𝜕𝑣∗

𝜕𝑧∗)] +
𝜕

𝜕𝑧∗ (∇.𝑈∗ + 2𝜇
𝜕𝑤∗

𝜕𝑧∗) + 𝜌𝘨𝑧∗            (A1.28)            

 In general, Navier- Stokes equation in conservation form is  

𝜌
𝐷𝑈∗

𝐷𝑡∗ = −∇𝑝 + 𝜌𝘨 + 𝜇∇2𝑈∗                                                        (A1.29) 
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DERIVATION OF ENERGY EQUATION 

            

Figure A1. 3 Energy fluxes associated with infinitesimally small moving 

fluid element showing only fluxes in the x*- direction (Anderson, 2009). 

 

The energy equation is derived from the first law of thermodynamics, which, 

when applied to moving fluid element in figure A1.3 becomes: 

{

𝑅𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓
𝑒𝑛𝑒𝑟𝑔𝑦 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒

𝑓𝑙𝑢𝑖𝑑 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 
} = {

𝑁𝑒𝑡 𝑓𝑙𝑢𝑥 𝑜𝑓 
ℎ𝑒𝑎𝑡 𝑖𝑛𝑡𝑜 

𝑡ℎ𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 (
} + {

𝑅𝑎𝑡𝑒 𝑜𝑓 𝑤𝑜𝑟𝑘 𝑑𝑜𝑛𝑒 𝑜𝑛 
𝑡ℎ𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑑𝑢𝑒 𝑡𝑜 𝑏𝑜𝑑𝑦 

𝑎𝑛𝑑 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑓𝑜𝑟𝑐𝑒𝑠
} 

Let 𝐴, 𝐵 and 𝐶 denote the respective terms above. 

   ⇒ 𝐴 = 𝐵 + 𝐶        (A1.30) 

Introducing ‘*’ on the variables in figure A1.3 for uniqueness of variables and 

parameters.  Evaluate 𝐶, i.e. the rate of work done on the moving fluid element 

due to body and surface forces. The rate of work done by the body force acting 

on the fluid element is equal to the product of the force and the component of 

velocity in the direction of the force. Thus,  
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 𝜌𝘨. 𝑈∗(𝑑𝑥∗𝑑𝑦∗𝑑𝑧∗)                          (A1.31) 

To obtain the net rate of work done on the fluid element by the surface forces, 

the forces in the positive 𝑥∗- direction are considered to do positive work and the 

forces in the negative 𝑥∗- direction do negative work. Hence, comparing the 

pressure forces on face 𝑎𝑑ℎ𝑒 and 𝑏𝑐𝑔𝑓, the net rate of work done by pressure in 

the 𝑥∗- direction is 

         [𝑢∗𝑝 − (𝑢∗𝑝 +
𝜕(𝑢∗𝑝)

𝜕𝑥∗ 𝜕𝑥∗)] 𝑑𝑦∗𝑑𝑧∗ = −
𝜕(𝑢∗𝑝)

𝜕𝑥∗ 𝑑𝑥∗𝑑𝑦∗𝑑𝑧∗         (A1.32) 

Similarly, the net rate of work done by the shear stresses in the 𝑥∗- direction on 

faces 𝑎𝑏𝑐𝑑 and 𝑒𝑓𝑔ℎ is 

[(𝑢∗𝜏𝑦∗𝑥∗ +
𝜕(𝑢∗𝜏𝑦∗𝑥∗)

𝜕𝑦∗ 𝜕𝑦∗) − 𝑢∗𝜏𝑦∗𝑥∗] 𝑑𝑥∗𝑑𝑧∗ =
𝜕(𝑢∗𝜏𝑦∗𝑥∗)

𝜕𝑦∗ 𝑑𝑥∗𝑑𝑦∗𝑑𝑧∗     

 

(A1.33)                                

For all the surface forces in the 𝑥∗- direction, the net rate of work done on the 

moving fluid element is 

[−
𝜕(𝑢∗𝑝)

𝜕𝑥∗ +
𝜕(𝑢∗𝜏𝑥∗𝑥∗)

𝜕𝑥∗ +
𝜕(𝑢∗𝜏𝑦∗𝑥∗)

𝜕𝑦∗ +
𝜕(𝑢∗𝜏𝑧∗𝑥∗)

𝜕𝑧∗ ] 𝑑𝑥∗𝑑𝑦∗𝑑𝑧∗              (A1.34) 

Similar expressions can be obtained for surface forces in the 𝑦∗  and 𝑧∗ - 

directions. Hence the net rate of work done on the moving fluid element due to 

body and surface forces is given as 

𝐶 = {𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑢𝑓𝑎𝑐𝑒 𝑓𝑜𝑟𝑐𝑒𝑠 } + {𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑜𝑑𝑦 𝑓𝑜𝑟𝑐𝑒𝑠}  
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     = [− (
𝜕(𝑢∗𝑝)

𝜕𝑥∗
+

𝜕(𝑣∗𝑝)

𝜕𝑦∗
+

𝜕(𝑤∗𝑝)

𝜕𝑧∗
) +

𝜕(𝑢∗𝜏𝑥∗𝑥∗)

𝜕𝑥∗
+

𝜕(𝑢∗𝜏𝑦∗𝑥∗)

𝜕𝑦∗
+

𝜕(𝑢∗𝜏𝑧∗𝑥∗)

𝜕𝑧∗
+

𝜕(𝑣∗𝜏𝑥∗𝑦∗)

𝜕𝑥∗ +
𝜕(𝑣∗𝜏𝑦∗𝑦∗)

𝜕𝑦∗ +
𝜕(𝑣∗𝜏𝑧∗𝑦∗)

𝜕𝑧∗ +
𝜕(𝑤∗𝜏𝑥∗𝑧∗)

𝜕𝑥∗ +
𝜕(𝑤∗𝜏𝑦∗𝑧∗)

𝜕𝑦∗ +

𝜕(𝑤∗𝜏𝑧∗𝑧∗)

𝜕𝑧∗ ] 𝑑𝑥∗𝑑𝑦∗𝑑𝑧∗ + 𝜌𝘨.𝑈∗𝑑𝑥∗𝑑𝑦∗𝑑𝑧∗                (A1.35)                                                                     

In (A1.30), 𝐵 is the net flux of heat into the element. This heat flux is due to two 

factors namely: 

(i) the volumetric heating such as absorption or emission of radiation and  

(ii) heat transfer across the surface due to temperature gradients, i.e. thermal 

conduction. 

Defining 𝑞̇ as the rate of volumetric heat addition per unit mass, noting that the 

mass of the moving fluid element is 𝜌𝑑𝑥∗𝑑𝑦∗𝑑𝑧∗ gives 

 {
𝑉𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 ℎ𝑒𝑎𝑡𝑖𝑛𝑔 

𝑜𝑓 𝑡ℎ𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 
} = 𝜌𝑞̇𝜌𝑑𝑥∗𝑑𝑦∗𝑑𝑧∗                                  (A1.36)    

The heat transferred by thermal conduction into the moving fluid element across 

the face 𝑎𝑑ℎ𝑒 is 𝑞̇𝑥∗𝑑𝑦∗𝑑𝑧∗. The heat transferred out of the element across face 

𝑏𝑐𝑔𝑓 is [𝑞̇𝑥∗ + (𝜕𝑞̇𝑥∗/𝜕𝑥∗)𝑑𝑥∗]𝑑𝑦∗𝑑𝑧∗ . Therefore the net heat transferred in 

the 𝑥∗- direction into the fluid element by thermal conduction is 

    [𝑞̇𝑥∗ − (𝑞̇𝑥∗ +
𝜕(𝑞̇𝑥∗)

𝜕𝑥∗
𝜕𝑥∗)] 𝑑𝑦∗𝑑𝑧∗ = −

𝜕(𝑞̇𝑥∗)

𝜕𝑥∗
𝑑𝑥∗𝑑𝑦∗𝑑𝑧∗             (A1.37)  

Similar equations can be obtained for heat transfer in 𝑦∗ and 𝑧∗ directions across 

other faces. Hence  
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 {
𝐻𝑒𝑎𝑡𝑖𝑛𝑔 𝑜𝑓 𝑡ℎ𝑒 
𝑓𝑙𝑢𝑖𝑑 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑏𝑦

𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛

} = −(
𝜕𝑞̇𝑥∗

𝜕𝑥∗ +
𝜕𝑞̇𝑦∗

𝜕𝑦∗ +
𝜕𝑞̇𝑧∗

𝜕𝑧∗ )𝑑𝑥∗𝑑𝑦∗𝑑𝑧∗      (A1.38) 

Thus,  

 𝐵 = [𝑝𝑞̇ − (
𝜕𝑞̇𝑥∗

𝜕𝑥∗
+

𝜕𝑞̇𝑦∗

𝜕𝑦∗
+

𝜕𝑞̇𝑧∗

𝜕𝑧∗
)] 𝑑𝑥∗𝑑𝑦∗𝑑𝑧∗                (A1.39)            

But heat transferred by thermal conduction is proportional to the local 

temperature gradient  

 𝑞̇𝑥∗ = −𝐾
𝜕𝑇∗

𝜕𝑥∗ ;    𝑞̇𝑦∗ = −𝐾
𝜕𝑇∗

𝜕𝑦∗  ;   𝑞̇𝑧∗ = −𝐾
𝜕𝑇∗

𝜕𝑧∗                    (A1.40)       

                 

Thus,  

     𝐵 = [𝑝𝑞̇ +
𝜕

𝜕𝑥∗ (𝐾
𝜕𝑇∗

𝜕𝑥∗) +
𝜕

𝜕𝑦∗ (𝐾
𝜕𝑇∗

𝜕𝑦∗) +
𝜕

𝜕𝑧∗ (𝐾
𝜕𝑇∗

𝜕𝑧∗)] 𝑑𝑥∗𝑑𝑦∗𝑑𝑧∗    (A1.41). 

The time rate of change of energy of the fluid element was denoted by 𝐴. The 

total energy of the moving fluid per unit mass is the sum of its internal energy 

per unit mass, 𝑒∗, and its kinetic energy per unit mass, 𝑉∗2/2. The total energy 

is (𝑒∗ + 𝑉∗2/2)  and the mass of the fluid is 𝜌𝑑𝑥∗𝑑𝑦∗𝑑𝑧∗ . The time rate of 

change of energy per unit mass is given by 

 𝐴 = 𝜌
𝐷

𝐷𝑡∗
(𝑒∗ +

𝑉∗2

2
)𝑑𝑥∗𝑑𝑦∗𝑑𝑧∗                  (A1.42) 

Hence the final form of the energy equation is obtained to be 
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𝜌
𝐷

𝐷𝑡∗
(𝑒∗ +

𝑉∗2

2
) = 𝜌𝑞̇ +

𝜕

𝜕𝑥∗
(𝐾

𝜕𝑇∗

𝜕𝑥∗
) +

𝜕

𝜕𝑦∗
(𝐾

𝜕𝑇∗

𝜕𝑦∗
) +

𝜕

𝜕𝑧∗
(𝐾

𝜕𝑇∗

𝜕𝑧∗
) −

𝜕(𝑢∗𝑝)

𝜕𝑥∗
−

𝜕(𝑣∗𝑝)

𝜕𝑦∗
−

𝜕(𝑤∗𝑝)

𝜕𝑧∗
+

𝜕(𝑢∗𝜏𝑥∗𝑥∗)

𝜕𝑥∗
+

𝜕(𝑢∗𝜏𝑦∗𝑥∗)

𝜕𝑦∗
+

𝜕(𝑢∗𝜏𝑧∗𝑥∗)

𝜕𝑧∗
+

𝜕(𝑣∗𝜏𝑥∗𝑦∗)

𝜕𝑥∗
+

𝜕(𝑣∗𝜏𝑦∗𝑦∗)

𝜕𝑦∗
+

𝜕(𝑣∗𝜏𝑧∗𝑦∗)

𝜕𝑧∗ +
𝜕(𝑤∗𝜏𝑥∗𝑧∗)

𝜕𝑥∗ +
𝜕(𝑤∗𝜏𝑦∗𝑧∗)

𝜕𝑦∗ +
𝜕(𝑤∗𝜏𝑧∗𝑧∗)

𝜕𝑧∗ + 𝜌𝘨𝑥∗ . 𝑈∗                (A1.43)                 

This is the non-conservation form of the energy equation in terms of the total 

energy. In terms of internal energy, 𝑒∗, the energy equation is obtained as: 

𝜌
𝐷𝑒∗

𝐷𝑡∗
= 𝜌𝑞̇ +

𝜕

𝜕𝑥∗
(𝐾

𝜕𝑇∗

𝜕𝑥∗
) +

𝜕

𝜕𝑦∗
(𝐾

𝜕𝑇∗

𝜕𝑦∗
) +

𝜕

𝜕𝑧∗
(𝐾

𝜕𝑇∗

𝜕𝑧∗
) − 𝑝 (

𝜕𝑢∗

𝜕𝑥∗
+

𝜕𝑣∗

𝜕𝑦∗
+

𝜕𝑤∗

𝜕𝑧∗
) +

𝜏𝑥∗𝑥∗
𝜕𝑢∗

𝜕𝑥∗ + 𝜏𝑦∗𝑥∗
𝜕𝑢∗

𝜕𝑦∗ + 𝜏𝑧∗𝑥∗
𝜕𝑢∗

𝜕𝑧∗ + 𝜏𝑥∗𝑦∗
𝜕𝑣∗

𝜕𝑥∗ + 𝜏𝑦∗𝑦∗
𝜕𝑣∗

𝜕𝑦∗ + 𝜏𝑧∗𝑦∗
𝜕𝑣∗

𝜕𝑧∗ +

𝜏𝑥∗𝑧∗
𝜕𝑤∗

𝜕𝑥∗ + 𝜏𝑦∗𝑧∗
𝜕𝑤∗

𝜕𝑦∗ + 𝜏𝑧∗𝑧∗
𝜕𝑤∗

𝜕𝑧∗                                                                (A1.44)                                                                                                                                                                                                           

Equation (A1.44) can be expressed totally in terms of the flow field variables 

by replacing the viscous stress terms 𝜏𝑥∗𝑦∗ , 𝜏𝑥∗𝑧∗, etc. with their equivalent 

expressions say 𝜏𝑥∗𝑦∗ = 𝜏𝑦∗𝑥∗,   𝜏𝑥∗𝑧∗ = 𝜏𝑧∗𝑥∗,𝜏𝑦∗𝑧∗ = 𝜏𝑧∗𝑦∗ resulting in 

𝜌
𝐷𝑒∗

𝐷𝑡∗ = 𝜌𝑞̇ +
𝜕

𝜕𝑥∗ (𝐾
𝜕𝑇∗

𝜕𝑥∗) +
𝜕

𝜕𝑦∗ (𝐾
𝜕𝑇∗

𝜕𝑦∗) +
𝜕

𝜕𝑧∗ (𝐾
𝜕𝑇∗

𝜕𝑧∗) − 𝑝 (
𝜕𝑢∗

𝜕𝑥∗ +
𝜕𝑣∗

𝜕𝑦∗ +
𝜕𝑤∗

𝜕𝑧∗) +

𝜏𝑥∗𝑥∗
𝜕𝑢∗

𝜕𝑥∗ + 𝜏𝑦∗𝑦∗
𝜕𝑣∗

𝜕𝑦∗ +𝜏𝑧∗𝑧∗
𝜕𝑤∗

𝜕𝑧∗ + 𝜏𝑦∗𝑥∗ (
𝜕𝑢∗

𝜕𝑦∗ +
𝜕𝑣∗

𝜕𝑥∗) + 𝜏𝑧∗𝑥∗ (
𝜕𝑢∗

𝜕𝑧∗ +
𝜕𝑤∗

𝜕𝑥∗) +

𝜏𝑧∗𝑦∗ (
𝜕𝑣∗

𝜕𝑧∗
+

𝜕𝑤∗

𝜕𝑦∗
)                                                                            (A1.45) 

Substituting (A1.44) into (A1.45) gives 
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𝜌
𝐷𝑒∗

𝐷𝑡∗ = 𝜌𝑞̇ +
𝜕

𝜕𝑥∗ (𝐾
𝜕𝑇∗

𝜕𝑥∗) +
𝜕

𝜕𝑦∗ (𝐾
𝜕𝑇∗

𝜕𝑦∗) +
𝜕

𝜕𝑧∗ (𝐾
𝜕𝑇∗

𝜕𝑧∗) − 𝑝 (
𝜕𝑢∗

𝜕𝑥∗ +
𝜕𝑣∗

𝜕𝑦∗ +
𝜕𝑤∗

𝜕𝑧∗) +

 (
𝜕𝑢∗

𝜕𝑥∗
+

𝜕𝑣∗

𝜕𝑦∗
+

𝜕𝑤∗

𝜕𝑧∗
)
2

+ 𝜇 [2 (
𝜕𝑢∗

𝜕𝑥∗
)
2

+ 2(
𝜕𝑣∗

𝜕𝑦∗
)
2

+ 2(
𝜕𝑤∗

𝜕𝑧∗
)
2

+ (
𝜕𝑢∗

𝜕𝑦∗
+

𝜕𝑣∗

𝜕𝑥∗
)
2

+

(
𝜕𝑢∗

𝜕𝑧∗
+

𝜕𝑤∗

𝜕𝑥∗
)
2

(
𝜕𝑣∗

𝜕𝑧∗
+

𝜕𝑤∗

𝜕𝑦∗
)
2

] .                                                        (A1.46)                                 

                                    

Equation (A1.46) is a form of the energy equation completely in terms of the 

flow field variables. 

Hence the rate of change of energy inside the fluid element for incompressible 

viscous fluid flow is  

𝜌
𝐷𝑒∗

𝐷𝑡∗ = 𝜌𝑞̇ + 𝐾 (
𝜕2𝑇∗

𝜕𝑥∗2 +
𝜕2𝑇∗

𝜕𝑦∗2 +
𝜕2𝑇∗

𝜕𝑧∗2) +      (A1.47) 
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                             DERIVATION OF CONCENTRATION EQUATION 

 

Figure A1.4 Flux balance along the x-direction in a region of space 

described in Cartesian (Intaglietta, 2017) 

 

The concentration equation of a fluid is derived on the principles of species 

conservation in a mixture as well as Fick’s Law. 

 The Fick’s Law 

Consider figure A1.4 above, introducing ‘*’ on the variables for uniqueness of 

variables and parameters already used in the study. Fick’s law states that the 

flux of the diffusing material 𝐹𝑥∗  in 𝑥∗- direction is proportional to the negative 

gradient of the mass concentration 𝐶∗ in the same direction: 

 𝐹𝑥∗ = −𝐷
𝑑𝐶∗

𝑑𝑥∗                  (A1.47)     

where 𝐷 is the  mass diffusion coefficient. This coefficient may be constant or 

a function of time, location and concentration. 

In figure A1.4, assuming fluxes occur only in the 𝑥∗- direction, then 
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{

𝑡ℎ𝑒 𝑓𝑙𝑢𝑥 𝑜𝑓 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 
𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑡ℎ𝑒 𝑓𝑎𝑐𝑒 𝑜𝑓 
𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑣𝑜𝑙𝑢𝑚𝑒 𝑥∗

} − {

𝑡ℎ𝑒 𝑓𝑙𝑢𝑥 
𝑡ℎ𝑟𝑜𝑢𝑔ℎ
𝑡ℎ𝑒 𝑓𝑎𝑐𝑒
 𝑥∗ + 𝑑𝑥∗

}={
𝑡ℎ𝑒 𝑟𝑎𝑡𝑒 𝑎𝑡 𝑤ℎ𝑖𝑐ℎ 
𝑡ℎ𝑒 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 

𝑐ℎ𝑎𝑛𝑔𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑣𝑜𝑙𝑢𝑚𝑒
}   

⇒ 𝐹𝑥∗ − (𝐹𝑥∗ +
𝜕𝐹𝑥∗

𝜕𝑥∗
𝑑𝑥∗)= 

𝜕𝐶∗

𝜕𝑡∗
= −

𝜕𝐹𝑥∗

𝜕𝑥∗
           

     (A1.48)          

Now considering the fluxes in all directions yield 

    
𝜕𝐶∗

𝜕𝑡∗ +
𝜕𝐹𝑥∗

𝜕𝑥∗ +
𝜕𝐹𝑦∗

𝜕𝑦∗ +
𝜕𝐹𝑧∗

𝜕𝑧∗ = 0                                                          (A1.49) 

             
𝜕𝐶∗

𝜕𝑡∗ =
𝜕

𝜕𝑥∗ (𝐷
𝜕𝐶∗

𝜕𝑥∗) +
𝜕

𝜕𝑦∗ (𝐷
𝜕𝐶∗

𝜕𝑦∗) +
𝜕

𝜕𝑧∗ (𝐷
𝜕𝐶∗

𝜕𝑧∗)               (A1.50) 

In vector form, (A1.50) is expressed as 

 
𝜕𝐶∗

𝜕𝑡∗ = 𝑑𝑖𝑣(𝐷 𝑔𝑟𝑎𝑑 𝐶∗)             (A1.51) 

 
𝐷𝐶∗

𝐷𝑡∗ = 𝐷∇2𝐶∗2
 𝑟̇                  (A1.52) 
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APPENDIX II 

LAPLACE TRANSFORMS 

Considering the energy model in (4.21);  

 
𝜕𝜃

𝜕𝑡
=

1

𝑃𝑟

𝜕2𝜃

𝜕𝑦2 −
1

𝑃𝑟
𝐹1𝜃 + 𝑀𝐸𝑐𝑢

2    

The Laplace transform is         

1

𝑃𝑟
𝐿 [

𝜕2𝜃

𝜕𝑦2
] − 𝐿 [

𝜕𝜃

𝜕𝑡
] =

1

𝑃𝑟
𝐹1𝐿[𝜃] − 𝑀𝐸𝑐𝐿[𝑢2]       

Taking  𝐿 [
1

𝑃𝑟

𝜕2𝜃

𝜕𝑦2], using the definition of Laplace transform 

Taking  𝐿 [
1

𝑃𝑟

𝜕2𝜃

𝜕𝑦2]=∫
1

𝑃𝑟

𝜕2𝜃

𝜕𝑦2 𝑒−𝑠𝑡∞

0
𝜕𝑡  

                             =
1

𝑃𝑟

𝜕2

𝜕𝑦2 ∫ 𝜃(𝑦, 𝑡)𝑒−𝑠𝑡∞

0
𝜕𝑡    

 But  ∫ 𝜃(𝑦, 𝑡)𝑒−𝑠𝑡∞

0
𝜕𝑡 = 𝜃̅(𝑦, 𝑠).  

𝐿 [
1

𝑃𝑟

𝜕2𝜃

𝜕𝑦2]=
1

𝑃𝑟

𝜕2𝜃̅

𝜕𝑦2                                                                          (A2.1) 

Also, taking 𝐿 [
𝜕𝜃

𝜕𝑡
]. Let 

𝜕𝜃

𝜕𝑡
= 𝜃𝑡(𝑦, 𝑡) 

 𝐿
𝜕𝜃

𝜕𝑡
= 𝐿(𝜃𝑡(𝑦, 𝑡)) = 𝑒−𝑠𝑡𝜃(𝑦, 𝑡)|0

∞ + 𝑠 ∫ 𝜃(𝑦, 𝑡)𝑒−𝑠𝑡∞

0
𝜕𝑡 

   = 𝑠𝜃̅(𝑦, 𝑠) − 𝜃(𝑦, 0).                                   (A2.2) 

Gathering the bits together 

⇒   
1

𝑃𝑟

𝜕2𝜃̅
𝜕𝑦2 − 𝑠𝜃̅(𝑦, 𝑠) + 𝜃(𝑦, 0) =

1

𝑃𝑟
𝐹1𝜃̅(𝑦, 𝑠) − 𝑀𝐸𝑐𝐿[𝑢2(𝑦, 𝑡]. (A2.3)                            
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Similarly, the other models can be expressed in Laplace transforms as: 

In the dimensionless concentration model (4.24), the Laplace transform  is 

1

𝑆𝑐

𝜕2∅̅

𝜕𝑦2 −𝑠∅̅(𝑦, 𝑠) + ∅(𝑦, 0)=𝐾𝑐∅̅(𝑦, 𝑠).     (A2.4) 

Also, in the dimensionless momentum model (4.15), the Laplace transform is 

 
𝜕2𝑢

 𝜕𝑦2 − 𝑢̅ + 𝑢(𝑦, 0) = −𝐺𝑟𝜃̅ −  𝐺𝑐∅̅ + 𝑀1𝑢̅                  (A2.5) 

 

Table of Laplace Transforms 

          𝒇(𝒕) for 𝒕 ≥ 𝟎 𝒇̂ = 𝑳(𝒇(𝒕))         

= ∫ 𝒆−𝒔𝒕
∞

𝟎

𝒇(𝒕)𝒅𝒕 

 

1 1

𝑠
 

 

𝑒𝑎𝑡 1

𝑠 − 𝑎
 

 

  𝑡𝑛 𝑛!

𝑠𝑛+1
(𝑛 = 0,1, … ) 

 

𝑡𝑎 𝛤(𝑎 + 1)

𝑠𝑎+1
(𝑎 > 0) 

 

sin 𝑏𝑡 𝑏

𝑠2 + 𝑏2
 

 

cos 𝑏𝑡 𝑠

𝑠2 + 𝑏2
  

sinh 𝑏𝑡 𝑏

𝑠2 − 𝑏2
 

 

cosh 𝑏𝑡 𝑠

𝑠2 − 𝑏2
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𝑓′(𝑡) 𝑠𝐿(𝑓) − 𝑓(0)  

𝑓′′(𝑡) 𝑠2𝐿(𝑓) − 𝑠𝑓(0)

− 𝑓′(0) 

 

𝑡𝑛𝑓(𝑡) 
(−1)𝑛

𝑑𝑛𝐹

𝑑𝑠𝑛
(𝑠) 

 

𝑒𝑎𝑡𝑓(𝑡) 𝐿(𝑓)(𝑠 − 𝑎)  

𝑢(𝑡 − 𝑎) = {
0       𝑡 ≤ 𝑎
1     𝑡 > 𝑎

 
𝑒−𝑎𝑠

𝑠
 

 

𝑢(𝑡 − 𝑎)𝑓(𝑡 − 𝑎) 𝑒−𝑎𝑠𝐿(𝑓)(𝑠)  

𝑢(𝑡 − 𝑎)𝑔(𝑡) 𝑒−𝑎𝑠𝐿(𝑔(𝑡 + 𝑎))(𝑠)  

𝛿(𝑡 − 1) 𝑒−𝑎𝑠  

(𝑓 ∗ 𝑔)(𝑡)             

= ∫ 𝑓(𝑡 − 𝜏)
𝑡

0

𝑔(𝜏)𝑑𝜏 

𝐿(𝑓 ∗ 𝑔) = 𝐿(𝑓)𝐿(𝑔)  
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          Table of Special Laplace Transforms 

𝒇(𝒕) for 𝒕 ≥ 𝟎 𝒇̂ = 𝑳(𝒇(𝒕))

= ∫ 𝒆−𝒔𝒕
∞

𝟎

𝒇(𝒕)𝒅𝒕 

𝑒−𝑎2/(4𝑡)

√𝜋𝑡
 

𝑒−𝑎√𝑠

√𝑠
 

𝑎𝑒−𝑎2/(4𝑡)

2√𝜋𝑡3
 

𝑒−𝑎√𝑠 

𝑒𝑟𝑓 (𝑡) 𝑒𝑠2/4𝑒𝑟𝑓𝑐(𝑠/2)

𝑠
 

𝑒𝑟𝑓𝑐 (
𝑎

2√𝑡
) 𝑒−𝑎√𝑠

𝑠
 

2√
𝑡

𝜋
 𝑒−𝑎2/(4𝑡)

− 𝑎 {𝑒𝑟𝑓𝑐 (
𝑎

2√𝑡
)} 

𝑒−𝑎√𝑠

𝑠√𝑠
 

𝑒𝑏2𝑡+𝑎𝑏 {𝑒𝑓𝑟𝑐 (𝑏√𝑡 +
𝑎

2√𝑡
)} 

 

𝑒−𝑎√𝑠

√𝑠(√𝑠 + 𝑏)
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APPENDIX III 

SOLUTIONS OF HOMOGENOUS PROBLEMS 

In (4.21), considering the homogeneous problem of the LHS, i.e 

𝜕2𝜃̅
𝜕𝑦2 − 𝑃𝑟𝑠𝜃̅(𝑦, 𝑠) − 𝐹1𝜃̅(𝑦, 𝑠) = 0                    (A3.1) 

                   
𝑑2𝜃̅
𝑑𝑦2 − (𝑃𝑟𝑠 + 𝐹1)𝜃̅ = 0.                   (A3.2) 

The characteristic equation of the ODE is determined from the ansatz  

𝜃̅ = 𝑒𝑟𝑦
 and is   

                               𝑟2 − (𝑃𝑟𝑠 + 𝐹1) = 0         (A3.3) 

                  ⇒        𝑟 = ±√𝑃𝑟𝑠 + 𝐹1.      (A3.4) 

The general solution of the homogenous problem is  

𝜃̅(𝑦, 𝑠) = 𝐴(𝑠)𝑒−√𝑃𝑟𝑠+𝐹1 𝑦 + 𝐵(𝑠)𝑒√𝑃𝑟𝑠+𝐹1  𝑦.          (A3.5)                                    

Where 𝐴(𝑠) and 𝐵(𝑠) are constants. 

Similarly, in (4.36), 
1

𝑆𝑐

𝜕2∅̅

𝜕𝑦2 −𝑠∅̅(𝑦, 𝑠)=𝐾𝑐∅̅(𝑦, 𝑠), the general solution of the 

homogenous problem is  

∅̅(𝑦, 𝑠) = 𝐴(𝑠)𝑒−√𝑆𝑐𝑠+𝑆𝑐𝐾𝑐 𝑦 + 𝐵(𝑠)𝑒√𝑆𝑐𝑠+𝑆𝑐𝐾𝑐  𝑦.                         (A3.6)                                

In (A2.5), 
𝜕2u̅

𝜕𝑦2 − 𝑠𝑢̅ = −𝐺𝑟𝜃̅ − 𝐺𝑐∅̅ + 𝑀1𝑢̅, the general solution of the 

homogenous problem is  
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𝑢̅(𝑦, 𝑠) = 𝐴(𝑠)𝑒−𝑦√𝑠+𝑀1 + 𝐵(𝑠)𝑒𝑦√𝑠+𝑀1  .                                         (A3.7)         

In (5.10), 
1

𝑃𝑟

𝜕2𝜃̅
𝜕𝑦2 − 𝑠𝜃̅(𝑦, 𝑠) =

1

𝑃𝑟
𝐹𝜃̅(𝑦, 𝑠) − 𝑀𝐸𝑐𝐿(𝑢2), the general solution of 

the homogenous problem is  

𝜃̅(𝑦, 𝑠) = 𝐴(𝑠)𝑒−𝑦√𝑃𝑟𝑠+𝐹 + 𝐵(𝑠)𝑒𝑦√𝑃𝑟𝑠+𝐹  .                 (A3.8) 

In (5.24), 
𝜕2u̅

𝜕𝑦2 − 𝑠𝑢̅ = −𝐺𝑟𝜃̅ − 𝐺𝑐∅̅ + 𝑀𝑢̅, homogenous problem is  

𝑢̅(𝑦, 𝑠) = 𝐴(𝑠)𝑒−𝑦√𝑠+𝑀 + 𝐵(𝑠)𝑒𝑦√𝑠+𝑀  .                                           (A3.9)                    

 

In (6.17), taking the homogeneous problem as 

  
𝜕2𝜃̅

𝜕𝑦2 + 𝑃𝑟
𝜕𝜃̅

𝜕𝑦
− (𝑃𝑟𝑠 + 𝐹1)𝜃̅ = 0.       (A3.10) 

The characteristics equation is determined from the ansatz 𝜃̅ = 𝑒𝑟𝑦 which is 

𝑟2 + 𝑃𝑟𝑟 − (𝑃𝑟𝑠 + 𝐹1) = 0  compare to 𝑎𝑟2 + 𝑏𝑟 + 𝑐 = 0 

𝑎 = 1, 𝑏 = 𝑃𝑟 , 𝑐 = −(𝑃𝑟𝑠 + 𝐹1)                   𝑟 =
−𝑃𝑟±√𝑃𝑟

2+4(𝑃𝑟𝑠+𝐹1)

2
𝑦  

The general solution of the homogeneous problem 

is   𝜃̅(𝑦, 𝑠)=𝐴(𝑠)e
−𝑃𝑟−√𝑃𝑟

2+4(𝑃𝑟𝑠+𝐹1)

2
y + 𝐵(𝑠)e

−𝑃𝑟+√𝑃𝑟
2+4(𝑃𝑟𝑠+𝐹1)

2
y.         (A3.11)    

In (6.34), 
𝜕2𝑢

 𝜕𝑦2
− 𝑠𝑢̅ +

𝜕𝑢

 𝜕𝑦
= −𝐺𝑟𝜃̅ − 𝐺𝑐∅̅ + 𝑀1𝑢̅ , the homogeneous problem 

is 
𝜕2𝑢

  𝜕𝑦2 +
𝜕𝑢

 𝜕𝑦
− (𝑠 + 𝑀1)𝑢̅ = 0.      (A3.12) 
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                  The characteristic equation is determined from the ansatz                                             

 𝑢̅ = 𝑒𝑟𝑦  which is 

𝑟2 + 𝑟 − (𝑠 + 𝑀1) = 0  compare to 𝑎𝑟2 + 𝑏𝑟 + 𝑐 = 0 

𝑎 = 1, 𝑏 = 1, 𝑐 = −(𝑠 + 𝑀1)                     𝑟 =
−1±√1−4𝑠

2
  

The general solution of the homogeneous problem is 

 𝑢̅(𝑦, 𝑠)=𝐴(𝑠)e
−1−√1+4(𝑠+𝑀1)

2
y + 𝐵(𝑠)e

−1+√1+4(𝑠+𝑀1)

2
y.                              (A3.13) 

In the homogeneous problem in (6.27) which is 

        
𝜕2∅̅

 𝜕𝑦2 + 𝑆𝑐
𝜕∅̅

 𝜕𝑦
− 𝑆𝑐(𝑠 + 𝐾𝑐)∅̅ = 0       

                  The characteristic equation is determined from the ansatz                                             

 ∅̅ = 𝑒𝑟𝑦  which is 

𝑟2 + 𝑆𝑐𝑟 − 𝑆𝑐(𝑠 + 𝐾𝑐) = 0  compare to 𝑎𝑟2 + 𝑏𝑟 + 𝑐 = 0 

𝑎 = 1, 𝑏 = 𝑆𝑐, 𝑐 = −𝑆𝑐(𝑠 + 𝐾𝑐)                𝑟 =
−𝑆𝑐±√𝑆𝑐

2+4𝑆𝑐(𝑠+𝐾𝑐)

2
  

The general solution of the homogeneous problem is 

  ∅̅(𝑦, 𝑠)=𝐴(𝑠)e
−𝑆𝑐−√𝑆𝑐

2+4𝑆𝑐(𝑠+𝐾𝑐)

2
y + 𝐵(𝑠)e

−𝑆𝑐+√ 𝑐
2
+4𝑆𝑐(𝑠+𝐾𝑐)

2
y.     (A3.14) 
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APPENDIX IV 

CONVOLUTION THEOREM 

If 𝐿−1[𝑓(𝑥)] = 𝑓(𝑡) and𝐿−1[𝑔(𝑥)] = 𝑔(𝑡) then by convolution theorem; 

(𝑓. 𝑔)(𝑥) = ∫ 𝑓(𝑡 − 𝑥)𝑔(𝑥)𝑑𝑥
𝑡

0
       (A4.1) 

In the concentration equation in (4.39), using the convolution theorem; 

𝑓(𝑡) = 𝐿−1 [
1

𝑠
𝑒−𝑦√𝑆𝑐𝑠+𝑆𝑐𝐾𝑐]  

          = 𝐿−1 [
1

𝑠
] ∗ 𝐿−1 [𝑒−𝑦√𝑆𝑐𝑠+𝑆𝑐𝐾𝑐]  

           = 1 ∗ (
𝑦√𝑆𝑐

2√𝜋𝑡3
𝑒

−𝑆𝑐𝑦2

4𝑡
−𝐾𝑐𝑡) .                       (A4.2)

  

𝑓(𝑡) = ∫ 1 ∗
𝑦√𝑆𝑐

2√𝜋𝑥3
𝑒

−𝑆𝑐𝑦2

4𝑥
−𝐾𝑐𝑥𝑑𝑥

𝑡

0
  

          =
𝑦√𝑆𝑐

2√𝜋
∫

1

√𝑥3
𝑒

−𝑆𝑐𝑦2

4𝑥
−𝐾𝑐𝑥𝑑𝑥

𝑡

0
   

           =
𝑦√𝑆𝑐

2√𝜋
[

√𝜋

𝑦√𝑆𝑐
[−𝑒−𝑦√𝑆𝑐𝐾𝑐𝑒𝑟𝑓𝑐 (

2𝑥√𝐾𝑐−𝑦√𝑆𝑐

2√𝑥
) +

𝑒𝑦√𝑆𝑐𝐾𝑐𝑒𝑟𝑓𝑐 (
2𝑥√𝐾𝑐+𝑦√𝑆𝑐

2√𝑥
)]

0

𝑡

]  
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            = − 
1

2
[−𝑒−𝑦√𝑆𝑐𝐾𝑐𝑒𝑟𝑓𝑐 (

2𝑡√𝐾𝑐−𝑦√𝑆𝑐

2√𝑡
) + 𝑒𝑦√𝑆𝑐𝐾𝑐𝑒𝑟𝑓𝑐 (

2𝑡√𝐾𝑐+𝑦√𝑆𝑐

2√𝑡
)].     

 

                                                                                                            

(A4.3) 

 

 In the momentum equation in (4.48), applying convolution theorem; 

𝑓(𝑡) = 𝐿−1 [
1

𝑠−𝑎
𝑒−𝑦√𝑠+𝑀1 ]  

         = 𝐿−1 [
1

𝑠−𝑎
] ∗ 𝐿−1 [𝑒−𝑦√𝑠+𝑀1 ]   

         = 𝑒𝑎𝑡 ∗
𝑦

2√𝜋𝑡3
𝑒

−𝑦2

4𝑡
−𝑡𝑀1        (A4.4) 

𝑓(𝑡) = ∫ 𝑒𝑎(𝑡−𝑥) 𝑦𝑒
−𝑦2

4𝑥
−𝑥𝑀1

2√𝜋𝑥3
𝑑𝑥

𝑡

0
       (A4.5) 

         =
𝑦

2√𝜋
∫

1

√𝑥3
𝑒𝑎𝑡−(𝑎+𝑀1)𝑥−

𝑦2

4𝑥
𝑡

0
   

=
𝑦

2√𝜋
[
√𝜋

𝑦
𝑒𝑎𝑡 [−𝑒−𝑦√𝑎+𝑀1 (𝑒𝑟𝑓𝑐 (

2𝑥√𝑎+𝑀1−𝑦

2√𝑥
)) +

𝑒𝑦√𝑎+𝑀1 (𝑒𝑟𝑓𝑐 (
2𝑥√𝑎+𝑀1+𝑦

2√𝑥
))]

0

𝑡

]   
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=
1

2
𝑒𝑎𝑡 [−𝑒−𝑦√𝑎+𝑀1 (𝑒𝑟𝑓𝑐 (

2𝑡√𝑎+𝑀1−𝑦

2√𝑡
)) + 𝑒𝑦√𝑎+𝑀1 (𝑒𝑟𝑓𝑐 (

2𝑡√𝑎+𝑀1+𝑦

2𝑡
))].   

                                                                                                                     (A4.6) 

Also, 𝑓(𝑡) = 𝐿−1 [
1

𝑠+𝑀1
𝑒−𝑦√𝑠+𝑀1 ]  

         = 𝐿−1 [
1

𝑠+𝑀1
] ∗ 𝐿−1 [𝑒−𝑦√𝑠+𝑀1 ]   

         = 𝑒−𝑀1𝑡 ∗
𝑦

2√𝜋𝑡3
𝑒

−𝑦2

4𝑡
−𝑡𝑀1         (A4.7) 

𝑓(𝑡) = ∫ 𝑒−𝑀1(𝑡−𝑥) 𝑦𝑒
−𝑦2

4𝑥
−𝑥𝑀1

2√𝜋𝑥3
𝑑𝑥

𝑡

0
      

         =
𝑦

2√𝜋
∫

1

√𝑥3
𝑒−𝑀1𝑡−

𝑦2

4𝑥
𝑡

0
   

           =
𝑦

2√𝜋
[−

2√𝜋𝑒−𝑀1𝑡𝑒𝑟𝑓(
𝑦

2√𝑥
)

𝑦
]
0

𝑡

  

             = 𝑒−𝑀1𝑡𝑒𝑟𝑓𝑐 (
𝑦

2√𝑡
).      (A4.8) 

Considering the temperature equation in (4.50), using the convolution theorem; 

𝑓(𝑡) = 𝐿−1 [
1

𝑠
𝑒−𝑦√𝑃𝑟𝑠+𝐹1 𝑦]  

          = 𝐿−1 [
1

𝑠
] ∗ 𝐿−1 [𝑒−𝑦√𝑃𝑟𝑠+𝐹1 𝑦]   
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           = 1 ∗
𝑦√𝑃𝑟

2√𝜋𝑡3
𝑒

−𝐹1𝑡

𝑃𝑟
−

𝑃𝑟𝑦2

4𝑡       (A4.9) 

            =
𝑦√𝑃𝑟

2√𝜋
∫ 1 ∗

1

√𝑡3

𝑡

0
𝑒

−𝐹1𝑥

𝑃𝑟
−

𝑃𝑟𝑦2

4𝑥 𝑑𝑥      (A4.10) 

=
1

2
[−𝑒−𝑦√𝐹1 (𝑒𝑟𝑓𝑐 (

2𝑡√
𝐹1
𝑃𝑟

−𝑦√𝑃𝑟

2√𝑡
)) + 𝑒𝑦√𝐹1 (𝑒𝑟𝑓𝑐 (

2𝑡√
𝐹1
𝑃𝑟

+𝑦√𝑃𝑟

2√𝑡
))].(A4.11) 

𝑓(𝑡) = 𝐿−1 [
1

𝑃𝑟𝑠+𝐹1
𝑒−𝑦√𝑃𝑟𝑠+𝐹1]  

Using convolution theorem; 

 𝑓(𝑡) = 𝐿−1 [
1

𝑃𝑟𝑠+𝐹1
] ∗ 𝐿−1 [𝑒−𝑦√𝑃𝑟𝑠+𝐹1].     (A4.12) 

          =
𝑒

−
𝐹1𝑡
𝑃𝑟

𝑃𝑟
∗

𝑦√𝑃𝑟

2√𝜋𝑡3
𝑒

−𝐹1𝑡

𝑃𝑟
−

𝑃𝑟𝑦2

4𝑡        (A4.13) 

           =
𝑦√𝑃𝑟

2𝑃𝑟√𝜋
∫ 𝑒

−
𝐹1(𝑡−𝑥)

𝑃𝑟 ∗
1

√𝑥3
𝑒

−𝐹1𝑥

𝑃𝑟
−

𝑃𝑟𝑦2

4𝑥
𝑡

0
                                               (A4.14) 

           =
1

𝑃𝑟
[−𝑒

−
𝐹1𝑡

𝑃𝑟 𝑒𝑟𝑓 (
𝑦√𝑃𝑟

2√𝑥
)]

0

𝑡

                    (A4.15) 

           =  
1

𝑃𝑟
𝑒

−
𝐹1𝑡

𝑃𝑟 𝑒𝑟𝑓𝑐 (
𝑦√𝑃𝑟

2√𝑡
).                       (A4.16)  

The velocity term (𝑢2) in the temperature model in (4.51) is expanded as  
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𝑢2 =
1

4
𝑒2(𝑎𝑡−𝑦√𝑎+𝑀1) (𝑒𝑟𝑓𝑐 (

2𝑡√𝑎+𝑀1

2√𝑡
))

2

+

1

4
𝑒2(𝑎𝑡+𝑦√𝑎+𝑀1) (𝑒𝑟𝑓𝑐 (

2𝑡√𝑎+𝑀1

2√𝑡
))

2

+ ((𝐺𝑟𝜃(𝑦, 𝑡))2 + 2𝐺𝑟𝜃(𝑦, 𝑡)𝐺𝑐∅(𝑦, 𝑡) +

(𝐺𝑐∅(𝑦, 𝑡))2)𝑒−2𝑀1𝑡 [1 − 2𝑒𝑟𝑓𝑐 (
𝑦

2√𝑡
) + (𝑒𝑟𝑓𝑐 (

𝑦

2√𝑡
))

2

] +

2 [−
1

4
𝑒𝑎𝑡𝑒𝑟𝑓𝑐 (

2𝑡√𝑎+𝑀1−𝑦

2√𝑡
) 𝑒𝑟𝑓𝑐 (

2𝑡√𝑎+𝑀1+𝑦

2√𝑡
) −

1

2
𝑒𝑎𝑡−𝑦√𝑎+𝑀1𝑒𝑟𝑓𝑐 (

2𝑡√𝑎+𝑀1−𝑦

2√𝑡
) (𝐺𝑟𝜃(𝑦, 𝑡) + 𝐺𝑐∅(𝑦, 𝑡)) (𝑒−𝑀1𝑡 −

𝑒−𝑀1𝑡𝑒𝑟𝑓𝑐 (
𝑦

2√𝑡
)) +

1

2
𝑒𝑎𝑡+𝑦√𝑎+𝑀1𝑒𝑟𝑓𝑐 (

2𝑡√𝑎+𝑀1+𝑦

2√𝑡
) (𝐺𝑟𝜃(𝑦, 𝑡) +

𝐺𝑐∅(𝑦, 𝑡)) (𝑒−𝑀1𝑡 − 𝑒−𝑀1𝑡𝑒𝑟𝑓𝑐 (
𝑦

2√𝑡
))].                   (A4.17)     

Similarly, the velocity term (𝑢2) in the temperature model in (5.25) is expanded 

as  

  𝑢2 =
𝑦2𝑒

−
𝑦2

2𝑡
−2𝑡𝑀

4𝜋𝑡3 +
𝑦𝑒

−
𝑦2

4𝑡
−𝑡𝑀

√𝜋𝑡3
(𝐺𝑟𝜃(𝑦, 𝑡) + 𝐺𝑐∅(𝑦, 𝑡)) (𝑒−𝑀𝑡 −

𝑒−𝑀𝑡𝑒𝑟𝑓𝑐 (
𝑦

2√𝑡
)) + (𝐺𝑟

2𝜃2(𝑦, 𝑡) + 2𝐺𝑟𝜃(𝑦, 𝑡)𝐺𝑐∅(𝑦, 𝑡) +

𝐺𝑐
2∅2(𝑦, 𝑡))𝑒−2𝑀𝑡 (1 − 𝑒𝑟𝑓𝑐 (

𝑦

2√𝑡
))

2

.                                                  (A4.19)                                   
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Considering the concentration equation in (6.30), using the convolution 

theorem 

𝑓(𝑡) = 𝐿−1 [
1

𝑠
𝑒

−𝑆𝑐−√𝑆𝑐
2+4𝑆𝑐(𝑠+𝑘𝑐)

2
𝑦]  

= 𝐿−1 [
1

𝑠
] ∗ 𝐿−1 [𝑒

−𝑆𝑐−√𝑆𝑐
2+4𝑆𝑐(𝑠+𝑘𝑐)

2
𝑦]      (A4.20) 

= 1 ∗
𝑦√𝑆𝑐

3

2𝑆𝑐√𝜋𝑡3
𝑒

−𝑆𝑐𝑦2

4𝑡
−

𝑆𝑐𝑡

4
−

𝑆𝑐𝑦

2
−𝐾𝑐𝑡       (A4.21)

      

=
𝑦√𝑆𝑐

3

2𝑆𝑐√𝜋
∫ 1 ∗

1

√𝑥3

𝑡

0
𝑒

−𝑆𝑐𝑦2

4𝑥
−

𝑆𝑐𝑥

4
−

𝑆𝑐𝑦

2
−𝐾𝑐𝑥𝑑𝑥              (A4.22) 

 

= 
1

2 
𝑒

−𝑦𝑆𝑐−𝑦√𝑆𝑐
2+4𝑆𝑐𝐾𝑐

2 (−𝑒𝑟𝑓𝑐 (
𝑡√𝑆𝑐+4𝐾𝑐−𝑦√𝑆𝑐

2√𝑡
) +

𝑒
𝑦√𝑆𝑐

2+4𝑆𝑐𝐾𝑐
𝑒𝑟𝑓𝑐 (

𝑡√𝑆𝑐+4𝐾𝑐+𝑦√𝑆𝑐

2√𝑡
)) .                         (A4.23) 

In the velocity equation in (6.40), using the convolution theorem; 
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𝑓(𝑡) = 𝐿−1 [

𝑠

e
−1−√1+4(𝑠+𝑀1)

2
y]        (A4.24) 

        = 

2

e
−y−y√1+4𝑀1

2 [−𝑒𝑟𝑓𝑐 (
−y+t√1+4𝑀1

2√𝑡
) + ey√1+4𝑀1𝑒𝑟𝑓𝑐 (

y+t√1+4𝑀1

2√𝑡
)]. 

(A4.25) 

Also,  𝑓(𝑡) = 𝐿−1 [

𝑠+1

e
−1−√1+4(𝑠+𝑀1)

2
y] 

       = 𝐿−1 [


𝑠+𝑚
] ∗ 𝐿−1 [e

−1−√1+4(𝑠+𝑀1)

2
y]                (A4.26) 

            =  𝑒−𝑚𝑡 ∗
𝑦

2√𝜋𝑡3
𝑒

−𝑦2

4𝑡
−

𝑡

4
−

𝑦

2
−𝑀1𝑡

       (A4.27) 

             =
 𝑦

2√𝜋
∫ 𝑒−𝑚(𝑡−𝑥) 1

√𝑥3
𝑒

−𝑦2

4𝑥
−

𝑥

4
−

𝑦

2
−𝑀1𝑥𝑑𝑥

𝑡

0
     (A4.28) 

𝑓(𝑡)         

=


2
e
−y−y√1+4(𝑚+𝑀1)+1

2
−𝑚𝑡 [−𝑒𝑟𝑓𝑐 (

−y + t√−4(𝑚 + 𝑀1) + 1

2√𝑡
)

+ ey√−4(𝑚+𝑀1)+1𝑒𝑟𝑓𝑐 (
y + t√−4(𝑚 + 𝑀1) + 1

2√𝑡
)].                                          (A4.29) 

Also, 𝑓(𝑡) = 𝐿−1 [
1

𝑠+𝑀1
e

−1−√1+4(𝑠+𝑀1)

2
y].  
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                    = 𝐿−1 [
1

𝑠+𝑀1
] ∗ 𝐿−1 [e

−1−√1+4(𝑠+𝑀1)

2
y]                                    (A4.30) 

                  = 𝑒−𝑀1𝑡 ∗
𝑦

2√𝜋𝑡3
𝑒

−𝑦2

4𝑡
−

𝑡

4
−

𝑦

2
−𝑀1𝑡

      

                    =
𝑦

2√𝜋
∫ 𝑒−𝑀1(𝑡−𝑥) 1

√𝑥3
𝑒

−𝑦2

4𝑥
−

𝑥

4
−

𝑦

2
−𝑀1𝑥𝑑𝑥

𝑡

0
   (A4.31) 

𝑓(𝑡) =
1

2
e−𝑀1𝑡−𝑦 [−𝑒𝑟𝑓𝑐 (

t − y

2√𝑡
)

+ ey𝑒𝑟𝑓𝑐 (
t + y

2√𝑡
)].                                                           (A4.32) 

In the temperature equation in (6.24), using the convolution theorem;                  

𝑓(𝑡) = 𝐿−1 [
1

𝑠
e

−𝑃𝑟−√𝑃𝑟
2+4(𝑃𝑟𝑠+𝐹1)

2
y]    

= 𝐿−1 [
1

𝑠
] ∗ 𝐿−1 [e

−𝑃𝑟−√𝑃𝑟
2+4(𝑃𝑟𝑠+𝐹1)

2
y]       

 = 1 ∗
𝑦√𝑃𝑟

2√𝜋𝑡3
𝑒

−𝑃𝑟𝑦2

4𝑡
−

𝐹1𝑡

𝑃𝑟
−

𝑃𝑟𝑡

4
−

𝑃𝑟𝑦

2        (A4.33)

      

=
𝑦√𝑃𝑟

2√𝜋
∫ 1 ∗

1

√𝑥3

𝑡

0
𝑒

−𝑃𝑟𝑦2

4𝑥
−

𝐹1𝑥

𝑃𝑟
−

𝑃𝑟𝑥

4
−

𝑃𝑟𝑦

2 𝑑𝑥                (A4.34) 
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=  −
1

2
𝑒

−𝑃𝑟
2

−𝑦√4𝐹1+𝑃𝑟
2

𝑒𝑟𝑓𝑐 (
𝑡√

4𝐹1
𝑃𝑟

+𝑃𝑟−𝑦√𝑃𝑟

2√𝑡
) +

1

2
𝑒

−𝑃𝑟
2

+𝑦√𝐹1+
1

4
𝑃𝑟

2

𝑒𝑟𝑓𝑐 (
𝑡√

4𝐹1
𝑃𝑟

+𝑃𝑟+𝑦√𝑃𝑟

2√𝑡
).                                                    (A4.35) 

 Also, 𝐿−1 [
1

𝑃𝑟𝑠+𝐹1
e

−𝑃𝑟−√𝑃𝑟
2+4(𝑃𝑟𝑠+𝐹1)

2
y]      (A4.36) 

= 𝐿−1 [
1

𝑃𝑟𝑠 + 𝐹1
] ∗ 𝐿−1 [e

−𝑃𝑟−√𝑃𝑟
2+4(𝑃𝑟𝑠+𝐹1)

2
y] 

=
1

𝑃𝑟
𝑒

−𝐹1𝑡
𝑃𝑟 ∗

𝑦√𝑃𝑟

2√𝜋𝑡3
𝑒

−𝑃𝑟𝑦
2

4𝑡
−

𝐹1𝑡
𝑃𝑟

−
𝑃𝑟𝑡
4

−
𝑃𝑟𝑦
2   

 

 𝑓(𝑡) =
𝑦√𝑃𝑟

2𝑃𝑟√𝜋
∫ 𝑒

−𝐹1𝑡(𝑡−𝑥)

𝑃𝑟
𝑡

0
∗

1

√𝑥3
𝑒

−𝑃𝑟𝑦2

4𝑥
−

𝐹1𝑥

𝑃𝑟
−

𝑃𝑟𝑥

4
−

𝑃𝑟𝑦

2  𝑑𝑥               (A4.37) 

  = −
1

2𝑃𝑟
𝑒

−𝐹1
𝑃𝑟

+𝑦𝑃𝑟𝑒𝑟𝑓𝑐 (
𝑡√𝑃𝑟−𝑦√𝑃𝑟

2√𝑡
) +

1

2
𝑒

−𝐹1
𝑃𝑟

+2𝑦𝑃𝑟𝑒𝑟𝑓𝑐 (
𝑡√𝑃𝑟+𝑦√𝑃𝑟

2√𝑡
).   

          (A4.38) 

The velocity term 𝑢2(𝑦, 𝑡) in the temperature equation (6.42) is expanded as 

follows; 
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𝑢2(𝑦, 𝑡) =


2

4
𝑒−𝑦+𝑦√1+4𝑀1 (𝑒𝑟𝑓𝑐 (

−y+t√1+4𝑀1

2√𝑡
))

2

−


2

2
𝑒−𝑦𝑒𝑟𝑓𝑐 (

−y+t√1+4𝑀1

2√𝑡
) 𝑒𝑟𝑓𝑐 (

y+t√1+4𝑀1

2√𝑡
) +


2

4
𝑒−𝑦−𝑦√1+4𝑀1 (𝑒𝑟𝑓𝑐 (

y+t√1+4𝑀1

2√𝑡
))

2

+


2

4
𝑒−2𝑚𝑡−𝑦−𝑦√−4(𝑚+𝑀1)+1 (𝑒𝑟𝑓𝑐 (

−y+t√−4(𝑚+𝑀1)+1

2√𝑡
))

2

−


2

2
𝑒−2𝑚𝑡−𝑦𝑒𝑟𝑓𝑐 (

−y+t√−4(𝑚+𝑀1)+1

2√𝑡
) 𝑒𝑟𝑓𝑐 (

y+t√−4(𝑚+𝑀1)+1

2√𝑡
) +


2

4
𝑒−2𝑚𝑡−𝑦+𝑦√−4(𝑚+𝑀1)+1 (𝑒𝑟𝑓𝑐 (

y+t√−4(𝑚+𝑀1)+1

2√𝑡
))

2

+ (𝐺𝑟
2𝜃2(𝑦, 𝑡) +

2𝐺𝑟𝜃(𝑦, 𝑡)𝐺𝑐∅(𝑦, 𝑡) + 𝐺𝑐
2∅2(𝑦, 𝑡)) [−

1

4
(−2𝑒−𝑀1𝑡 −

𝑒−𝑀1𝑡−𝑦)2 (−𝑒𝑟𝑓𝑐 (
𝑡−𝑦

2√𝑡
) + 𝑒𝑟𝑓𝑐 (

𝑡+𝑦

2√𝑡
))

2

] + [[−

e
−y−y√1+4𝑀1

2 𝑒𝑟𝑓𝑐 (
−y+t√1+4𝑀1

2√𝑡
) + 

e
−y+y√1+4𝑀1

2 𝑒𝑟𝑓𝑐 (
y+t√1+4𝑀1

2√𝑡
)] [

−
2

e
−2mt−y−y√−4(𝑚+𝑀1)+1

2 𝑒𝑟𝑓𝑐 (
−y+t√−4(𝑚+𝑀1)+1

2√𝑡
) +


2

e
−2mt−y+y√−4(𝑚+𝑀1)+1

2 𝑒𝑟𝑓𝑐 (
y+t√−4(𝑚+𝑀1)+1

2√𝑡
)]] + (𝐺𝑟θ(y, t) +

𝐺𝑐∅(y, t))

2

e
−y−y√1+4𝑀1

2 [−𝑒𝑟𝑓𝑐 (
−y+t√1+4𝑀1

2√𝑡
) +
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𝑒𝑦√1+4𝑀1𝑒𝑟𝑓𝑐 (
y+t√1+4𝑀1

2√𝑡
)] [

2𝑒−𝑀1𝑡−𝑒−𝑀1𝑡−𝑦

2
(−𝑒𝑟𝑓𝑐 (

𝑡−𝑦

2√𝑡
) +

𝑒𝑟𝑓𝑐 (
𝑡+𝑦

2√𝑡
) 𝑒𝑦)] + (𝐺𝑟θ(y, t) +

𝐺𝑐∅(y, t))

2

e
−2mt−y−y√−4(𝑚+𝑀1)+1

2 [−𝑒𝑟𝑓𝑐 (
−y+t√−4(𝑚+𝑀1)+1

2√𝑡
) +

𝑒𝑦√−4(𝑚+𝑀1)+1𝑒𝑟𝑓𝑐 (
y+t√−4(𝑚+𝑀1)+1

2√𝑡
)] [

2𝑒−𝑀1𝑡−𝑒−𝑀1𝑡−𝑦

2
(−𝑒𝑟𝑓𝑐 (

𝑡−𝑦

2√𝑡
) +

𝑒𝑟𝑓𝑐 (
𝑡+𝑦

2√𝑡
) 𝑒𝑦)].                   (A4.39) 

 

The term (
𝜕𝑢(𝑦,𝑡)

𝜕𝑦
)
2

 in the temperature equation (6.42) is obtained as; 

𝜕𝑢(𝑦,𝑡)

𝜕𝑦
= [−


2√𝜋𝑡

e
−y−y√1+4𝑀1

2
−

(−𝑦+𝑡√4𝑀1+1)
2

4𝑡 −

4

(−1 −

√4𝑀1 + 1)e
−y−y√1+4𝑀1

2 𝑒𝑟𝑓𝑐 (
−𝑦+𝑡√4𝑀1+1

2√𝑡
) −


2√𝜋𝑡

e
−y+y√1+4𝑀1

2
−

(𝑦+𝑡√4𝑀1+1)
2

4𝑡 +


4

(−1 + √4𝑀1 + 1)e
−y+y√1+4𝑀1

2 𝑒𝑟𝑓𝑐 (
𝑦+𝑡√4𝑀1+1

2√𝑡
)] + [


4

(−1 −

√1 − 4(𝑚 + 𝑀1)e
−2mt−y−y√1−4(𝑚+𝑀1)

2 𝑒𝑟𝑓𝑐 (
−𝑦+𝑡√1−4(𝑚+𝑀1)

2√𝑡
) +


2√𝜋𝑡

e
−2mt−y−y√1−4(𝑚+𝑀1)

2
−

(−𝑦+𝑡√1−4(𝑚+𝑀1))
2

4𝑡 +


2√𝜋𝑡

e
−2mt−y+y√1−4(𝑚+𝑀1)

2
−

(𝑦+𝑡√1−4(𝑚+𝑀1))
2

4𝑡 −

4

(−1 +
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√1 − 4(𝑚 + 𝑀1)e
−2mt−y+y√1−4(𝑚+𝑀1)

2 𝑒𝑟𝑓𝑐 (
𝑦+𝑡√1−4(𝑚+𝑀1)

2√𝑡
)] +

(𝐺𝑟𝜃(𝑦, 𝑡) + 𝐺𝑐∅(𝑦, 𝑡)) [
1

2√𝜋𝑡
𝑒

−𝑀1𝑡−(𝑡−𝑦)2

4𝑡−𝑦 −
1

2
𝑒𝑟𝑓𝑐 (

𝑡−𝑦

2√𝑡
) 𝑒−𝑀1𝑡−𝑦 +

1

2√𝜋𝑡
𝑒

−𝑀1𝑡−(𝑡−𝑦)2

4𝑡−𝑦 ].                                  (A4.40) 

(
𝜕𝑢(𝑦,𝑡)

𝜕𝑦
)
2

= [−


2√𝜋𝑡
e

−y−y√1+4𝑀1
2

−
(−𝑦+𝑡√4𝑀1+1)

2

4𝑡 −

4

(−1 −

√4𝑀1 + 1)e
−y−y√1+4𝑀1

2 𝑒𝑟𝑓𝑐 (
−𝑦+𝑡√4𝑀1+1

2√𝑡
) −


2√𝜋𝑡

e
−y+y√1+4𝑀1

2
−

(𝑦+𝑡√4𝑀1+1)
2

4𝑡 +


4

(−1 + √4𝑀1 + 1)e
−y+y√1+4𝑀1

2 𝑒𝑟𝑓𝑐 (
𝑦+𝑡√4𝑀1+1

2√𝑡
)]

2

+ [

4

(−1 −

√1 − 4(𝑚 + 𝑀1)e
−2mt−y−y√1−4(𝑚+𝑀1)

2 𝑒𝑟𝑓𝑐 (
−𝑦+𝑡√1−4(𝑚+𝑀1)

2√𝑡
) +


2√𝜋𝑡

e
−2mt−y−y√1−4(𝑚+𝑀1)

2
−

(−𝑦+𝑡√1−4(𝑚+𝑀1))
2

4𝑡 +


2√𝜋𝑡

e
−2mt−y+y√1−4(𝑚+𝑀1)

2
−

(𝑦+𝑡√1−4(𝑚+𝑀1))
2

4𝑡 −

4

(−1 +

√1 − 4(𝑚 + 𝑀1)e
−2mt−y+y√1−4(𝑚+𝑀1)

2 𝑒𝑟𝑓𝑐 (
𝑦+𝑡√1−4(𝑚+𝑀1)

2√𝑡
)]

2

+

[(𝐺𝑟𝜃(𝑦, 𝑡) + 𝐺𝑐∅(𝑦, 𝑡)) [
1

2√𝜋𝑡
𝑒

−𝑀1𝑡−(𝑡−𝑦)2

4𝑡−𝑦 −
1

2
𝑒𝑟𝑓𝑐 (

𝑡−𝑦

2√𝑡
) 𝑒−𝑀1𝑡−𝑦 +

1

2√𝜋𝑡
𝑒

−𝑀1𝑡−(𝑡−𝑦)2

4𝑡−𝑦 ]]

2

+ 2 [[−


2√𝜋𝑡
e

−y−y√1+4𝑀1
2

−
(−𝑦+𝑡√4𝑀1+1)

2

4𝑡 −

4

(−1 −
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√4𝑀1 + 1)e
−y−y√1+4𝑀1

2 𝑒𝑟𝑓𝑐 (
−𝑦+𝑡√4𝑀1+1

2√𝑡
) −


2√𝜋𝑡

e
−y+y√1+4𝑀1

2
−

(𝑦+𝑡√4𝑀1+1)
2

4𝑡 +


4

(−1 + √4𝑀1 + 1)e
−y+y√1+4𝑀1

2 𝑒𝑟𝑓𝑐 (
𝑦+𝑡√4𝑀1+1

2√𝑡
)] [


4

(−1 −

√1 − 4(𝑚 + 𝑀1)e
−2mt−y−y√1−4(𝑚+𝑀1)

2 𝑒𝑟𝑓𝑐 (
−𝑦+𝑡√1−4(𝑚+𝑀1)

2√𝑡
) +


2√𝜋𝑡

e
−2mt−y−y√1−4(𝑚+𝑀1)

2
−

(−𝑦+𝑡√1−4(𝑚+𝑀1))
2

4𝑡 +


2√𝜋𝑡

e
−2mt−y+y√1−4(𝑚+𝑀1)

2
−

(𝑦+𝑡√1−4(𝑚+𝑀1))
2

4𝑡 −

4

(−1 +

√1 − 4(𝑚 + 𝑀1)e
−2mt−y+y√1−4(𝑚+𝑀1)

2 𝑒𝑟𝑓𝑐 (
𝑦+𝑡√1−4(𝑚+𝑀1)

2√𝑡
)] +

[−


2√𝜋𝑡
e

−y−y√1+4𝑀1
2

−
(−𝑦+𝑡√4𝑀1+1)

2

4𝑡 −

4

(−1 −

√4𝑀1 + 1)e
−y−y√1+4𝑀1

2 𝑒𝑟𝑓𝑐 (
−𝑦+𝑡√4𝑀1+1

2√𝑡
) −


2√𝜋𝑡

e
−y+y√1+4𝑀1

2
−

(𝑦+𝑡√4𝑀1+1)
2

4𝑡 +


4

(−1 + √4𝑀1 + 1)e
−y+y√1+4𝑀1

2 𝑒𝑟𝑓𝑐 (
𝑦+𝑡√4𝑀1+1

2√𝑡
)] [(𝐺𝑟𝜃(𝑦, 𝑡) +

𝐺𝑐∅(𝑦, 𝑡)) [
1

2√𝜋𝑡
𝑒

−𝑀1𝑡−(𝑡−𝑦)2

4𝑡−𝑦 −
1

2
𝑒𝑟𝑓𝑐 (

𝑡−𝑦

2√𝑡
) 𝑒−𝑀1𝑡−𝑦 +

1

2√𝜋𝑡
𝑒

−𝑀1𝑡−(𝑡−𝑦)2

4𝑡−𝑦 ]] +

[

4

(−1 − √1 − 4(𝑚 + 𝑀1)e
−2mt−y−y√1−4(𝑚+𝑀1)

2 𝑒𝑟𝑓𝑐 (
−𝑦+𝑡√1−4(𝑚+𝑀1)

2√𝑡
) +


2√𝜋𝑡

e
−2mt−y−y√1−4(𝑚+𝑀1)

2
−

(−𝑦+𝑡√1−4(𝑚+𝑀1))
2

4𝑡 +
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
2√𝜋𝑡

e
−2mt−y+y√1−4(𝑚+𝑀1)

2
−

(𝑦+𝑡√1−4(𝑚+𝑀1))
2

4𝑡 −

4

(−1 +

√1 − 4(𝑚 + 𝑀1)e
−2mt−y+y√1−4(𝑚+𝑀1)

2 𝑒𝑟𝑓𝑐 (
𝑦+𝑡√1−4(𝑚+𝑀1)

2√𝑡
)] [(𝐺𝑟𝜃(𝑦, 𝑡) +

𝐺𝑐∅(𝑦, 𝑡)) [
1

2√𝜋𝑡
𝑒

−𝑀1𝑡−(𝑡−𝑦)2

4𝑡−𝑦 −
1

2
𝑒𝑟𝑓𝑐 (

𝑡−𝑦

2√𝑡
) 𝑒−𝑀1𝑡−𝑦 +

1

2√𝜋𝑡
𝑒

−𝑀1𝑡−(𝑡−𝑦)2

4𝑡−𝑦 ]]].        

(A4.41)     

From the temperature equation (6.43), the terms b2 and 𝑏3 are 

  𝑏2 = [−


2√𝜋𝑡
e

−y−y√1+4𝑀1
2

−
(−𝑦+𝑡√4𝑀1+1)

2

4𝑡 −

4

(−1 −

√4𝑀1 + 1)e
−y−y√1+4𝑀1

2 𝑒𝑟𝑓𝑐 (
−𝑦+𝑡√4𝑀1+1

2√𝑡
) −


2√𝜋𝑡

e
−y+y√1+4𝑀1

2
−

(𝑦+𝑡√4𝑀1+1)
2

4𝑡 +


4

(−1 + √4𝑀1 + 1)e
−y+y√1+4𝑀1

2 𝑒𝑟𝑓𝑐 (
𝑦+𝑡√4𝑀1+1

2√𝑡
)]

2

+ [

4

(−1 −

√1 − 4(𝑚 + 𝑀1)e
−2mt−y−y√1−4(𝑚+𝑀1)

2 𝑒𝑟𝑓𝑐 (
−𝑦+𝑡√1−4(𝑚+𝑀1)

2√𝑡
) +


2√𝜋𝑡

e
−2mt−y−y√1−4(𝑚+𝑀1)

2
−

(−𝑦+𝑡√1−4(𝑚+𝑀1))
2

4𝑡 +


2√𝜋𝑡

e
−2mt−y+y√1−4(𝑚+𝑀1)

2
−

(𝑦+𝑡√1−4(𝑚+𝑀1))
2

4𝑡 −

4

(−1 +
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√1 − 4(𝑚 + 𝑀1)e
−2mt−y+y√1−4(𝑚+𝑀1)

2 𝑒𝑟𝑓𝑐 (
𝑦+𝑡√1−4(𝑚+𝑀1)

2√𝑡
)]

2

+

[(𝐺𝑐∅(𝑦, 𝑡)) [
1

2√𝜋𝑡
𝑒

−𝑀1𝑡−(𝑡−𝑦)2

4𝑡−𝑦 −
1

2
𝑒𝑟𝑓𝑐 (

𝑡−𝑦

2√𝑡
) 𝑒−𝑀1𝑡−𝑦 +

1

2√𝜋𝑡
𝑒

−𝑀1𝑡−(𝑡−𝑦)2

4𝑡−𝑦 ]]

2

  

+2 [[−


2√𝜋𝑡
e

−y−y√1+4𝑀1
2

−
(−𝑦+𝑡√4𝑀1+1)

2

4𝑡 −

4

(−1 −

√4𝑀1 + 1)e
−y−y√1+4𝑀1

2 𝑒𝑟𝑓𝑐 (
−𝑦+𝑡√4𝑀1+1

2√𝑡
) −


2√𝜋𝑡

e
−y+y√1+4𝑀1

2
−

(𝑦+𝑡√4𝑀1+1)
2

4𝑡 +


4

(−1 + √4𝑀1 + 1)e
−y+y√1+4𝑀1

2 𝑒𝑟𝑓𝑐 (
𝑦+𝑡√4𝑀1+1

2√𝑡
)] [


4

(−1 −

√1 − 4(𝑚 + 𝑀1)e
−2mt−y−y√1−4(𝑚+𝑀1)

2 𝑒𝑟𝑓𝑐 (
−𝑦+𝑡√1−4(𝑚+𝑀1)

2√𝑡
) +


2√𝜋𝑡

e
−2mt−y−y√1−4(𝑚+𝑀1)

2
−

(−𝑦+𝑡√1−4(𝑚+𝑀1))
2

4𝑡 +


2√𝜋𝑡

e
−2mt−y+y√1−4(𝑚+𝑀1)

2
−

(𝑦+𝑡√1−4(𝑚+𝑀1))
2

4𝑡 −

4

(−1 +

√1 − 4(𝑚 + 𝑀1)e
−2mt−y+y√1−4(𝑚+𝑀1)

2 𝑒𝑟𝑓𝑐 (
𝑦+𝑡√1−4(𝑚+𝑀1)

2√𝑡
)] +

[−


2√𝜋𝑡
e

−y−y√1+4𝑀1
2

−
(−𝑦+𝑡√4𝑀1+1)

2

4𝑡 −

4

(−1 −

√4𝑀1 + 1)e
−y−y√1+4𝑀1

2 𝑒𝑟𝑓𝑐 (
−𝑦+𝑡√4𝑀1+1

2√𝑡
) −


2√𝜋𝑡

e
−y+y√1+4𝑀1

2
−

(𝑦+𝑡√4𝑀1+1)
2

4𝑡 +


4

(−1 +
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√4𝑀1 + 1)e
−y+y√1+4𝑀1

2 𝑒𝑟𝑓𝑐 (
𝑦+𝑡√4𝑀1+1

2√𝑡
)] [(𝐺𝑐∅(𝑦, 𝑡)) [

1

2√𝜋𝑡
𝑒

−𝑀1𝑡−(𝑡−𝑦)2

4𝑡−𝑦 −

1

2
𝑒𝑟𝑓𝑐 (

𝑡−𝑦

2√𝑡
) 𝑒−𝑀1𝑡−𝑦 +

1

2√𝜋𝑡
𝑒

−𝑀1𝑡−(𝑡−𝑦)2

4𝑡−𝑦 ]] + [

4

(−1 −

√1 − 4(𝑚 + 𝑀1)e
−2mt−y−y√1−4(𝑚+𝑀1)

2 𝑒𝑟𝑓𝑐 (
−𝑦+𝑡√1−4(𝑚+𝑀1)

2√𝑡
) +


2√𝜋𝑡

e
−2mt−y−y√1−4(𝑚+𝑀1)

2
−

(−𝑦+𝑡√1−4(𝑚+𝑀1))
2

4𝑡 +


2√𝜋𝑡

e
−2mt−y+y√1−4(𝑚+𝑀1)

2
−

(𝑦+𝑡√1−4(𝑚+𝑀1))
2

4𝑡 −

4

(−1 +

√1 − 4(𝑚 + 𝑀1)e
−2mt−y+y√1−4(𝑚+𝑀1)

2 𝑒𝑟𝑓𝑐 (
𝑦+𝑡√1−4(𝑚+𝑀1)

2√𝑡
)] [(𝐺𝑐∅(𝑦, 𝑡)) [

1

2√𝜋𝑡
𝑒

−𝑀1𝑡−(𝑡−𝑦)2

4𝑡−𝑦 −

1

2
𝑒𝑟𝑓𝑐 (

𝑡−𝑦

2√𝑡
) 𝑒−𝑀1𝑡−𝑦 +

1

2√𝜋𝑡
𝑒

−𝑀1𝑡−(𝑡−𝑦)2

4𝑡−𝑦 ]]].                                        (A4.42) 

𝑏3 =


2

4
𝑒−𝑦+𝑦√1+4𝑀1 (𝑒𝑟𝑓𝑐 (

−y+t√1+4𝑀1

2√𝑡
))

2

−


2

2
𝑒−𝑦𝑒𝑟𝑓𝑐 (

−y+t√1+4𝑀1

2√𝑡
) 𝑒𝑟𝑓𝑐 (

y+t√1+4𝑀1

2√𝑡
) +


2

4
𝑒−𝑦−𝑦√1+4𝑀1 (𝑒𝑟𝑓𝑐 (

y+t√1+4𝑀1

2√𝑡
))

2

+


2

4
𝑒−2𝑚𝑡−𝑦−𝑦√−4(𝑚+𝑀1)+1 (𝑒𝑟𝑓𝑐 (

−y+t√−4(𝑚+𝑀1)+1

2√𝑡
))

2

−
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
2

2
𝑒−2𝑚𝑡−𝑦𝑒𝑟𝑓𝑐 (

−y+t√−4(𝑚+𝑀1)+1

2√𝑡
) 𝑒𝑟𝑓𝑐 (

y+t√−4(𝑚+𝑀1)+1

2√𝑡
) +

(𝐺𝑐
2∅2(𝑦, 𝑡))


2

4
𝑒−2𝑚𝑡−𝑦+𝑦√−4(𝑚+𝑀1)+1 (𝑒𝑟𝑓𝑐 (

y+t√−4(𝑚+𝑀1)+1

2√𝑡
))

2

[−
1

4
(−2𝑒−𝑀1𝑡 −

𝑒−𝑀1𝑡−𝑦)2 (−𝑒𝑟𝑓𝑐 (
𝑡−𝑦

2√𝑡
) + 𝑒𝑟𝑓𝑐 (

𝑡+𝑦

2√𝑡
))

2

] + [[−

e
−y−y√1+4𝑀1

2 𝑒𝑟𝑓𝑐 (
−y+t√1+4𝑀1

2√𝑡
) + 

e
−y+y√1+4𝑀1

2 𝑒𝑟𝑓𝑐 (
y+t√1+4𝑀1

2√𝑡
)] [

−
2

e
−2mt−y−y√−4(𝑚+𝑀1)+1

2 𝑒𝑟𝑓𝑐 (
−y+t√−4(𝑚+𝑀1)+1

2√𝑡
) +


2

e
−2mt−y+y√−4(𝑚+𝑀1)+1

2 𝑒𝑟𝑓𝑐 (
y+t√−4(𝑚+𝑀1)+1

2√𝑡
)]] +

(𝐺𝑐∅(y, t))

2

e
−y−y√1+4𝑀1

2 [−𝑒𝑟𝑓𝑐 (
−y+t√1+4𝑀1

2√𝑡
) +

𝑒𝑦√1+4𝑀1𝑒𝑟𝑓𝑐 (
y+t√1+4𝑀1

2√𝑡
)] [

2𝑒−𝑀1𝑡−𝑒−𝑀1𝑡−𝑦

2
(−𝑒𝑟𝑓𝑐 (

𝑡−𝑦

2√𝑡
) +

𝑒𝑟𝑓𝑐 (
𝑡+𝑦

2√𝑡
) 𝑒𝑦)] +

(𝐺𝑐∅(y, t))

2

e
−2mt−y−y√−4(𝑚+𝑀1)+1

2 [−𝑒𝑟𝑓𝑐 (
−y+t√−4(𝑚+𝑀1)+1

2√𝑡
) +

𝑒𝑦√−4(𝑚+𝑀1)+1𝑒𝑟𝑓𝑐 (
y+t√−4(𝑚+𝑀1)+1

2√𝑡
)] [

2𝑒−𝑀1𝑡−𝑒−𝑀1𝑡−𝑦

2
(−𝑒𝑟𝑓𝑐 (

𝑡−𝑦

2√𝑡
) +

𝑒𝑟𝑓𝑐 (
𝑡+𝑦

2√𝑡
) 𝑒𝑦)].  

                                                                                                         (A4.43) 
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APPENDIX V 

MATLAB CODES 

Concentration profile for air (Sc=0.24), electrolyte solution (Sc=0.67) and 

water (Sc=0.62)  when Kc=1 

>> syms phi1 phi2 phi3 phi4 phi5 phi6 y 

>>phi1=0.5*exp(-0.4899*y)*erfc(0.4472-0.5477*y)+ 

0.5*exp(0.4899*y)*erfc(0.4472+0.5477*y) 

>>phi2=0.5*exp(-0.4899*y)*erfc(0.6325-0.3873*y)+ 

0.5*exp(0.4899*y)*erfc(0.6325+0.3873*y) 

>>phi3=0.5*exp(-0.8185*y)*erfc(0.4472-0.9152*y)+ 

0.5*exp(0.8185*y)*erfc(0.4472+0.9152*y) 

>>phi4=0.5*exp(-0.8185*y)*erfc(0.6325-0.6471*y)+ 

0.5*exp(0.8185*y)*erfc(0.6325+0.6471*y) 

>>phi5=0.5*exp(-0.7874*y)*erfc(0.4472-0.8803*y)+ 

0.5*exp(0.7874*y)*erfc(0.4472+0.8803*y) 

>>phi6=0.5*exp(-0.7874*y)*erfc(0.6325-

0.6225*y)+.5*exp(0.7874*y)*erfc(0.6325+0.6225*y) 

>> a=ezplot(phi1,0,2) 

>> set(a,'color','g','LineStyle','--') 

>> hold on 
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>> b=ezplot(phi2,0,2) 

>> set(b,'color','k','LineStyle','--') 

>> hold on 

>> c=ezplot(phi3,0,2) 

>> set(c,'color','y','LineStyle','-') 

>> hold on 

>> d=ezplot(phi4,0,2) 

>> set(d,'color','r','LineStyle','-') 

>> hold on 

    >> set(e,'color','c','LineStyle',':') 

>> hold on 

>> f=ezplot(phi6,0,2) 

>> set(f,'color','b','LineStyle',':') 

>> ylabel('phi') 

>> title('') 

>> Legend('a','b','c','d','e','f','Location','northwest') 
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