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 ABSTRACT

In probability distribution theory, substantial efforts have been made in developing prob-

ability distributions for modelling lifetime from systems connected in series. However,

there are several significant situations where empirical data set from such systems do not

follow any of these existing distributions. Hence, it is essential to generate more flexible

distributions for modelling lifetime data from series connected components. In this study,

the Nadarajah Haghighi generalised power Weibull (NHGPW) distribution and the power

series generalised power Weibull (PGPW) class of distributions were developed based on

the concept of compounding. From the results, the NHGPW distribution hazard function

can be constant, monotonic, bathtub, unimodal, modified bathtub or modified unimodal.

Its probability density function can also be bathtub, monotonic, positively skewed, uni-

modal, modified bathtub and modified unimodal. Monte Carlo simulations performed

to assess the performance of the estimators of the NHGPW distribution showed that,

its parameter estimates are consistent since their mean square error and average bias

approaches zero as the sample size increase. Also, the NHGPW distribution provides

a better fit to two lifetime data set than the other competitive distributions for system

connected in series. The PGPW class of distribution have four sub-family of distribution;

the generalised power geometric (GPG) family, generalised power poison (GPP) family,

generalised power binomial (GPB) family and the generalised power logarithmic (GPL)

family of distributions. The hazard rate and PDF plots of the four sub-family of distribu-

tions showed that, their hazard and PDF can be monotonic, bathtub, unimodal, modified

bathtub or modified unimodal. Monte Carlo simulation performed on these sub-family

of distribution showed that, their MLE estimators are consistent. The GPG family of

distributions provides a better fit failure data from air conditioning system of an aircraft

whiles the GPP family also provides a better fit among the four fitted distributions to

service times of aircraft data. It is therefore recommended that, these new distributions

be considered in modelling lifetime data from series connected systems.
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 CHAPTER 1

INTRODUCTION

1.1 Study Background

The quality of every parametric statistical analysis is determined greatly by the probabil-

ity distribution assumed. For this reason, extensive efforts have been made in developing

new and standard probability distributions with various statistical techniques for many

lifetime situations. Nonetheless, applications from various fields such as environment,

finance/economics, biological sciences, engineering, agriculture among others, have addi-

tionally shown that, many of the data sets following these traditional distributions are

usually an exception rather than a certainty (Arthur et al., 2014).

In reliability and survival modelling, probability distributions are mostly used for mod-

elling time to failure data. In many cases, the quality of the model significantly depends

on; the success in selecting an appropriate probability distribution of the phenomenon

under discussion; the fundamental properties of the assumed distribution; and the elemen-

tary assumptions considered in deriving these statistical distribution. These properties

and assumptions significantly support in distinguishing the practical circumstances where

the distributions are applicable. The more clearly determined the structural properties,

the clearer the scope of the distribution. During the past decades, well known classical

lifetime distributions like the exponential, Weibull, Rayleigh, linear failure rate, gamma

and their extensions were used for modelling lifetime data (Lemonte, 2013). However,

these traditional distributions are only applicable to lifetime time data with monotonic

shape hazard rate.

In order to increase the flexibility of these well-known distributions, many researchers have

proposed different transformations of them and have used these extended forms in sev-

eral areas (Mahmoud, 2018). In distribution theory, generalisation of existing statistical

distributions can be done by transformations, extensions or by compounding two distri-

butions whiles introducing additional shape or scale parameter(s). Compounding two

1
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distributions can be done in three forms; by discrete-continuous compounding which in-

volves combining a discrete and continuous distributions or discrete-discrete compounding

which involves combining two discrete distributions or continuous-continuous compound-

ing which involves combining two continuous distributions. This compounding approach

can be suitable in manufacturing, biological, medical and reliability analysis for modeling

failure rate data from a component/system with dual sub-systems working independently

in successions or series at an expected time. For two sub-systems functioning in series,

the main system fails if any one or the two sub-systems stops functioning. The stochastic

representation of their failure time is given as;

T = min(T1, T2) (1.1)

where T1 and T2 are the lifetime failure rate random variables for the two sub-systems.

Compounding two or more distributions have been shown to be very useful in discov-

ering various skewed and tailed properties of many distributions and for improving the

goodness-of-fit of the traditional distributions (Cordeiro et al., 2017). This is done also

to make the existing distributions better-off and more flexible for various lifetime situa-

tions. Most of the resulting new distributions usually contain the baseline distribution as

a special case for various parameter values.

The exponential model is one of the extensively used statistical models for lifetime data

analysis in reliability and survival studies. If failure rate in phenomena is constant over

time, then the exponential distribution can provide an adequate fit. It however does not

offer an adequate fit for failure rates which are not constant such as increasing, decreasing,

bathtub and unimodal commonly encountered in biological, engineering, manufacturing

and other reliability and survival analyses. Several extensions of the exponential distri-

bution have been done, one of which is the Nadarajah-Haghighi (NH) distribution.

The NH distribution is a bi-parameter distribution proposed by Nadarajah and Haghighi

(2011) as a generalisation of the one-parameter exponential model. They two researchers

indicated that, their distribution has a good property of having a zero mode with in-

creased, decreased or constant hazard rate. The NH distribution was developed as a

substitute to the Weibull, gamma, exponentiated exponential and exponential distribu-

2
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tions. The researchers provided three possible inspirations for this different family; firstly,

the connection between its probability density and its hazard rate functions. The NH

distribution exhibits decreasing or constant hazard rate when its corresponding proba-

bility density function is monotonically decreasing and also exhibit an increasing hazard

rate for a monotonically decreasing probability density. This property is a serious limi-

tation for the alternative distribution (thus the Weibull, gamma, and the exponentiated

exponential distributions); secondly, the NH distribution always have zero chance that

its shape is unimodal hence is able to model lifetime data with their zero mode. This is

also a limitation for the substitute distributions; lastly, the NH distribution can similarly

be inferred as a truncated Weibull distribution. Similar to the exponentiated exponential

and the Weibull distributions, the NH model also has a closed form survival and hazard

function. The most significant weakness of this new distribution is its failure to model

hazard/failure rate that are not monotonic, for instance the bathtub-shaped, upside down

bathtub (unimodal) and modified down bathtub failure rates. Therefore further extension

of it is necessary.

The Weibull distribution was developed by a Swedish engineer and mathematician Weibull

(1939) which was extensively further studied by him in 1951. The major advantages of

the Weibull distribution are; it is able to extensively deliver practical precise failure rate

analysis and projections with exceedingly smaller samples size; also, the Weibull family

can give very simple and valuable plot of the failure data which are very useful in engi-

neering studies; additionally, the Weibull distribution is very useful even with shortfalls

in a data set.

When modelling monotonic failure or hazard rate functions, the Weibull model may be

a good choice since its hazard can increase, or decrease or remain constant. The Weibull

distribution however does not conversely give a suitable fit for data sets with bathtub

or upside down bathtub shaped (unimodal) failure rates (Sujata and Rajash, 1988). Be-

cause of these limitations of the traditional Weibull distribution, many modifications of

it have been proposed recently to make it more flexible in modeling data that exhibit

different kinds of failure rates (for example; the modified Weibull distribution by Sarhan

and Zaindin (2009); the reduced Weibull model by Almalki (2013); the generalized power
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Weibull model derived by Bagdonavicius and Nikulin (2002) among others). The gen-

eralized power Weibull (GPW) model derived by Bagdonavicius and Nikulin (2002) was

further studied by Nikulin and Haghighi (2006), Lai (2013) and Nikulin and Haghighi

(2009) among others.

In this study, two new distributions were developed by the compounding approach. Thus;

the Nadarajah Haghighi generalised power Weibull (NHGPW) by continuous-continuous

compounding the NH and GPW distributions; also, by discrete-continuous compound-

ing, the power series generalised power Weibull (PGPW) class of distributions was also

developed. Various statistical properties of these distributions were derived. The pa-

rameter estimates for the new distributions were presented. Simulations analyses were

also performed to evaluate the performance of the derived estimators. Each distribution

developed was also applied to two lifetime data set.

1.2 Problem Statement

Usually data coming from different fields of study may exhibit different characteristics

such as skewness, kurtosis and sometimes the hazard rate may exhibit different kinds of

non-monotone shaped hazard rate such as bathtub, unimodal(as in engineering processes),

modified bathtub and non-monotonically increasing failure rate. However, the existing

distributions may not provide appropriate fit to these kinds of dataset.

In probability distribution theory, significant efforts have been made in developing new

classes of standard statistical distributions for many lifetime situations. Nonetheless, there

are several significant situations where empirical data set does not follow these standard

and traditional statistical distributions.

Also in reliability and biological studies, a component or system may contain sub-systems

connected in series with each of the sub-systems functioning independently and with their

failure rate following independent distributions. For such system, the main component

will fail if any one or both of the sub-systems fail. There are however limited statistical

distributions developed for modelling lifetime data from such series systems. There is

also a possibility that some lifetime data set obtained from such series systems might not

follow any of the existing distributions. This might be due to the fact that, the time of
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life or failure can have different interpretations depending on the area of applications (

Lai, 2013). Hence, there is the need to generate more flexible distributions for modelling

the failure rate of various kinds of random variables from series connected components.

This can be achieved by compounding two or more distributions. This technique allow for

greater flexibility of the tails and are motivated for engineering and biological applications.

Besides, compounding families might be suitable for complementary risk problems based

in the presence of latent risks. The compounding techniques was pionnered by Adamidis

and Loukas (1998). A numbers of researchers have developed distributions using the con-

cept of compounding since its inception. Some of these researchers are; Barreto-Souza,

(2011), Codeiro et al., (2014), Nasiru (2016), Cordeiro, (2018), Ferdnando et al. (2019)

among others.

Alternatively, researches in the area of non-parametric statistics may proposed non-

parametric methods for analysing data coming from such systems. However, these non-

parametric methods can be computationally intensive and may also lead to loss of in-

formation and power when the parametric models are appropriate and available (Nasiru,

2018). Hence, researches in the area of distribution theory tend to extend, generalised or

compound the existing parametric distributions to make them more flexible in modeling.

To fill this gap, this study developed two new lifetime distribution named; the Nadra-

jah Haghighi generalised power Weibull (NHGPW) distribution by continuous-continuous

compounding the NH and the GPW distribution; the power series generalised power

Weibull (PGPW) distribution from the generalised power Weibull and the power series

family. These distributions were developed on the assumption that, the fairlure rate

associated with the two sub-components are independent random variables.

1.3 Objectives of Study

1.3.1 General Objective

The general objective is to develop new lifetime statistical distributions for modelling

failure rate data from systems with sub-components connected in series.
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1.3.2 Specific Objectives

The specific objectives are to:

• Develop the NHGPW distribution.

• Develop the power series GPW distribution.

• Derive the statistical properties of the developed lifetime distributions.

• Develop estimators for the parameters of the new distributions.

• Perform simulations analyses to assess the performance of the developed estimators.

• Demonstrate the applications of the developed distributions using lifetime data.

1.4 Significance of the study

The major motivations for introducing these new distributions are; to develop distribu-

tions that accommodate both monotonic and non-monotonic hazard shapes; to developed

distribution for modelling lifetime data from series connected systems with better fits

than some widely known lifetime models and other generalisations of the GPW and NH

distributions. This work is also important in survival analysis and can be used in many

applications in fields like biological sciences, economics, engineering, physics, social sci-

ences, among others for modeling systems composed of two independent components in

series. This study also adds to literature, distributions that can be employed in analysing

data on systems connected in series. It can as well serve as a ground for further research

in probability distributions.

1.5 Outline of Thesis

This thesis is categorized into six main chapters; Chapter one gives the introduction and

comprises the research background, problem statement, objectives and significance of the
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study. Chapter two is the review of literature. Chapter three outlines the methodol-

ogy employed in developing the new distributions, deriving their statistical properties,

deriving estimators of parameters, goodness of fit analysis and model selection criteria.

Chapter four presents the NHGPW distribution, its statistical properties, estimators of

parameters, simulation analysis and applications. Chapter five presents the PGPW class

of distributions, its statiscal properties, estimators of parameters, sub-families, simulation

analysis and applications to lifetime data. Lastly, chapter six consist of conclusions and

recommendations made from the study.
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 CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter considers relevant literature on the topic under consideration. It contains

relevant information on bathtub distributions, systems connected in series and a com-

prehensive look at some modifications of the exponential, NH, Weibull and the GPW

distributions.

2.2 Bathtub Distribution

Efforts in modelling lifetime data have been restricted to three main distributions; expo-

nential model, decreasing failure function and increasing failure rate distributions. There

seem to be Emergent interest in non-monotonic failure rate distributions; thus the bathtub

models. These distributions gives acceptable models for lifetime data related to biological

organisms as well as many industrial trials. (Sujata and Rajash, 1988).

Bathtub distributions are described by high failure rate value at an initial time, which

subsequently decreases over time to a minimum value. From the minimum, the failure

might be constant for some time and finally increase speedily. Bathtub distribution offers

reasonable models in survival analysis because they can explain the complete failure rate

of a system, whether biological or non-biological. Bathtub distributions can model the

complete failure in the total life span of a manufactured product or biological organism.

Thus it captures; the initial face of life of a product which is characterized with high

failure rate; the middle face of life with nearly constant failure; as well as the advanced

period with increasing failure due to actual ageing or wearing out (Sujata and Rajash,

1988).

Unimodal failures or upside-down-bathtub failure rates are also arising in many areas in

reliability and biological fields. Unimodal distributions are suggested to model systems
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with comparatively high failure rate in the mid expected lifetime. They are normally used

when the period of peaked failure is of major interest. Unimodal failure rate distributions

have two shape parameters; one of which specifies the period of the modal failure and

the other controls the peakness of the mode. Unimodal failures can be detected in the

progress of a disease whose death rate reaches a maximum value after a fixed time and

decays slowly.

2.3 Concept of Compounding Distributions

Another major technique that has been considered in developing distributions for se-

ries and parralle connected systems is the compounding approach. The compounding

technique allow for greater flexibility of the tails of a distribution and are applicable in

engineering and biological fields. It is also very useful when dealing with complementary

risk problems based in the presence of latent risks. The compounding approach was pro-

posed by Adamidis and Loukas (1998), where they introduced the exponential geometric

distribution by taking the minimum of the two distributions. Since its inception, many

researchers have proposed new distributions using this concept.

Compounding of distributions can be done by three major approaches; combining two

continuous distributions (continuous-continuous compounding), or combining two discrete

distributions (discrete-discrete compounding) or combining a continuous and a discrete

distribution (continuous-discrete compounding or discrete-continuous compounding). The

concept of compounding is based on a system or component containing two independent

sub-components either connected in series or connected in parallel with the failure rate

distribution of each sub-components following two different distributions. In these situ-

ations, attempts are made to derive a single distribution that models the failure rate of

the main system based on the failure rate distributions of the sub-components.

In reliability and biological studies, series systems are common system configuration. If

two independent components are connected in series, then the main component fails if one

or both sub-components fails. Several researchers have developed statistical distributions

for modeling situations of this kind. Some of these are;

Nasiru (2016) developed the serial Weibull Rayleigh distribution by combining the Rayleigh
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and Weibull distributions. His distribution contains the Weibull, Rayleigh, exponential

and the linear failure rate distributions as sub-distributions. Fernando, (2017) developed

the Weibull NH distribution by compounding the NH and Weibull distributions. Fer-

nando et al. (2019) developed the Nadarajah-Haghighi-Lindley distribution by continuous-

continuous compounding the NH and Lindley distributions. Cicero et al. (2000) devel-

oped the beta NH distribution by combining the beta distribution and NH distributions.

Cordeiro, (2014) developed the exponential-Weibull lifetime distribution for modeling

system with serial connection. Cordeiro et al. (2018) developed the Lindley-Weibull dis-

tribution by joining the Lindley and Weibull distributions. Ortega et al. (2015) derived

the poisson-gamma NH distribution.

Marinho (2016) combined the geometric and NH distributions to obtain the geometric-NH

distribution. Stacy (1962) obtained the gamma-Weibull model. Gamma-modified-Weibull

distribution was derived by Cordeiro et al. (2015). Bourguignon et al. (2015) compounded

the Nadarajah Haghighi and gamma distributions into the gamma NH distribution. The

exponential Poisson was also proposed by Kus, (2007).

Other compounded distributions developed in literature are; the Weibull geometric (Barreto-

Souza et al., 2011), Pareto Poisson-Lindley (Asgharzadeh et al., 2013),the exponential-

Weibull lifetime distribution by Cordeiro et al. (2014), Asgharzadeh et al. (2016) intro-

duced the Weibull Lindley (WL) distribution among others.

2.4 Review of the Weibull Model

Due to the limitations of the traditional Weibull model, many alterations of it which

resulted in new classes of distributions have been developed. Some of these modifica-

tions are; The inverse Weibull (IW) distribution was studied by Keller et al. (1984).

Felipe et al. (2005) further generalised the IW distribution into the generalised IW dis-

tribution. The generalised IW as proposed has decreasing and unimodal failure rates.

The reflected-Weibull distribution was also suggested by Cohen (1973) which contain the

Weibull distributed as sub-model. Stacy (1962) combined some features of the gamma

and Weibull distributions to derive the gamma Weibull model. Its failure rate was shown

to be bathtub shape, decreasing, increasing, and unimodal.
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The Kies-Phani modified Weibull distributions was proposed by Kies (1958) by adding

limits to the Weibull distribution. This was to address some limitations of the applica-

tion of the Weibull distribution in some area of material science like strength of brittle

materials where the strength values are limited. The generalised Weibull model was

derived by Mudholkar and Kollia (1994) by adding another parameter to the CDF of

the Weibull model. The hazard function of this distribution are bathtub and unimodal

shaped. shapes.

Xie and Lai (1996) suggested the additive Weibull model by summing the hazard func-

tions of the two Weibull family; thus increasing and decreasing hazard rate functions.

This distribution was shown to exhibit bathtub shaped hazard function. Arthur et al.

(2014) further studied the additive Weibull distribution by deriving its complete mo-

ments, incomplete moments, quantile function and moments generating function. They

further estimated its parameters by the maximum likelihood estimation. Ibrahim and

Gokarna (2013) proposed another extension of the additive Weibull distribution titled the

transmuted-additive-Weibull.

Zhang and Xie (2007) also developed the extended-Weibull distribution using the Mar-

shall and Olkin (1997) family of distribution. A modified-Weibull model was suggested by

Sarhan and Zaindin (2009) which generalised the Rayleigh, exponential, linear failure rate

and the Weibull distributions. The researchers studied some statistical properties of this

distribution and estimated its parameters by maximum likelihood estimation approach.

The probability density function of this was shown to be decreasing or unimodal whiles

its hazard rate was increasing, decreasing or bathtub shaped.

Other recent extensions of the Weibull distribution are; Kumaraswamy log-logistic Weibull

distribution by Mdlongwa et al. (2019), Kumaraswamy Weibull distribution proposed by

Cordeiro et al. (2010), Kumaraswamy modified Weibull distribution by Cordeiro et al.

(2012), Log-Logistic Weibull distribution and its extension gamma log-logistic model by

Oluyede et al. (2016) and Foya et al. (2017) respectively, The transmuted Weibull Lomax

distribution by Fify et al. (2015), Marshal Olkin extended Weibull family of distributions

by Santos-Nero et al. (2014), Marshal Olkin additive Weibull distribution by Ahmed et al.

(2015) among others.
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The generalised power Weibull (GPW) distribution by Flores et al. (2013) is another

modification of the Weibull distribution which has not yet received much extension.

2.5 Review of Generalised Power Weibull Distribu-

tion

The GPW distribution was developed by Bagdonavicius and Nikulin (2002) for building

accelerated failure time models to investigate the dependence of a lifetime distribution on

prognostic variables (Nikulin and Haghighi, 2006). Nikulin and Haghighi (2006) showed

that, the hazard rate of the GPW model can be constant, monotonic and non-monotonic

shaped. Chi-square goodness test performed showed that, the GPW offers a good fit to

randomly censored data. Lai (2013) described the GPW distribution as one of the gener-

alisations of the Weibull model which is mostly essential to describe the non-monotonic

nature of the observed hazard rates.

Based on the concept of exponentiated distributions, Fernando et al. (2018) introduced the

four parameter exponentiated generalised power Weibull (EGPW) distribution by taking

the GPW model as a parent model in the exponentiated family. The major motivations

of this distribution as pointed out by Fernando et al. (2018) includes; the distribution is

flexible since it has some known life distributions in-build in it. Hence can be applica-

ble when modelling the maximum life of a sample following the GPW distribution for a

parallel system in which the system works if one or more of the sub-components work.

The EGPW probability density function (PDF) was also shown to be log-convex and

log-concave.

Mahmoud and Abdullah (2016) derived the Kumaraswamy generalised power Weibull dis-

tribution. This family has sub models such as the Kumaraswamy Weibull, Weibull, GPW,

exponentiated Weibull, and some new model such as Kumaraswamy generalized power,

EGPW, exponential distributions as special cases. The parameters of this new model

were obtained by the maximum likelihood estimation approach. The hazard rate function

of this distribution was demonstrated to be constant, decreasing, increasing, bathtub and

upside down bathtub.
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Ehab and Hisham (2018) compared between the MLE and Bayesian estimators for the

shape values of GPW distribution. Their application was centered on complete censoring,

type II censoring and type II progressive censoring data.

2.6 Review of Exponential and the Nadarajah Haghighi

Distributions

The exponential model is a well-known distribution due to its fixed hazard function and

memory less feature. Over the years, the exponential model has been seen as the most im-

portant one parameter family partially based on the fact that, majority of the frequently

used lifetime distributions are extension/generalizations of the exponential model. To

make this distribution flexible, a good number of generalisations of it have been done.

Some of these modifications are;

Gupta and Kundu (2001) proposed the exponentiated exponential (EE) distribution as a

substitute to the gamma model. Ibrahim et al. (2018) derived a Kumaraswamy extension

exponential distribution constructed from the Kumaraswamy family. This distribution

contains the extension exponential distribution and the Kumaraswamy generalised expo-

nential distribution as special sub-models. They derived some properties and discussed

the estimators of the parameters of the new distribution.

Another important extension of the exponential model which has received much attention

is the NH distribution by Nadarajah and Haghighi (2011) . This distribution was pri-

marily developed as a substitute to the exponentiated exponential, gamma and Weibull

distributions. The later distributions are flexible distributions with monotonically de-

creasing, unimodal density functions and monotone hazard rate function. They however

do not permit increasing hazard function with corresponding decreasing probability den-

sity function as compared to the Nadarajah Haghighi distribution. The NH distribution

has been extensively studied by many researchers. Among these are;

Fernando et al. (2019) developed the Nadarajah-Haghighi-Lindley (NHL) distribution by

combining the Lindley and NH distributions. The main motivation of this distribution as

pointed out by the researchers was its usefulness in industrial and reliability analysis for
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analysing data on a system with dual sub-systems operating independently in series at an

assumed time. They pointed out that, this distribution accumulates the advantages of the

NH distribution since the NH distribution is its sub-distribution. The NHL distribution

can exhibit both monotone and non-monotone shaped hazard functions. Stenio (2015)

proposed the Kumaraswamy Nadarajah-Haghighi distribution as a generalisation of the

NH model. The researcher demonstrated that, the new model was moderately flexible

for analysing positive data and have monotone and non-monotone hazard function con-

ditional on the parameter values. This model contains the NH and exponentiated NH

distributions as special case (Lemonte, 2013).

Lemonte (2013) also derived the exponentiated Nadarajah-Haghighi (ENH) by raising

the baseline distribution function of the NH distribution to positive integer. Abdus et al.

(2019) further introduced and studied the beta exponentiated NH model, whose failure

rates were shown to be monotonically increasing, decreasing and non-monotonic. The

researcher derived some empirical properties of this model and performed Monte Carlo

simulation on the estimates of its parameters. They also defined a regression model based

on the new distribution.

Cicero et al. (2000) developed the beta Nadarajah-Haghighi distribution for modelling

survival data from the beta generated family. The technique of MLE was considered in

estimating the parameters of the model and Monte Carlo simulation was also shown.

Marcelo et al. (2015) introduced the gamma Nadarajah Haghighi distribution also re-

ferred to as the truncated generalised gamma distribution (Stacy, 1962). Its hazard rate

function was shown to be both monotonic and non-monotonic subject to the values of

the parameter. Vedo et al. (2016) obtained the exponentiated generalised Nadarajah-

Haghighi distribution and studied some computational and theoretical properties of it.

This distribution contains the exponential, exponentiated exponential, NH, exponential

and exponentiated NH distributions as sub-distributions. The also obtained some sta-

tistical properties of it and determined its parameters by maximum likelihood approach

and further performed Monte Carlo simulation. This distribution was shown to be very

flexible in describing complex positive real data.

Tahir et al. (2018) suggested the inverted Nadarajah-Haghighi distribution. This distri-
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bution was shown to have non-increasing and unimodal (right-skewed) density with de-

creasing and unimodal hazard function. The researchers further obtained some estimators

(based on the frequentist and Bayes approach) of the unidentified parameters. Fernando

et al. (2017) also derived the Weibull Nadarajah-Haghighi distribution by putting the NH

model into the Weibull-G family by Bourguignon et al. (2015). This proposed distribution

has monotonic and non-monotonic failure shapes thus overcoming the limitations of the

traditional Weibull and NH distributions. The researcher explored various essential prop-

erties of the derived distribution. Its density was shown to be unimodal and is relatively

flexible for data set that exhibits skewness and kurtosis.

Lima (2015) studied the Kumaraswamy Nadarajah Haghighi (KNH). A three-parameter

Logistic Nadarajah Haghighi (LNH) distribution was also introduced by Fernando et al.

(2017) by inputting the NH distribution into the logistic-X family pioneered by Tahir et al.

(2016a). The LNH distribution was shown to have an upside-down-bathtub density. It also

had high flexibility than the parent model since it tolerates monotone and non-monotone

hazard forms. The new distribution was compared with the Weibull, exponential Weibull,

PGW and NH distributions by some goodness-of-fit measures (Kolmogorov Smirrov and

Anderson-Darling) and the researcher concluded that, the current model fit well than the

compared distributions for the two data sets.

Fernando et al. (2017) in addition proposed the beta Nadarajah Haghighi distribution

which have the generalised exponential distribution by (Gupta and Kundu, 2007), expo-

nential, NH, beta exponential and the exponentiated NH (Lemonte, 2013) distributions

as inbuilt models. The hazard rate function of the beta Nadarajah Haghighi distribution

can have increasing, decreasing, unimodal or bathtub-shaped.

The Marshall-Olkin Nadarajah Haghighi distribution was derived by Hilary et al. (2018)

using the Marshall Olkin generator by Marshall and Olkin (1997). In their paper, they

obtained the ordinary differential equations of the probability function of the distribution

by differentiation.

Other generalisations of the NH model proposed in literature are Poisson gamma Nadarajah-

Haghighi, the transmuted Nadarajah-Haghighi, modified Nadarajah-Haghighi (MNH)

among others.
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2.7 Review of the Power Series Class of Distributions

The power series class is a technique of deriving new distributions. Several distributions

have been derived using the power series approach. Some of these are;

The modified power series distribution was derived by Gupta (1974) for studying La-

grangian distributions. He further studied some structural properties of it. He found the

recurrence relation between the central and its factorial moments. The negative moments

of this distribution was studied by Kumar and Consul (1979) which can be used to find

the precise quantity of bias of the MLE of modified power series distribution. Tripathi

et al. (1986) derived the incomplete moments and the recurrence relation among the in-

complete moments about origin of this distribution. Jani and Shah (1979b) obtained its

integral function for the tail probabilities for absolutely continuous distributions. Gupta

and Kundu (1982) further obtained the probability generating function of this distribu-

tion whiles Shanmugam (2001) presented the product moment generating function for this

distribution. Gupta and Singh (1981) also considered the moments and factorial moments

of this distribution. Shoukri and Consul (1982) developed the bivariate modified power

series distribution and studied its properties.

Chahkandi and Ganjali (2009) suggested the exponential power series family which gen-

eralises the two-parameter exponential power series termed the Weibull power series class

of distributions by Morais and Barreto (2011). Eisa and Mitra (2012) presented the ex-

ponentiated Weibull power series class of distributions which was gotten by compounding

the exponentiated Weibull and power series distributions. The Weibull power series class

of distribution can have an increasing, decreasing, and upside-down bathtub failure rate

function.

Jose et al. (2013) presented the complementary exponential power series distribution with

increasing failure rate which was introduced as a supplement to the exponential power

series distribution proposed by Chahkandi and Ganjali (2009). Bourguignon et al. (2015)

proposed a new class of fatigue life distribution known as the Birnbaum-Saunders power

series class of distributions.

Said (2015) presented the generalised extended Weibull power series family of distribu-
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tions which generalises the generalised power series exponential and the extended Weibull

power series class distributions introduced by Mahmoudi and Jafari (2011) and Silva et al.

(2013) correspondingly. This involved compounding the generalised extended Weibull

distributions and power series distributions. Fernando et al. (2018) introduced the four

parameter exponentiated GPW (EPGW) distribution using the exponentiated family.

Baitshephi et al. (2019) suggested the Webull-G Power Series family of distributions and

its sub-model called the Weibull-G logarithmic distribution. Structural properties of this

family of distributions and its sub-model were obtained. Simulation analysis to examine

the bias and mean square error of the estimators for each parameter were presented.

Other application of the power series in developing distributions are; Ali et al. (2015)

derived the bivariate generalised exponential power series class of distributions, the gen-

eralised exponential power series distribution by Mahmoudi and Jafari (2012), gener-

alised linear failure rate power series distribution by Alamatsaz and Shams (2016), dou-

ble bounded kumaraswamy power series class of distributions by Bidran and Nekoukhous

(2013), Burr XII power series distribution by Silva and Cordeiro (2015), Lindly power

series class of distributions by Gayan and P. (2015), bivariate weibull power series class

of distributions by Nadarajah and R (2017) among others.

2.8 Conclusion

From the reviews, it could be seen that, the exponential and Weibull distribution are

important distributions in analysis of lifetime data relating to human life, manufactured

products life and a wide variety of data in survival studies. Therefore, this research devel-

oped two new distribution from the NH and the GPW distributions which are extensions

of the exponential and Weibull distributions. These are; the NHGPW distribution by

compounding these two continuous distributions in the concept of systems connected in

series; and the power series generalised power Weibull class of distributions. various sta-

tistical properties of these distribution were developed. Adequacy and flexibility of the

new proposed distributions were also tested. The parameter estimates of the distributions

were developed by the maximum likelihood estimation, ordinary least square estimation

and the Cramer Von Mises estimation.

17



www.udsspace.uds.edu.gh 

 

 

 

 CHAPTER 3

METHODOLOGY

3.1 Introduction

This chapter presents various methodologies that were employed in this study to achieve

the stated objectives. It contains information on the GPW distribution, the NH distri-

bution, maximum likelihood estimation technique, model selection criteria and goodness-

fit-analysis among others.

3.2 The Nadarajah-Haghighi Distribution

The NH distribution is a generalisation of the exponential model. If a random variable T

follows the NH distribution (T ∼ NH(α, β) ), then its cumulative distribution function

(CDF) is given as;

F (t) = 1− e(1−(1+αt)β) t > 0, α > 0, β > 0. (3.1)

With probability density, survival (reliability), hazard/failure rate and quantile functions

given respectively as;

f(t) = αβ(1 + αt)β−1e(1−(1+αt)
β) t > 0, (3.2)

s(t) = e(1−(1+αt)
β), S(t) = [0, 1], (3.3)

h(t) = αβ(1 + αt)β−1, t > 0, (3.4)

Q(p) =
1

α
((1− log(1− p)

1
β )− 1), pε[0, 1]. (3.5)

Where β is a shape/tilt parameter and α is the scale parameter.

If β = 1, the NH distribution reduces to the exponential distribution. For larger values
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of α, there is a quicker decay of the higher tail.

Some attractive features of the Nadarajah Haghighi distribution as pointed out by Nadara-

jah and Haghighi (2011) are;

• it always have a zero mode; thus the NH distribution has a zero likelihood of its

shape being unimodal hence can be used to model data set with its mode fixed at

zero.

• it’s failure function can be monotonically increasing, decreasing or constant.

• it permits decreasing or constant failure rate function for a corresponding mono-

tone decreasing probability density function and increasing rate for a respective

monotonically decreasing probability density function.

• the NH distribution can also be interpreted as a truncated Weibull distribution.

• the NH model has closed-form reliability and a hazard function.

3.3 The Generalised Power Weibull Distribution

The generalised Power Weibull Distribution (GPW) was suggested by Bagdonavicius and

Nikulin (2002). Assuming T follows the GPW distribution (T ∼ GPW (γ, θ, λ) ), then

the cumulative distribution function of the T is;

F (t) = 1− e(1−(1+λtγ)θ), t > 0, γ > 0, θ > 0, λ > 0. (3.6)

With probability density, survival and hazard rate functions given as;

f(t) = λγθtγ−1(1 + λtγ)θ−1e(1−(1+λt
γ)θ), t > 0, (3.7)

s(t) = e(1−(1+λt
γ)θ), s(t) = [0, 1], (3.8)

h(t) = λγθtγ−1(1 + λtγ)θ−1, t > 0. (3.9)

Where λ is the scale parameter and γ, θ are the shape parameters. For θ = 1, the GPW

distribution reduces to the 2-parameter Weibull distribution. if θ = 1, γ = 1, it reduces
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to the exponential distribution. For γ = 1, we have the NH distribution.

3.4 The Power Series Family of Distribution

Assuming N is the number of subcomponents of a main system operating independently

at a given time period, then the zero-truncated power series (PS) family have probability

mass function (PMF) given as;

P (N = n) =
anα

n

C(α)
, n = 1, 2, .... (3.10)

C(α) =
∞∑
i=1

anα
n. (3.11)

an > 0, α ∈ (0, s), an is the coefficient of the power series, C(α) is the generating function,

s is the parameter space. The PS family are; binomial (Bin), poisson (Poi), geometric

(Geo) and logarithmic (Log) distributions. Some useful quantities of this family are;

Table 3.1: Power Series Family
Dis an C(α) C ′(α) C ′′(α) C ′′′(α) s C−1 α
Geo 1 α(1− α)−1 (1− α)−2 2(1− α)−3 6(1− α)−4 1 α(α + 1)−1 (−∞, 1)

Poi 1
n!

eα − 1 eα eα eα ∞ log(α + 1) (0,∞)

Log n−1 − log(1− α) (1− α)−1 (1− α)−2 2(1− α)−3 1 1− e−α (−∞, 1)

Bin
(
M
n

)
(1− α)m − 1 m

(1−α)1−m
m(m−1)
(1−α)2−m

m(m−1)(m−2)
(1−α)3−m ∞ (α− 1)

1
m − 1 (0,∞)

3.5 Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE) is used in statistics for determining the param-

eters of a statistical model. This approach is grounded on the likelihood function L(θ, T )

of the given statistical model and finds the parameter estimates by determining the values

of the parameters that maximise L(θ, T ). Assuming we have a set of n measured values of

a random variable given as T = (T1, T2, ..., Tn) selected based on a family of probabilities

with f(ti; θ) as their marginal density function, then MLE finds the value of the model

parameter θ, that maximises L(θ, T ). Thus we select the θ values that makes the data
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most likely.

The likelihood function is the joint density function expressed as a function of θ. For

independent measurements, the joint density function L(θ, T ) is the product of the dis-

tinct/marginal densities f(ti; θ) given as;

L(θ;T ) = f(t1; θ)× f(t2; θ)× ....× f(tn; θ) =
n∏
i=1

f(ti; θ). (3.12)

The estimate θ̂ for the parameter θ is the value which maximizes L(θ;T ). This can be

represented as; θ̂ = argmaxL(θ, T ) In practice, the MLE is obtained by maximising the

score function, lnL(θ, T ) or average log-likelihood, lnL(θ,T )
n

Obtaining the ML estimates involves the following steps;

• Obtain the likelihood function of the given density function.

• Take natural log of this likelihood function to obtain the score function.

• Take partial deferential of Log-Likelihood, thus, d
dθ
lnL(θ, T ).

• Equate the derivative to zero and solve for the parameter needed, thus d
dθ
lnL(θ, T ) =

0

3.5.1 Desirable Properties of Maximum Likelihood Estimation

The MLE technique has some desirable properties which makes it very useful in estimating

parameters under various regularity conditions. These regulations are;

• the distinct pdfs have a common support for all θi

• the random variables have distinct pdfs such that for θi 6= θj, hence f(t; θi) 6= f(t; θj)

• the true parameter exist within an interior point in θ.

Some of the properties of the MLE technique are;

3.5.1.1 Asymptotic Consistency

The estimate θ̂ of the MLE is asymptotically consistent (thus as n −→ ∞, θ̂ −→ θ) for

limited values of n. Since the MLE is consistent, the bias B(θ̂) will approach zero as the

21



www.udsspace.uds.edu.gh 

 

 

 

 

sample size (n) increases (that is as n −→∞, B(θ̂) −→ 0). For consistent estimators, the

distribution of the estimators becomes concentrated near the true value being estimated

hence the variation between the estimate and the parameter will be small and will be

approaching zero as your sample size increases.

If T = (T1, T2, ..., Tn) are random variables and θ̂ is an estimator, then θ̂ is a consistent

estimator of θ iff θ̂ converges in probability to θ (θ̂ −→ θ as n −→∞). Thus; P (| θ̂− θ |>

ε) −→ 0 and P (θ̂ = θ) −→ 1 as n increases.

For the mean square errors of the estimator, θ̂ is consistent if the mean square error of

θ̂ approaches zero as the sample size increases. If θ̂ is an unbiased estimator and the

variance of θ̂ exist, then θ̂ is a consistent estimator of θ iff;

lim
n−→∞

V (θ̂) = lim
n−→∞

E((θ̂ − θ)2) = 0. (3.13)

3.5.1.2 Asymptotic Normality Property

The MLE of θ is asymptotic multivariate normal distributed with minimal variance

(var(θ̂)) under very broad conditions. var(θ̂) is the variance-covariance matrix asso-

ciated with θ̂ and is given as the inverse of the fishers information (I(θ). Assuming

T = (T1, T2, ..., Tn) are sequence of independently and identically distributed observed

random variables with density f(θ; t), if θ̂ is a MLE of θ, then;

√
n(θ̂ − θ) −→ N(θ,

1

I(θ)
) =
√
n(θ̂ − θ) −→ N(θ, σ2). (3.14)

where σ2 denotes the asymptotic variance-covariance of θ̂.

3.5.1.3 Asymptotic Efficiency

When a number of unbiased estimators are being compared, the efficient estimator is the

estimator with the smallest variance. The maximum likelihood estimates has the smallest

asymptotic variance when compared with other estimators hence it is asymptotically

efficient and asymptotically optimal. When n −→∞, MLE generates unbiased estimators

with smallest variance. An estimator is efficient if it achieves the Cramer-Rao lower bound
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inequality. That is;

var(θ̂(t)) ≥ [d/dθE(θ̂(t))]2

I(θ)
. (3.15)

where I(θ) is the Fisher information that measures the information carried by the ob-

servable random variable I about the unknown parameter θ for an unbiased estimator

θ̂(t).

var(θ̂(t)) ≥ 1

I(θ)
or

1

−nI(θ)
. (3.16)

This means that, the variance of an unbiased estimator is as least the reverse of the

Fisher’s information. The variance of estimator θ̂(t) cannot be lower than the CRLB,

any estimator whose variance is equal to the lower bound is considered as an efficient

estimator or attains the CRLB.

3.5.1.4 Property of invariance

The maximum likelihood estimators are invariant under change of parameter. Thus MLE

is functional under any transformation. If L(θ;T ) is the likelihood function associated

with a given random variable and θ̂ is the MLE of θ, then θ is still the MLE of lnL(θ;T ).

Also assuming θ̂ is a MLE of θ and f(θ) is a differential function, then f(θ̂) is the MLE

of f(θ).

3.6 Model Selection Criteria

To identify the best model among candidate models, it is important to use model selection

criteria for comparison. In this study, the Akaike Information Criterion (AIC), Akaike

Information Criterion Corrected (AICc) and the Bayesian Information Criterion (BIC)

were employed to check fitness level of the developed distributions as compared to existing

classical distributions.

The AIC was derived by Akaike (1974). AIC is a proposed measure of the comparative

data lost for a given model. Although the AIC is able to penalise models with many
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parameters, it is effective when the sample size is large. The AIC is not also unbiased. Due

to these limitations, the AIC corrected (AICc) was developed. The AICc is a revolution of

the AIC by Hurvich and Tsai (1989) and is utilized when there is a considerable likelihood

that AIC will choose models that have an excessive number of parameters (that is, AIC

will over fit).

The Bayesian Information Criterion (BIC) was also proposed by Schwarz (1978). The

BIC is asymptotic result inferred under the assumptions that the information dispersion

is an exponential family. The BIC criterion is a consistent estimator and has the tendency

to choose models with less parameter than the AIC and AICc. Hence the BIC has the

power to penalise models with many parameters than the AIC and AICc in both larger

and smaller samples.

For a number of competing models for a data set, the model with the minimum or most

minimum values of these criteria (AIC, AICc and BIC) is the best and adequate model.

These criteria will permit the individual find suitable model that best fit or clarifies the

information with the base of free parameters. Both AIC and BIC determines the best

model by presenting a punishment factor for the number of parameters in the model. The

criteria are given as follows;

AIC = 2K − 2 log(L). (3.17)

AICc = AIC +
2K2 + 2K

n−K − 1
. (3.18)

BIC = log(n)K − 2 log(L). (3.19)

Where L is the maximum value of likelihood function of the model, n is the number

of data points or observation and k indicates the number of parameters estimated by

the statistical model. The first part of these criteria is the penalty term of the criteria

which penalizes a candidate model for the number of parameters used whiles the second

part measures the goodness-of-fit of the statistical model to the data . Based on this

penalty term, the BIC has a stiffer penalty term hence turns to select models with fewer

parameters for large sample size than the AIC.
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3.7 Total Time on Test

Barlow and Doksum (1972) proposed the total time test (TTT) plot and the scaled TTT

transform as a tool for model identification based on data representativeness. The TTT

is a graphical procedure for checking the shape of the failure/hazard rate of a given data

set. By comparing the TTT plot for a given data set based on the time to failure with

the different scaled TTT transform, it is possible to select a suitable lifetime distribution.

Earlier application of this technique was by Aarset (1987) to investigate if a random

sample comes from a bathtub distribution.

Assuming we have complete ordered sample, T1;n, T2;n, ..., Tn;n of failure times from n

identically and independently distributed, the TTT statistics is given as;

TTTn,i =
i∑

j=1

(n− j + 1)(tj;n...tj−1;n) i = 1, 2, ..., n. (3.20)

with a scaled TTT given as;

TTT ∗i =
TTTn,i
TTTn,n

, 0 ≤ TTTn,n ≤ 1. (3.21)

The TTT-transform curve is obtained by plotting 1/n against TT ∗i in the case of complete

data and 1/m against TT
′
i when dealing with incomplete data where the test ends at m.

TT
′

i =
TTTn,i
TTTn,m

, 0 ≤ TTTn,m ≤ 1. (3.22)

If s(t) is the survival function, then the TTT-transform is given as;

h−1(u) =

∫ F−1(u)

0

s(t)dt, uε[0, 1]. (3.23)

The scaled TTT is calculate as;

F (u) =
h−1(u)

h−1(1)
=

∫ F−1(u)
0

s(t)dt∫ F−1(1)
0

s(t)dt
. (3.24)
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The curve of F(u) versus θ ≤ p ≤ 1 is the scaled TTT-transformed curve. The shape of

this curve can be increasing, decreasing, constant, bathtub or unimodal. Based on nature

of the scaled TTT-transform curve, the shape of the hazard function of a distribution is

described as;

i. Monotonically increasing if the scaled TTT-transform curve is concave above the 45o

line.

ii. Monotonically decreasing if the scaled TTT-transform curve is convex beneath the

45o line.

iii. Bathtub shape if the scaled TTT-transform curve is first convex beneath and then

concave above the line.

iv. Upside down bathtub or unimodal if the scaled TTT-transform curve is first concave

above 45o line and then convex beneath the line.

3.8 Goodness of fit Analysis

Goodness-of-fit tests are techniques used to determine whether or not a random sample

comes from a hypothesized distribution. This study employed the Kolmogorov-Smirnov

(KS), Crame
′
r-Von Misses (CVM) and the Anderson-Darling (AD) goodness of fit tests.

3.8.1 Kolmogorov-Smirnov test

The Kolmogorov-Smirnov statistics proposed by Kolmogorov (1933) is the best known em-

pirical goodness of fit test for checking if the distribution of a random sample T1, T2, ..., Tn

follows a specified/hypothesised distribution. Assume P (ti) is an empirical distribution

function drawn from a specified population, the Kolmogorov-Smirnov statistics investi-

gate the hypothesis;

Ho : F (ti) = F ∗(ti), ∞ ≤ T ≤ ∞ thus the sample comes from F ∗(ti)

H1 : F (ti) 6= F ∗(ti), ∞ ≤ T ≤ ∞ thus the sample does not comes from F ∗(ti)

F (ti) is the unknown distribution and F ∗(ti) is the hypothesised distribution function

which is the expected CDF of the distribution considered. The KS statistics checks this
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hypothesis by comparing the empirical distribution with the hypothesised distribution to

see if the two agree. The KS statistics measure the largest vertical distance between P (ti)

and F (ti) and is given as;

KS = maxt[|F ∗(ti)− P (ti) orP (ti)− F ∗(ti)|]. (3.25)

P (ti) is an estimate of F (ti) and is given as;

P (ti) =
1

n

n∑
i=1

Iti≤t. (3.26)

=
number of observations below t

number of observartions
.

If the observations are ordered, T1 ≤ T2 ≤, ...,≤ Tn, then;

P (ti) =
i

n
(3.27)

According to Law and Kelton (2000)), the KS statistic can also be determined by;

K+ = max

[∣∣∣∣ in − F ∗(ti)
∣∣∣∣] . (3.28)

K− = max

[∣∣∣∣F ∗(ti)− i− 1

n

∣∣∣∣] . (3.29)

KS = max[K+, K−]. (3.30)

If the KS statistics exceeds the 1− α quantile from the KS table, thus if the KS statistic

is larger than normally expected for a given sample, we reject Ho hence the theoretical

distribution is not acceptable for modelling the population considered. Or if the p-value

associated with the KS statistics is less than the α-level selected, we reject Ho. If more

than one distributions are being compared, the distribution with the smallest KS value

is the best distribution. Thus the distribution with the highest chance of accepting Ho is

the best among the candidate distribution.

The KS goodness-of-fit test is mostly more powerful test of Ho than the chi-square test

since with the KS test, it is not necessary to divide the observations into intervals in sit-
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uations where the hypothesised distribution is continuous. Hence the problem associated

with small expected frequencies and smaller number of intervals will not be encountered

as can be in chi-square test.

The KS test involves the following steps;

i. Order the data from the smallest to the highest

ii. Compute P (ti) for each observation

iii. For each observation, determine F ∗(ti) using the table of the distribution you expect

your random sample to follow

iv. Compute the absolute difference between the entries in the table of observation and

the table of expected values

v. Obtain the KS statistics

vi. Compare the KS statistics with the KS table value

3.8.2 Cramér-Von Misses Test

This test was proposed by Cramer (1928). It is also base on the empirical distribution

function and it gives on the square integral of the discrepancies between the hypothesised

CDF and the empirical distribution function.

C∗ =

∫ ∞
−∞
{F ∗(ti)− P (ti)}2w(t)dt =

∫ ∞
−∞
{F ∗(ti)− P (ti)}2 dF ∗(ti). (3.31)

where w(t) is the weighting of the squared difference. The Cramér-Von Mises (CVM)

statistic is figured with w(t) = 1

Consider F (ti; θ) to be a known CDF whiles the k-dimensional parameter is unknown.

The CVM test statistic is given as;

CVM = C2

(
1 +

1

2n

)
, (3.32)

where

C2 =
n∑
i=1

((
Zi −

2i − 1

2n

)2

+
1

12n

)

28



www.udsspace.uds.edu.gh 

 

 

 

 

and

Zi = Q−1F ∗((xi, θ)).

This statistics can be obtained by the following steps;

i. Arrange the observations in ascending order and determine F (ti; θ)

ii. Estimate Zi = Q−1(F ∗((ti, θ))) where Q−1(.) is the quantile function

iii. Compute C2 and CVM

If the CVM statistic is higher than the tabularized value, H0 is rejected. When comparing

tentative distributions, the distribution with the smallest CVM is the best and adequate

distribution.

3.8.3 Anderson-Darling Test

When dealing the KS statistic, the theoretical and empirical CDFs are usually flat at

the tails of the distribution hence the maximum deviation of the KS test is likely to

occur in the tails of the distribution. For a chi-square test, the empirical frequencies

must be grouped at the tails. Due to this the KS and chi-square test might not reveal

any differences between the empirical and the hypothesised frequencies at the tails of the

hypothesised distribution even if differences actually exist. The Anderson-Darling (AD)

statistic introduced by Anderson and Darling (1954) solves this problem since it place

more weight or discriminating power at the tails of the distribution considered. This test

is of great importance if the tails of a specified distribution is of interest. The AD test

statistics is also based on the squared integral of the difference between the empirical

distribution and the hypothesised distribution. However, the AD test has its weighted

function given as the inverse of the odd function, thus;

w(t) = [(F ∗(ti))(1− F ∗(ti))]−1.

The AD test involves the following steps;

i. Arrange the data set in ascending order
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ii. Determine the CDF of the hypothesised distribution F ∗(ti), i = 1, 2, .., n

iii. The AD statistics is given by A = −n− 1
n

∑n
i=1[(2i−1)]lnF ∗(ti) + ln(1− F ∗(tn+1−i))

iv. Obtain the table value from the considered distribution for a selected significance

level.

v. Compare the test statistic with the critical value, reject Ho if the test statistic is

greater than the critical value.

3.9 Application Data and Source

Four data set were used in this study to determine the validity of the developed distri-

bution. The NHGPW distribution was applied to two data set; thus 101 observations

representing the failure time (in hours) of Kevlar 49/epoxy strands subjected to constant

sustained pressure at 90 percent stress level. This data was first presented by Barlow et

al. (1984) and Andrews and Herzberg (2012) and also applied by Mdlongwa et al. (2018)

and Nasiru (2018). The second data set are failure times data of 84 aircraft windshield.

This data was given in Murthy et al. (2004).

The PGPW class of distributions were also applied on two data set. The first application

involves 30 observations from aircraft air conditioning system failure times. The second

applications used failure data on 63 aircraft service times given in Murthy et al. (2004)

and recently studied by Tahir et al. (2015). These data sets are presented in in Appendix

A.
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 CHAPTER 4

The NADARAJAH HAGHIGHI GENERALISED

POWER WEIBULL DISTRIBUTION

4.1 Introduction

This chapter presents the NHGPW distribution which compounds the NH and GPW

distributions. In this approach, we have a composition by taking the minimum of two

continuous independent random variables. The statistical properties, estimators of pa-

rameters and application of this distribution to lifetime data are also presented.

4.2 The Nadarajah Haghighi Generalised Power Weibull

Distribution

Assume we have a series system with dual components with independently distributed

lifetime failure variables T1 and T2. Since the components are connected in series and the

main system fails if any one or both sub-components fail, the minimum failure time is

modelled to check the time of failure of the main system. We assume that T1 and T2 are

independent random variables. Hence, the stochastic representation of their failure rate

distribution is;

T = min(T1, T2). (4.1)

Since the two components must be working for the system success, the main system’s relia-

bility function is the product of the individual/marginal reliability of the sub-components

(Dimitri and Prentice,1991; Paul and David, 2003; Patrick, 2002). Thus;

S(t) = e−
∫ x
0 h1(t)dt × e−

∫ x
0 h2(t)dt (4.2)

S(t) = e−[
∫ x
0 (h1(t)+h2(t))dt]dt.
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Assuming for these two components operating in series, the failure rate of component

one follows the NH distribution (T1 ∼ NH(α, β)) and that of component two follows

the GPW distribution (T2 ∼ PGW (λ, θ, γ)) represented as h1(t) and h2(t) respectively.

These are given as;

h1(t) = αβ(1 + αt)β−1. (4.3)

h2(t) = λγθtγ−1(1 + λtγ)θ−1. (4.4)

Then a new distribution can be developed to model the joint reliability (survival) func-

tion of this system. The reliability/survival function of this new distribution (Nadarajah

Haghighi Generalised Power Weibull (NHGPW)) which combines the NH and GPW dis-

tributions is given as;

s(t) = e−[
∫ x
0 (((αβ(1+αt)β−1)+(λγθtγ−1(1+λtγ)θ−1))dt] (4.5)

Equation (4.5) is solved using integration by substitution as shown below. Firstly, we

represent the first part of equation (4.5) by H1(t).

H1(t) =

∫ x

0

αβ(1 + αt)β−1dt,

letting

u = 1 + αt, then

 t−→ 0, u−→ 1

t−→ x, u−→ 1 + αx


,

Also,

du

dt
= α,

⇒ du

α
= dt,
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hence, H1(t) becomes;

H1(t) = αβ

∫ 1+αx

1

uβ−1
du

α

= β

[
uβ

β

]1+αx
1

= (1 + αx)β − 1.

We also represent the second part of equation (4.5) by H2(t). Thus;

H2(t) =

∫ x

0

λθγtγ−1 (1 + λtγ)θ−1 dt,

also letting

y = 1 + λtγ, then

 t−→ 0, y−→ 1

t−→ x, y−→ 1 + λxγ


,

in addition,

dy

dt
= γλtγ−1,

dy

γλtγ−1
= dt,

hence,

H2(t) =

∫ 1+λx

1

θyθ−1dy

= θ

[
yθ

θ

]1+λxγ
1

= (1 + λtγ)θ − 1.

Inputting the expanded forms of H1(t) and H2(t) in equation 4.5, the survival expression

of the NHGPW distribution is;

s(x) = e−[(1+αx)β−1]+[(1+λxγ)θ−1], (4.6)

⇒ s(x) = e−[(1+αx)β+(1+λxγ)θ−2]. (4.7)
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The CDF of the new distribution can be obtained from its survival function as;

F (x) = 1− s(x), (4.8)

therefore the distribution function (CDF) of the NHGPW distribution is;

F (x) = 1− e−[(1+αx)β+(1+λxγ)θ−2], x > 0. (4.9)

Where β > 0, γ > 0, θ > 0 shape parameters and α > 0, λ > 0 are scale parameters.

Lemma 4.1. The NHPGW distribution has a well defined CDF.

Proof. For the CDF of the NHGPW distribution to be well defined, then it must satisfy the

basic properties of probability distribution; thus, it should be differentiable, monotonically

non-decreasing and should be bounded between 0 and 1 for the support interval of the

random variable (which is x > 0 for the NHGPW distribution). Thus; x −→∞, F (x) = 1

and x −→ 0, F (x) = 0.

As x→∞, the limits of the CDF of the NHGPW distribution is given as;

lim
x→∞

F (x) = lim
x→(∞)

(
1− e−[(1+α(∞))β+(1+λ(∞)γ)θ−2]

)
= [1− e−((∞)−2)]

= [1− e−(∞)]

= 1

Also as x→ 0, the limits of the NHGPW CDF is expressed as;

lim
x→0

F (x) = lim
x→0

(
1− e−[(1+α(0))β+(1+λ0γ)θ−2]

)
= lim

x→(0)

(
1− e−[(1+α(0))β+(1+λ(0)γ)θ−2]

)
= [1− e−[(2)−2])]

= [1− e−(0)]

= 0
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Therefore, F (x) is a valid CDF.

By differentiating the CDF of the NHGPW distribution, we obtain its PDF given as;

f(x) =
d

dx
F (x)

=
d

dx
(1− e−[(1+αx)β+(1+λxγ)θ−2])

⇒ f(x) =
{
αβ(1 + αx)β−1 + λγθxγ−1(1 + λxγ)θ−1

}
× e−[(1+αx)β+(1+λxγ)θ−2], x > 0.

(4.10)

Lemma 4.2. The PDF of the NHPGW distribution is well defined.

Proof. The PDF of the NHPGW distribution satisfies the following;

• f(x) ≥ 0, thus f(x) is non-negative

•
∫∞
−∞ f(x)dx = 1, thus the integration over the support values of the random variable

is 1.

For x > 0,

∫ ∞
0

f(x)dx =

∫ ∞
0

(
{
αβ(1 + αx)β−1 + λγθxγ−1(1 + λxγ)θ−1

}
× e−[(1+αx)β+(1+λxγ)θ−2])dx

If

y = (1 + αx)β + (1 + λxγ)θ − 2

then;  x−→∞, y =∞

x−→ 0, y = 0

 .

Also,

dy

dx
= αβ(1 + αx)β−1 + λγθxγ−1(1 + λxγ)θ−1

and

dx =
dy

[αβ(1 + αx)β−1 + λγθxγ−1(1 + λxγ)θ−1]
.
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Therefore
∫∞
0
f(x)dx is;

=

∫ ∞
0

(αβ(1 + αx)β−1 + λγθxγ−1(1 + λxγ)θ−1)e−[(1+αx)
β+(1+λxγ)θ−2]

.
dy

αβ(1 + αx)β−1 + λγθxγ−1(1 + λxγ)θ−1

=

∫ ∞
0

e−ydy

=
[
−e−y

]∞
0

= [−0− (−1)]

= 1.

Therefore, the PDF of the NHGPW distribution is well defined.

Proposition 4.1. The limits of the PDF of the NHGPW distribution for various param-

eter values are;

lim
x→0

f(x) =


∞ γ < 1

αβ + λθ γ = 1

αβ γ > 1

and if x→∞, then f(x) = 0.

Proof.

Using

f(x) =
{
αβ(1 + αx)β−1 + λγθxγ−1(1 + λxγ)θ−1

}
e−[(1+αx)β+(1+λxγ)θ−2], x > 0

x→ 0

f(x) = αβ + λγθxγ−1

γ < 1

f(x) =∞

γ = 1

f(x) = αβ + λθ
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γ > 1

f(x) = αβ

But if x −→∞, then we have;

f(x) =
{
αβ(1 + α(∞))β−1 + λγθ(∞)γ−1(1 + λ(∞)γ)θ−1

}
e−[(1+α(∞))β+(1+λ(∞)γ)θ−2]

= (∞) + (∞)× ((∞)θ−1)× e−(∞) = (∞)× 0

= 0.

The plot of the PDF of the NHGPW distribution is shown in Figure (4.1) and Figure (4.2).

It is evident that, for various parameter values, the PDF of the NHGPW distribution

distribution can be symmetric, positively skewed, bathtub, unimodal or modified bathtub.

The PDF also showed various skewness and kurtosis based on different combination of

parameter values.

Figure 4.1: PDF plots of the NHGPW distribution
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Figure 4.2: PDF plots of the NHGPW distribution

The hazard rate function of the NHGPW distribution is given as:

h(x) =
f(x)

s(x)

=

{
αβ(1 + αx)β−1 + λγθxγ−1(1 + λxγ)θ−1

}
× e−[(1+αx)β+(1+λxγ)θ−2]

e−[(1+αx)β+(1+λxγ)θ−2]

h(x) = αβ(1 + αx)β−1 + λγθxγ−1(1 + λxγ)θ−1. (4.11)

The hazard function gives the instantaneous failure rate per unit time. It measures the

event rate at time x, conditional on survival until time x (X ≥ x). It is often look as the

frequency with which a system/component fails per unit time. In practice, it reported as

the mean distance between failure times.

The PDF of the NHGPW distribution is therefore related to its hazard rate function as;

f(x) =
{

(hNH(x) + hGPW (x)) e−[(1+αx)β+(1+λxγ)θ−2]
}
, x > 0. (4.12)
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Proposition 4.2. The limits of the hazard function of the NHPGW distribution is

given as;

lim
x→0

h(x) = αβ

and

lim
x→∞

h(x) =



0 , β < 1, γ < 1, θ < 1

∞, β > 1, γ > 1, θ > 1

∞, β > 1, γ = 1, θ > 1

0, β < 1, γ = 1, θ < 1

αβ + λγθ, β = 1, γ = 1, θ = 1

.

Figure (4.3) to figure (4.4) shows different shapes of the hazard function of the NHGPW

distribution. It is seen that, for different parameter value combination of its parame-

ter values, the hazard function can be constant, monotonically increasing, monotonically

decreasing, bathtub, unimodal (upside down bathtub) and modified bathtub (bathtub

followed by unimodal). This indicates that, the developed NHGPW distribution can

adequately model both monotonic and non-monotonic failure rates which are often en-

countered in lifetime data related to system connected in series.

Figure 4.3: Hazard function of the NHGPW distribution
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Figure 4.4: Hazard function of the NHGPW distribution

4.2.1 Sub-distributions of the NHGPW Distribution

The NHGPW distribution has as sub-distributions a number of existing and new lifetime

distributions for modeling lifetime dataset. Some of these distributions are;

1. the generalised power Weibull distribution.

The NHGPW distribution reduces to the GPW distribution if either β = 0 or α = 0

with the CDF of the GPW distribution given as;

F (x) = 1− e[1−(1+λxγ)θ], x, λ, γ, θ > 0 (4.13)

2. the Nadarajah Haghighi Distribution.

If λ = 0, or θ = 0 the NHGPW distribution reduces to the NH distribution with

CDF given as;

F (x) = 1− e[1−(1+αx)β ], x, α, β > 0 (4.14)

3. the Exponential distribution

For β = 1 and λ = 0 (or θ = 0), the NHGPW distribution reduces to an exponential

distribution with CDF defined as;

F (x) = 1− e−αx, α > 0 (4.15)
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or

For α = 0 (or β = 0), γ = 1, and θ = 1, the NHGPW distribution reduces to an

exponential distribution with CDF defined as;

F (x) = 1− e−λx, λ > 0 (4.16)

4. the Weibull distribution.

For α = 0 and θ = 1, the NHGPW distribution reduces to a two parameter Weibull

distribution with its CDF given as;

F (x) = 1− e−λxγ , x, λ, γ > 0 (4.17)

5. the Linear failure rate distribution.

For β = 1, γ = 2 and θ = 1, the NHGPW distribution reduces to the linear failure

rate distribution with CDF defined as;

F (x) = 1− e−[αx+λx2], x, α, λ > 0 (4.18)

6. the Rayhigh distribution.

For β = 1, α = 0, γ = 2, and θ = 1, the NHGPW distribution is equivalent to the

Rayhigh distribution with CDF defined as;

F (x) = 1− eλx2 , x, λ > 0 (4.19)

7. The Generalized power Rayhigh distribution.

For α = 0 and γ = 2, the NHGPW distribution equates to the Generalized power

Rayhigh distribution with the following CDF;

F (x) = 1− e[1−(1+λx2)θ], x, λ > 0, γ > 0 (4.20)
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8. The NH-NH distribution (New distribution)

For, γ = 1, a new distribution called the NH-NH distribution can be obtained from

the NHGPW distribution with its CDF given as;

F (x) = 1− e−[1−(1+γx)β+(1+λx)θ−2], x, γ >, β, λ, θ > 0 (4.21)

This distribution compounds two NH distributions and is applicable for modelling

failure rates in a system with two components with failure rate following the NH

distributions

9. The Exponential-Exponential Distribution (New distribution)

For β = 1, γ = 1 and θ = 1, another new distribution termed the exponential

exponential distribution can be derived from the NHGPW distribution with CDF

defined as;

F (x) = 1− e−[αx+λx], x, α, λ > 0 (4.22)

Table 4.1: Sub-Distributions of the NHGPW Distribution
Model α β λ γ θ
Generalized power Weibul 0 β λ γ θ

Nadarajah-Haghighi α β 0 γ θ

NH-NH α β λ 1 θ

Exponential α 1 0 γ θ

Exponential 0 β λ 1 1

Weibull 0 β λ γ 1

Exponential-Exponential α 1 λ 1 1

Linear Failure Rate α 1 λ 2 1

Rayhigh Distribution 0 1 λ 2 1

Generalized Power Rayhigh 0 β λ 2 θ

42



www.udsspace.uds.edu.gh 

 

 

 

 

4.3 Statistical Properties of the NHGPW Distribu-

tion

Various statistical properties such as the quantile function, moments, Moment generating

function and order statistics for the NHGPW distribution were derived.

4.3.1 Quantiles of the NHGPW distribution

The quantile function is the inverse of the cumulative distribution function. The quantile

function can be used in both statistical applications and Monte carlo methods. It can be

used for generating random numbers from a given distribution. It can as well serve as an

alternative way of describing a probability distribution other than the probability density

function and cumulative distribution function or characteristic function. In situations

where the moment of a random variable does not exist, it can be used to compute the

measures of skewness and kurtosis. Quantiles can also be used to determine the quartiles

(lower quartile, median, upper quartile), interquartile range and percentiles. Quantiles

have advantages compared to the classical measures of skewness and kurtosis since they

are not much affected by outliers and they always exist for a distribution even lacking

defined moments.

Proposition 4.3. The Quantile function of the NHGPW distribution for pε[0, 1]is ob-

tained by solving the equation below.

(1 + αxp)
β + (1 + λxγp)

θ + log(1− p)− 2 = 0, pε[0, 1]. (4.23)

Proof. Using the CDF of the NHGPW distribution and considering F (xp) and pε[0, 1],

the quantile function of the NHGPW distribution can be expressed as;

1− e−[(1+αxp)β+(1+λxγp)
θ−2] = p.
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We make the exponent of the expression the subject by using the steps below;

e−[(1+αxp)β+(1+λxγp)
θ−2] = 1− p

−
[
(1 + αxp)

β + (1 + λxγp)
θ − 2

]
= log(1− p)

(1 + αxp)
β + (1 + λxγp)

θ − 2 = − log(1− p)

(1 + αxp)
β + (1 + λxγp)

θ = 2− log(1− p),

which can also be written as;

(1 + γxp)
β + (1 + λxγp)

θ + log(1− p)− 2 = 0, pε[0, 1].

Since the quantile function does not have a closed form, we solve it using numerical method

(Newton Raphson estimation approach). With this approach, some random numbers were

generated using the quantile function in equation (4.23) for five different parameter value

combinations of the NHGPW distribution. The parameter value combinations were then

used to obtain the quantiles.The Booleys skewness (B.Sk) and Moors kurtosis (M.Ku)

values for the different parameter values were also calculated.

The Bowleys skewness and Moors’ kurtosis measured based on the quantile function are

given respectively as;

B.Sk =
Q(3

4
)− 2Q(1

2
) +Q(1

4
)

Q(3
4
)−Q(1

4
)

. (4.24)

M.Ku =
Q(7

8
)−Q(5

8
) +Q(3

8
)−Q(1

8
)

Q(3
4
)−Q(1

4
)

. (4.25)

The results are presented in Table 4.2.
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Table 4.2: NHGPW Quantiles for Selected Parameter Values (α, β, λ, θ, γ)
p (2.5, 10.3,4.5, (3.54, 5.3, 6.5, (2.0, 2.0, 3.5, (4.0, 3.0, 5.0, (3.54, 0.05,0.01,

0.1,0.5) 2.1,8.5) 0.5,2.0) 4.0,0.8) 1.46,3.32)
0.1 0.003 0.005 0.025 0.001 1.126

0.2 0.007 0.011 0.052 0.003 1.860

0.3 0.0108 0.017 0.080 0.005 2.299

0.4 0.015 0.023 0.110 0.007 2.640

0.5 0.020 0.030 0.144 0.010 2.939

0.6 0.025 0.037 0.182 0.013 3.220

0.7 0.031 0.045 0.228 0.017 3.505

0.8 0.038 0.056 0.287 0.022 3.820

0.9 0.048 0.071 0.377 0.030 4.225
B.Sk 0.136 -6.106 1.383 0.239 -0.079

M.Ku 1.144 1.160 1.203 1.230 1.291

4.3.2 Mixture representation of the NHGPW probability den-

sity function

In order to obtain other statistical properties of the NHGPW distribution, further expan-

sion of its PDF into a simple form is necessary. The NHGPW PDF given as;

⇒ f(x) =
{
αβ(1 + αx)β−1 + λγθxγ−1(1 + λxγ)θ−1

}
× e−[(1+αx)β+(1+λxγ)θ−2], x > 0.

can also be written as;

f(x) = f1(x) + f2(x), (4.26)

where,

f1(x) = αβ(1 + αx)β−1e−[(1+αx)
β+(1+λxγ)θ−2],

= αβ(1 + αx)β−1e1−(1+αx)
β

e1−(1+λx
γ)θ . (4.27)

and,

f2(x) = λγθxγ−1(1 + λxγ)θ−1e−[(1+αx)
β+(1+λxγ)θ−2]. (4.28)
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Lemma 4.3. Using Taylor series and the generalized form of binomial expansion, f1(x)

and f2(x) can be expanded into;

f1(x) = αβ(1 + αx)β−1
∞∑
i=0

i∑
j=0

∞∑
k=0

xγθ(i−j)−γkwijke
1−(1+αx)β . (4.29)

and

f2(x) = λγθxγ−1(1 + λxγ)θ−1
∞∑
i=0

i∑
j=0

∞∑
k=0

xβ(i−j)−k.w∗ijke
1−(1+λxγ)θ . (4.30)

where wijk = (−1)i+jλθ(i−j)−k
i!

(
i
j

)(
θ(i−j)
k

)
and w∗ijk = (−1)i+jαβ(i−j)−k

i!

(
i
j

)(
β(i−j)
k

)
.

Proof; Using

f(x) =
{
αβ(1 + αx)β−1 + λγθxγ−1(1 + λxγ)θ−1

}
× e−[(1+αx)β+(1+λxγ)θ−2], x > 0

f(x) can also be written as;

f(x) = αβ(1+αx)β−1e−[(1+αx)
β+(1+λxγ)θ−2]+λγθxγ−1(1+λxγ)θ−1e−[(1+αx)

β+(1+λxγ)θ−2], x > 0.

Thus the PDF is divided into;

f(x) = f1(x) + f2(x),

where

f1(x) = αβ(1 + αx)β−1e−[(1+αx)
β+(1+λxγ)θ−2]

= αβ(1 + αx)β−1e1−(1+αx)
β

e1−(1+λx
γ)θ

But the Taylor series expansion of an exponential function, ex is;
∑∞

i=0
xi

i!
. Hence the

Taylor series expansion of f1(x) is;

f1(x) = αβ(1 + αx)β−1e1−(1+αx)
β

.

∞∑
i=0

[1− (1 + λxγ)θ]i

i!
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which can also be written as;

f1(x) = αβ(1 + αx)β−1e1−(1+αx)
β
∞∑
i=0

(−1)i[(1 + λxγ)θ − 1]i

i!

using the generalised form of binomial expansion;

(x+ y)i =
i∑

j=0

(
i

j

)
xi−jyj, (|x| > |y|) (4.31)

where y = (−1) and x = (1 + λxγ)θ to further expand f1a(x) we get; we get;

f1(x) = αβ(1 + αx)β−1e1−(1+αx)
β
∞∑
i=0

(−1)i

i!

i∑
j=0

(
i

j

)[
(1 + λxλ)θ

]i−j
(−1)j

= αβ(1 + αx)β−1e1−(1+αx)
β
∞∑
i=0

i∑
j=0

(−1)i+j

i!

(
i

j

)
(λxγ + 1)θ(i−j)

Using the generalised form of the binomial expansion given in equation (4.31) where y = 1

and x = λxγ, we further expand f1(x) into;

f1(x) = αβ(1 + αx)β−1e1−(1+αx)
β
∞∑
i=0

i∑
j=0

(−1)i+j

i!

(
i

j

) ∞∑
k=0

(
θ(i− j)

k

)
(λxγ)θ(i−j)−k(1)k

= αβ(1 + αx)β−1e1−(1+αx)
β
∞∑
i=0

i∑
j=0

∞∑
k=0

(−1)i+j

i!

(
i

j

)(
θ(i− j)

k

)
λθ(i+j)−kxγ[θ(i−j)−k]

= αβ(1 + αx)β−1e1−(1+αx)
β
∞∑
i=0

i∑
j=0

∞∑
k=0

(−1)i+jλθ(i−j)−kxγ[(θ(i−j)−k)]

i!

(
i

j

)(
θ(i− j)

k

)
.

which can also be written as;

f1(x) = αβ(1 + αx)β−1
∞∑
i=0

i∑
j=0

∞∑
k=0

xγθ(i−j)−γkwijke
1−(1+αx)β .
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where wijk = (−1)i+jλθ(i−j)−k
i!

(
i
j

)(
θ(i−j)
k

)
Using the same approach to expand f2(x), we obtain;

f2(x) = λγθxγ−1(1 + λxγ)θ−1e−[(1+αx)
β+(1+λxγ)θ−2]

= λγθxγ−1(1 + λxγ)θ−1e1−(1+αx)
β

e1−(1+λx
γ)θ

= λγθxγ−1(1 + λxγ)θ−1e1−(1+λx
γ)θ

∞∑
i=0

(−1)i[(1 + αx)β − 1]i

i!

= λγθxγ−1(1 + λxγ)θ−1e1−(1+λx
γ)θ

∞∑
i=0

(−1)i+j

i!

i∑
j=0

(
i

j

)
(1 + αx)β(i−j)

= λγθxγ−1(1 + λxγ)θ−1e1−(1+λx
γ)θ

∞∑
i=0

i∑
j=0

(−1)i+j

i!

(
i

j

)
(αx+ 1)β(i−j)

= λγθxγ−1(1 + λxγ)θ−1e1−(1+λx
γ)θ

∞∑
i=0

i∑
j=0

(−1)i+j

i!

(
i

j

) ∞∑
k=0

(
β(i− j)

k

)
(αx)β(i−j)k

= λγθxγ−1(1 + λxγ)θ−1e1−(1+λx
γ)θ

∞∑
i=0

i∑
j=0

∞∑
k=0

(−1)i+j

i!

(
i

j

)(
β(i− j)

k

)
αβ(i−j)−kxβ(i−j)−k

= λγθxγ−1(1 + λxγ)θ−1
∞∑
i=0

i∑
j=0

∞∑
k=0

(−1)i+jαβ(i−j)−k

i!

(
i

j

)(
β(i− j)

k

)
xβ(i−j)−ke1−(1+λx

γ)θ .

Which can also be expressed as;

f2(x) = λγθxγ−1(1 + λxγ)θ−1
∞∑
i=0

i∑
j=0

∞∑
k=0

xβ(i−j)−k.w∗ijke
1−(1+λxγ)θ ,

where w∗ijk = (−1)i+jαβ(i−j)−k
i!

(
i
j

)(
β(i−j)
k

)
.

4.3.3 Moments of the NHGPW distribution

Moments of a random variable are very important in statistical analysis. They can be used

in measuring central tendency/location, variation, skewness, kurtosis and other statistical

procedures. The moment of a random variable X is the expectations of the rth values of

the random variable if the expectation exists (r = 1, 2, ...., ). The moment might not exist

if the distribution is heavy tailed and highly skewed. The moment can be about the origin

or about the mean. For a continuous random variable X with associated PDF, f(x), the
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rth non-central moment (ordinary moment) of the distribution of X, is given by;

µ
′

r =

∫ ∞
0

xrf(x)dx. (4.32)

Proposition 4.4. The rth non-central moment of NHGPW distribution is given as;

µ
′

r =
∞∑
i=0

i∑
j=0

∞∑
k=0

∞∑
m=0

[
wijkAΓ

(
m

β
+ 1, 1

)
+ w∗ijkBΓ

(m
θ

+ 1, 1
)]

. (4.33)

where

A = eα−r−rθ(i−j)+γk(−1)r+γθ(i−j)−γk−m
(
r+γθ(i−j)−γk

m

)
and

B = eλ
−γ−β(i−j)+k

γ (−1)
r+β(i−j)−k

γ
−m( r+β(i−j)−k

γ
m

)
.

Proof. The rth non-central moment of a continuous random variable is given as;

µ
′

r =

∫ ∞
−∞

xrf(x)dx.

For the NHGPW distribution, we have the moment expressed as;

µ
′

r =

∫ ∞
0

xrf1(x)dx+

∫ ∞
0

xrf2(x)dx.

Using the expanded form of f1x defined in equation (4.29), we have;

∫ ∞
0

xrf1(x)dx =
∞∑
i=0

i∑
j=0

∞∑
k=0

wijk

∫ ∞
0

αβ(1 + αx)β−1xr+γθ(i−j)−γke1−(1+αx)
β

dx

=
∞∑
i=0

i∑
j=0

∞∑
k=0

wijkαβe

∫ ∞
0

(1 + αx)β−1xr+γθ(i−j)−γke−(1+αx)
β

dx.

We use integration by substitution to solve the equation as shown below;

Let

y = (1 + αx)β, x =
1

α

(
y

1
β − 1

)
also,  x−→ 0, y → 1

x−→∞, y →∞


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and

dy

dx
= αβ(1 + αx)β−1

⇒ dx =
dy

αβ(1 + αx)β−1
.

Therefore,

∫ ∞
0

xrf1(x)dx =
∞∑
i=0

i∑
j=0

∞∑
k=0

wijke

∫ ∞
0

αβ(1 + αx)β−1
[

1

α

(
y

1
β − 1

)]r+γθ(i−j)−γk
e−y

dy

αβ(1 + αx)β−1

=
∞∑
i=0

i∑
j=0

∞∑
k=0

wijke

∫ ∞
1

[
1

α

(
y

1
β − 1

)]r+γθ(i−j)−γk
e−ydy

=
∞∑
i=0

i∑
j=0

∞∑
k=0

wijkeα
−r−γθ(i−j)+γk

∫ ∞
1

(
y

1
β − 1

)r−γθ(i−j)−γk
e−ydy

using the generalised form of binomial expansion, (x+ y)i =
∑i

j=o

(
i
j

)
yi−jxj, (| y |>| x |).

With y = (−1) and x = y
1
β to expand the expression above we have;

=
∞∑
i=0

i∑
j=0

∞∑
k=0

wijkeα
−r−γθ(i−j)+γk

∫ ∞
1

∞∑
m=0

(−1)r+γθ(i−j)−γk−m
(
r + γθ(i− j)− γk

m

)
y
m
β e−ydy

=
∞∑
i=0

i∑
j=0

∞∑
k=0

∞∑
m=0

wijkeα
−r−γθ(i−j)+γk(−1)r+γθ(i−j)−γk−m

(
r + γθ(i− j)− γk

m

)
×

∫ ∞
1

y(
m
β
+1)−1e−ydy

But
∫∞
1
y[(mβ +1)−1]e−ydy =

∫∞
1
yb−1e−ydy is a complementary gamma function given as;

Γ(b, a), where b and a are the parameters. For the f1(x) expression above, b = m
β

+ 1.

whiles a = 1.

Therefore,

∫ ∞
0

xrf1(x)dx =
∞∑
i=0

i∑
j=0

∞∑
k,m=0

wijkeα
−r−γθ(i−j)+γk(−1)r+γθ(i−j)−γk−m

(
r + γθ(i− j)− γk

m

)
× Γ

(
m

β
+ 1, 1

)
.
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Also using the expanded form of f2(x) defined in equation (4.30), we have;

∫ ∞
0

xrf2(x)dx =
∞∑
i=0

i∑
j=0

∞∑
k=0

w∗ijkλγθ

∫ ∞
0

xr+γ−1+β(i−j)−k(1 + λxγ)θ−1e.e−(1+λx
γ)θdx

Using integration by substitution to solve, f2(x), we take the following steps.

Let

y = (1 + λxγ)θ, x = λ−
1
γ (y

1
θ − 1)

1
γ

and  x−→ 0, y → 1

x−→∞, y →∞


Also,

dy

dx
= θλγxγ−1(1 + λxγ)θ−1

⇒ dx =
dy

θλγxγ−1(1 + λxγ)θ−1

Therefore,

∫ ∞
0

xrf2(x)dx =
∞∑
i=0

i∑
j=0

∞∑
k=0

w∗ijke

∫ ∞
1

[
λ−

1
γ (y

1
θ − 1)

1
γ

]r+β(i−j)−k
e−ydy

=
∞∑
i=0

i∑
j=0

∞∑
k=0

w∗ijkeλ
−r−β(i−j)+k

γ

∫ ∞
1

(
y

1
θ − 1

) r+β(i−j)−k
γ

e−ydy

Using the generalised form of binomial expansion; (x+ y)i =
∑i

j=o

(
i
j

)
yi−jxj, (| y |>| x |)

to expand the expression above we have;

∫ ∞
0

xrf2(x)dx =
∞∑
i=0

i∑
j=0

∞∑
k=0

w∗ijkeλ
−r−β(i−j)+k

γ

∫ ∞
1

∞∑
m=0

(−1)
r+β(i−j)−k

γ
−my

m
θ

(r + β(i− j)− k
γ
m

)
e−ydy

=
∞∑
i=0

i∑
j=0

∞∑
k=0

∞∑
m=0

w∗ijkeλ
−r−β(i−j)+k

γ (−1)
r+β(i−j)−k

γ
−m
( r+β(i−j)−k

γ

m

)
×

∫ ∞
1

y((
m
θ

+1)−1)e−ydy,

But
∫∞
1
y[(mθ +1)−1]e−ydy =

∫∞
1
yb−1e−ydy is a complementary gamma function given as;
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Γ(b, a), where b and a are the parameters. For the f2(x) expression above, b = m
θ

+ 1.

whiles a = 1.

Therefore,

f2(x) =
∞∑
i=0

i∑
j=0

∞∑
k=0

∞∑
m=0

w∗ijkeλ
−r−β(i−j)+k

γ (−1)
r+β(i−j)−k

γ
−m
( r+β(i−j)−k

γ

m

)
Γ
(m
θ

+ 1, 1
)

µ
′

r =

∫ ∞
0

xrf1(x)dx+

∫ ∞
0

xrf2(x)dx =
∞∑
i=0

i∑
j=0

∞∑
k=0

∞∑
m=0

[
wijkAΓ

(
m

β
+ 1, 1

)
+ w∗ijkBΓ

(m
θ

+ 1, 1
)]

.

Where r = 1, 2, ..., A = eα−r−rθ(i−j)+γk(−1)r+γθ(i− j)− γk −m
(
r+γθ(i−j)−γk

m

)
and

B = eλ
−γ−β(i−j)+k

γ (−1)
r+β(i−j)−k

γ
−m( r+β(i−j)−k

γ
m

)
The first five non-central moments obtained by numerical integration of the NHGPW

distribution for selected parameter values are presented in Table 4.3. The standard devi-

ation (SD), coefficient of variation (CV), coefficient of skewness (CS) and kurtosis (CK)

calculated using these non-central moments are also presented in Table 4.3.

Table 4.3: Moments of the NHGPW Distribution for Different Parameter Val-
ues

p (0.1, 0.8,0.8, (3.54, 0.05, 0.01, (3.54, 5.3, 6.5, (2, 2, 3.5, (4, 3,5,
0.5,2.4) 1.4,3.32) 2.1,8.5) 0.5,2) 4,0.8)

µ
′
1 1.476 2.813 0.035 0.178 1.307

µ
′
2 3.002 9.280 0.002 0.052 3.217

µ
′
3 7.724 33.130 0.001 0.020 1.085

µ
′
4 24.049 125.117 1× 10−05 0.009 4.502

µ
′
5 87.858 494.022 8.9× 10−07 0.005 2.190

SD 0.907 1.170 0.026 0.143 1.229

CV 0.614 0.416 0.760 0.807 0.940

CS 1.160 -0.422 0.750 1.203 -3.810

CK 5.086 2.737 3.502 3.813 8.145
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The SD, CV, CS and CK are defined respectively as;

SD =
√
µ
′
2 − (µ

′
1)

2.

CV =

√
µ
′
2 − (µ

′
1)

2

µ
′
1

.

CS =
E[(x− µ′1)3]

[E[(x− µ′1)2]
3
2

=
µ
′
3 − 3µ

′
1µ
′
2 + 2(µ

′
1)

3

((µ
′
2 − µ

′
1)

2)
3
2

.

CK =
E[(x− µ′1)4]

[E[(x− µ′1)2]2
=
µ
′
4 − 4µ

′
1µ
′
3 + 6(µ

′
1)

2µ
′
2 − 3(µ

′
1)

4

((µ
′
2 − µ

′
1)

2)2
.

4.3.4 Moment Generating function of the NHGPW distribution

The Moment Generating function (MGF) is the function which is used to generate the

moments of a distribution. If the moment generating function exist, it is given as;

Mx(t) = E(etx). (4.34)

For a continuous distribution, the MGF is expressed as;

Mx(t) = E
[
etx
]

=

∫ ∞
0

etxf(x)dx. (4.35)

Proposition 4.5.The moment generating function of the NHGPW distribution is given;

Mx(t) =
∞∑
r=0

i∑
j=0

∞∑
k=0

∞∑
m=0

∞∑
r=0

tr

γ!

[
wijkAΓ

(
m

β
+ 1, 1

)
+ w∗ijkBΓ

(m
θ

+ 1, 1
)]

.(4.36)

Proof. By definition, the MGF is given as;

MX(t) = E
[
etx
]

=

∫ ∞
0

etxf(x)dx.
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Using Taylor series to expand
∫∞
0
etxf(x)dx, we get;

MX(t) =

∫ ∞
0

∞∑
r=0

trXr

r!
f(x)dx

=
∞∑
r=0

tr

r!

∫ ∞
0

xrf(x)dx

=
∞∑
r=0

tr

r!
µ
′

r

For the NHGPW distribution,

µ
′

r =
∞∑
i=0

i∑
j=0

∞∑
k=0

∞∑
m=0

[
wijkAΓ

(
m

β
+ 1, 1

)
+ w∗ijkBΓ

(m
θ

+ 1, 1
)]

Hence,

Mx(t) =
∞∑
i=0

i∑
j=0

∞∑
k=0

∞∑
m=0

∞∑
r=0

tr

r!

[
wijkAΓ

(
m

β
+ 1, 1

)
+ w∗ijkBΓ

(m
θ

+ 1, 1
)]

The moment generating function of a random variable X, exist only if the infinite series

(in the discrete case) or the improper integral (in the continuous case) is convergent (thus

the infinite sequence of the partial sums of the series does have a finite limit). The rth

moment about the origin is obtained from the moment generating function by taking the

rth derivative of Mx(t) with respect to t and evaluating it at t = 0. Thus;

E(Xr) =
drMx(t = 0)

dtr
(4.37)

4.3.5 Order Statistics of the NHGPW Distribution

Order statistics are used to identify the maximum and minimum values (extreme values)

of a random variable. They are mostly used in extreme value theory. Let X1 and X2

denote the smallest and second smallest value of (X1, X2, ...., Xn) and Xp denote the pth

smallest value of (X1, X2, ...., Xn), then the random variables X1, X2, ...., Xn, are called

the order statistics of the sample (X1, X2, ...., Xn) and has pdf of the pth order, given as;

fp:n(x) =
n!

(n− p)!(p− 1)!
[F (x)]p−1 [1− F (x)]n−p f(x). (4.38)
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Proposition 4.6. If X1, X2, ..., Xn are random samples from the NHGPW distribution,

then the pth order statistic is given as;

fp;n(x) =
n!
{
αβ(1 + αx)β−1 + λγθxγ−1(1 + λxγ)θ−1

}
(p− 1)!(n− p)!

(
n− p
i

)(
p+ i− 1

j

) n−p∑
i=1

p+i−1∑
j=1

(−1)1+j

×e−(j+1)[(1+αx)β+(1+λxγ)θ−2]. (4.39)

Proof. By definition, the pth order statistic is given as;

fp:n(x) =
n!

(n− p)!(p− 1)!
[F (x)]p−1 [1− F (x)]n−p f(x).

Using the binomial series expansion of [1− F (x)]n−p given as;

[1− F (x)]n−p =

n−p∑
i=1

(−1)i
(
n− p
i

)
[F (x)]i

and the condition that, 0 < 1− F (x) < 1, we simplify fp;n(x) into;

fp:n(x) =
n!

(n− p)!(p− 1)!

n−p∑
i=1

(−1)i
(
n− p
i

)
[F (x)]i[F (x)]p−1f(x)

=
n!

(n− p)!(p− 1)!

n−p∑
i=1

(−1)i
(
n− p
i

)
[F (x)]p+i−1f(x).

Inputting the CDF and PDF of the NHGPW distribution into fp;n(x), we get;

fp:n(x) =
n!

(n− p)!(p− 1)!

n−p∑
i=1

(−1)i
(
n− p
i

)[
1− e−[(1+αx)β+(1+λxγ)θ−2]

]p+i−1
×

{
αβ(1 + αx)β−1 + λγθxγ−1(1 + λxγ)θ−1

}
e−[(1+αx)

β+(1+λxγ)θ−2],

but
[
1− e−[(1+αx)β+(1+λxγ)θ−2]

]p+i−1
can also be expressed in binomial series expansion

form as;
[
1− e−[(1+αx)β+(1+λxγ)θ−2]

]p+i−1
=
∑p+i−1

j=1 (−1)j
(
p+i−1
j

)
e−j[(1+αx)

β+(1+λxγ)θ−2]

inputting this into fp;n(x), we have;

fp;n(x) =
n!
{
αβ(1 + αx)β−1 + λγθxγ−1(1 + λxγ)θ−1

}
(p− 1)!(n− p)!

n−p∑
i=1

(−1)i
(
n− p
i

) p+i−1∑
j=1

(−1)j
(
p+ i− 1

j

)
× e−j[(1+αx)

β+(1+λxγ)θ−2]e−[(1+αx)
β+(1+λ+xγ)θ−2]
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=
n!
{
αβ(1 + αx)β−1 + λγθxγ−1(1 + λxγ)θ−1

}
(p− 1)!(n− p)!

(
n− p
i

)(
p+ i− 1

j

) n−p∑
i=1

p+i−1∑
j=1

(−1)1+j

× e−(j+1)[(1+αx)β+(1+λxγ)θ−2].

Proposition 4.7. The PDF of first order statistics (p = 1) is given as;

fx(1)(x) = n
{
αβ(1 + αx)β−1 + λγθxγ−1(1 + λxγ)θ−1

}
e−n[(1+αx)

β+(1+λxγ)θ−2]. (4.40)

Proof. The PDF of the first order statistic is defined as;

fx(1)(x) =
n!

(n− 1)!(1− 1)!
[F (x)]1−1[1− F (x)]n−1f(x)

= n[1− F (x)]n−1f(x)

Imputing the CDF and PDF of the NHGPW distribution into fx(1)(x) , we obtain the

PDF of the first order statistics as;

fx(1)(x) = n
[
e−[(1+αx)β+(1+λxγ)θ−2]

]n−1 {
αβ(1 + αx)β−1 + λγθxγ−1(1 + λxγ)θ−1

}
× e−[(1+αx)β+(1+λxγ)θ−2]

= n
{
αβ(1 + αx)β−1 + λγθxγ−1(1 + λxγ)θ−1

}
e−(n−1)[(1+αx)

β+(1+λxγ)θ−2]

× e−1[(1+αx)
β+(1+λxγ)θ−2]

= n
{
αβ(1 + αx)β−1 + λγθxγ−1(1 + λxγ)θ−1

}
e−n[(1+αx)

β+(1+λxγ)θ−2]

Proposition 4.8. The PDF of the largest Order Statistics for the NHGPW distribution

(p = n) is given as;

fx(n)(x) = n
{
αβ(1 + αx)β−1 + λγθxγ−1(1 + λxγ)θ−1

} n−1∑
i=1

(−1)i
(
n− 1

i

)
e−(i+1)[(1+αx)β+(1+λxγ)θ−2].

(4.41)

Proof. The PDF of largest order statistics, (p = n) is also expressed as;

fx(n)(x) =
n!

(n− 1)!(n− n)!
[F (x)]n−1[1− F (x)]n−nf(x),

= n[F (x)]n−1f(x).
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Inputting the CDF and PDF of the NHGPW distribution into fx(n)(x) yields;

fx(n)(x) = n
[
1− e−[(1+αx)β+(1+λ+xγ)θ−2]

]n−1 {
αβ(1 + αx)β−1 + λγθxγ−1(1 + λxγ)θ−1

}
× e−[(1+αx)β+(1+λxγ)θ−2]

since [1− e−[(1+αx)β+(1+λxγ)θ−2]]n−1 =
∑n−1

i=1 (−1)i
(
n−1
i

)
[e−i[(1+αx)

β+(1+λxγ)θ−2]], fx(n)(x) be-

comes;

fx(n)(x) = n
{
αβ(1 + αx)β−1 + λγθxγ−1(1 + λxγ)θ−1

} n−1∑
i=1

(−1)i
(
n− 1

i

)
e−i[(1+αx)

β+(1+λxγ)θ−2]

× e−[(1+αx)β+(1+λxγ)θ−2]

= n
{
αβ(1 + αx)β−1 + λγθxγ−1(1 + λxγ)θ−1

} n−1∑
i=1

(−1)i
(
n− 1

i

)
e−(i+1)[(1+αx)β+(1+λxγ)θ−2]

.

4.4 Maximum Likelihood Estimation

This study employed the the maximum likelihood estimation technique to obtain estima-

tors for the unknown parameters of the NHGPW distribution. MLE obtain estimates of

the parameter values that maximises the likelihood function. The likelihood function is

defined as;

L =
n∏
i=1

f(x). (4.42)

For the NHGPW distribution with PDF given in equation (4.12), the likelihood function

is given as;

L =
n∏
i=1

{
αβ(1 + αxi)

β−1 + λγθxγ−1i (1 + λxγi )
θ−1} .e−[(1+αxi)β+(1+λxγi )

θ−2]. (4.43)

we obtain the score function by taking logarithm of equation (4.49)

l =
n∑
i=1

log
{
αβ(1 + αxi)

β−1 + λγθxγ−1(1 + λxγi )
θ−1}− n∑

i=1

[
(1 + αxi)

β + (1 + λxγi )
θ − 2

]
.
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To obtain the MLE of the parameters of the NHGPW distribution, we maximize the score

function by taking the its first derivative and equating the derivatives to zero. We then

make the parameter of interest the subject.

These MLE parameter estimates are given as;

∂l

∂α
= −

n∑
i=1

βxi(1 + αxi)
β−1 +

n∑
i=1

α(β − 1)βxi(1 + αxi)
β−2 + β(1 + αxi)

β−1

αβ(1 + αxi)β−1 + γθλxγ−1i (1 + λxγi )
θ−1

. (4.44)

∂l

∂β
= −

n∑
i=1

log[1 + αxi](1 + αxi)
β +

n∑
i=1

α(1 + αxi)
β−1 + αβlog[1 + αxi](1 + αxi)

β−1

αβ(1 + αxi)β−1 + γθλxγ−1i (1 + λxγi )
θ−1

.

(4.45)

∂l

∂θ
= −

n∑
i=1

log[1+λxγi ](1+λxγi )
θ+

n∑
i=1

γλxγ−1i (1 + λxγi )
θ−1 + γθλlog[1 + λxγi ]x

γ−1
i (1 + λxγi )

θ−1

αβ(1 + αxi)β−1 + γθλxγ−1i (1 + λxγi )
θ−1

.

(4.46)

∂l

∂λ
= −

n∑
i=1

θxγi (1 + λxγi )
θ−1 +

n∑
i=1

γ(θ − 1)θλx2γ−1i (1 + λxγi )
θ−2 + γθxγ−1i (1 + λxγi )

θ−1

αβ(1 + αxi)β−1 + γθλxγ−1i (1 + λxγi )
θ−1

.

(4.47)

∂l

∂γ
= −

n∑
i=1

θλlog[xi]x
γ
i (1 + λxγi )

θ−1.

+
n∑
i=1

(γ(θ − 1)θλ2log[xi]x
2γ−1
i (1 + λxγi )

θ−2 + θλxγ−1i (1 + λxγi )
θ−1 + γθλlog[xi]x

γ−1
i (1 + λxγi )

θ−1)

αβ(1 + αxi)β−1 + γθλxγ−1i (1 + λxγi )
θ−1

.

(4.48)

Therefore, the variance-covariance matrix of the parameters is given as;

A−1 =



∂2l
∂α2

∂2l
∂αγβ

∂2l
∂αγθ

∂2l
∂αγλ

∂2l
∂αγγ

∂2l
∂β2

∂2l
∂βγθ

∂2l
∂βγλ

∂2l
∂βγγ

∂2l
∂λ2

∂2l
∂λθγ

∂2l
∂λγγ

∂2l
∂θ2

∂2l
∂θγγ

∂2l
∂γ2



4.5 Monte Carlo Simulation

Monte Carlo simulations were conducted to assess the performance of the maximum like-

lihood estimators for the parameters of the NHGPW distribution. Five different combina-

tions of parameter values of this distribution were specified and its quantile function then
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used to generate five different random samples of sizes, n = 40, 80, 120, 160, 200. These

were then used to obtain the maximum likelihood estimates of the parameters of the

distribution. The simulation was replicated for N=1000 times. The average bias (ABias)

and mean square error (MSE) were calculated for the estimators of the parameters of

the NHGPW distribution. The results of the simulation are shown in Table 4.4. The

results showed that, as the sample size increases the maximum likelihood estimates of the

parameters of the NHGPW distribution converges to the true parameter value since the

mean square errors decay to zero and the biases of each parameter also decrease.
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Table 4.4: Monte Carlo Simulation Results: ABias and MSE for the Parameters
of the NHGPW distribution
n Parameter value ABiase MSE

40

80

120

160

200

α β λ θ γ

0.4 0.4 0.5 0.3 2.7

0.4 0.4 0.5 0.3 2.7

0.4 0.4 0.5 0.3 2.7

0.4 0.4 0.5 0.3 2.7

0.4 0.4 0.5 0.3 2.7

α β λ θ γ

0.43 0.21 0.28 0.150 0.35

0.41 0.20 0.26 0.10 0.34

0.41 0.20 0.20 0.10 0.34

0.40 0.20 0.19 0.08 0.34

0.39 0.20 0.17 0.07 0.33

α β λ θ γ

0.24 0.06 0.10 0.07 0.17

0.23 0.06 0.08 0.04 0.16

0.22 0.05 0.06 0.03 0.16

0.22 0.06 0.06 0.02 0.16

0.20 0.05 0.05 0.02 0.15
40

80

120

160

200

0.3 0.5 0.7 0.5 2.5

0.3 0.5 0.7 0.5 2.5

0.3 0.5 0.7 0.5 2.5

0.3 0.5 0.7 0.5 2.5

0.3 0.5 0.7 0.5 2.5

0.53 0.28 0.34 0.41 0.52

0.41 0.28 0.28 0.35 0.53

0.36 0.28 0.27 0.32 0.54

0.32 0.23 0.23 0.29 0.53

0.30 0.27 0.20 60.28 0.52

0.35 0.10 0.13 0.20 0.28

0.24 0.10 0.10 0.15 0.28

0.19 0.07 0.08 0.13 0.28

0.16 0.01 0.07 0.11 0.28

0.14 0.01 0.06 0.10 0.27
40

80

120

160

200

0.32 0.5 0.8 0.6 2.7

0.32 0.5 0.8 0.6 2.7

0.32 0.5 0.8 0.6 2.7

0.32 0.5 0.8 0.6 2.7

0.32 0.5 0.8 0.6 2.7

0.62 0.35 0.28 0.39 0.66

0.59 0.34 0.25 0.38 0.66

0.57 0.34 0.25 0.38 0.66

0.57 0.34 0.24 0.38 0.66

0.57 0.33 0.24 0.38 0.66

0.41 0.13 0.09 0.16 0.44

0.38 0.13 0.07 0.15 0.43

0.36 0.13 0.07 0.15 0.44

0.36 0.13 0.07 0.15 0.43

0.36 0.13 0.06 0.15 0.43
40

80

120

160

200

0.9 1.1 1.0 1.0 1.5

0.9 1.1 1.0 1.0 1.5

0.9 1.1 1.0 1.0 1.5

0.9 1.1 1.0 1.0 1.5

0.9 1.1 1.0 1.0 1.5

0.58 0.50 0.83 0.60 0.93

0.56 0.45 0.81 0.57 0.77

0.54 0.42 0.80 0.55 0.71

0.49 0.43 0.78 0.51 0.67

0.48 0.41 0.76 0.51 0.62

0.48 0.34 0.76 0.49 1.69

0.46 0.30 0.74 0.44 1.31

0.43 0.29 0.72 0.42 1.18

0.37 0.27 0.70 0.38 1.07

0.36 0.25 0.68 0.37 0.96
40

80

120

160

200

0.9 1.1 1.0 1.0 2.5

0.9 1.1 1.0 1.0 2.5

0.9 1.1 1.0 1.0 2.5

0.9 1.1 1.0 1.0 2.5

0.9 1.1 1.0 1.0 2.5

0.69 0.56 0.72 0.67 1.00

0.61 0.60 0.71 0.63 0.83

0.56 0.62 0.71 0.61 0.75

0.59 0.63 0.69 0.62 0.74

0.56 0.63 0.65 0.63 0.70

0.61 0.39 0.59 0.58 1.28

0.50 0.44 0.58 0.53 0.93

0.44 0.46 0.58 0.50 0.81

0.48 0.47 0.56 0.51 0.78

0.38 0.48 0.51 0.52 0.70
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4.6 Applications

The NHGPW was applied on two sets of data (Kevlar 49/epoxy strands failure rate

data and Aircraft Windshield failure rate data) and various goodness-of-fit analyses per-

formed. The goodness-of-fit of the NHGPW distribution was compared with some of

its sub-models and other five parameter distributions for systems in series. Thus; the

NH distribution, the GPW distribution, exponential-exponential (EE) distribution, beta

modified Weibull (BetaMW) distribution, beta Weibull Poisson (BetaWP) distribution,

Gamma log-logistic Weibull (GLLoGW) distribution, Weibull NH (WNH) distribution,

Kumaraswamy log-logistic Weibull (KLLoGW) distribution, Exponentiated Generalised

Poisson inverse Exponential (EGPIE) distribution and the Exponentiated Generalised

Geometric inverse exponential (EGGIE) distribution. The comparison was done using

the Kolmogorov Smirnov statistic, Cramér-Von Mises statistic, Anderson- Darling statis-

tic, log-likelihood and model selection criteria such as the AIC, AICc and BIC. The PDFs

and CDFs of the NH, PGW, EE, EGGIE, KLLoGW, GLLoGW, BetaMW, BetaWP dis-

tributions are respectively given as;

fNH(t) = αβ(1 + αt)β−1e(1−(1+αt)
β), α, β > 0, t > 0,

fGPW (t) = λγθtγ−1(1 + λtγ)θ−1e(1−(1+λt
γ)θ), t > 0, λ, γ, θ > 0,

fEE(t) = (α + λ)e−[αt+λt], α > 0, λ > 0,

fEGGIE(t) =
(1− λ)λγcdt−2e−γt

−1
(1− e−γt−1

)d−1(1− (1− e−γt−1
)d)c−1

[1− λ[1− (1− (1− e−γt−1)d]c]
2 ,

0 < λ < 1, λ, γ, c, d, t > 0,

fKLLoGW = ab
(

1− (1 + tc)−1e−αt
β

)α−1
)(

1− (1− (1 + tc)−1e−αt
β

)a
)b−1

(1 + tc)−2e−αt
β

,

a, b, c, α, β, t > 0,

fGLLoGW (t) =
1

Γ(a)θa
(1+tc)−1e−αt

β [
1− (1 + tc)−1ctc−1 + αβtβ−1

] (
− log(1− (1 + tc)−1)e−αt

β
)
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×
(

1− (1 + tc)−1e−αt
β
)
,

c, α, β, a, θ, t > 0,

fbetaMW (t) =
αtγ−1(γ + λt)eλt

B(a, b)
e−bat

γ

(1− e−αtγeλt)α−1,

α, γ, λ, a, b, t > 0,

fbetaWP (t) =
αβλtα−1eλe

βtα−λ−βtα(eλ − 1)2−a−b(eλ − eλeβt
a

)a−1(eλe
βtα − 1)b−1

B(a, b)(1− e−λ)
,

α, β, λ, a, b, t > 0,

4.6.1 Application I: Kevlar 49/epoxy Strands Data

The first data set consist of 101 observations representing the failure time (in hours) of

Kevlar 49/epoxy strands subjected to constant sustained pressure at 90 percent stress

level. Table 6.1 in Appendix A gives this data set.

Table 4.5 displays the descriptive statistics for the Kevlar 49/epoxy Strands failure time

data. It is seen that the data set is positively skewed and leptokurtic in nature since the

skewness value is positive and the kurtosis value greater than three. This implies that,

the distribution of this data set is more peaked as compared to the normal distribution

and majority of the data points are clustered at the lower side of the distribution with

a long tail to the right. Since the PDF of the NHGPW distribution can be positively

skewed, it implies this distribution can be applied to the Kevlor 49/expoxy strands data.

Table 4.5: Descriptive Statistics of Kevlar 49/epoxy Strands failure data
Statistic Mean St.Dev Coeff. Variation Median Kurtosis Skewness
Value 1.025 1.119 1090.220 0.800 14.470 3.080

The TTT transformed plot was employed to explore the shape of the hazard function of

the data set before the main application is done. The TTT transformed plot as shown in

Figure 4.5 is first convex in shape, followed by a concave shape and then another convex

shape which indicate that the hazard function of the Kevlar 49/epoxy data set exhibits a

modified bathtub shape. The hazard function of the NHGPW distribution can be modi-

62



www.udsspace.uds.edu.gh 

 

 

 

 

fied bathtub hence the NHGPW distribution is applicable this data.

Figure 4.5: TTT plot of Kevlar 49/epoxy data set

The detailed parameter estimates of the NHGPW distribution and the competitive dis-

tributions considered for the Kevlar 49/epoxy data are shown in Table 4.6. Using the

standard errors of the NHGPW distribution, it is seen that all the parameters are signif-

icant at 5 percent significance level since their standard errors are less than half of their

parameter estimates.
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Table 4.6: Maximum Likelihood Parameter Estimates of the Kevlar 49/epoxy
Data
Distribution Parameter estimates and Standard errors

NHGPW α̂ β̂ λ̂ θ̂ γ̂

3.435 0.414 5.638 0.007 114.570

(1.618) (0.155) (0.022) (0.002) (0.000)

NH 1.145 0.693

(0.431) (0.189)

GPW 0.593 0.762 1.308

(0.465) (0.125) (0.645)
Exp-Exp 0.087 1.389

(0.049) (0.049)

BetaWP â b̂ α̂ β̂ θ̂

0.075 8.395 0.825 1.070 374.510

(0.018) (0.390) (0.276) (0.201) (0.005)

GLLoGW ĉ α̂ β̂ σ̂ θ̂

0.237 0.259 0.965 4.396 0.140

(0.297) (0.373) (0.374) (10.719) (0.333)

BetaMW â b̂ α̂ γ̂ λ̂

108.860 25.631 1.663 0.053 0.034

(0.000) (0.001) (0.279) (0.008) (0.009)

KLLoGW â b̂ ĉ α̂ β̂

1733.340 0.494 4.248 8.474 8.474

(6857.670) (0.175) (1.227) (0.0171) (3.877)

EGPIE λ̂ ĉ d̂ γ̂

26.062 7.320 0.175 0.002

(0.009) (1.770) (0.175) (0.002)

EGGIE λ̂ ĉ d̂ γ̂

0.664 20.525 0.498 0.002

(0.241) (0.005) (0.137) (0.000)

WNH α̂ λ̂ â b̂

0.440 0.263 11.643 0.915

(0.497) (0.235) (18.644) (0.095)
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Table 4.7 presents the goodness-of-fit measures and the information criteria for the NHGPW

distribution and the competitive distributions. As compared to the other distributions,

the developed NHGPW distribution has the highest log-likelihood value with the small-

est values of the Kolmogorov Smirnov (KS), Anderson-Darling (AD), Crame
′
r-Von Mises

(CVM) statistics. By using the model selection criteria, the NHGPW distribution has

the smallest AIC, AICc, and BIC values as compared to the other distributions. These

indicate that, the NHGPW distribution provides a better fit to the Kevlar 49/epoxy data

set as compared to the existing distributions.

Table 4.7: Goodness of fit and Information Criteria of Kevlar 49/epoxy data
Distribution LL −2 logL AIC AICc BIC CVM AD KS(p-value)
NHGPW −95.012 190.024 199.89 200.580 213.253 0.088 0.124 0.0691(0.721)

NH −103.340 206.683 210.683 211.373 215.913 0.204 1.139 0.082(0.005∗)

Exp-Exp −103.480 206.959 210.959 210.730 216.189 0.181 1.028 0.205(0.000∗)

GPW −102.800 205.601 245.124 245.814 252.969 0.1716 0.985 0.205(0.000∗)

BetaWP −101.200 202.400 212.040 212.700 225.120 0.114 0.702 0.150(0.000∗)

GLLoGW −102.050 204.100 214.010 214.600 227.100 0.132 0.800 0.132(0.000∗)

BetaMW −103.650 207.300 217.300 217.900 230.38 0.196 1.119 0.080(0.000∗)

KLLoGW −95.550 191.100 201.100 201.700 214.100 0.212 0.1534 1.000(0.000∗)

EGPIE −116.660 233.320 241.314 241.947 251.774 0.738 0.158 0.182(0.000∗)

EGGIE −140.090 280.180 288.170 288.802 298.631 1.386 0.133 0.237(0.000∗)

WNH −103.010 206.025 214.025 214.715 224.485 0.195 1.097 0.090(0.383)

The likelihood ratio (LR) test was further performed to compare the fitness of the

NHGPW distribution with its sub-distributions. The results as shown in Table 4.8 re-

vealed that, the fit of the NHGPW is significantly different from its sub-distributions since

significant test statistics were obtained for all of them (corresponding p-values are all less

0.05 significance level). The results also showed that, the NHGPW distribution fits well

to the Kevlar 49/epoxy data than its sub-distributions.
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Table 4.8: LR Test Statistic for Kevlar 49/epoxy Data
Distribution Deviance LRT p-value
NH 206.680 7.506 0.044∗

GPW 205.600 6.424 0.040∗

Exp-Exp 206.960 7.782 0.000∗

The asymptotic variance covariance matrix of the parameter estimates of the NHGPW

distribution for the Kevlar 49/epoxy data is given by;

A−1 =



2.617 −0.349 −0.052 2.011× 10−3 −5.299× 10−4

−0.349 2.409× 10−2 3.357× 10−3 −1.493× 10−4 3.407× 10−5

−0.052 3.357× 10−3 5.027× 10−4 −1.937× 10−5 5.102× 10−6

2.011× 10−3 −1.493× 10−4 −1.937× 10−5 2.185× 10−6 −1.965× 10−7

−5.299× 10−4 3.407× 10−5 5.102× 10−6 −1.965× 10−7 5.178× 10−8



The approximate 95 percent confidence interval (CI) for the five parameters of the NHGPW

distribution are; α : [0.2647; 6.6057], β : [0.1099; 0.7183], λ : [5.5941; 5.6819], θ : [00036; 0.0094];

and γ : [114.5696; 114.570. The estimated CI of the parameters of the NHGPW distri-

bution also showed that, its parameters were all significant at 5 percent significance level

since their estimated confidence intervals do not contain zero.

Figure 4.6 gives the plot of the empirical CDF, the CDF of the NHGPW distribution and

the CDFs of the comparison distributions. As it is seen from the figure, the NHGPW

distribution fits better to this data set as compared to the considered models since its

CDF approximates the empirical CDF.
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Figure 4.6: Plots of CDFs of the Kevlar 49/epoxy data set

4.6.2 Application II: Air Craft Windshield Failure Data Set

The NHGPW was also applied on failure times data of 84 aircraft windshield. To make a

comparison between the NHGPW distribution and the other distributions, the estimated

Log-likelihood, AIC, AICc, BIC, Crame
′
r Von Mises (CVM), Anderson-Darling (AD),

Kolmogorov Smirnov (KS) goodness-of-fit statistics were calculated for all the competi-

tive distributions. The NHGPW distribution was compared with the NH distribution, the

GPW distribution, EE distribution, BetaMW, WNH and KLLoGW distributions. This

data is given in Table 6.2 in Appendix A.

Table 4.9 gives the descriptive statistics for the failure time data for the 84 aircraft wind-

shield. It is seen that the data set is positively skewed and platikurtic in nature since the

skewness value is positive and the kurtosis value is less than three.

Table 4.9: Descriptive Statistics of Air Craft Windshield Failure data
Statistic Mean St.Dev CV Median Kurtosis Skewness
Value 2.563 1.113 43.440 2.385 -0.090 0.090
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The TTT transform plot of the failure rate data of the 84 aircraft windsheild shown in

Figure 4.7 indicates that, its hazard function has an increasing failure rate.

Figure 4.7: TTT Plot of 84 Aircraft Windshield data set

The parameter estimates and standard errors of the NHGPW distribution and the can-

didate distributions for the aircraft windshield failure rate data are shown in Table 4.10.

By using the standard errors of the NHGPW distribution, parameters α, β, λ, and γ are

significant at 5 percent significant level since their standard errors are less than half of

their parameter estimates whiles θ is insignificant since its standard error is greater than

half of the parameter estimate.
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Table 4.10: Maximum Likelihood Parameter Estimate for Aircraft Windshield
Failure Data
Distribution Parameter Estimates and Standard errors

NHGPW α̂ β̂ λ̂ θ̂ γ̂

101.826 0.005 0.003 2.044 2.303

(0.009) (0.000) (0.000) (3.009) (0.594)
NH 0.008 33.695

(0.000) (0.000)
GPW 0.010 1.757 10.051

(0.002) (0.172) (0.001)
Exp-Exp 0.345 0.045

(0.021) (0.021)

BetaMW â b̂ α̂ γ̂ λ̂

0.286 0.009 6.224 2.543 0.057

(0.184) (0.003) (0.012) (1.062) (0.341)

KLLoGW â b̂ ĉ α̂ β̂

7.934 12.501 0.129 0.15 1.286

(5.499) (43.587) (0.143) (0.114) (0.651)

WNH α̂ λ̂ â b̂

0.562 4.22 0.023 1.088

(0.226) (9.357) (0.043) (0.547)

The goodness-of-fit and information criteria for the competitive distributions are pre-

sented in Table 4.11. Among the competitive distributions, the developed NHGPW was

shown to the best distribution for the aircraft windshield failure data set since it has

the minimum value of all the information criteria (AIC=264.059, AICc=264.828 and

BIC=276.272) as well as the minimum value of the goodness-of-fit statistics (K-S=0.85,

AD=0.5, CVM=0.062) with the largest log likelihood value (LL=-127.230).
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Table 4.11: Goodness of Fit and Information Criteria of Air Craft Windshield
Data
Distribution LL −2 logL AIC AICc BIC CVM AD K-S(p-value)
NHGPW −127.230 254.081 264.059 264.828 276.272 0.062 0.534 0.085(0.571)

NH −145.550 291.100 295.099 295.248 299.985 0.082 0.610 0.258(0.000∗)

Exp-Exp −164.990 329.975 333.975 334.123 338.861 0.166 1.398 0.303(0.000∗)

GPW −128.960 256.946 686.572 686.872 693.900 0.307 2.294 0.915(0.000∗)

BetaMW −128.260 254.260 264.517 265.286 277.730 3.129 17.136 0.682(0.000∗)

KLLoGW −127.990 255.971 265.971 266.740 278.184 0.077 0.545 0.086(0.552)

WNH −128.180 256.355 264.355 264.861 274.125 0.105 0.692 0.088(0.527)

The LR test results shown in Table 4.12 indicate that, the fit of the NHGPW is signifi-

cantly different from the parent distribution (NH and GPW distributions) since significant

test statistics were obtained for all of them (corresponding p-values are all less 0.05 sig-

nificance level).

Table 4.12: LR Test Statistic for Air Craft Windshield Data
Distribution Deviance LRT p-value
NH 291.100 36.018 0.000∗

GPW 257.930 17.064 0.040∗

The asymptotic variance covariance matrix for the parameter estimates of the NHGPW

distribution for the air craft windshield failure data is given by;

A−1 =



8.126× 10−5 1.324× 10−5 3.415× 10−4 −2.712× 10−2 4.981× 10−3

1.324× 10−5 4.076× 10−6 4.283× 10−5 −4.358× 10−3 1.060× 10−3

3.415× 10−4 4.283× 10−5 1.690× 10−6 −1.145× 10−1 1.869× 10−2

−2.712× 10−2 −4.358× 10−3 −1.145× 10−1 9.052 −1.651

4.981× 10−3 1.060× 10−3 1.869× 10−2 −1.651 0.352



For the aircraft windshield data, the approximate 95 percent CI of the five parameters of

the NHGPW distribution are; α : [101.808; 101.844], β : [0.001; 0.009], λ : [0.0005; 0.006], θ :

[−3.853; 7.941]; and γ : [1.140; 3.466].

The plot of the empirical CDF, the CDF of the NHGPW distribution and the CDFs of

the competitive distributions are shown in Figure 4.8. From the plots, the CDF of the
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NHGPW distribution approximates the empirical CDF of the aircraft windshield failure

failure data set hence provides a better fit as compared to the other distributions consid-

ered.

Figure 4.8: Empirical CDF and CDF plots of Aircraft Windshield Failure data
set
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 CHAPTER 5

The POWER SERIES GENERALISED POWER

WEIBULL CLASS OF DISTRIBUTIONS

5.1 Introduction

In this section, the Power Series Generalised Power Weibull (PGPW) class of distributions

was developed for modelling failure rate from system with subsystems connected in series.

This class of distributions was obtained by compounding the generalised Power Weibull

and the power series family of distributions.

5.2 The Power Series Generalised Power Weibull Class

Of Distributions

Consider N to be a discrete random variable from the power series distribution (truncated

at zero). N gives the number of failures of system with independent subsystem functioning

in series at a given point in time. Hence N has a probability mass function (PMF);

P (N = n) =
anα

n

C(α)
, n = 1, 2, .... (5.1)

an > 0, C(α) =
∑∞

n=1 anα
n and α ∈ (0, s). an is the coefficient of the power series, C(α)

is the generating function and s is the parameter space.

Assume T1, T2, ..., TN represents the lifetimes failures associated with this system of inde-

pendent and identically distributed continuous random variables following the generalised

power Weibull distribution (GPW (λ, θ, γ)). The CDF of T is given by;

F (t) = 1− e[1−(1+λtγ)θ]. (5.2)
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with Survival function given by;

s(t) = e[1−(1+λt
γ)θ]. (5.3)

Ti gives the time to failure of the i series subsystem. Since the subsystems are in series

and all subsystems must be working for the systems success, T1 is defined by;

T1 = min {T1, T2, ..., TN} .

Then the conditional cumulative distribution function of T1 | N = n is given as;

FT (1)|N=n(t) = 1−
n∏
i=1

[1− Fi(t)]

= 1− [s(t)]n.

Hence,

FT (1)|N=n(t) = 1−
[
e[1−(1+λt

γ)θ]
]n
, t > 0. (5.4)

Also, the marginal CDF of T1 which gives the CDF of the new distribution (PGPW class

of distribution) is given as;

F (t;α, λ, γ, θ) =
∞∑
n=1

P (N = n)FT (1)|N=n(t)

=
∞∑
n=1

[
1− (e[1−(1+λt

γ)θ)])n
]
× anα

n

C(α)

=
∞∑
n=1

[
1− en[1−(1+λtγ)θ]

]
× anα

n

C(α)

=
∞∑
n=1

anα
n

C(α)
−
∞∑
n=1

anα
n

C(α)
en[1−(1+λt

γ)θ]

=

∑∞
n=1 anα

n∑∞
n=1 anα

n
−
∞∑
n=1

anα
n

C(α)
en[1−(1+λt

γ)θ]

= 1−

∑∞
n=1 an

[
αe[1−(1+λt

γ)θ]
]n

C(α)
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Since C(α) =
∑∞

n=1 anα
n,

F (t;α, λ, γ, θ) = 1−
C
[
αe[1−(1+λt

γ)θ]
]

C(α)
, t > 0, α > 0, γ > 0, θ > 0. (5.5)

The PDF of the PGPW class of distributions obtained by differentiating its CDF is given

as;

f(t) = αλγθtγ−1(1 + λtγ)θ−1e(1−(1+λt
γ)θ)

C
′
[
αe[1−(1+λt

γ)θ]
]

C(α)
, t > 0, (5.6)

where α > 0, λ > 0 are scales parameters and γ > 0, θ > 0 are shape parameters.

The survival function s(t) of the PGPW family of distributions is;

s(t) = 1− F (t)

= 1− 1 +
C
[
αe(1−(1+λt

γ)θ)
]

C(α)
,

s(t) =
C
[
αe(1−(1+λt

γ)θ)
]

C(α)
. (5.7)

The hazard (h(t)) function is expressed as;

h(t) =
αλγθtγ−1(1 + λtγ)θ−1e(1−(1+λt

γ)θ) ×
C
′[
αe1−(1+λtγ )θ]

]
C(α)

C[αe[(1−(1+λtγ )θ)]]
C(α)

h(t) = αλγθtγ−1(1 + λtγ)θ−1e(1−(1+λt
γ)θ) ×

C
′
[
αe[1−(1+λt

γ)θ]
]

C
[
αe(1−(1+λtγ)θ)

] . (5.8)

and the reversed hazard function is given;

R(t) =
f(t)

F (t)

=
αλγθtγ−1(1 + λtγ)θ−1e(1−(1+λ)

θ) ×
C
′[
αe1−(1+λtγ )θ]

]
C(α)

1− C[αe[1−(1+λtγ )θ ]]
C(α)
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R(t) = αλγθtγ−1(1 + λtγ)θ−1e(1−(1+λ)
θ)

C
′
[
αe1−(1+λt

γ)θ]
]

C(α)− C
[
αe1−(1+λtγ)θ]

] . (5.9)

From the PGPW class of distributions, a number of sub-distributions can be developed.

These include; the power series Weibull distribution if θ = 1 with CDF and PDF given

as;

FPW (t) = 1−
C
[
αe−λt

γ]
C(α)

. (5.10)

and

fPW (t) = αλγtγ−1e−λt
γ ×

C
′ [
αe−λt

γ]
C(α)

. (5.11)

If θ = 1, γ = 1, we have the power series exponential distribution with CDF and PDF

given by;

FPE(t) = 1−
C
[
αe−λt

]
C(α)

. (5.12)

and

fPE(t) = αλe−λt
C
′ [
αe−λt

]
C(α)

. (5.13)

if γ = 1, we have the power series NH distribution with CDF and PDF given by;

FPNH(t) = 1−
C
[
αe(1−(1+λt)

θ)
]

C(α)
. (5.14)

fPNH(t) = αλθ(1 + λtγ)θ−1e(1−(1+λt))
θ
C
′
[
αe(1−(1+λt)

θ)
]

C(α)
. (5.15)

Proposition 5.1. For α→ 0, the GPW is a limiting distribution of the PGPW class of

distributions.

Proof. Using the CDF of the PGPW class of distributions, we obtain the limits as;

lim
α→0

(F (t)) = 1− lim
α→0

C
[
αe[1−(1+λt

γ)θ]
]

C(α)
.

using C(α) =
∑∞

n=1 anα
n, we have;

lim
α→0

F (t) = 1− lim
α→0

∑∞
n=1 anα

nen[1−(1+λt
γ)θ]∑∞

n=1 anα
n

.
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Using the concept of the L’ Hoptal rule to simplify, we obtain

lim
α→0

F (t) = 1− lim
α→0

∑∞
n=1 nanα

n−1en[1−(1+λt
γ)θ]∑∞

n=1 nanα
n−1

= 1− lim
α→0

[
a1e

[1−(1+λtγ)θ]
]

+
∑∞

n=2 anα
n−1en[1−(1+λt

γ)θ]

a1 +
∑∞

n=2 nanα
n−1

= 1− a1e
[1−(1+λtγ)θ]

a1

= 1− e[1−(1+λtγ)θ].

1− e[1−(1+λtγ)θ] is the CDF of the GPW distribution.

Lemma 5.1. The CDF of the PGPW class of distributions is well defined.

Proof. For the CDF of a continuous distribution to be well defined, then the following

must be true;  t−→∞, F (x)→ 1

t−→ −∞, F (x)→ 0

 .

For the PGPW class of distributions, if t→∞ we have

lim
t→∞

F (t) = lim
t→∞

1−
C
[
αe[1−(1+λ(∞)γ)θ]

]
C(α)


=

[
1− C[αe−∞]

C(α)

]
=

[
1− C [α(0)]

C(α)

]
= 1− 0

= 1.
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Also, for t→ 0

lim
t→0

F (t) = lim
t→0

1−
C
[
αe[1−(1+λ(0)

γ)θ]
]

C(α)


=

[
1− C[αe0]

C(α)

]
=

[
1− C(α)

C(α)

]
= 0.

Hence the CDF is well defined.

Proposition 5.2. The density function of PGPW class of distributions has an expanded

linear representation of the form;

f(t) = nλγθ
∞∑
n=1

P (N = n)tγ−1(1 + λtγ)θ−1en[1−(1+λt
γ)θ]. (5.16)

Proof. By inputting C ′(α) =
∑∞

n=1 nanα
n−1 into the PDF of the PGPW class of distri-

butions, we have;

f(t) =
αλγθtγ−1(1 + λtγ)θ−1e(1−(1+λt

γ)θ) ×
∑∞

n=1 nan

[
αe[1−(1+λt

γ)θ]
]n−1

C(α)

we simplify by the steps below to obtained the expanded form;

f(t) = λγθ
∞∑
n=1

nan
C(α)

tγ−1(1 + λtγ)θ−1α1+n−1e[1−(1+λt
γ)θ]e(n−1)(1−(1+λt

γ)θ)

= λγθ
∞∑
n=1

nanα
n

C(α)
tγ−1(1 + λtγ)θ−1 × en[1−(1+λtγ)θ]

but P (N = n) = anαn

c(α)

f(t) = λγθ

∞∑
n=1

P (N = n)ntγ−1(1 + λtγ)θ−1en[1−(1+λt
γ)θ]

= nλγθ

∞∑
n=1

P (N = n)tγ−1(1 + λtγ)θ−1en[1−(1+λt
γ)θ]
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The above simplified representation of the PDF of the PGPW class of distributions helps

to study its statistical properties such as moments, MGF, incomplete moments among

others.

5.2.1 Sub families of the Power Series Generalised Power Weibull

class of distributions

From the power series generalised power Weibull class of distributions (PGPW), four ma-

jor sub-families of distributions can be obtained. These include; the generalised power

geometric family of distributions (GPGD), the generalised power poisson family of dis-

tributions (GPPD, the generalised power binomial family of distributions (GPBD) and

the generalised power logarithmic family of distributions (GPLD). These families are ob-

tained by inputting the special cases of the zero truncated power series distributions in

the PGPW class of distributions.

5.2.1.1 Generalized Power Geometric Family of Distributions

The geometric distribution truncated at zero is a distinct case of the power series distribu-

tions with an = 1, C(α) = α(1−α)−1 and C
′
(α) = (1−α)−2. By inputting these functions

into the PGPW class of distributions, we obtain the generalized power geometric family

of distributions (GPGD) with CDF and PDF given as;

F (t) =
1− e[1−(1+λtγ)θ]

1− αe[1−(1+λtγ)θ]
. (5.17)

and

f(t) =
(1− α)λγθtγ−1(1 + λtγ)θ−1e(1−(1+λ)

θ)(
1− αe[1−(1+λtγ)θ]

)2 . (5.18)

αε(0, 1)or(−∞, 1)

Proof. Inputting, an = 1 and C(α) = α(1 − α)−1 into the CDF of the PGPW class of
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distributions, the PGG family of distributions’ CDF is defined as;

F (t) = 1−

 αe[1−(1+λtγ )θ ]

1−αe[1−(1+λtγ )θ ]

α
1−α


= 1−

[
αe[1−(1+λt

γ)θ]

1− αe[1−(1+λtγ)θ]
× 1− α

α

]

= 1−

[
e[1−(1+λt

γ)θ](1− α)

1− αe[1−(1+λtγ)θ]

]

= 1− e[1−(1+λt
γ)θ] − αe[1−(1+λtγ)θ]

1− αe[1−(1+λtγ)θ]

=
1− e[1−(1+λtγ)θ]

1− αe[1−(1+λtγ)θ]

also for the PDF, we have;

f(x) =

αλγθtγ−1(1 + λtγ)θ−1e(1−(1+λt
γ)θ) × 1

(1−αe[1−(1+λtγ )θ ])
2

α
1−α

= αλγθtγ−1(1 + λtγ)θ−1e(1−(1+λt
γ)θ) × 1(

1− αe[1−(1+λtγ)θ]
)2 × 1− α

α

=
(1− α)λγθtγ−1(1 + λtγ)θ−1e(1−(1+λ)

θ)(
1− αe[1−(1+λtγ)θ]

)2
The survival, hazard and reserved hazard functions of this family of distributions are

given respectively as;

s(t) =
e[1−(1+λt

γ)θ] − αe[1−(1+λtγ)θ]

1− αe[1−(1+λtγ)θ]
. (5.19)

h(t) =
λγθtγ−1(1 + λtγ)θ−1e(1−(1+λ)

θ)

e[1−(1+λtγ)θ]
(
1− αe[1−(1+λtγ)θ]

) . (5.20)

R(t) =
(1− α)λγθtγ−1(1 + λtγ)θ−1e(1−(1+λ)

θ)(
1− e[1−(1+λtγ)θ]

) (
1− αe[1−(1+λtγ)θ]

) . (5.21)

From the PGG family, the following distributions can be obtained;

The geometric Weibull distribution if θ = 1 with CDF and PDF given respectively by;

FGW (t) =
1− e−λtγ

1− αe−λtγ
. (5.22)
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and

fGW (t) =
(1− α)λγtγ−1e−λt

γ

(1− αe−λtγ )2
. (5.23)

The geometric exponential distribution when γ = 1 and θ = 1 with CDF and PDF defined

as;

FGE(t) =
1− e−λt

1− αe−λt
. (5.24)

and

fGE(t) =
(1− α)λe−λt

(1− αe−λt)2
. (5.25)

Lastly the geometric NH distribution when γ = 1 with CDF and PDF given as;

FGNH(t) =
1− e(1−(1+λt)θ)

1− αe(1−(1+λt)θ)
. (5.26)

and

fGNH(t) =
(1− α)λθ(1− λt)θ−1e(1−(1+λt)θ)

(1− αe(1−(1+λt)θ))2
. (5.27)

The plot of the PDF of the GPGD is displayed in Figures 5.1 and 5.2. The plots shows

that, the PDF of this class of distribution can be decreasing, increasing, bathtub, unimodal

and symmetric.

Figure 5.1: PDF plot of the GPGD
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Figure 5.2: PDF plot of the GPGD

Also, the hazard plots of this class of distribution is displayed in Figures 5.3 and 5.4. It

is seen that the hazard can be increasing, decreasing, bathtub and unimodal. This shows

that the GPGD can model failure rate data which are both monotonic and non-monotonic

shaped.

Figure 5.3: Hazard plot of the GPGD
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Figure 5.4: Hazard plot of the GPGD

5.2.1.2 Generalized Power Poisson Family of Distributions

The poison distribution (truncated at zero ) is a special form of power series distribution

with an = 1
n!

, C(α) = eα− 1 and C
′
(α) = eα. By inputting these functions in the PGPW

class of distributions, we obtain the CDF and PDF of the generalized power Poisson

family of distributions (GPPD) as;

F (t) =
eα − eαe[1−(1+λtγ )θ ]

eα − 1
. (5.28)

and

f(t) =
αλγθtγ−1(1 + λtγ)θ−1e(1−(1+λt

γ)θ) × eαe[1−(1+λtγ )θ ]

eα − 1
. (5.29)

Proof. Considering C(α) = eα − 1 in the PGPW class of distributions, we have the CDF

of the GPP family as;

F (t) = 1− eαe
[1−(1+λtγ )θ ] − 1

eα − 1

=
eα − 1− eαe[1−(1+λtγ )θ ]

+ 1

eα − 1

=
eα − eαe[1−(1+λtγ )θ ]

eα − 1
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The survival, hazard and reversed hazard functions of the GPPD are given respectively

as;

s(t) =
eαe

[1−(1+λtγ )θ ] − 1

eα − 1
. (5.30)

h(t) =
αλγθtγ−1(1 + λtγ)θ−1e(1−(1+λt

γ)θ)eαe
[1−(1+λtγ )θ ]

eαe[1−(1+λtγ )θ ] − 1
. (5.31)

R(t) =
αλγθtγ−1(1 + λtγ)θ−1e(1−(1+λt

γ)θ)eαe
[1−(1+λtγ )θ ]

eα − eαe[1−(1+λtγ )θ ]
. (5.32)

Three distributions can also be obtained from the GPP family of distributions if the

parameters assumes a value of 1. These are;

The Poisson Weibull if θ = 1. Its CDF and PDF are given respectively as;

FPW (t) =
eα − eαe−λt

γ

eα − 1
. (5.33)

and

fPW (t) = αλγtγ−1e−λt
γ × eαe

−λtγ

eα − 1
. (5.34)

The Poisson exponential if θ = 1 and γ = 1 with CDF and PDF given respectively as;

FPE(t) =
eα − eαe−λt

eα − 1
. (5.35)

fPE(t) = αλe−λt × eαe
−λt

eα − 1
. (5.36)

If γ = 1, we have Poisson NH distribution with CDF and PDF given as;

FPNH(t) =
eα − eαe[1−(1+λt)θ ]

eα − 1
. (5.37)

fPNH(t) = αλθ(1 + λt)θ−1e[1−(1+λt)
θ] × eαe

[1−(1+λt)θ ]

eα − 1
. (5.38)

The plot of the PDF of the GPPD displayed in Figures 5.5 shows that, its PDF can be

decreasing, increasing and unimodal (upside down bathtub).
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Figure 5.5: PDF plot of the GPPD

Also, the GPPD hazard rate is seen to be monotonically increasing, decreasing, bathtub,

unimodal, modified bathtub and modified unimodal as shown in Figure 5.6 and Figure

4.7. This shows that the GPPD can model both monotonic and non-monotonic shaped

failure rate.

Figure 5.6: Hazard rate plot of the GPPD
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Figure 5.7: Hazard rate plot of the GPPD

5.2.1.3 Generalized Power Binomial Family of Distributions

The zero truncated binomial distribution is a special form of power series distributions

with an =
(
m
n

)
, C(α) = (1 + α)m − 1 and C ′(α) = m

(1+α)1−m
. By inputting these functions

into the CDF and PDF of the PGPW class of distributions, we obtain the CDF and PDF

of the generalized power binomial family of distributions (GPBD) respectively as;

F (t) =
(1 + α)m − (1 + αe[1−(1+λt

γ)θ])m

(1 + α)m − 1
. (5.39)

and

f(t) =
mαλγθtγ−1(1 + λtγ)θ−1e(1−(1+λt

γ)θ)(
1 + αe[1−(1+λtγ)θ]

)1−m
((1 + α)m − 1)

. (5.40)

Proof. If we consider C(α) = (1 + α)m − 1 in the PGPW distribution, we have;

F (t) = 1−

[
(1 + αe[1−(1+λt

γ)θ])m − 1

(1 + α)m − 1

]

=
(1 + α)m − 1− (1 + αe[1−(1+λt

γ)θ])m + 1

(1 + α)m − 1

=
(1 + α)m − (1 + αe[1−(1+λt

γ)θ])m

(1 + α)m − 1
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Also if we consider C(α) = (1 + α)m − 1 and C ′(α) = m
(1+α)1−m

in the PDF of the PGPW

distribution, we have;

f(t) =
αλγθtγ−1(1 + λtγ)θ−1e(1−(1+λt

γ)θ) ×m
(1+αe[1−(1+λtγ )θ ])

1−m

(1+α)m−1

=
αλγθtγ−1(1 + λtγ)θ−1e(1−(1+λt

γ)θ) ×m(
1 + αe[1−(1+λtγ)θ]

)1−m × 1

(1 + α)m − 1

=
mαλγθtγ−1(1 + λtγ)θ−1e(1−(1+λt

γ)θ)(
1 + αe[1−(1+λtγ)θ]

)1−m
((1 + α)m − 1)

The survival, hazard and reversed hazard functions of the GPBD is given respectively as;

s(t) =
(1 + αe[1−(1+λt

γ)θ])m − 1

(1 + α)m − 1
. (5.41)

h(t) =
mαλγθtγ−1(1 + λtγ)θ−1e(1−(1+λt

γ)θ)(
1 + αe[1−(1+λtγ)θ]

)1−m
((1 + αe[1−(1+λtγ)θ])m − 1)

. (5.42)

and

R(t) =
mαλγθtγ−1(1 + λtγ)θ−1e(1−(1+λt

γ)θ)(
1 + αe[1−(1+λtγ)θ]

)1−m
((1 + α)m − (1 + αe[1−(1+λtγ)θ])m)

. (5.43)

From the GPB family, we can obtained three sub-distributions;

If θ = 1, we have binomial Weibull distribution with CDF and PDF given respectively as;

FBW (t) =
(1 + α)m −

[
1 + αe−λt

γ]m
(1 + α)m − 1

. (5.44)

and

fBW (t) =
mαλγtγ−1e−λt

γ

((1 + α)m − 1) [(1 + αe−λtγ )]1−m
. (5.45)

If θ = 1, γ = 1, we have binomial exponential distribution with CDF and PDF defined

respectively as;

FBE(t) =
(1 + α)m −

[
1 + αe−λt

]m
(1 + α)m − 1

. (5.46)

and

fBE(t) =
mαλe−λt

((1 + α)m − 1) [1 + αe−λt]1−m
. (5.47)
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If γ = 1, we have the binomial NH with CDF and PDF defined as;

FBNH(t) =
(1 + α)m −

[
1 + αe(1−(1+λt)

θ)
]m

(1 + α)m − 1
. (5.48)

and

fBNH(t) =
mλαθ(1 + λt)θ−1e(1−(1+λt)

θ)

((1 + α)m − 1)
(
1 + αe[1−(1+λt)θ]

)1−m . (5.49)

As displayed in Figures 5.8 and 5.9, the PDF of the GPBD can be increasing, decreasing,

unimodal and positively skewed.

Figure 5.8: PDF plot of the GPBD
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Figure 5.9: PDF plot of the GPBD

Also, its hazard function as shown in Figures 5.10 and 5.11 can be increasing, decreasing,

bathtub and unimodal. This shows that the GPGD can model failure rate data which are

both monotonic and non-monotonic shaped.

Figure 5.10: Hazard rate plot of the GPBD
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Figure 5.11: Hazard rate plot of the GPBD

5.2.1.4 Generalized Power Logarithmatic Family of Distributions

The zero truncated Logarithmatic distribution is also a special class of power series family

with an = 1
n
, C(α) = −log(1 − α) and C ′(α) = (1 − α)−1. From these quantities, the

CDF and PDF of the generalized power logarithmatic family of distributions (PGLD) are

given respectively as;

F (t) = 1−

 log
(

1− αe[1−(1+λtγ)θ]
)

log(1− α)

 . (5.50)

f(t) =
αλγθtγ−1(1 + λtγ)θ−1e[1−(1+λt

γ)θ](
αe[1−(1+λt

γ)θ] − 1
)

(log(1− α))
. (5.51)

Proof. Considering C(α) = −log(1− α) in the CDF of the PGPW class of distributions,

we have;

F (t) = 1−

− log
(

1− αe[1−(1+λtγ)θ]
)

− log(1− α)


= 1−

 log
(

1− αe[1−(1+λtγ)θ]
)

log(1− α)


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Also considering C(α) = −log(1 − α) and C ′(α) = (1 − α)−1 in the PDF of the PPGW

distribution, we have;

f(t) = − 1

log(1− α)

[
αλγθtγ−1(1 + λtγ)θ−1e(1−(1+λt

γ)θ)

(1− αe[1−(1+λtγ)θ])

]

= −

[
αλγθtγ−1(1 + λtγ)θ−1e(1−(1+λt

γ)θ)

(1− αe[1−(1+λtγ)θ])log(1− α)

]

=
αλγθtγ−1(1 + λtγ)θ−1e[1−(1+λt

γ)θ](
αe[1−(1+λt

γ)θ] − 1
)

(log(1− α))
.

The survival, hazard and reversed hazard functions of the GPLD are defined respectively

as;

s(t) =
log
(

1− αe[1−(1+λtγ)θ]
)

log(1− α)
(5.52)

h(t) =
αλγθtγ−1(1 + λtγ)θ−1e[1−(1+λt

γ)θ](
αe[1−(1+λt

γ)θ] − 1
)(

log
(

1− αe[1−(1+λtγ)θ]
)) (5.53)

and

R(t) =
αλγθtγ−1(1 + λtγ)θ−1e[1−(1+λt

γ)θ](
αe[1−(1+λt

γ)θ] − 1
)(

log(1− α)−
(

log(1− αe[1−(1+λtγ)θ]
)) . (5.54)

For various values of the parameters, three sub distributions can also be obtained from

the PGL family. If θ = 1, we have logarithmic Weibull distribution with its CDF and

PDF defined as;

FLW (t) = 1−
[
log(1− αe−λtγ )
log(1− α)

]
. (5.55)

and

fLW (t) =
αλθtγ−1e−λt

γ

log(1− α)(αe−λtγ − 1)
. (5.56)

If θ = 1 and γ = 1, we have logarithmic exponential distribution having CDF and PDF

defined as;

FLE(t) = 1−
[
log(1− αe−λt)
log(1− α)

]
. (5.57)

and

fLE(t) =
αλe−λt

log(1− α)(αe−λt − 1)
. (5.58)
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Lastly, if γ = 1, we have logarithmic NH distribution having CDF and PDF defined as;

FLNH(t) = 1−

 log
(

1− αe[1−(1+λt)θ]
)

log(1− α)

 . (5.59)

and

fNH(t) =
αλθt(1 + λt)θ−1e[1−(1+λt)

θ]

log(1− α)
(
αe[1−(1+λt)

θ] − 1
) . (5.60)

5.2.2 Statistical Properties of the PPGW class of Distributions

This section discusses in details the distributional properties of the PGPW class of dis-

tributions. The properties considered are; the quantile function, ordinary (non-central)

moments, moment generating function, order statistics, incomplete moment, mean devi-

ation, median deviation, Lorenz and Bonferron curves, mean residual life, Stress-strength

reliability and stochastic ordering property.

5.2.2.1 Quantile Function

The quantile function can serve as an alternative way of describing a probability distri-

bution other than the probability density function, cumulative distribution function or

characteristic function. It is the inverse of the cumulative distribution function. The

quantile function can be used in both statistical application and Monte carlo methods. It

can be used for generating random numbers from a given distribution.

Proposition 5.3. The quantile function of the PGPW class of distributions is;

QF (p) =


[
1− log

(
C−1(1−p).C(α)

α

)]1/θ
− 1

λ


1/γ

. (5.61)

where C−1(.) is the inverse of C(.) and pε[0, 1].

Proof. By definition, the quantile function is defined as; F (Xp) = P (x ≤ xp) = p. Thus

by setting, QF (p) = tp in equation 4.85, we have;

1−
C
[
αe[1−(1+λt

γ)θ]
]

C(α)
= p
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To make t the subject, we first make the exponent function the subject by the steps below;

C
[
αe[1−(1+λt

γ)θ]
]

C(α)
= 1− p

C
[
αe[1−(1+λt

γ)θ]
]

= (1− p).C(α)

e[1−(1+λt
γ)θ] =

C−1(1− p).C(α)

α

we take log10 on both sides and then make t the subject which gives the quantile function.

(1− (1 + λtγ)θ) = log

[
C−1(1− p).C(α)

α

]
(1 + λtγ)θ = 1− log

[
C−1(1− p).C(α)

α

]
(1 + λtγ) =

[
1− log

(
C−1(1− p).C(α)

α

)]1/θ
λtγ =

[
1− log

(
C−1(1− p).C(α)

α

)]1/θ
− 1

tγ =

[
1− log

(
C−1(1−p).C(α)

α

)]1/θ
− 1

λ

t =


[
1− log

(
C−1(1−p).C(α)

α

)]1/θ
− 1

λ


1/γ

⇒ QF (p) =


[
1− log

(
C−1(1−p).C(α)

α

)]1/θ
− 1

λ


1/γ

.

Using the quantile function above, the median of the PGPW class of distributions evalu-

ated at p = 0.5 is;

QF (0.5) =


[
1− log

(
C−1(0.5).C(α)

α

)]1/θ
− 1

λ


1/γ

. (5.62)
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For the GPGD, c−1(α) = α(1 + α)−1 and c(α) = α(1 − α)−1. Therefore, the GPGD

quantile is given as;

QGPGDF (p) =


[
1− log

(
(1−p)
1−αp

)]1/θ
− 1

λ


1/γ

. (5.63)

For the GPPD, c−1(α) = log(1 + α) and c(α) = eα − 1. Hence its quantile function is

given as;

QGPPDF (p) =


[
1− log

(
log(1+((1−p)(eα−1))

α

)]1/θ
− 1

λ


1/γ

. (5.64)

For the GPBD, c−1(α) = (1 + α)
1
m − 1 and c(α) = (1 + α)m − 1. Hence its quantile

function is given as;

QGPBDF (p) =


[
1− log

(
((((1−p)((1−α)m−1)))+1)

1
m

α

)]1/θ
− 1

λ


1/γ

. (5.65)

For the GPLD, c−1(α) = 1− e−α and c(α) = − log(1− α). Hence its quantile function is

given as;

QGPLDF (p) =


[
1− log

(
(1−e(1−p) log(1−α))

α

)]1/θ
− 1

λ


1/γ

. (5.66)

5.2.3 Moments of the Power Series Generalised Power Weibull

Family of Distributions

In statistical analysis, the moments of a random variable plays an vital in calculating

various measures of variation (for instance; variance, standard deviation, mean deviation,

coefficient of variation etc). It is used in the computation of the skewness and kurtosis of

the distribution of the random variable.

Proposition 5.4. The rth non-central moment of the PGPW class of distributions is
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given as;

U1
r =

∞∑
n=1

∞∑
j=1

λ
−r
γ P (N = n)en(−1)j

( r
γ

j

)
n−( r−γ(j−θ)θγ )Γ

[(
r − γ(j − θ)

γθ
, n

)]
. (5.67)

Where Γ
[(

r−γ(j−θ)
γθ

, n
)]

is a complementary incomplete gamma function.

Proof. By definition, The rth non-central moment of a random variable is given as;

µ
′

r =

∫ ∞
−∞

trf(t)dt.

for the PGPW class,

µ
′

r =

∫ ∞
0

tr
∞∑
n=1

P (N = n)g1(t)dt.

Substituting the linear expanded form of the PDF of the PGPW class of distributions,

we have;

µ
′

r =

∫ ∞
0

trλγθn
∞∑
n=1

P (N = n)tγ−1(1 + λtγ)θ−1en[1−(1+λt
γ)θ]dt

= λγθn
∞∑
n=1

P (N = n)

∫ ∞
0

trtγ−1(1 + λtγ)θ−1en[1−(1+λt
γ)θ]dt

but en[1−(1+λt
γ)θ] = en.e−n(1+λt

γ)θ , hence we obtain;

µ
′

r = λγθn

∞∑
n=1

P (N = n)en
∫ ∞
0

trtγ−1(1 + λtγ)θ−1e−n(1+λt
γ)θdt

Applying Integration by substitution to simplify µ
′
r we follow the steps outline below;

Let

u = n(1 + λtγ)θ, t =

(un) 1
θ − 1

λ

 1
γ

,

then  t−→ 0, u→ n

t−→∞, y →∞

 .

Also,

du

dt
= nλγθtγ−1(1 + λtγ)θ−1,
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dt =
du

nλγθtγ−1(1 + λtγ)θ−1

hence;

µ
′

r = λγθn

∞∑
n=1

P (N = n)en
∫ ∞
n

trtγ−1(1 + λtγ)θ−1e−n(1+λt
γ)θ du

nλγθtγ−1(1 + λtγ)θ−1

=
∞∑
n=1

P (N = n)en
∫ ∞
n

(un) 1
θ − 1

λ

 r
γ

e−udu

=
∞∑
n=1

P (N = n)enλ−
r
γ

∫ ∞
n

((u
n

) 1
θ − 1

) r
γ

e−udu.

Using the generalised from of binomial expansion; (x+ y)i =
∑i

j=1

(
i
j

)
xi−jyj, |x| > |y|.

Since
∣∣∣[(un) 1

θ

]∣∣∣ < 1,x =
(
u
n

) 1
θ , y = −1. Therefore we have;

µ
′

r =
∞∑
n=1

λ
−r
γ P (N = n)en

∫ ∞
n

∞∑
j=1

(−1)j
( r
γ

j

)(u
n

)( rγ−j)
1
θ

e−udu

=
∞∑
n=1

∞∑
j=1

λ
−r
γ P (N = n)en(−1)j

( r
γ

j

)(
1

n

)( rγ−j)
1
θ ∫ ∞

n

u( rγ−j)
1
θ

e−udu

=
∞∑
n=1

∞∑
j=1

λ
−r
γ P (N = n)en(−1)j

( r
γ

j

)(
1

n

)( r−γ
γθ

) ∫ ∞
n

u(
r−γj
γθ

)e−udu

=
∞∑
n=1

∞∑
j=1

λ
−r
γ P (N = n)en(−1)j

( r
γ

j

)
n−(

r−γ
γθ

)−1+1

∫ ∞
n

u(
r−γj
γθ

)−1+1e−udu

=
∞∑
n=1

∞∑
j=1

λ
−r
γ P (N = n)en(−1)j

( r
γ

j

)
n−( r−γ(j−θ)θγ )

∫ ∞
n

u( r−γ(j−θ)γθ )e−udu

=
∞∑
n=1

∞∑
j=1

λ
−r
γ P (N = n)en(−1)j

( r
γ

j

)
n−( r−γ(j−θ)θγ )Γ

[(
r − γ(j − θ)

γθ
, n

)]

The rth non-central moments can be used to estimate the central moments µr and cumu-

lants (Kr).

Ur =
r∑

k=0

(−1)k
(
r

k

)
U1k
1 U1

r−k (5.68)

Kr = U1
r =

r−1∑
k=1

(
k − 1

r − 1

)
KkU

1
r−k (5.69)
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K1 = U1
1 gives the mean, K2 = U1

2 −(U11)
2 gives the variance and K3 = U1

3 −3U1
2 +2(U1

1 )3

Therefore the skewness value is defined as

S =
K3

(K2)
3
2

(5.70)

and the Kurtosis value also defined as;

K =
K4

(K2)2
(5.71)

5.2.4 Moment Generating Function

The MGF are distinct functions used determine the moments of a random variable.

Proposition 5.5. The MGF of the PGPW class of distributions is given as;

Mt(z) =
∞∑
n=0

∞∑
j=1

∞∑
r=0

Zr

r!
en(−1)j

( r
γ

j

)
n−( r−γ(j−θ)θγ )P (N = n)Γ

[(
r − γ(j − θ)

γθ
, n

)]
.

(5.72)

Proof. By definition MGF is given as;

Mt(z) = E(etz)

=

∫ ∞
0

etzf(t)dt

Using Taylor series to expand we have

Mt(z) =

∫ ∞
0

∞∑
r=0

Zrtr

r!
f(t)dt

=
∞∑
r=0

Zr

r!

∫ ∞
0

trf(t)dt

=
∞∑
r=0

Zr

r!
µ
′

r
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but µ
′
r =

∑∞
n=1

∑∞
j=1 λ

−r
γ P (N = n)en(−1)j

( r
γ

j

)
n−( r−γ(j−θ)θγ )Γ

[(
r−γ(j−θ)

γθ
, n
)]

Mt(z) =
∞∑
n=0

∞∑
n=1

∞∑
r=0

Zr

r!
λ
−r
γ P (N = n)en(−1)j

( r
γ

j

)
n−( r−γ(j−θ)θγ )Γ

[(
r − γ(j − θ)

γθ
, n

)]
=

∞∑
n=0

∞∑
j=1

∞∑
r=0

Zr

r!
en(−1)j

( r
γ

j

)
n−( r−γ(j−θ)θγ )P (N = n)Γ

[(
r − γ(j − θ)

γθ
, n

)]
.

5.2.5 Order Statistics

Let X1, Xn;X1:n ≤ X2:n ≤ ... ≤ Xn:n be a random sample of size n, then the pdf of the

pth order statistic is given as;

fp:n(t) =
n!

(n− p)!(p− 1)!
[F (t)]p−1 [1− F (t)]n−p f(t).

Assuming X1, Xn;X1:n ≤ X2:n ≤ ... ≤ Xn:n comes from the PGPW class of distributions,

then;

fp:n(t) =
n!

(n− p)!(p− 1)!
f(t)

1−
C
[
αe(1−(1+λt

γ)θ)
]

C(α)

p−1 C
[
αe(1−(1+λt

γ)θ)
]

C(α)

n−p .
Proposition 5.6. The PDF of the largest order statistics (p = n) for the PGPW class

of distributions is given as;

fp:n(t) = nαλγθtγ−1(1+λtγ)θ−1e(1−(1+λt
γ)θ)

C ′
[
αe(1−(1+λt

γ)θ)
]

C(α)

1−
C
[
αe(1−(1+λt

γ)θ)
]

C(α)

n−1 .
(5.73)

Proof. For the largest order statistics, p = n, hence;

fp=n(t) =
n(n− 1)!

(n− n)!(n− 1)!
f(t)

1−
C
[
αe(1−(1+λt

γ)θ)
]

C(α)

n−1 C
[
αe(1−(1+λt

γ)θ)
]

C(α)

0

= nf(t)

1−
C
[
αe(1−(1+λt

γ)θ)
]

C(α)

n−1 .
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Inputting the PDF of the PGPW class of distributions, we have

fp=n(t) = nαλγθtγ−1(1 + λtγ)θ−1e(1−(1+λt
γ)θ)

C ′
[
αe(1−(1+λt

γ)θ)
]

C(α)

1−
C
[
αe(1−(1+λt

γ)θ)
]

C(α)

n−1 .
Proposition 5.7. The PDF of the smallest order, (p = 1) of the PGPW class of distri-

butions is given as;

fp:1(t) = nαλγθtγ−1(1+λtγ)θ−1e(1−(1+λt
γ)θ)

C ′
[
αe(1−(1+λt

γ)θ)
]

C(α)

C
[
αe(1−(1+λt

γ)θ)
]

C(α)

n−1 .
(5.74)

Proof. For the smallest order statistic, p = 1, hence we have;

fp:1(t) =
n(n− 1)!

(n− 1)!(1− 1)!
f(t)

1−
C
[
αe(1−(1+λt

γ)θ)
]

C(α)

1−1 C
[
αe(1−(1+λt

γ)θ)
]

C(α)

n−1

= nf(t)

C
[
αe(1−(1+λt

γ)θ)
]

C(α)

n−1 .
Inputting the PDF of the PGPW class of distributions, we have;

fp:1(t) = nαλγθtγ−1(1 + λtγ)θ−1e(1−(1+λt
γ)θ)

C ′
[
αe(1−(1+λt

γ)θ)
]

C(α)

C
[
αe(1−(1+λt

γ)θ)
]

C(α)

n−1

5.2.6 Incomplete Moment

Incomplete moment plays a vital role in computing the mean deviation, median deviation,

inequality measures and mean residual life of the distribution of a random. Incomplete

moments can also be used to describe the shape of a distribution of a random variable.

Proposition 5.8. The rth incomplete moment of the PGPW class of distributions is

given as;

Mr(y) =
∞∑
n=1

i∑
j=1

λ−
r
γ enP (N = n)(−1)j

( r
γ

j

)
n−( r−γ(j−θ)γθ )

×
[
Γ

(
r − γ(j − θ)

γθ
, n

)
− Γ

(
r − γ(j − θ)

γθ
, n (1 + λyγ)θ

)]
. (5.75)
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Proof. By definition, the rth incomplete moment is given as;

Mr(y) =

∫ y

0

trf(t)dt

Using the linear expanded form of the PDF of the PGPW class of distributions, the

incomplete moment can be written as;

Mr(y) =

∫ y

0

trλγθn
∞∑
n=1

P (N = n)tγ−1(1 + λtγ)θ−1en(1−(1+λt
γ)θ)dt

= nλγθen
∞∑
n=1

P (N = n)

∫ y

0

trtγ−1(1 + λtγ)θ−1e−n(1+λt
γ)θdt

we further simplify using integration by substitution as shown below.

Let

u = n(1 + λtγ)θ

then  t−→ 0, u→ n

t−→ y, y → n(1 + λyγ)θ

 .

Also,

dt =
du

nλγθtγ−1(1 + λtγ)θ−1
.

Therefore the incomplete moment is given as;

Mr(y) = en
∞∑
n=1

P (N = n)

∫ n(1+λyγ)θ

n

(
(u
n
)
1
θ − 1

λ

) r
γ

e−udu

= enλ−
r
γ

∞∑
n=1

P (N = n)

∫ n(1+λyγ)θ

n

((u
n

) 1
θ − 1

) r
γ

e−udu.
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Further simplify using binomial expansion, we have;

Mr(y) =
∞∑
n=1

λ−
r
γ enP (N = n)

∫ n(1+λyγ)θ

n

i∑
j=1

(−1)j
( r
γ

j

)(u
n

)( rγ−j)
1
θ
e−udu

=
∞∑
n=1

i∑
j=1

λ−
r
γ enP (N = n)(−1)j

( r
γ

j

)∫ n(1+λyγ)θ

n

(u
n

)( r−γjγθ )−1+1

e−udu

=
∞∑
n=1

i∑
j=1

λ−
r
γ enP (N = n)(−1)j

( r
γ

j

)
n−( r−γ(j−θ)γθ )

∫ n(1+λyγ)θ

n

u( r−γ(j−θ)γθ )e−udu

=
∞∑
n=1

i∑
j=1

λ−
r
γ enP (N = n)(−1)j

( r
γ

j

)
n−( r−γ(j−θ)γθ ) ×[

Γ

(
r − γ(j − θ)

γθ
, n

)
− Γ

(
r − γ(j − θ)

γθ
, n (1 + λyγ)θ

)]
.

5.2.7 Mean and Median Deviation

Mean and median deviations measure the deviations from the mean and median of a

random variable and can serve as methods of determining the extent of spread in a

population.

Proposition 5.9. The mean deviation of the PGPW class of distributions is given by;

D(µ) = 2µF (µ)− 2
∞∑
n=1

i∑
j=1

λ−
1
γ enP (N = n)(−1)j

( 1
γ

j

)
n−( 1−γ(j−θ)

γθ )

×
[
Γ

(
1− γ(j − θ)

γθ
, n

)
− Γ

(
1− γ(j − θ)

γθ
, n (1 + λµγ)θ

)]
. (5.76)

Proof. The mean deviation of a random variable is given as;

D(µ) =

∫ ∞
0

|x− µ|f(t)dt

= 2µF (µ)− 2

∫ µ

0

tf(t)dt

But
∫ µ
0
tf(t)dt = m1(µ) is the first incomplete moment (r = 1).

M1(µ) =
∞∑
n=1

i∑
j=1

λ−
1
γ enP (N = n)(−1)j

( 1
γ

j

)
n−( 1−γ(j−θ)

γθ ) ×[
Γ

(
1− γ(j − θ)

γθ
, n

)
− Γ

(
1− γ(j − θ)

γθ
, n (1 + λµγ)θ

)]
.
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Therefore, the mean deviation then becomes;

D(µ) = 2µF (µ)− 2
∞∑
n=1

i∑
j=1

λ−
1
γ enP (N = n)(−1)j

( 1
γ

j

)
n−( 1−γ(j−θ)

γθ ) ×[
Γ

(
1− γ(j − θ)

γθ
, n

)
− Γ

(
1− γ(j − θ)

γθ
, n (1 + λµγ)θ

)]
.

Proposition 5.10. The median deviation of the PGPW class of distributions is given

by;

D(M) = −µ+ 2
∞∑
n=1

i∑
j=1

λ−
1
γ enP (N = n)(−1)j

( 1
γ

j

)
n−( 1−γ(j−θ)

γθ )

×
[
Γ

(
1− γ(j − θ)

γθ
, n

)
− Γ

(
1− γ(j − θ)

γθ
, n (1 + λmγ)θ

)]
. (5.77)

Proof. By definition the median deviation is given as;

D(M) = −µ+ 2

∫ ∞
m

tf(t)dt

= −µ+ 2[M1(m)]

Inputting M1(m), we get

D(M) = −µ+ 2
∞∑
n=1

i∑
j=1

λ−
1
γ enP (N = n)(−1)j

( 1
γ

j

)
n−( 1−γ(j−θ)

γθ ) ×[
Γ

(
1− γ(j − θ)

γθ
, n

)
− Γ

(
1− γ(j − θ)

γθ
, n (1 + λmγ)θ

)]

5.2.8 Residual and Mean Residual Life

Mean residual life (MRL) function at time y can represent the estimated added life span

for a unit alive at time y. For an operating system, its residual life at time y is Ty =

T − y|T > y which has PDF given as;

f(t, y) =
f(t)

1− F (y)
.
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Proposition 45.11. The MRL of the Ty from the PGPW class of distribution is given

as;

MRL =
AΓ
[(

1−γ(j−θ)
γθ

, n
)]
−B

[
Γ
(

1−γ(j−θ)
γθ

, n
)
− Γ

(
1−γ(j−θ)

γθ
, n (1 + λµγ)θ

)]
C[αe(1−(1+λtγ )θ)]

C(α)

− y.

(5.78)

where

A =
∞∑
n=1

∞∑
j=1

λ
−1
γ P (N = n)en(−1)j

( 1
γ

j

)
n−( 1−γ(j−θ)

θγ )

and

B =
∞∑
n=1

i∑
j=1

λ−
1
γ enP (N = n)(−1)j

( 1
γ

j

)
n−( 1−γ(j−θ)

γθ ).

Proof. The MRL (t > 0) is defined as;

MLR = E (T − y|T > y)

=

∫∞
y

(t− y)f(t)dt

1− F (t)

=
µ
′
1 −

∫ y
0
tf(t)dt

1− F (t)
− y

But
∫ y
0
tf(t)dt = M1(y) gives the fist incomplete moment and µ1

1 gives the first non-central

moment. Substituting these, the MRL is obtained.

5.2.9 Lorenz and Bonferron Curves

Loren and Bonferroni curves are used to measure the inequalities in the distribution of a

random variable (for example income inequality). These curves are mostly applicable in

reliability, medical, demographic, insurance and economic fields. For the PGPW class of

distributions, the Loren curve is given as;

L(p) =
1

µ

∞∑
n=1

i∑
j=1

λ−
1
γ enP (N = n)(−1)j

( 1
γ

j

)
n−( 1−γ(j−θ)

γθ )

×
[
Γ

(
1− γ(j − θ)

γθ
, n

)
− Γ

(
1− γ(j − θ)

γθ
, n (1 + λyγ)θ

)]
. (5.79)
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Proof. By definition, the Lorenz curve is given as;

L(P ) =
1

µ

∫ y

0

tf(t)dt.

But
∫ y
0
tf(t)dt = M1(y) is the first incomplete moment. Hence imputing M1(y) in L(P ),

the Lorenz curve expression is obtained.

Also, the Bonferron curve is defined as;

B(P ) =
L(P )

F (y)
.

Therefore the Bonferron curve for the PGPW class of distributions is given as;

B(p) =

1
µ

∑i∞,i
n,j=1 λ

− 1
γ enP (N = n)(−1)j

( 1
γ

j

)
n−( 1−γ(j−θ)

γθ )
[
Γ
(

1−γ(j−θ)
γθ

, n
)
− Γ

(
1−γ(j−θ)

γθ
, n (1 + λyγ)θ

)]
1− C[αe(1−(1+λyγ )θ)]

C(α)

.

(5.80)

5.2.10 Stochastic Ordering

This is used to compare two random variables to know which of them is larger or smaller.

Stochastic ordering is an ordering mechanism in lifetime distribution. Assuming random

variables T1 ∼ PGPW (t, α, λ, γ, θ) and T2 ∼ PGPW (t, λ, γ, θ). Then T1 is said to be

greater than T2 in likelihood ratio order if
fT1 (t)

fT2 (t)
is an increasing function of T .

Proposition 4.12. Let T1 ∼ PGPW (t, α, λ, γ, θ) and T2 ∼ PGPW (t, λ, γ, θ), then T2 is

greater than T1 (T1 ≤lr T2) for α > 0.

Proof. For T1 ∼ PGPW (t, α, λ, γ, θ) and T2 ∼ PGPW (t, λ, γ, θ),

fT1(t)

fT2(t)
=

αλγθtγ−1(1 + λtγ)θ−1e(1−(1+λt
γ)θ)

C
′[
αe[1−(1+λtγ )θ ]

]
C(α)

λγθtγ−1(1 + λtγ)θ−1e(1−(1+λtγ)θ)

=
αC

′
[
αe[1−(1+λt

γ)θ]
]

C(α)
.

d

dt

[
fT1(t)

fT2(t)

]
= −α2λγθtγ−1(1 + λtγ)θ−1

C
′′
[
αe[1−(1+λt

γ)θ]
]

C(α)

since d
dt

[
fT1 (t)

fT2 (t)

]
< 0 for all t > 0, d

dt

[
fT1 (t)

fT2 (t)

]
is a decreasing function for α > 0.
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5.3 Parameter Estimation

In this section, the unknown parameters of the PGPW class of distributions were esti-

mated using the maximum likelihood estimation technique.

5.3.1 Maximum Likelihood Estimation

MLE finds the parameter estimates by determining the values of the parameters that

maximize L(θ;X). Assuming X = (X1, X2, ..., Xn) are measurement values of a random

variable with density function f(X; θ), where θ is the parameter value from the distribu-

tion, then MLE finds the value of the model parameter θ, that maximizes L(θ;X). MLE

estimators were obtained for the four sub-families of the PGPW class of distribution.

For the PGP class distribution, the likelihood function is given as;

L = n log(αλγθ) + (γ − 1)
n∑
i=1

log(ti) + (θ − 1)
n∑
i=1

log(1 + λtγi ) +
n∑
i=1

(1− (1 + λtγ))

×α
n∑
i=1

e1−(1+λt
γ)θ − n log(eα − 1). (5.81)

To obtain the MLE of the parameters, we maximises the score function by taking the first

derivative of it. These are;

∂l

∂α
= ne(1−(1+λt

γ))θ − eα log n+ log nγθλ. (5.82)

∂l

∂λ
= n log(γθα)− ntγθ(1 + λtθ)θ−1 − ntγαθ((1 + λtγ)θ−1)e1−(1+λt

γ)θ + (θ − 1)
n∑
i=1

log ti.

(5.83)

∂l

∂γ
= n logαθλ− nθλtγ(1 + tγ)θ−1 log(t)− nαθλtγ(1 + λtγ)θ−1e1−(1+λt

γ)θ log t+
n∑
i=1

log(t)

×(θ − 1)
n∑
i=1

log λ log(t)tγ. (5.84)

∂l

∂θ
= n logαγλ−n(1 +λtγ)θlog(1 +λtγ)−nαe(1−(1+λtγ)θ) log(1 +λtγ)θ +

n∑
i=1

log(1 +λtγ).

(5.85)
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For the GPL class of distributions, the likelihood function is given as;

L = n log(αλγθ)+(γ−1)
n∑
i=1

log(ti)+(γ−1)
n∑
i=1

log(1+λtγi )+
n∑
i=1

(1−(1+λtγi )
θ)−n log(α)

−
n∑
i=1

(1− (1 + λtγi )
θ) + log(1)− n log(log(1− α)). (5.86)

and the MLE of the parameters of this class are;

∂l

∂α
= − log n+ log2 n+ log nγθλ. (5.87)

∂l

∂λ
= log nαγθ + (θ − 1)

n∑
i=1

tγ1 . (5.88)

∂l

∂γ
= log nαγθλ+

n∑
i=1

log t+ (θ − 1)
n∑
i=1

log λ log ti + tγ. (5.89)

∂l

∂θ
= log nαγθλ+

n∑
i=1

log(1 + λtγ). (5.90)

For the GPG class of distribution, the likelihood function is given as;

L = n log(1− α)(λγθ) + (γ − 1)
n∑
i=1

log(ti) + (θ − 1)
n∑
i=1

log(1 + λtγi ) +
n∑
i=1

(1− (1 + λtγi )
θ)− 2

×
n∑
i=1

(1− αe(1−(1+λt
γ
i )
θ)). (5.91)

The MLE estimators of this class are;

∂l

∂α
= 2ne(1−(1+λt

γ
i )
θ) − log nγθλ. (5.92)

∂l

∂λ
= log n(1−α)γθ−ntγθ((1+λtγ)θ−1)−2ntγαθe(1−(1+λt

γ
i )
θ−1)+(θ−1)

n∑
i=1

log tγi . (5.93)

∂l

∂γ
= log n(1− α)γλ− ntγαθ(1 + λtγ)θ−1 log(t)− 2ntγαθe(1−(1+λt

γ
i )
θ−1)

+
n∑
i=1

log t+ (θ − 1)
n∑
i=1

log λ log(t)tγ. (5.94)
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∂l

∂θ
= log n(1−α)γλ−n(1+λtγ)θ log(1+λtγ)−2ntγαθe(1−(1+λt

γ
i )
θ−1)+

n∑
i=1

(1+λtγi ). (5.95)

The PGB class has its likelihood function defined as;

L = n log(mαλγθ)+(γ−1)
n∑
i=1

log(ti)+(θ−1)
n∑
i=1

log(1+λtγi )+
n∑
i=1

(1−(1+λtγi )
θ)−n log((1+α)m−1)

−(1−m)
n∑
i=1

(1 + αe(1−(1+λt
γ
i )
θ)). (5.96)

The MLE parameter estimates of this class are given as;

∂l

∂α
= − logmn(1 + α)m−1 + logmnγθλ− (m− 1)

n∑
i=1

e(1−(1+λt
γ
i )
θ) (5.97)

∂l

∂λ
= − logmnαγθ+(θ−1)

n∑
i=1

log tγi−
n∑
i=1

θtγi (1+λtγi )
θ−1+(1−m)

n∑
i=1

e(1−(1+λt
γ
i )
θ) logαθtγi (1+λtγi )

θ−1.

(5.98)

∂l

∂γ
= logmnαγθλ+

n∑
i=1

log tγi − (γ − 1)
n∑
i=1

log λ log(ti)t
γ
i −

n∑
i=1

θλ log(ti)t
γ
i (1 + λtγi )

θ−1

−(1−m)
n∑
i=1

e(1−(1+λt
γ
i )
θ) logαθλ log(ti)t

γ
i (1 + λtγi )

θ−1. (5.99)

∂l

∂θ
= logmnαγλ+

n∑
i=1

log(1+λtγi )−
n∑
i=1

log(1+λtγi )(1+λtγi )
θ−(1−m)

n∑
i=1

e(1−(1+λt
γ
i )
θ) logα log(1+λtγi )

×(1 + λtγi )
θ. (5.100)

5.4 Monte Carlo Simulation

Simulation analyses was conducted to assess the performance of the maximum likelihood

estimators for the parameters of the sub-families of the PGPW distribution (thus the

GPGD, GPDP, GPBD and GPLD). Three parameter value combinations of each dis-

tribution were specified. The quantile function of each distribution was then used to

generate five different random samples of sizes, n = 40, 80, 120, 160, 200. These were then

used to obtain the maximum likelihood estimates of the parameters of them. With a

replication for N=1000 times, the average bias (ABias) and mean square error (MSE)

were calculated for the estimators of the parameters of each distribution. For the GPBD,
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m = 5 was used for the simulation. The results of the simulation analyses are shown

in Tables 5.1 to 5.4. The results showed that, the maximum likelihood estimates of the

parameters of each distribution converges to the true parameter value since the average

bias of each parameter decrease as the sample size increases and the mean square errors

also approaches zero as the sample size increases.

Table 5.1: Monte Carlo Simulation Results for the Parameters of the GPGD
n Parameter value ABiase MSE

40

80

120

160

200

α λ γ θ

0.3 0.7 2.5 0.5

0.3 0.7 2.5 0.5

0.3 0.7 2.5 0.5

0.3 0.7 2.5 0.5

0.3 0.7 2.5 0.5

α λ γ θ

0.288 59.780 1.332 0.438

0.283 13.181 0.632 0.417

0.281 0.861 0.447 0.412

0.189 0.724 0.350 0.348

0.119 0.635 0.304 0.327

α λ γ θ

0.093 4.89657.300 5.0734 1.403

0.091 110324.500 0.965 0.870

0.089 2.297 0.369 0.921

0.088 4.000 0.221 0.677

0.080 0.767 0.164 0.569
40

80

120

160

200

0.3 0.4 2.8 0.3

0.3 0.4 2.8 0.3

0.3 0.4 2.8 0.3

0.3 0.4 2.8 0.3

0.3 0.4 2.8 0.3

0.295 6.678 1.568 0.128

0.292 0.456 0.702 0.097

0.287 0.346 0.511 0.079

0.275 0.275 0.420 0.074

0.275 0.274 0.372 0.061

0.103 75.756 8.628 0.035

0.100 0.922 1.054 0.031

0.097 0.543 0.581 0.024

0.090 0.133 0.353 0.060

0.092 0.120 0.262 0.007
40

80

120

160

200

0.2 0.1 2.6 0.5

0.2 0.1 2.6 0.5

0.2 0.1 2.6 0.5

0.2 0.1 2.6 0.5

0.2 0.1 2.6 0.5

0.240 0.070 1.409 0.462

0.249 0.053 0.649 0.459

0.241 0.051 0.448 0.403

0.238 0.049 0.346 0.387

0.234 0.049 0.295 0.342

0.075 0.010 6.882 1.326

0.071 0.005 0.883 1.337

0.072 0.004 0.396 0.846

0.069 0.004 0.214 0.808

0.063 0.049 0.211 0.342
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Table 5.2: Monte Carlo Simulation Results for the Parameters of the GPPD
n Parameter value ABiase MSE

40

80

120

160

200

α λ γ θ

0.3 0.7 2.5 0.5

0.3 0.7 2.5 0.5

0.3 0.7 2.5 0.5

0.3 0.7 2.5 0.5

0.3 0.7 2.5 0.5

α λ γ θ

0.579 0.693 0.625 0.648

0.554 0.525 0.436 0.330

0.535 0.334 0.345 0.248

0.329 0.145 0.129 0.072

0.318 0.142 0.129 0.061

α λ γ θ

0.377 2.854 0.859 5.462

0.354 2.502 0.400 0.454

0.340 0.208 0.189 0.231

0.329 0.145 0.129 0.072

0.324 0.110 0.111 0.047
40

80

120

160

200

0.4 0.4 2.7 0.3

0.4 0.4 2.7 0.3

0.4 0.4 2.7 0.3

0.4 0.4 2.7 0.3

0.4 0.4 2.7 0.3

0.482 0.281 0.913 0.273

0.458 0.164 0.535 0.134

0.454 0.146 0.413 0.089

0.451 0.128 0.338 0.069

0.446 0.118 0.294 0.055

0.265 0.706 2.756 0.604

0.249 0.046 0.599 0.062

0.245 0.033 0.282 0.020

0.244 0.024 0.195 0.014

0.238 0.022 0.143 0.006
40

80

120

160

200

1.4 0.4 1.7 0.6

1.4 0.4 1.7 0.6

1.4 0.4 1.7 0.6

1.4 0.4 1.7 0.6

1.4 0.4 1.7 0.6

0.556 0.567 0.409 0.676

0.541 0.397 0.305 0.386

0.494 0.312 0.236 0.268

0.487 0.284 0.197 0.193

0.319 0.272 0.176 0.159

0.397 4.927 0.452 2.851

0.369 0.514 0.164 0.684

0.351 0.251 0.092 0.407

0.335 0.177 0.066 0.086

0.332 0.144 0.051 0.062
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Table 5.3: Monte Carlo Simulation Results for the Parameters of the GPLD
n Parameter value ABiase MSE

40

80

120

160

200

α λ γ θ

0.3 0.7 2.5 0.5

0.3 0.7 2.5 0.5

0.3 0.7 2.5 0.5

0.3 0.7 2.5 0.5

0.3 0.7 2.5 0.5

α λ γ θ

0.358 0.980 0.651 0.284

0.358 0.341 0.392 0.237

0.355 0.310 0.309 0.186

0.346 0.298 0.255 0.148

0.344 0.297 0.229 0.136

α λ γ θ

0.158 111.428 1.039 0.451

0.161 0.428 0.279 0.234

0.156 0.176 0.165 0.132

0.152 0.138 0.115 0.056

0.150 0.143 0.090 0.044
40

80

120

160

200

0.4 0.7 2.5 0.5

0.4 0.7 2.5 0.5

0.4 0.7 2.5 0.5

0.4 0.7 2.5 0.5

0.4 0.7 2.5 0.5

0.322 1.385 0.666 0.355

0.301 0.370 0.413 0.219

0.279 0.329 0.353 0.198

0.278 0.279 0.248 0.153

0.280 0.271 0.250 0.145

0.126 144.378 1.078 0.760

0.110 0.481 0.316 0.125

0.100 0.325 0.245 0.148

0.100 0.108 0.099 0.064

0.099 0.104 0.097 0.056
40

80

120

160

200

0.9 0.3 1.5 0.6

0.9 0.3 1.5 0.6

0.9 0.3 1.5 0.6

0.9 0.3 1.5 0.6

0.9 0.3 1.5 0.6

0.302 3.859 0.427 0.484

0.265 0.373 0.216 0.252

0.254 0.388 0.170 0.225

0.251 0.377 0.147 0.161

0.208 0.303 0.144 0.156

0.169 876.771 0.669 1.396

0.132 0.288 0.075 0.189

0.118 0.257 0.043 0.144

0.113 0.252 0.034 0.045

0.096 0.185 0.030 0.052
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Table 5.4: Monte Carlo Simulation Results for the Parameters of the GPBD
n Parameter value ABiase MSE

40

80

120

160

200

α λ γ θ

0.5 0.7 2.5 0.5

0.5 0.7 2.5 0.5

0.5 0.7 2.5 0.5

0.5 0.7 2.5 0.5

0.5 0.7 2.5 0.5

α λ γ θ

0.368 0.696 40.963 0.454

0.343 0.688 40.781 0.454

0.331 0.685 39.344 0.441

0.310 0.680 38.716 0.438

0.303 0.501 48.699 0.420

α λ γ θ

0.164 0.484 1362.307 0.207

0.148 0.482 1343.548 0.204

0.140 0.479 1109.620 0.191

0.128 0.475 2300.550 0.189

0.123 0.429 1070.184 0.182
40

80

120

160

200

0.6 0.8 2.1 0.4

0.6 0.8 2.1 0.4

0.6 0.8 2.1 0.4

0.6 0.8 2.1 0.4

0.6 0.8 2.1 0.4

0.326 0.788 32.353 0.377

0.297 0.785 31.972 0.362

0.282 0.777 31.235 0.360

0.268 0.777 30.872 0.358

0.248 0.769 30.738 0.355

0.124 0.632 2559.651 0.142

0.109 0.621 2100.949 0.132

0.100 0.619 1966.925 0.125

0.091 0.537 1943.259 0.123

0.081 0.537 1729.232 0.117
40

80

120

160

200

0.3 0.9 1.5 0.7

0.3 0.9 1.5 0.7

0.3 0.9 1.5 0.7

0.3 0.9 1.5 0.7

0.3 0.9 1.5 0.7

0.492 0.899 64.255 0.679

0.420 0.893 61.790 0.658

0.395 0.885 61.333 0.651

0.373 0.878 60.735 0.584

0.337 0.872 60.154 0.553

0.291 0.797 4453.962 0.469

0.228 0.773 4453.173 0.468

0.202 0.701 4450.426 0.465

0.183 0.694 4436.201 0.462

0.152 0.606 43134.009 0.436
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5.5 Applications

The derived GPGD, GPPD, GPBD (with m = 5) and the GPLD were applied to two sets

of data (failure times data of air conditioning system of aircraft and the service time of 63

aircraft). The performance of these distributions in terms to providing good parametric

fit to the two data sets were compared using the Kolmogorov Smirnov (KS) statistic,

Crame
′
r-Von Mises statistic (W*), Anderson- Darling statistic (A), log-likelihood and

model selection criteria such as the AIC, AICc and BIC.

5.5.1 Application I: Failure times of air conditioning system of

an aircraft

The first application uses 30 observations from the failure times of air conditioning system

of an aircraft. This dataa is displayed in Table 5.3 in Appendix A.

Table 5.5 gives the descriptive statistics for the failure times data for the air conditioning

system of an aircraft. From the results, the data set is positively skewed and platykurtic

in nature since the skewness value is positive and the kurtosis value less than three.

This implies that, the distribution of this data set is less peaked as compared to the

normal distribution and majority of the data points are clustered at the lower side of the

distribution with a long tail to the right.

Table 5.5: Des. Stats. of the Failure times of air conditioning system of an
aircraft

Statistic Mean St.Dev CV Median Kurtosis Skewness
Value 59.600 71.900 120.610 22.000 2.570 1.780
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The TTT transformed plot of the failure times of air conditioning system of an aircraft as

shown in Figure 5.12 is first convex in shape, followed by a concave shape which indicate

that the hazard function of the this data set is bathtub shaped.

Figure 5.12: TTT plot of failure times of the air conditioning system of an
aircraft

The detailed maximum likelihood parameter estimates for the four fitted families of dis-

tributions for the failure times of air conditioning system of an aircraft are shown in Table

5.6. By using the estimated standard errors and p-values for the four distributions, it is

seen that all the parameters of the GPBD, GPGD and the GPLD are all significant at 5

percent significance level since their standard errors are less than half of their parameter

estimates and their p-values are also less than 0.05. For the GPPD, all the parameters

were significant at the 0.05 significance level with the exception of the parameter θ.
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Table 5.6: Maximum Likelihood Parameter Estimates, SE and p-values of fail-
ure times of air conditioning system of an aircraft
Distribution Par. Ests. and Std. errors

GPBD α̂ λ̂ γ̂ θ̂

1.336 11.132 17.890 0.017

(0.413) (0.002) (0.003) (0.001)

0.001 0.000 0.000 0.000
GPGD −5.833 200.002 100.505 0.003

(1.223× 10−8) (6.034× 10−12) (5.730× 10−9) (1.845× 10−4)

0.000 0.000 0.000 0.000
GPPD 2.812 0.007 0.960 0.960

(1.032) (0.008) (0.255) (2.096)

(0.006) (0.042) (0.000) (0.560 ∗ ∗)
GPLD −39.157 99.891 105.586 0.003

(1.202× 10−9) (1.066× 10−11) (5.285× 10−9) (1.857× 10−4)

(0.000) (0.000) (0.000) (0.000)

Table 5.7 presents the likelihood, information criteria and goodness-of-fit measures for the

fitted distributions for the failure times of air conditioning system of an aircraft. Among

the four fitted families of distributions, the GPGD family has the largest log-likelihood

value with the smallest Kolmogorov Smirnov (KS), Anderson-Darling (AD), Cramér-Von

Mises (CVM), AIC, AICc, and BIC statistic values. These indicates that, the GPG family

of distributions provides a better fit to the failure times of air conditioning system of an

aircraft as compared to the other fitted distributions.

Table 5.7: Goodness-of-fit and Information Criteria of failure times of air con-
ditioning system of an aircraft
Dist. LL −2 logL AIC AICc BIC CVM AD KS(p-value)
GPBD −151.190 303.386 312.386 313.986 319.392 0.074 0.433 0.117(0.808)

GPGD −151.170 302.348 310.348 311.948 315.953 0.075 0.471 0.118(0.798)

GPPD −151.710 303.428 311.428 313.028 317.033 0.097 0.523 0.139(0.611)

GPLD −151.990 303.984 311.984 313.584 317.589 0.075 0.517 0.183(0.268)

113



www.udsspace.uds.edu.gh 

 

 

 

 

Figure 5.13 gives the plot of the empirical CDF and the CDFs of the GPGD, GPPD,

GPBD and the GPLD for the failure times of air conditioning system of an aircraft. From

the figure, the GPGD, GPPD and the GPLD distributions provides a better fit to the

data than the GPBD.

Figure 5.13: Empirical CDF and CDF plots of failure times of air conditioning
system of an aircraft
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5.5.2 Application II: Failure data on service times of 63 aircraft

The second applications of the four family of distributions used failure Data on service

times of 63 aircraft. This failure rate data is given in Appendix A Table 6.4.

Table 5.8 gives the descriptive statistics for the failure data on service times of 63 aircraft.

It is seen that the data set is positively skewed and platikurtic in nature since the skewness

value is positive and the kurtosis value is less than three.

Table 5.8: Descriptive Statistics of failure data on service times of 63 aircraft
Statistic Mean St.Dev CV Median Kurtosis Skewness
Value 2.091 1.243 59.380 2.065 -0.170 0.450

The TTT transform plot of the service times of 63 aircraft as shown in Figure 5.14

indicated that, the data set has an unimodal (upside down bathtub) failure rate.

Figure 5.14: TTT plot of service times of 63 aircraft
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The maximum likelihood parameter estimates, standard errors and p-values of the GPBD,

GPGD, GPPD and the GPLD are presented in Table 5.9. Using the standard errors of

the parameters, all the parameters estimates of the GPBD, GPGD and the GPLD are

significant at 5 percent significant level. However, for the GPPD, λ, γ, θ are significant

whiles α is not.

Table 5.9: MLE Parameter Estimates, SE and p-values of the service times of
63 aircraft

Distribution Parameter Estimates

GPBD α̂ λ̂ γ̂ θ̂

7.209 0.009 1.595 2.871

(0.001) (0.002) (0.165) (0.0010)

0.000 0.000 0.000 0.000
GPGD −65.228 197.833 1.910 0.253

(0.002) (0.001) (0.279) (0.016)

0.000 0.000 0.000 0.000
GPPD 1.742 0.048 0.955 8.759

(1.825) (0.026) (0.312) (0.012)

(0.340) (0.065) (0.002) (0.000)
GPLD −199.196 155.418 2.962 0.209

(0.000) (0.001) (0.364) (0.0126)

(0.000) (0.000) (0.000) (0.000)

The likelihood, goodness-of-fit and information criteria for the fitted distributions are pre-

sented in Table 5.10. The GPPD provides a better fit among the four fitted distributions

since it has the highest log-likelihood and the minimum AIC, AICc, BIC, KS, AD, CVM

and −2 logL values.

Table 5.10: Goodness-of-fit and Information Criteria of Kevlar 49/epoxy data
Dist. LL −2 logL AIC AICc BIC W ∗ A∗ K-S(p-value)
GPBD −100.010 200.019 210.019 210.709 220.735 0.098 0.597 0.107(0.439)

GPGD −100.690 201.388 209.385 210.075 217.958 0.101 0.620 0.085(0.717)

GPPD −98.020 196.039 204.039 204.729 212.611 0.033 0.225 0.065(0.940)

GPLD −104.380 208.769 290.656 291.346 299.228 0.045 0.286 0.462(0.268)

The plot of the empirical CDF and the CDF of the GPBD, GPPD, GPGD and GPLD
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are shown in Figure 5.15. From the plots, the GPGD and the GPPD provides a better

fit as compared to the other distributions considered.

Figure 5.15: Empirical CDF and CDF plots of service times of 63 aircraft
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 CHAPTER 6

SUMMARY, CONCLUSION AND

RECOMMENDATIONS

6.1 Introduction

This chapter presents the summary, conclusion made from the study and recommendations

for future works.

6.2 Summary

In this study, two new distributions for modelling lifetime data from series connected sys-

tems were presented. This made use of the concept of compounding. These distributions

were proposed as alternatives for modelling lifetime data, although they are applicable

in other fields. Firstly, the NHGPW distribution was developed for modelling lifetime

data from systems connected in series by continuous-continuous compounding the NH and

GPW distributions. It is obtained modelling the minimum between the NH and the GPW

distributions. Some statistical properties such as quantiles, moments, moment generation

function and order statistics were derived for the NHGPW distribution. The maximum

likelihood estimators were derived for the parameters of this distribution. The analysis

revealed that, the PDF of the NHGPW distribution can be monotonically decreasing,

increasing, bathtub, unimodal, modified bathtub and symmetric. The hazard function

of the NHGPW distribution can also be constant, monotonically increasing, decreasing,

bathtub, unimodal and modified bathtub. This implies that, the NHGPW distribution

can adequately model both monotonic and non-monotonic shaped failure rate data. The

NHGPW distribution is very flexible because it contains several well known distributions

as sub-distributions. Monte Carlo Simulation performed on this distribution (with 1000

replication) showed that, the MLE of the NHGPW distribution converges to the true pa-
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rameter value since the mean square errors decay to zero and the biases of each parameter

also decrease as the sample size increases. To demonstrate the flexibility of the NHGPW

distribution, the distribution was applied on two lifetime sets. The parameter estimates

of the NHPGW distribution for the two data set were significant at 5% significant level.

Also, the NHGPW distribution provides a better fit to the Kevlar 49/epoxy data set

and the Aircraft Windshield failure rate data as compared the competitive distributions

since it has the highest log-likelihood value with the smallest Kolmogorov Smirnov (K-S),

Anderson-Darling (A*), Crame′r-Von Mises (W*) statistics, smallest AIC, AICc, and BIC

values. This can also be seen from the plot of the empirical CDF and the CDFs for both

data set since its CDF approximates the empirical CDF. The likelihood ratio (LR) test

performed for both data set showed that, the fit of the NHGPW is significantly different

from its sub-distributions.

Secondly, the PGPW class of distributions was also developed. This was obtained by

discrete-continuous compounding the power series family and the GPW distribution.

Various statistical properties such as quantile function, moments, moment generation

function, order statistics, stochastic ordering, incomplete moments, mean and median

deviations, mean residual life and inequality curves were derived for the PGPW class of

distributions. Four special family of distributions were derived from the PGPW class of

distributions; thus the generalised power geometric (GPG) family, generalised power poi-

son (GPP) family, generalised power binomial (GPB )family and the generalised power

logarithmic (GPL) family. The statistical properties of these families of distributions were

also presented. The parameter estimates of these family of distributions were also derived

using maximum likelihood estimation. The shape of the PDFs of these four sub-families

of distributions showed that, their PDFs can be monotonically increasing, decreasing,

bathtub, symmetric and unimodal. Also, their hazard functions can be monotonically

increasing, monotonically decreasing, bathtub, unimodal, modified bathtub and modified

unimodal based on the parameter values. Hence,these distributions can model both mono-

tone and non-monotone failure rate lifetime data. Monte Carlo simulation performed to

assessed the maximum likelihood estimators of these sub-family of distribution showed

that, their MLE estimators are consistent since their mean square error and average bias
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approaches zero as the sample size increase. To demonstrate the flexibility of the family of

distributions, two lifetime data sets of lifetime were used. Application of the these families

of distribution to failure data from air conditioning system of an aircraft indicates that,

the GPG distribution provides a better fit as compared to the other fitted distributions.

The GPP family also provides a better fit among the four fitted distributions for failure

rate data of the service times of aircraft.

6.3 Conclusions

In this study, the Nadarajah Haghighi generalised power Weibull (NHGPW) distribution

and the PGPW class of distributions were developed based on the concept of compound-

ing. From the analysis, we conclude that, the cumulative distribution and probability

distribution functions of developed NHGPW distribution were well defined and meet all

necessary condition of a probability distribution. The plot of the PDF and hazard func-

tions of the NHGPW distribution indicated that this distribution can adequately model

both monotonic and non-monotonic failure rate data set since its PDF can be decreasing,

increasing, bathtub, unimodal, modified bathtub and symmetric and its hazard function

can also be constant, monotonically increasing, decreasing, bathtub, unimodal and mod-

ified bathtub.

The NHGPW distribution is also very flexible as compared to existing distributions since it

contains several well known distributions as sub-distributions hence absorbed the desirable

properties of these sub-distributions. Maximum likelihood estimators of the parameters of

this distribution were presented. Monte Carlo simulation analysis on the maximum likeli-

hood estimators showed that, the estimators of the NHGPW distribution were consistent

since the converges to the true parameter value as the sample size increases. Based on

the goodness of fit statistics, model selection criteria, the NHGPW distribution provided

a better fit to the Kevlar 49/epoxy data set as compared the competitive distributions

for systems connected in series. Also, the parameter estimates of the distribution were

all significant at 5% significant level. The NHGPW distribution also provided a better

as compared to the competitive distributions to the Aircraft Windshield failure rate data

set. This can as well be seen from the plot of the empirical CDF and the CDFs for both
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data set since its CDF approximates the empirical CDF for both data set.

By discrete-continuous compounding the zero truncated power series family and the GPW

distribution, the PGPW class of distributions were also developed. The PGPW class of

distributions contains the generalised power geometric (GPG), generalised power poisson

(GPP), generalised power binomial (GPB ) and the generalised power logarithmic (GPL)

as sub-families of distribution. As presented, the four sub-family of distributions of the

PGPW class of distributions can adequately model both monotonic and non-monotonic

lifetime data set since their PDFs and hazard functions exhibit various shapes such as

monotonically increasing, decreasing, bathtub, unimodal among others. From the Monte

Carlo simulation analysis, the estimators of each sub-family of distribution were consistent

estimators since their mean square error and average bias approaches zero as the sample

size increase. Application of the four family of distributions to failure time data of air

conditioning system of an aircraft showed that, the GPG distribution provides a better

fit among them whiles the GPP family also provided a better fit for failure rate data of

the service times of aircraft.

6.4 Recommendations

• The NHGPW and PGPW distributions are applicable only to series connected sys-

tems where the least number of events is considered. It is recommended that, alter-

native distributions can be developed for modelling lifetime data set from parallel

connected components where the maximum number of events is considered.

• The NHGPW and PGPW distributions considered a system with two subsystems

connected in series. However, In lifetime data analysis, failure rate data from more

than one system with sub-system connected in series might be encountered. It is

therefore recommended that, a generalisation of the developed distributions can be

made to accommodate n possible systems with n subsystems connected in series.

• In many life data applications, it possible to encounter situations where the failure

rate of a system is affected by a number of covariates. It is therefore recommended

that, further extensions of the NHGPW and PGPW distributions can be made to
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include possible causal/independent variables.

• All applications done on the developed distributions used uncensored data set.

Nonetheless, censored samples may arise in different fields of studies where the

survival times of all the subjects are not exact and known. For example, patients

lost to follow-up in a medical research, manufactured product not failing beyond the

duration of a study etc. Hence, further studies should consider the use of censored

data in demonstrating the applications of the developed distributions.
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 Appendix A

Table 6.1: Failure Times Data of Kevlar 49/epoxy Strands at 90 Stress Level
0.01 0.02 0.02 0.02 0.03 0.03 0.04 0.05 0.06 0.07 0.07 0.08 0.09

0.10 0.10 0.11 0.11 0.12 0.13 0.18 0.19 0.20 0.23 0.24 0.29 0.34

0.35 0.36 0.38 0.40 0.42 0.43 0.52 0.54 0.56 0.60 0.63 0.65 0.67

0.68 0.72 0.72 0.72 0.73 0.79 0.79 0.80 0.80 0.85 0.90 0.92 0.95

0.99 1.00 1.01 1.02 1.03 1.05 1.10 1.10 1.15 1.18 1.2 1.29 1.31

1.33 1.34 1.4 1.43 1.45 1.5 1.51 1.53 1.54 1.54 1.55 1.58 1.60

1.63 1.64 1.80 1.80 1.81 2.02 2.14 2.17 2.33 3.03 3.34 4.20 4.69

7.89

Table 6.2: Failure times data of 84 Aircraft Windshield
4.167 1.281 3.00 4.035 2.3 3.344 4.602 1.757 2.324 2.265 3.578 0.943 4.121

1.303 2.089 2.632 2.135 2.962 2.688 2.902 0.557 1.911 1.568 3.595 1.07 4.255

1.899 2.61 3.478 1.248 2.01 1.194 1.505 2.154 2.964 4.278 1.056 0.309 1.281

1.912 3.924 2.19 3 4.305 3.376 2.246 3.699 1.432 2.097 2.934 4.24 1.48

2.194 3.103 4.376 1.615 2.223 0.04 1.866 2.385 3.443 0.301 1.876 2.481 3.467

4.663 2.085 2.89 2.038 2.82 1.124 1.981 2.661 3.779 3.114 4.449 1.619 2.224

3.117 4.485 1.652 2.229 3.166 4.57 1.652

Table 6.3: Failure Times Data of air conditioning system of an aircraft
23 261 87 7 120 14 62 47 225 71 246 21 42

20 12 120 11 3 71 11 14 11 16 90 1 16

52 95 14 5
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Table 6.4: Failure times data of service times of 63 aircraft
0.046 1.436 1.003 2.137 2.3 3.5 1.01 2.141 3.622 1.085 2.163 2.592 0.140

1.492 2.6 0.150 1.580 2.670 0.248 1.719 2.717 2.820 0.389 1.920 0.313 1.915

1.52 2.24 4.015 1.183 2.878 0.487 1.963 2.95 0.622 1.978 3.003 0.28 1.794

2.819 2.053 3.102 0.952 2.065 3.304 0.996 0.900 1.092 2.183 3.692 2.117 3.483

3.665 2.341 4.628 1.244 2.435 4.806 4.881 1.262 2.543 5.14
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