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ABSTRACT

Classical distributions are at times unable to provide a reasonable fit to certain

forms of datasets, hence the need to generalize existing distributions to enhance

their flexibility in the modeling of data. In recent times, much attention is focused

on developing of new families of distributions for generalizing existing models.

This is evident in the vast literature on modification and generalization of sta-

tistical distributions carried out by researchers. This study therefore developed

generators of statistical distributions; the odd Chen and Chen generated families

of distributions, using Chen distribution as the baseline model. Statistical prop-

erties of the developed families of distributions such as the quantile functions,

moments, generating functions, order statistics and entropies were derived. The

parameters of the generators were estimated and special distributions developed.

Properties of the estimators for the parameters of some of the special distributions

were investigated using Monte Carlo simulations. The usefulness of the special

distributions in modeling real dataset was then demonstrated using four datasets.

The developed distributions provided good fit to the given datasets and provided

consistently better fit to these datasets than the existing competing models. Fi-

nally, the new distributions developed are capable of modeling both monotonic

and non-monotonic failure rates, hence it is recommended that the distributions

be considered, especially in situations were datasets exhibiting such failure rates

are encountered.
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CHAPTER ONE

INTRODUCTION

1.1 Background of Study

Statistical distributions are used in many disciplines, they are used in; actuar-

ial science to model waiting time to payment of claims, reliability engineering

to model the life cycle of a machine, computer science to model failure rate of

system hardware or software, social science to model the average time to passing

of judgment on court cases and medical science to model the survival times of

patients after surgery.

The accuracy of parametric statistical inference and modeling of datasets largely

depend on how well the probability distribution fits the given dataset once it

has met all distributional assumptions. Weibull distribution is the most popu-

lar parametric distribution for modeling lifetime datasets (Murthy et al., 2004).

However, its inability to exhibit bathtub-shaped failure rate functions is its major

drawback among others, since most lifetime data tends to exhibit non-monotonic

failure rates. Hence, several modifications of the Weibull distribution have been

carried out overtime to make it more flexible for modeling datasets of varying

shapes of hazard rate functions. One such modification is the Chen distribution

(Chen, 2000) which was developed by compounding the Weibull and exponential

distributions.

The Chen distribution with just two parameters has the ability to model data

which exhibit increasing and bathtub shaped failure rates. Also, its confidence

interval for the shape parameter and joint confidence regions for the two parame-

ters have close forms as compared to other competing models. However, the Chen

distribution has received comparatively little attention in statistical literature.

1
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Modifications and extensions of the Chen distribution in literature include; a

study by Xie et al. (2002) which modifies the Chen distribution by adding the

lacking scale parameter, thus creating a three-parameter extended Weibull (EW)

distribution. Chaubey and Zhang (2015) developed an extension of the Chen

distribution called the exponentiated Chen distribution using the Lehman alter-

natives also known as exponentiated type family (Gupta et al., 1998; Nadarajah

and Kotz, 2006). The study also revealed that the exponentiated Chen dis-

tribution was a good substitute for the exponentiated Weibull and generalized

Weibull families. Khan et al. (2018) proposed the Kumaraswamy exponentiated

Chen (KEC) distribution. They sought to improve the statistical properties of

the Chen distribution by compounding the exponentiated Chen distribution with

the Kumaraswamy generalized class of distributions (Cordeiro and de Castro,

2011).

Compounding the generalized Chen and gamma distributions, the extended Chen

distribution was proposed by Bhatti et al. (2019). The study showed that the ex-

tended Chen distribution’s hazard rate function could accommodate some mono-

tonic and non monotonic shapes. The Weibull–Chen distribution was then pro-

posed by Tarvirdizade and Ahmadpour (2019) by compounding the Weibull and

Chen distributions. The new distribution was shown to be a generalization of

some lifetime distributions such as exponential, Rayleigh, Weibull and Chen dis-

tributions.

In the year 2020, some studies on modifications and generalizations of the Chen

distribution were published after the publication of some parts of this thesis.

These include; a study by Thach and Bris (2020) on additive Chen-Weibull dis-

tribution. The distribution was developed by combining Weibull and Chen distri-

butions for independent systems connected in series. The additive Chen-Weibull

distribution was then shown to provide flexibility in modeling diverse shapes of

failure rate functions.

2



www.udsspace.uds.edu.gh 

 

 

 

 

The study by Boateng (2020) introduced the quantile transmuted-Chen G family

of distributions as a generalization of the Chen-G family of distributions (Anzagra

et al., 2020a). The study indicated the usefulness of the quantile transmuted-

Chen G family of distributions in modeling breast cancer patient’s data. The

exponentiated odd Chen-G family of distributions was proposed by Eliwa et al.

(2020b). Their study established the statistical properties of the generator and

then estimated its parameters using various estimation techniques.

Finally, in an independent study, Eliwa et al. (2020a) proposed and studied the

odd Chen generator of distributions. It must be noted that the approach used in

developing the generator and some of the special distributions in their study is

the same as those used in developing the odd Chen family of distributions in this

thesis. The only variation of the study from the odd Chen family of distributions

(Anzagra et al., 2020b) studied in this thesis is the fact that statistical properties

such as the entropies and moment generating functions which were derived in

this thesis were not captured by Eliwa et al. (2020a). Furthermore, some of their

developed distributions were different from those developed in this thesis.

This study sought to develop generators of the Chen distribution using the

transformed-transformer (T-X) approach with the aim of improving its flexibility

in the modeling of datasets.

1.2 Problem Statement

Advancement of research in various fields have resulted in real life data which

sometimes cannot be modeled using any of the existing classical probability

models. Hence, research in developing new classes of distributions which are

generalizations or extensions of others, geared towards improving the flexibility

of existing distributions remain very essential.

Despite its desirable properties, the lack of scale parameter in the Chen distribu-

tion makes it less flexible for modeling varying lifetime data, as it can only model

3
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datasets that exhibit bathtub-shaped or increasing failure rates (Xie et al., 2002).

Though there are modifications and extensions of Chen distribution in statistical

literature, until recently, these studies did not focus on developing generators

based on the Chen distribution.

The study therefore sought to develop generalizations of the Chen distribution us-

ing the T-X approach. The new distributions obtained from these generalizations

are expected to have at least a scale parameter and extra shape parameters to

make them more flexible comparatively. They are expected to model monotonic,

non-monotonic and modified non-monotonic failure rate functions.

1.3 General Objective

The aim of the study is to develop generators of statistical distributions based on

Chen distribution and apply them in modeling datasets.

1.4 Specific Objectives

The specific objectives are;

1. To develop the odd Chen family of distributions.

2. To develop the Chen generated family of distributions.

3. To study the properties of the proposed families.

4. To develop special distributions from these families of distributions.

5. To demonstrate the application of the special distributions developed from

these families using real data.

1.5 Significance of the Study

The importance of statistical probability distributions in theory and practice can-

not be over emphasized since their applications stretch far and wide across almost

4
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all disciplines (engineering, medical sciences, actuarial sciences, social sciences

and so on). Statistical probability distributions are the backbone of parametric

statistical methods such as reliability analysis, survival analysis and inference

among others.

Fitting the appropriate distribution to lifetime data improves precision of the

results of the analysis by improving the power, efficiency and sensitivity of the

tests associated with the dataset. Thus, developing modifications of existing

distributions to ensure better fit for datasets is of great essence. Hence, this

study generalizes the Chen distribution using the T-X approach.

1.6 Scope of the Study

This study mainly focuses on developing generators with Chen distribution as the

baseline model using the T-X approach. It also considers deriving the properties

of the proposed generator and demonstrating the usefulness of these generators

using real life datasets.

1.7 Outline of Thesis

The thesis is divided into six chapters. Introduction is in Chapter 1. Literature

on the methods of developing new distributions is reviewed in Chapter 2. Some

statistical techniques and tools used for achieving the aim of the study are dis-

cussed in the methodology in Chapter 3. The odd Chen family of distributions

is presented in Chapter 4, whilst the Chen generated family of distributions is

presented in Chapter 5. Finally, the summary, conclusions and recommendations

of the study are presented in chapter 6.

5
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CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

Literature on the proposed methods for developing new distributions is reviewed

in this chapter. The development of statistical distributions has always been top-

ical, hence research on methods of developing new distributions dates’ way back.

Advances in methods of developing new distributions can at best be categorized

into two; methods before the 1980s and methods since the 1980s. Before the

1980s, the proposed methods may be broadly categorized into three; differen-

tial equation, transformation and quantile function. Those developed after the

1980s may also be generally classified into four categories; the T-X method, beta-

generated method, method of adding parameters to existing distributions and

method of generating skewed distributions (Lee et al., 2013).

2.2 Method of Differential Equations

Pearson (1895) made huge contributions towards the development of this method.

In an effort to model non-symmetric data, he proposed the use of differential equa-

tions for generating statistical distributions. Per the approach, every probability

density function (pdf) in a system of continuous distributions satisfy the differ-

ential equation. Based on the shape of the pdfs of these distributions, they were

then classified into types, thus Pearson types I-IV, and Pearson types VII-XII in

a later study.

Many of the classical statistical distributions are derived from the Pearson type

distributions. These include: beta distribution (Pearson type I), normal and

Student’s T distributions (Pearson type VII) and gamma distribution (Pearson

6
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type III) (Johnson et al., 1994). Burr (1942) also made a significant contribution

by proposing another form of differential equations for developing probability

distributions. Distributions derived from this family include; Burr III, Burr X,

Burr XII and uniform distributions.

2.3 Method of Transformation (or Translation)

Also referred to as the method of translation, Johnson (1949) proposed this

method based on the use of normalization transformation. Commonly used dis-

tributions such as gamma, exponential, normal, lognormal and beta distributions

are members of the Johnson’s family. A special distribution from the Johnson’s

family for modeling material fatigue is the Birnbaum-Saunders distribution (Birn-

baum and Saunders, 1969).

Some modifications of Birnbaum-Saunders distribution; families of location-scale

Birnbaum-Saunders, non-central Birnbaum-Saunders and four parameter gen-

eralized Birnbaum-Saunders distributions among others, were then made using

Johnson’s approach (Athayde et al., 2012).

2.4 Method of Quantile Function

Lambda distribution was developed using the quantile approach (Hastings et al.,

1947; Tukey, 1960). It was then generalized as the generalized lambda distribu-

tion and defined in terms of percentile functions (Ramberg and Schmeiser, 1972;

Ramberg et al., 1979).

Though it shares similarities with the Pearson’s system, the generalized lambda

distribution had a weakness of not covering all skewness and kurtosis values

(Freimer et al., 1988). Hence, the extended generalized lambda distribution de-

veloped from generalized beta and generalized lambda distributions by Karian

and Dudewicz (2000) was to overcome that weakness. Some works carried out

using the idea of quantiles are found in Tuner and Pruitt (1978), Morgenthaler

7
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and Tukey (2000) and Jones (2002).

2.5 Method of Generating Skewed Distributions

Skewed distributions were formed by combining two symmetric distributions.

This approach of generating skewed distributions is attributed to Azzalini (1985)

who proposed the skewed normal family. The initial idea of this approach was

used in the context of prior distribution by O’Hagan and Leonard (1976). The

proposed skewed normal family only produced thinner tails compared with the

normal ones hence a much broader class of distributions was later proposed by

Azzalini (1986).

Ever since, extensive studies on the skewed family have been carried out and many

generalizations developed. Using the framework of Azzalini (1986), Chang and

Genton (2007) proposed a weighted approach to generating distributions from

skewed symmetric family. The epsilon-skew normal family was then developed

by Mudholkar and Hutson (2000). This family has additional parameter which

controls the magnitude of skewness. Salinas et al. (2007) developed a broad

family of skewed distributions by combining the epsilon-skew normal and the

skew normal families together.

Fernandez and Steel (1998) introduced the inverse scale family. This method

introduced skewness into unimodal and symmetric continuous distributions. The

single scalar parameter in their approach creates flexibility in the distribution’s

shape whilst maintaining the distribution’s unimodality. Using inverse proba-

bility integral transformation, a generalized framework of adding skewness into

symmetric distributions was proposed by Ferreira and Steel (2006). Members of

this family include the skewed normal and the inverse scale families of distribu-

tions.
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2.6 Method of Adding Parameters

This approach involves the addition of parameters to existing distributions to

increase their flexibility in the modeling of data. Though this method had been

in use, the study by Mudholkar and Srivastava (1993) on exponentiated Weibull

distribution brought it to the lime light (Lee et al., 2013). Other distributions

were then proposed and studied using the approach; Gupta and Kundu (1999,

2001) proposed the exponentiated exponential distribution and Nadarajah and

Kotz (2006) studied a number of exponentiated distributions such as exponenti-

ated exponential, exponentiated gamma, exponentiated Weibull, exponentiated

Gumbel and exponentiated Fréchet distributions. Another method of adding an

extra parameter to distributions was introduced by Marshall and Olkin (2007).

The approach was then applied in studying the case of exponential and Weibull

distributions.

2.7 Beta-Generated Method

First proposed by Eugene et al. (2002), the beta-generated family of distributions

can be described as a generalization of distributions using beta distribution as its

generator (Jones, 2009). Some beta generated distributions proposed in literature

include: beta-normal (Eugene et al., 2002); beta-Frechet (Nadarajah and Gupta,

2004); beta-Gumbel (Nadarajah and Kotz, 2004); beta-exponential (Nadara-

jah and Kotz, 2005); beta-Weibull (Famoye et al., 2005); beta-exponentiated

Pareto (Zea et al., 2012); beta- Cauchy (Alshawarbeh et al., 2012); beta-extended

Weibull (Cordeiro et al., 2012) and beta- generalized logistic (Morais et al., 2013).

In literature, generalized versions of the beta-generated families have been de-

veloped by changing the beta distribution with distributions defined on a finite

support. The Kumaraswamy generated family of distributions independently pro-

posed by Jones (2009) and Cordeiro and de Castro (2011), was obtained by using

Kumaraswamy distribution (Kumaraswamy, 1980) as the generator in place of
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beta distribution. Another generalization of the beta-generated family was intro-

duced by Alexander et al. (2012). They used generalized beta type-I distribution

as the generator.

2.8 Transformed-Transformer Method

Using the idea of the beta-generated method, Alzaatreh et al. (2013) proposed

the T-X family of distributions. This approach generalizes the beta-generated

method and uses any continuous distribution as its generator. Generators de-

veloped from this family include; Weibull-X, Gamma-X and beta- exponential-X

families. The major drawback of the T-X method is its lack of an in built shape

parameter. Hence if two distributions to be compounded both lack shape pa-

rameters (say both T and X follow exponential distribution), then the resulting

distribution would still lack a shape parameter. Hence it would have failed to

achieve its aim of producing a flexible distribution.

Alzaghal et al. (2013) introducing a shape parameter to the T-X family, pro-

posed the exponentiated T-X family. Some members of the exponentiated T-X

family include: exponentiated gamma-X, exponentiated Weibull-X, exponenti-

ated Lomax-X and exponentiated log-logistic-X families. The major limitation of

the exponentiated T-X family is its inability to produce distributions with heavy

tails, especially, when the baseline distribution lack shape parameters. Generally,

additional shape parameters improve the flexibility of a model as it controls both

skewness and kurtosis simultaneously.

To further improve on the flexibility of the exponentiated T-X family, Nasiru

et al. (2017) introduced an extra shape parameter in a generalization of the

exponentiated T-X family called generalized exponentiated T-X family. Though

this family may produce much more flexible distributions, it also has the tendency

of producing over-parameterized distributions especially for baseline distributions

with two or more parameters.
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2.9 Summary of Review

It is almost impossible to develop a distribution that is flexible enough to fit all

forms of data, hence researchers keep developing new distributions using these

methods irrespective of the time of origin in their bid to develop distributions with

desirable properties. Among the many methods for generalizing distributions, the

T-X method provides greater flexibility in the generalization and modification of

distributions especially when the baseline model already has shape parameters.
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CHAPTER THREE

METHODOLOGY

3.1 Introduction

The statistical techniques and tools used for achieving the aim of the study are

discussed in this chapter. These include; the T-X method for developing the

generator, maximum likelihood estimation method for estimating the parameters

of the new family, the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm for

optimization, goodness-of-fit and information criteria measures for model fit, and

total time on test transform.

3.2 The T-X Method

Suppose z(t) is the pdf of a random variable T ∈ [a, b] for −∞ ≤ a < b ≤ ∞. Let

G(x) be the cdf of any random variable X, the cdf of the T-X family is given by

F (x) =

∫ W [G(x)]

a

z(t)dt, (3.1)

where

1. W [G(x)] is a function of the cdf of any random variable X which is differ-

entiable, monotonically non-decreasing and defined on the support [a, b].

2. W [G(x)]→ a as x→ −∞ and W [G(x)]→ b as x→∞.

3.3 Maximum Likelihood Estimation

The maximum likelihood estimation (mle) approach seeks the probability distri-

bution that makes the observed data most likely. Let X1, X2, ..., Xn be n inde-

pendent and identically distributed random variables with a common pdf f(x;ϕ)
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where ϕ is an unknown (p × 1) vector of parameters. The likelihood function

which is the joint pdf of a collected random sample and the basis of the mle

procedure is obtained as

L(ϕ;X) =
n∏

i=1

f(xi;ϕ), (3.2)

where X = (x1, x2, ..., xn) and p < n (Hogg et al., 2005). Mathematically, working

with the logarithm of the likelihood function is more convenient and does not lead

to any loss of information. Hence, denoting the log likelihood function by `, it is

obtained as

`(ϕ;X) =
n∑

i=1

log f(xi;ϕ). (3.3)

The values of ϕ that maximize the probability of obtaining the random sample

is obtained by differentiating ` with respect to ϕ and equating the resultant

expression to zero. Thus

∂`(ϕ;X)

∂ϕi
= 0, i = 1, 2, ..., p. (3.4)

The maximum likelihood estimates ϕ̂ for the parameters are the values of ϕ

that maximize the likelihood function and are obtained by solving the equations

in (3.4) for ϕ1, ϕ2, ..., ϕp . The Fishers information matrix I, which is used in

generating the variance-covariance matrix of the estimators, is generated using

the mle approach. The variance covariance matrix is the inverse of I obtained as

I−1(ϕ) =




I−111 I−112 I−113 · · · I−11p

I−121 I−122 I−123 · · · I−12p

I−131 I−132 I−133 · · · I−13p

...
...

...
. . .

...

I−1p1 I−1p2 I−1p3 · · · I−1pp




, (3.5)
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where the Iij element of I is given by

Iij = −E
[
∂2`(ϕ;X)

∂ϕi∂ϕj

]
,

I−1ii = var(ϕ̂) is the variance of ϕ̂i and I−1ij = cov(ϕ̂i, ϕ̂j) is the covariance of

ϕ̂i and ϕ̂j. Using the estimated variances of the parameters, the approximate

100(1 − α)% confidence interval for the parameters in normal approximation is

estimated as ϕi ∈ ϕ̂i±Zα
2

√
I−1ii , where Zα

2
is the critical value from the standard

normal distribution.

3.3.1 Properties of Maximum Likelihood Estimation

Under certain regularity conditions (such as the assumption that the pdfs have a

common support for all ϕi, the random variables have distinct pdfs f(x;ϕi) such

that ϕi 6= ϕj ⇒ f(x;ϕi) 6= f(x;ϕj) and the true value of the population parame-

ter ϕ is an interior point in ϕ), the maximum likelihood estimators have desirable

properties such as consistency, asymptotic normality, asymptotic efficiency and

invariance property.

3.3.1.1 Consistency

Let X1, X2, ..., Xn be a sequence of observations with an estimator ϕ̂n. ϕ̂n is a

consistent estimator if it converges asymptotically in probability to the true value

of the population parameter. Thus as n −→∞,

P (|ϕ̂n − ϕ| ≥ ε)→ 0, ε > 0. (3.6)

Also, ϕ̂n converges in probability to ϕ if the mean squared error goes to zero

as n approaches infinity, thus, limn→∞E[(ϕ̂n − ϕ)2] = 0. Hence, as sample size

increases, the maximum likelihood estimators converge to the true parameter

value (Hogg et al., 2005).
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3.3.1.2 Asymptotic Normality

The distribution of maximum likelihood estimators under certain regularity con-

ditions converges to multivariate normal distribution as sample size increases.

Thus
√
n(ϕ̂− ϕ)→N(0, I−1(ϕ)), (3.7)

where→ represents convergence in distribution, 0 is the p-dimensional mean zero

vector and I−1(ϕ) is the inverse of the (p × p) dimensional Fisher information

matrix.

3.3.1.3 Invariance Property

Maximum likelihood estimation is functional under all transformations. Thus for

a differentiable function f(ϕ), the maximum likelihood estimate of f(ϕ) is equal

to the function evaluated at the maximum likelihood estimation of ϕ, implying

that, if ϕ̂ is the maximum likelihood estimate of ϕ, then f(ϕ̂) is the maximum

likelihood estimate of f(ϕ). Hence,

√
n(f(ϕ̂)− f(ϕ))→N

(
0,

[
∂f(ϕ)

∂ϕ

]
I−1(ϕ)

[
∂f(ϕ)

∂ϕ

]′)
. (3.8)

3.3.1.4 Asymptotic Efficiency

Maximum likelihood estimators are asymptotically most efficient. A consistent

estimator is most efficient if it has the minimum variance in a class of unbiased

and consistent estimators (Hogg et al., 2005). For instance, given an alternative

unbiased estimator ϕ̄, such that

√
n(ϕ̄− ϕ)→N(0, I−1(Ψ)). (3.9)

then I−1ϕ is always less than or equal to I−1(Ψ).
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3.3.1.5 Broyden–Fletcher–Goldfarb–Shanno Algorithm

The Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm is one of the quasi-

Newton iterative approach for resolving unconstrained optimization problems

named after Broyden (1970), Fletcher (1970), Goldfarb (1970) and Shanno (1970)

who independently developed it. It is useful when solving equations generated

from the mle process especially when the estimators for the parameters have no

closed form. The algorithm for optimizing a function say ` starts with an initial

guess ϕ0 and an approximate Hessian matrix H0. As ϕi converges to the solution,

these steps are usually repeated:

1. Solve Hici + O`(ϕi) = 0 to obtain a direction .

2. Carry out one-dimensional optimization to obtain an acceptable step size

di in the same direction found in step one.

3. Let bi = cidi and update ϕi+1 = ϕi + bi.

4. Set yi = O`(ϕi+1) + O`(ϕi).

5. Hi+1 = H0 +
yiy
′
i

y
′
ibi

+
Hibib

′
iHi

b
′
iHibi

.

Let `(ϕ) be a function to be minimized, by observing the norm of the gradient

|`(ϕi)|, the convergence of the algorithm can be checked. Step one approximates

to a gradient descent when H0 is initialized with the identity matrix I, however

approximation of the Hessian Hi results in the refinement of further steps. Step

one of the algorithm is performed out using the inverse of Hi. Step one can also

be efficiently obtained by transforming the fifth step using Sherman–Morrison

formula

H−1i+1 =

(
I − b

′
iyi
biy
′
i

)
H−1i

(
I − b

′
iyi
biy
′
i

)
+
bib
′
i

biy
′
i

. (3.10)
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Since y
′
iH
−1
i yi and b

′
iyi are scalars and H−1i+1 is symmetric, H−1i+1 can be computed

using the expansion

H−1i+1 = H−1i +

(
b
′
iyi + y

′
iH
−1
i yi

) (
bib
′
i

)
(
b
′
iyi
)2 − H−1i yib

′
i + biy

′
iH
−1
i

b
′
iyi

. (3.11)

Confidence intervals for parameters in maximum likelihood estimation and other

statistical estimations can be obtained using the inverse of the final Hessian ma-

trix.

3.4 Goodness-of-Fit Tests

A goodness-of-fit test generally examines how well a dataset corresponds to a

fitted distribution. For a random sample X1, X2, ..., Xn, the goodness-of-fit test

determines if the random sample is from a specific distribution. Anderson-Darling

(AD) test, Kolmogorov-Smirnov (KS) test and Cramer-von Misses (CM) test are

used in the study.

3.4.1 Kolmogorov-Smirnov Test

Let X1, X2, ..., Xn be a random sample. The KS test is based on the empirical

distribution function (edf) as it measures the distance between the estimated cdf

and the edf of the sample (Chambers et al., 1983). The hypothesis that the data

follow a specified distribution is tested against the alternate that it does not. Its

test statistic is given by

KS = max{|F (xi)− F̂ (xi)|, |F (xi)− F̂ (xi−1)|}, i = 1, 2, ..., n, (3.12)

where F (xi) =
r{xj :xj≤xi}

n
is the cdf of the candidate model at xi, F̂ (xi) is the

value of the empirical distribution at xi and r{.} is the total number observations

with values less than or equal to that of xi. The decision on the rejection (or

non-rejection) of the null hypothesis is then made based on a comparison between
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the computed test statistic and the critical value obtained for a given significance

level (α). In comparing two or more models, the one with the smallest KS value

provides the most appropriate fit for the sample.

3.4.2 Anderson-Darling Test

The Anderson-Darling (AD) test is an alternative and a modification of the KS

test. The main difference is that whilst KS test is distribution free, AD test is

not. This makes the AD test comparatively more sensitive (Stephens, 1974). Its

test statistic is defined as

AD = −N − S, (3.13)

where S =
∑N

i=1(2i− 1)N [lnF (Xi) + ln (1− F (xN+1−i))], N is the sample size,

Xi’s are the ordered observations and F (Xi) is the cdf of the candidate model at

Xi. Generally, when comparing two or more models, the model with the smallest

AD value should be considered.

3.4.3 Cramér-von Mises Test

The Cramér-von Mises (CM) test is another alternative to the KS test (Laio,

2004). Let F (Xi;ϕ) be the cdf of the random sample with an unknown p−

dimensional parameter vector. The quantile can be estimated by finding the

inverse of F (Xi;ϕ) = ui. With the empirical distribution forming its basis, the

test statistic for the CM test is defined by

CM = W 2

(
1 +

0.5

n

)
, (3.14)

where W 2 =
∑n

i=1

(
zi − (2i−1)

2n

)2
+ 1

12n
, n is the sample size, Xi’s are the ordered

observations, zi = Φ−1(ui) is the standard normal distribution’s quantile and

Φ(ui) is the cdf. The model with the smallest CM value fits the sample better as

compared to the others.
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3.5 Information Criteria

Generally, in model selection for data analysis, one is faced with the challenge

of balancing the issues of variance and bias, thus overfitting and underfitting. A

model with more parameters is generally less biased with high variance, whilst

one with fewer parameters may be highly biased with a low variance. Hence,

the goal is to select a fitted model with minimized information loss. Coverage of

parameter’s confidence interval in a model shows if models are properly selected

or not. Information criterion compares non-nested models by ordering candidate

models from best to worst. It then scales these models using Akaike weights and

evidence ratios. Some common information criteria are; the Akaike Information

Criterion (AIC), Bayesian Information Criterion (BIC) and Consistent Akaike

Information Criterion (CAIC).

3.5.1 Akaike Information Criterion

AIC can be described as an estimated measure of the quality of a model in a

set of competing statistical models for a particular dataset. Developed with a

foundation in information theory, AIC was first proposed by Akaike (1973); its

test statistic is given by

AIC = −2`+ 2p, (3.15)

where p is the number of estimated model parameters and ` is the log-likelihood

of the model fitted. ` is also a measure of model fit, the higher its value, the better

the fit. AIC gives an estimate of the amount of information lost due to fitting

a particular model to a dataset. Hence, a model that yields the smallest AIC

value in the set of competing models is deemed the best model. AIC introduces

good model selection especially for large samples as it is able to penalize models

with many parameters. It is however associated with issues of bias especially for

smaller samples, hence the ‘corrected’ Akaike Information Criterion (AICc) was

developed to overcome the problem (Sugiura, 1978). The test statistic for the
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AICc is

AICc = −2`+ 2p+ [2p(p+ 1)/(n− p− 1)] , (3.16)

where n is the sample size.

3.5.2 Bayesian Information criterion

The BIC also known as Schwarz criterion is closely related to the AIC as it has

likelihood function as its basis for computation. Like the AIC, BIC penalizes over

parameterization (over fitting) of models. Compared with AIC and AICc, models

with more parameters are more penalized by BIC, hence the need to consider BIC

in model selection. Introduced by Schwarz (1978), the best model of the set of

competing model is the one with the smallest value of BIC. The test statistics for

the BIC is given by

BIC = −2`+ p log n, (3.17)

where ` is the log-likelihood of the model fitted, p is the number of estimated

model parameters and n is the sample size.

3.5.3 Consistent Akaike Information Criterion

CAIC is one of the ‘dimension-consistent’ criteria for model selection reviewed by

Bozdogan (1987). It provides an asymptotically unbiased estimate of the order

of the true model on the assumption that there exists a true model of low order,

whose order remains same as sample size increases (Anderson et al., 1998). The

test statistic of the CAIC is given by

CAIC = −2`+ p[(log n) + 1]. (3.18)

Prediction is mostly the modeling goal in the use of CAIC selection. In case the

true model does not exist, CAIC should not be applied.
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3.6 Total Time on Test

The total time on test transform (TTT- transform) gives a graphical presentation

of the shape of hazard rate function of a given dataset developed by Barlow and

Doksum (1972). Let F be the cdf of a distribution, the TTT- transform is defined

as

G−1(k) =

∫ F−1(k)

0

S(u)du, k ∈ [0, 1], (3.19)

where S(u) = 1 − F (u) is the survival function. The scaled TTT-transform is

obtained by ϑF (k) = G−1(k)
G−1(1)

.

Graphically, the hazard rate function is obtained by a plotted curve of ϑF (k)

against k called the scaled TTT-transform curve. The resultant curve may

then assume shapes such as decreasing, increasing, bathtub or upside down

bathtub. The empirical scaled TTT-transform for an ordered random sample

X1:n, X2:n, ..., Xn:n of size n is obtained by

T ∗i =
TTTi
TTTn

, (3.20)

where 0 ≤ TTTn ≤ 1 and TTTi =
∑i

j=1(n− j + 1)(xj:n − xj−1:n), i = 1, 2, ..., n.

By plotting T ∗i against i
n
, the empirical scaled TTT-transform curve is obtained.

3.7 Data and Source

The study employed four secondary datasets (displayed in Appendix A of the

thesis) in demonstrating the applications of the distributions developed. The

first dataset (Data 1) consists of the lifetimes of 50 components, given by Aarset

(1987). This data have been used in many studies especially studies on statistical

distributions. Some studies that have used this dataset include; Tarvirdizade and

Ahmadpour (2019) and Doostmoradi et al. (2014). The second dataset (Data 2)

represents the lifetime of a certain device given by Sylwia (2007) and also found

in Doostmoradi et al. (2014). The third dataset (Data 3) consists the fatigue
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times of 6061-T6 aluminum coupons cut parallel with the direction of rolling and

oscillated at 18 cycles per second found in Birnbaum and Saunders (1969). The

fourth dataset (Data 4) consists the survival times (in days) of 72 guinea pigs

injected with different amount of virulent tubercle bacilli studied by Bjerkedal

(1960).

3.8 Summary

The statistical techniques to be employed in the study are thoroughly reviewed

under this chapter. These include maximum likelihood estimation and its prop-

erties, measures of goodness-of-fit and information criteria for model selection.

BFGS algorithm and total time on test were also reviewed.
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CHAPTER FOUR

ODD CHEN FAMILY OF DISTRIBUTIONS

4.1 Introduction

This chapter introduces a new generalization of the Chen distribution called the

odd Chen (OC) family of distributions. This generator can be used to modify

any univariate continuous distribution to improve upon its flexibility in modeling

datasets. Statistical properties such as the quantile function, moments, stochastic

orderings and order statistics among others for the OC family of distributions

are also derived in this chapter. The chapter further presents the estimation of

parameters of the new family, the development of new distributions from the

new family and finally, a demonstration of the usefulness of the new models in

modeling real dataset.

4.2 Odd Chen Family of Distributions

Let T be a Chen distributed continuous random variable, the cdf (denoted by

F (t)) for Chen distribution is given by F (t) = 1− eλ
(
1−etβ

)
, t > 0 (Chen, 2000).

Suppose G(x;ψ) is the baseline cdf of an arbitrary continuous random variable

X on any continuous support say (−∞,∞) and ψ is a (p×1) vector of associated

parameters, the cdf F (x) of the OC family of distributions is defined as

F (x) =

G(x;ψ)
1−G(x;ψ)∫

0

f(t)dt = 1− e
λ


1−e(

G(x;ψ)
1−G(x;ψ))

β


, x > 0, λ > 0, β > 0, (4.1)

where λ and β are extra shape parameters.

By differentiating the cdf in equation (4.1), the pdf f(x) of the family is obtained
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as

f(x) =λβg(x;ψ)G(x;ψ)β−1[1−G(x;ψ)]−(β+1)e(
G(x;ψ)

1−G(x;ψ))
β

× e
λ


1−e(

G(x;ψ)
1−G(x;ψ))

β


, x > 0.

(4.2)

Proposition 4.1. The density function of the OC family of distributions is a

well-defined pdf.

Proof. The pdf f(x) of a distribution is well-defined if it is a non-negative

function and is equal to one(1) when integrated over the support of X. Thus

f(x) is well-defined if





f(x) ≥ 0

∫∞
−∞ f(x)dx = 1,−∞ ≤ x ≤ ∞

.

It is worth noting that f(x) is a non-negative function. Suppose the support of

x is (−∞,∞), then

∫ ∞

−∞
f(x)dx =

∫ ∞

−∞
λβg(x;ψ)G(x;ψ)β−1[1−G(x;ψ)]−(β+1)e(

G(x;ψ)
1−G(x;ψ))

β

× e
λ


1−e(

G(x;ψ)
1−G(x;ψ))

β


dx.

Let

u = e
λ


1−e(

G(x;ψ)
1−G(x;ψ))

β


,

then

u =





1, x→ −∞

0, x→∞
.

Also,

du

dx
= λβg(x;ψ)G(x;ψ)β−1[1−G(x;ψ)]−(β+1)e(

G(x;ψ)
1−G(x;ψ))

β

e
λ


1−e(

G(x;ψ)
1−G(x;ψ))

β


,
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implying that

dx =
du

λβg(x;ψ)G(x;ψ)β−1[1−G(x;ψ)]−(β+1)e(
G(x;ψ)

1−G(x;ψ))
β

e
λ


1−e(

G(x;ψ)
1−G(x;ψ))

β


.

Hence, ∫ ∞

−∞
f(x)dx =

∫ 1

0

du = 1.

This completes the proof.

The survival and failure rate functions play a pivotal role in reliability analysis

and other disciplines. Survival (or reliability) function gives the probability of

performing without fail a specified task, under given conditions for a specific

period of time. Thus, reliability may be used as a measure of the system’s success

in proforming its function properly. Mathematically, the survival function, S(x),

is expressed as

S(x) = 1− F (x)

The failure rate (hazard) function, h(x), on the other hand is the instantaneous

failure rate and is mathematically expressed as

h(x) = lim
4x→0

P (x < X ≤ x+4x | X > x)

4x =
f(x)

1− F (x)

The survival S(x) and hazard h(x) functions of the OC family are respectively

given by

S(x) = e

λ


1−e

( G(x;ψ)
1−G(x;ψ))

β


, x > 0 (4.3)

and

h(x) = λβg(x;ψ)G(x;ψ)β−1[1−G(x;ψ)]−(β+1)e
( G(x;ψ)
1−G(x;ψ))

β

,x > 0λ > 0, β > 0.

(4.4)

For simplicity, let G(x;ψ) and g(x;ψ) be denoted as G(x) and g(x).
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4.3 Mixture Representation

The mixture representation of the pdf is essential in the derivation of the statis-

tical properties of the OC family of distributions.

Proposition 4.2. The mixture representation of the pdf of the OC family is

obtained as

f(x) = λβ
∞∑

i=0

∞∑

j=0

∞∑

k=0

∞∑

m=0

m∑

q=0

νijkmqg(x)G(x)q, (4.5)

where

νijkmq =
(−1)i+mλi(i+ 1)j

i!j!
eλ




β(j + 1) + k

k







β(j + 1) + k − 1

m







m

q


 .

Proof. After applying Taylor series expansion,

ez =
∞∑

i=0

zi

i!
,

to the pdf of the OC family in equation (4.2), f(x) becomes

f(x) = λβg(x)eλ
∞∑

i=0

∞∑

j=0

(−1)iλi

i!

(i+ 1)j

j!
G(x)β(j+1)−1[1−G(x)]−[β(j+1)+1].

Further expanding the expression for f(x) using the generalized binomial series

expansion,

(1− z)−a =
∞∑

k=0




a+ k − 1

k


zk, |z| ≤ 1, a < 0,

yields

f(x) = λβg(x)eλ
∞∑

i=0

∞∑

j=0

∞∑

k=0

(−1)iλi

i!

(i+ 1)j

j!




β(j + 1) + k

k


G(x)β(j+1)+k−1.

The mixture representation of the pdf of the OC family f(x) can further be
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expressed as

f(x) =λβeλ
∞∑

i=0

∞∑

j=0

∞∑

k=0

∞∑

m=0

m∑

q=0

(−1)i+mλi

i!

(i+ 1)j

j!




β(j + 1) + k

k




×




β(j + 1) + k − 1

m







m

q


 g(x)G(x)q,

hence the proof.

Equation (4.5) expresses the pdf of the OC family as a product of its parameters

and sum of the product of the pdf and weighted power series of the baseline

distribution function.

Also, expressing f(x) in terms of exponentiated-G (expo-G) density yields

f(x) = λβ
∞∑

i=0

∞∑

j=0

∞∑

k=0

∞∑

m=0

m∑

q=0

ν∗
ijkmq

πq+1(x), (4.6)

where ν∗
ijkmq

=
νijkmq
q+1

and πq+1(x) = (q + 1)g(x)G(x)q is the expo-G density

function with power parameter (q + 1).

4.4 Statistical Properties

This section discusses some of the statistical properties of the CG family of dis-

tributions. These include: quantile functions, non-central moments, moments,

generating functions, inequality measures, entropies, residual life, stochastic or-

dering and order statistics.

4.4.1 Quantile Function

Random number generation for simulation purposes is one of the essential uses of

the quantile function. Also, the effect of parameters on the skewness and kurtosis

of a distribution can be determined based on the quantile measure.
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Proposition 4.3. The quantile function for the OC family of distributions is

given by

QG(u) = G−1




(
log
(

1− log(1−u)
λ

)) 1
β

1 +
(

log
(

1− log(1−u)
λ

)) 1
β


 ,0 ≤ u ≤ 1. (4.7)

Proof. The quantile function QG(u) of a random variable X, 0 ≤ u ≤ 1, is

defined as the inverse of the cdf F (x). Replacing x with xu in equation (4.1),

equating F (xu) to u and making xu the subject yields the quantile function. The

median of the family is obtained by substituting u = 0.5 in equation (4.7).

The measures of skewness and kurtosis can be computed based on the quantile

measures. The Bowley’s measure of skewness and the Moors’ measure of kurtosis

are respectively defined as

skewness =
Q(1/4) +Q(3/4)− 2Q(1/2)

Q(3/4)−Q(1/4)
(4.8)

and

kurtosis =
Q(7/8)−Q(5/8) +Q(3/8)−Q(1/8)

Q(3/4)−Q(1/4)
. (4.9)

4.4.2 Moments, Moment Generating Functions and In-

complete Moments

In this section, the moments, moment generating function and incomplete mo-

ments are derived.

4.4.2.1 Moments

Moments are useful in statistical analysis especially in the study of the charac-

teristics of distributions such as measures of central tendencies, skewness and

kurtosis.
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Proposition 4.4. The rth non-central moment for the OC family of distributions

is given by

µ
′
r = λβ

∞∑

i=0

∞∑

j=0

∞∑

k=0

∞∑

m=0

m∑

q=0

νijkmqτ(r,q),r = 1, 2, ..., (4.10)

where τ(r,q) =
∞∫
−∞

xrg(x)(G(x))qdx is the weighted moment of the baseline distri-

bution G(x).

Proof. The rth non-central moment is defined as

µ
′
r = E(Xr) =

∞∫

−∞

xrf(x)dx, r = 1, 2, ....

Substituting the mixture form of the density in equation (4.5) into the definition

of µ
′
r yields

µ
′
r = λβ

∞∑

i=0

∞∑

j=0

∞∑

k=0

∞∑

m=0

m∑

q=0

νijkmq

∞∫

−∞

xrg(x)(G(x))qdx,

thus completes the proof.

Alternatively, let G(x) = u, x = G−1(u) = QG(u), du
dx

= g(x) and g(x)dx = du.

The rth non-central moment is defined in terms of the quantile function as

µ
′
r = λβ

∞∑

i=0

∞∑

j=0

∞∑

k=0

∞∑

m=0

m∑

q=0

νijkmq

1∫

0

uqQr
G

(u)du, 0 < u < 1. (4.11)

4.4.2.2 Moment Generating Function

Moment generating functions are functions that can be used to establish the

moments of a random variable about a point. The moment generating function

of the OC family of distributions if it exist is given by Proposition 4.5.
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Proposition 4.5. The moment generating function for the OC family of distri-

butions is given by

MX(t) = λβ
∞∑

i=0

∞∑

j=0

∞∑

k=0

∞∑

m=0

m∑

q=0

∞∑

r=0

tr

r!
νijkmqτ(r,q). (4.12)

Proof. Generally, the moment generating function for a random variable X is

defined as

MX(t) = E(etX) =

∞∫

−∞

etxf(x)dx.

Hence, expanding MX(t) using Taylor series expansion yields

MX(t) =
∞∑

r=0

tr

r!

∞∫

−∞

xrf(x)dx.

Subsequently, substituting the expression for the rth non-central moment, µ
′
r, in

equation (4.10) into the definitin of MX(t) yields

MX(t) = λβ
∞∑

i=0

∞∑

j=0

∞∑

k=0

∞∑

m=0

m∑

q=0

∞∑

r=0

tr

r!
νijkmqτ(r,q),

thus the proof.

Let G(x) = u, MX(t) can be expressed in terms of quantile function as

MX(t) = λβ
∞∑

i=0

∞∑

j=0

∞∑

k=0

∞∑

m=0

m∑

q=0

∞∑

r=0

νijkmq

1∫

0

etQG(x)uqdu,0 < u < 1. (4.13)

4.4.2.3 Incomplete Moments

Incomplete moments play a key role in the computation of statistical measures

such as the mean deviations about the mean and median. They are key in com-

puting measures such as Lorenz and Bonferroni curves.
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Proposition 4.6. The incomplete moments of the OC family of distributions is

given by

Mr(y) = λβ
∞∑

i=0

∞∑

j=0

∞∑

k=0

∞∑

m=0

m∑

q=0

νijkmq

y∫

−∞

xrg(x)Gq(x)dx, r = 1, 2, .... (4.14)

Proof. For a random variable X, it’s incomplete moments is defined as

Mr(y) =

y∫

−∞

xrf(x)dx, r = 1, 2, ....

Substituting the mixture representation of the density in equation (4.5) into the

expression yields

Mr(y) = λβ
∞∑

i=0

∞∑

j=0

∞∑

k=0

∞∑

m=0

m∑

q=0

νijkmq

y∫

−∞

xrg(x)Gq(x)dx,

hence the proof.

Let G(x) = u, x = G−1(u) = QG(u) and g(x)dx = du, the incomplete moments

can be expressed in terms of quantile function as

Mr(y) = λβ
∞∑

i=0

∞∑

j=0

∞∑

k=0

∞∑

m=0

m∑

q=0

νijkmq

G(y)∫

0

uqQr
G(u)du, 0 ≤ u ≤ 1. (4.15)

4.4.3 Order Statistics

Order statistics are very useful in many areas of statistical theory most especially

extreme-value theory. The pdf for the pth order statistic, Xp:n, of an ordered

random sample, X(1) ≤ X(2) ≤ ... ≤ X(n), of size n is denoted by fXp:n(x).
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Proposition 4.7. The pdf for the pth order statistic of the OC family of distri-

butions is given by

fXp:n(x) = λβ

p−1∑

i=0

∞∑

j=0

∞∑

k=0

∞∑

l=0

∞∑

m=0

m∑

n=o

Dijklmng(x)G(x)n,, p = 1, 2, ..., n, (4.16)

where

Dijklmn =
(−1)i+j+mn!(λ(n− p+ i+ 1))j(j + 1)keλ(n−p+i+1)

j!k!(p− 1)!(n− p)!

×




p− 1

i







β(k + 1) + l

l







β(k + 1) + l − 1

m







m

n


 .

Proof. The pdf for the pth order statistic, Xp:n, of a random sample, X1, X2, ..., Xn,

of size n, fXp:n(x), is generally defined as

fXp:n(x) =
n!

(p− 1)!(n− p)! [F (x)]p−1[1− F (x)]n−pf(x), p = 1, 2, ..., n.

Expanding [F (x)]p−1 in the definition of fXp:n(x) using binomial series expansion

yields

[F (x)]p−1 =

p−1∑

i=0

(−1)i




p− 1

i


[1− F (x)]i.

Substituting it back into the expression of fXp:n(x) yields

fXp:n(x) =
n!

(p− 1)!(n− p)!

p−1∑

i=0

(−1)i




p− 1

i


[S(x)]n−p+if(x), (4.17)

where

[S(x)]n−p+i = [1− F (x)]n−p+i = e
λ(n−p+i)

(
1−eG(x)β

)
.

Algebraically manipulating

[S(x)]n−p+if(x) = λβg(x)G(x)β−1eG(x)βe
λ(n−p+i+1)

(
1−eG(x)β

)
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using Taylor series expansion yields

[S(x)]n−p+if(x) =λβg(x)G(x)β−1eλ(n−p+i+1)

×
∞∑

j=0

∞∑

k=0

(−1)j[λ(n− p+ i+ 1)]j(j + 1)k

i!k!
G(x)βk.

Further applying binomial series expansion gives;

[S(x)]n−p+if(x) = λβg(x)eλ(n−p+i+1)

∞∑

j=0

∞∑

k=0

∞∑

l=o

∞∑

m=0

m∑

n=o

(−1)j+m[λ(n− p+ i+ 1)]j

i!k!

× (j + 1)k




β(k + 1) + l

l







β(k + 1) + l − 1

m







m

n


G(x)n.

(4.18)

Subsequently, substituting the expression of [S(x)]n−p+if(x) in equation (4.18)

into that of fXp:n(x) in equation (4.17) yields

fXp:n(x) =λβ

p−1∑

i=0

∞∑

j=0

∞∑

k=0

∞∑

l=0

∞∑

m=0

m∑

n=0

(−1)i+j+mn![λ(n− p+ i+ 1)]jeλ(n−p+i+1)

j!k!(p− 1)!(n− p)!

× (j + 1)k




p− 1

i







β(k + 1) + l

l







β(k + 1) + l − 1

m




×




m

n


 g(x)G(x)n,

hence the proof.

4.4.3.1 Moments of Order Statistics

Proposition 4.8. The rth non central moment of the pth order statistic, E(Xr
p:n),

of the OC family of distributions is given by,

E(Xr
p:n) = λβ

p−1∑

i=0

∞∑

j=0

∞∑

k=0

∞∑

l=0

∞∑

m=0

m∑

n=0

Dijklmnτr,n, p = 1, 2, ..., n, r = 1, 2, ...,

(4.19)
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where τr,n =
∞∫
−∞

xrg(x)G(x)ndx is the probability weighted moment of the base-

line distribution.

Proof. The rth moment of the pth order statistic of a random variable is defined

as

E(Xr
p:n) =

∞∫

−∞

xrfXp:n(x)dx, p = 1, 2, ..., n, r = 1, 2, ....

Hence, substituting the expresson for the pdf of the pth order statistic in equation

(4.16) into the definition of E(Xr
p:n), completes the proof.

4.4.4 Stochastic Ordering

Stochastic ordering is used to show the ordering mechanism of a dataset. A

random variable X with cdf FX(x) is less than Y with cdf FY (x) in likelihood

ratio order (X≤lrY ), if the function fX(x)/fY (x) is decreasing for all x.

Proposition 4.9. Let X ∼ OC(x;λ1, β, ψ) and Y ∼ OC(x;λ2, β, ψ), X is

smaller than Y in stochastic order (X≤stY ) if λ2 < λ1.

Proof. The ratio of the pdfs of X ∼ OC(x;λ1, β, ψ) and Y ∼ OC(x;λ2, β, ψ) is

obtained as

fX(x)

fY (x)
=
λ1
λ2
e
(λ1−λ2)


1−e(

G(x)
1−G(x))

β


.

Taking the differential of the logarithm of the expression yields

d

dx

[
log

(
f(x)

g(x)

)]
= β(λ2 − λ1)g(x)G(x)2e(

G(x)
1−G(x))

β

.

Hence, if λ2 < λ1, then, d
dx

[
log
(
fX(x)
fY (x)

)]
< 0 for all x.

Thus the proof.
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4.4.5 Inequality Measures

Several fields like insurance, econometrics and reliability studies employ Lorenz

and Bonferroni curves in the study of inequality measures like income and poverty.

4.4.5.1 Lorenz Curve

Lorenz curve is defined as LF (y) = 1
µ

y∫
−∞

xf(x)dx, hence for the OC family of

distributions, it is obtained by substituting the mixture representation of the

density in equation (4.5) into the definition of Lorenz curve LF (y). The Lorenz

curve for the OC family is given by

LF (y) =
λβ

µ

∞∑

i=0

∞∑

j=0

∞∑

k=0

∞∑

m=0

m∑

q=0

νijkmq

y∫

−∞

xg(x)Gq(x)dx. (4.20)

Alternatively, LF (y) can be expressed in terms of quantile function by letting

G(x) = u. This implies that x = G−1(u) = QG(u) and g(x)dx = du. Hence,

substituting these expressions of G(x) into the expression of the Lorenz curve for

the OC family in equation (4.20) yields the Lorenz curve in terms of quantile

function for the OC family as

LF (y) =
λβ

µ

∞∑

i=0

∞∑

j=0

∞∑

k=0

∞∑

m=0

m∑

q=0

νijkmq

G(y)∫

0

uqQG(u)du, 0 ≤ u ≤ 1. (4.21)

4.4.5.2 Bonferroni Curve

Bonferroni curve is defined as BF (y) = LF (y)
Fy

, hence for the OC family of distri-

butions, it is obtained by substituting the expression for the Lorenz curve LF (y)

in equation (4.20) into its definition.
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The Bonferroni curve for the OC family of distributions is obtained as

BF (y) =
λβ

µF (y)

∞∑

i=0

∞∑

j=0

∞∑

k=0

∞∑

m=0

m∑

q=0

νijkmq

y∫

−∞

xg(x)Gq(x)dx. (4.22)

4.4.6 Mean Residual Life

The mean residual life is the expected residual life or the average survival time

of a component after it exceeds a specific time y. It plays a very useful role in

reliability studies.

Proposition 4.10. The mean residual life of an OC random variable is given by

M̄(y) =
1

F (y)


µ− λβ

∞∑

i=0

∞∑

j=0

∞∑

k=0

∞∑

m=0

m∑

q=0

νijkmq

y∫

−∞

xg(x)Gq(x)dx


− y. (4.23)

Proof. The mean residual life is defined as M̄(y) = E(x− y/x > y), thus

M̄(y) =
1

F (y)


µ−

y∫

−∞

xf(x)dx


− y.

Substituting the mixture representation of the density function f(x) in equation

(4.5) into the definition of the mean residual life M̄(y) completes the proof.

4.4.7 Entropy

Entropy measures the variation or uncertainty of a random variable. It is very

important especially in fields related to communications. Coding theory, with its

basis hinged on efficient representation of information such as audio, video or still

imagery, is one of the fields that employs the use of entropy measures (Beadle

et al., 2008). Signal processing community also use entropy measures to separate

the signals from multiple sources (blind deconvolution)(Lake, 2006).
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4.4.7.1 Rényi’s Entropy

Rényi’s entropy is a widely used measure of Guassianity in many applications

such as independent component analysis for blind deconvolution. The measures of

Guassianity are also used for exploratory projection pursuit in searching for non-

Gaussian low-dimensional projections of high-dimensional data using projection

index (Lake, 2006).

Proposition 4.11. Rényi’s entropy for the OC family of distributions is given

by

IR(δ) =
1

1− δ log


(λβ)δ

∞∑

i=0

∞∑

j=0

∞∑

k=0

∞∑

l=0

l∑

m=0

ηijklm

∞∫

−∞

g(x)δG(x)mdx


 , δ 6= 1, δ > 0,

(4.24)

where

ηijklm =
(−1)i+l(λδ)i(i+ δ)jeλδ

i!j!




β(j + δ) + δ + k − 1

k




×




β(j + δ)− δ + k

l







l

m


 .

Proof. Let X be a random variable with pdf f(x), the Rényi’s entropy (Rényi,

1961) is defined as;

IR(δ) =
1

1− δ log



∞∫

−∞

f δ(x)dx


 , δ 6= 1, δ > 0. (4.25)

An expression for f δ(x) is obtained by algebraically manipulating f(x) in equation

(4.2) as follows

f(x)δ =


λβg(x;ψ)G(x;ψ)β−1[1−G(x;ψ)]−(β+1)e(

G(x;ψ)
1−G(x;ψ))

β

e
λ


1−e(

G(x;ψ)
1−G(x;ψ))

β





δ

,

x > 0.
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Expanding f(x)δ using Taylor series expansion,

f(x)δ = (λβ)δeλδg(x)δ
∞∑

i=0

∞∑

j=0

(−1)i(λδ)i(i+ δ)j

i!j!
G(x)β(j+δ)−δ[1−G(x)]−[β(j+δ)+δ].

Further expanding f(x)δ using binomial series expansion

f(x)δ =(λβ)δeλδg(x)δ
∞∑

i=0

∞∑

j=0

∞∑

k=0

∞∑

l=0

l∑

m=0

(−1)i+l(λδ)i(i+ δ)j

i!j!

×




β(j + δ) + δ + k − 1

k







β(j + δ)− δ + k

l







l

m


G(x)m.

(4.26)

Rényi’s entropy for the OC family of distributions is then obtained by substi-

tuting the expression for f δ(x) in equation (4.26) into the definition of IR(δ) in

equation(4.25) as

IR(δ) =
1

1− δ log

[
(λβ)δ

∞∑

i=0

∞∑

j=0

∞∑

k=0

∞∑

l=0

l∑

m=0

(−1)i+l(λδ)i(i+ δ)jeλδ

i!j!

×




β(j + δ) + δ + k − 1

k







β(j + δ)− δ + k

l







l

m



∫ ∞

−∞
g(x)δG(x)mdx


 .

This completes the proof.

4.4.7.2 Shannon’s Entropy

The Shannon’s (differential) entropy (Rényi, 1961) for a random variable X with

pdf f(x) is a special case of the Rényi’s entropy when δ ↑ 1. A very useful property

of the Shannon’s entropy is that, in a set of random variables with equal variance,

its maximum value is attained with a Gaussian distribution. Hence, its upper

bound is

H(x) ≤ 1

2
log (2πe) +

1

2
log
(
σ2
)
,
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where the right hand side is the entropy when x is normal. A population is

said to be non Guassian if an estimate of the entropy for a random sample is

substantially lower than this upper bound (Lake, 2006).

The Shannon’s entropy is defined as

ηX = E(− log f(x)).

For the OC family of distributions it is obtained by substituting the mixture rep-

resentation of density f(x) in equation (4.5) into the definition of the Shannon’s

entropy ηX . Hence, the Shannon’s entropy for the OC family of distributions is

given by

ηX = E

[
− log

(
λβ

∞∑

i=0

∞∑

j=0

∞∑

k=0

∞∑

m=0

m∑

q=0

νijkmqg(x)G(x)q
)]

. (4.27)

4.4.7.3 Delta Entropy

The δ− entropy for a random variable X with pdf f(x) is defined as

H(δ) =
1

1− δ log


1−

∞∫

−∞

f δ(x)dx


 , δ 6= 1, δ > 0.

Hence the δ− entropy for the OC family of distributions is obtained by substitut-

ing the expression of f δ(x) in equation (4.26) into the definition for δ− entropy

H(δ). The δ− entropy for the OC family is given by

H(δ) =
1

1− δ log


1− (λβ)δ

∞∑

i=0

∞∑

j=0

∞∑

k=0

∞∑

l=0

l∑

m=0

ηijklm

∞∫

−∞

g(x)δG(x)mdx


 ,

δ 6= 1, δ > 0.

(4.28)

39



www.udsspace.uds.edu.gh 

 

 

 

 

4.4.8 Stress Strength Reliability

The stress strength reliability is the probability of a component to perform with-

out fail, an assigned task under specified conditions for a given level of stress.

Proposition 4.12. The stress strength reliliability R of the OC family is given

by

R = 1− λβ
∞∑

i=0

∞∑

j=0

∞∑

k=0

∞∑

l=0

l∑

m=0

ϕijklm

∞∫

−∞

g(x)G(x)mdx, (4.29)

where

ϕijklm =
(−1)i+l(2λ)i(i+ 1)je2λ

i!j!




β(j + 1) + k

k







β(j + 1) + k − 1

l







l

m


 .

Proof. Suppose X1 ∼ (λ, β, ψ) is a strength random variables and X2 ∼ (λ, β, ψ)

is a stress random variable both from the OC family. The stress strength relia-

bility is defined as

R = P (X2 < X1) =

∞∫

−∞

f(x)F (x)dx = 1−
∞∫

−∞

f(x)S(x)dx. (4.30)

f(x)S(x) in the expression of R in equation (4.30) can be agebraically manipu-

lated using a similar concept as that used for the mixture representation of the

density f(x) as follows

f(x)S(x) = λβe2λg(x)G(x)β−1[1−G(x)]−(β+1)e(G(x)−1−1)
−β
e−2λe

(G(x)−1−1)
−β

.

Expanding f(x)S(x) using Taylor series expansion yields;

f(x)S(x) = λβe2λg(x)
∞∑

i=0

∞∑

j=0

(−1)i(2λ)i(i+ 1)j

i!j!
G(x)β(j+1)−1[1−G(x)]−[β(j+1)+1].
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Further expanding f(x)S(x) using the binomial series expansion yields

f(x)S(x) =λβe2λg(x)
∞∑

i=0

∞∑

j=0

∞∑

k=0

∞∑

l=0

l∑

m=0

(−1)i+l(2λ)i(i+ 1)j

i!j!

×




β(j + 1) + k

k







β(j + 1) + k − 1

l







l

m


G(x)m.

(4.31)

Substituting the expression for f(x)S(x) in equation (4.31) obtained into the

definition of R in equation (4.30) yields

R = 1−
[
λβ

∞∑

i=0

∞∑

j=0

∞∑

k=0

∞∑

l=0

l∑

m=0

(−1)i+l(2λ)i(i+ 1)je2λ

i!j!

×




β(j + 1) + k

k







β(j + 1) + k − 1

l







l

m




∞∫

−∞

g(x)G(x)mdx


 ,

hence the proof.

Let G(x) = u, x = G−1(u) = QG(u), du
dx

= g(x) and g(x)dx = du. The stress

strength reliability of the OC family can alternatively be expressed in terms of

quantile function by substituting G(x) = u and g(x)dx = du into the expression

of R in equation (4.29) to obtain

R = 1− λβ
∞∑

i=0

∞∑

j=0

∞∑

k=0

∞∑

l=0

l∑

m=0

ϕijklm

1∫

0

umdu, 0 ≤ u ≤ 1.

Simplifying the expression yields

R = 1− λβ
∞∑

i=0

∞∑

j=0

∞∑

k=0

∞∑

l=0

l∑

m=0

(
ϕijklm
m+ 1

)
. (4.32)
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4.5 Parameter Estimation

The parameters of the OC family are estimated in this section using maximum

likelihood estimation method.

4.5.1 Maximum Likelihood Estimation

Given a random sample, x1, x2, ..., xn, of size n, with parameters; λ, β and ψ,

from the OC family of distributions. Let ν = (λ, β, ψ)T be a (p × 1) parameter

vector, the total log-likelihood function is given by

` =n log λβ + (β − 1)
n∑

i=1

logG(x;ψ) + λ
n∑

i=1

(
1− e(

G(x;ψ)
1−G(x;ψ))

β
)

+
n∑

i=1

log g(x;ψ)− (β + 1)
n∑

i=1

log [1−G(x;ψ)]
n∑

i=1

(
G(x;ψ)

1−G(x;ψ)

)β
.

(4.33)

Partially differentiating the likelihood function yields the components of the score

function U (υ) = (∂`/∂λ, ∂`/∂β, ∂`/∂ψ)T as follows

d`

dλ
=
n

λ
+

n∑

i=1

(
1− e(

G(x;ψ)
1−G(x;ψ))

β
)
, (4.34)

d`

dβ
=
n

β
+

n∑

i=1

logG(x;ψ) +
n∑

i=1

(
G(x;ψ)

1−G(x;ψ)

)β
log

(
G(x;ψ)

1−G(x;ψ)

)

−
n∑

i=1

log [1−G(x;ψ)]− λ
n∑

i=1

(
G(x;ψ)

1−G(x;ψ)

)β
log

(
G(x;ψ)

1−G(x;ψ)

)
e(

G(x;ψ)
1−G(x;ψ))

β

(4.35)

and

d`

dψ
=

n∑

i=1

g
′
k(x;ψ)

g(x;ψ)
+ (β − 1)

n∑

I=1

G
′
k(x;ψ)

G(x;ψ)
+ (β + 1)

n∑

i=1

G
′
k(x;ψ)

[1−G(x;ψ)]

+ β
n∑

i=1

G
′
K(x;ψ)G(x;ψ)β−1

[1−G(x;ψ)]β+1
− λβ

n∑

i=1

G
′
K(x;ψ)G(x;ψ)β−1

[1−G(x;ψ)]β+1
e(

G(x;ψ)
1−G(x;ψ))

β

,

(4.36)

where g
′
K(x;ψ) = dg(x;ψ)

dψ
, g
′′
K(x;ψ) = d2g(x;ψ)

dψ2 , G
′
K(x;ψ) = dG(x;ψ)

dψ
and G

′′
K(x;ψ) =

d2G(x;ψ)
dψ2 .
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The estimators of the parameters are then obtained by setting equations (4.34),

(4.35) and (4.36) to zero and solving them numerically using the iterative methods

such as the Newton-Raphson type algorithms. The observed information matrix

J (υ), is required for interval estimation of the parameters. It can be estimated

as J (υ) = ∂2`
∂i∂j

for (i, j = λ, β, ψ) whose elements are evaluated numerically.

4.6 Some Special Distributions

Generalization of several distributions can be made using the OC family of distri-

butions. Three special distributions; odd Chen Burr III (OCB), odd Chen Lomax

(OCL) and odd Chen Weibull (OCW) were developed in this section.

4.6.1 Odd Chen Burr III Distribution

The cdf and pdf of Burr III distribution (Burr, 1942), the baseline model, are

respectively G(x) =
(
1 + x−θ

)−γ
and g(x) = γθx−θ−1

(
1 + x−θ

)−γ−1
, x > 0, θ >

0, γ > 0. Substituting G(x) and g(x) into equations (4.1), (4.2) and (4.4), respec-

tively yields the cumulative distribution, probability density and hazard functions

of the OCB distribution. The cdf and pdf of the OCB distribution are respectively

given by

F (x) = 1− e
λ

(
1−e[(1+x−θ)

γ
−1]
−β)

, x > 0, θ > 0, β > 0, γ > 0, λ > 0 (4.37)

and

f(x) =λβγθx−(θ+1)
(
1 + x−θ

)(−γβ+1)
[
1−

(
1 + x−θ

)−γ]−(β+1)

e[(1+x
−θ)

γ−1]
−β

× e
λ

(
1−e[(1+x−θ)

γ
−1]
−β)

, x > 0.

(4.38)
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Its hazard function is given by

h(x) =λβγθx−(θ+1)
(
1 + x−θ

)−(γβ+1)
[
1−

(
1 + x−θ

)−γ]−(β+1)

e[(1+x
−θ)

γ−1]
−β
,

x > 0.

(4.39)

The OCB distribution exhibits; increasing, decreasing, unimodal left and right

skewed shapes of density function. For some selected values, it exhibits; bathtub,

upside down bathtub, modified upside down bathtub, decreasing and increasing

failure rates as shown by its density and hazard rate plots in Figure 4.1.
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Figure 4.1: Plots of density and hazard rate functions of OCB distribution

The quantile function QG(u) for the Odd Chen Burr III distribution is given by

QG(u) =








(
log
(

1−
(

log(1−u)
λ

))) 1
β

1 +
(

log
(

1−
(

log(1−u)
λ

))) 1
β




− 1
γ

− 1





− 1
θ

,0 ≤ u ≤ 1. (4.40)

The plots of skewness and kurtosis of the OCB distribution are shown in Figure

4.2.

44



www.udsspace.uds.edu.gh 

 

 

 

 

Figure 4.2: Plots of skewness and kurtosis of OCB distribution

The plots in Figure 4.2 reveals that varying combinations of the parameters have

varying effects on the measures of skewness and kurtosis of the OCB distribution.

4.6.2 Odd Chen Lomax Distribution

The cdf and pdf of the Lomax distribution (Lomax, 1954) are respectively given

by G(x) = 1− (1 + θx)−k and g(x) = θk(1 + θx)−(k+1), x > 0, k > 0, θ > 0. The

cdf and pdf of the OCL distribution is obtained by substituting the cdf and pdf of

the Lomax distribution into the cdf and pdf of the OC generator in equations(4.1)

and (4.2) respectively. The cdf and pdf of the OCL distribution are respectively

given by

F (x) = 1− e
λ

(
1−e[(1+θx)

k−1]
β
)

, x > 0, λ > 0, θ > 0, β > 0, k > 0 (4.41)
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and

f(x) =λβθk(1 + θx)βk−1
[
1− (1 + θx)−k

]β−1
e[(1+θx)

k−1]
β

e
λ

(
1−e[(1+θx)

k−1]
β
)

,

x > 0.

(4.42)

Its hazard function is given by

h(x) = λβθk(1 + θx)βk−1
[
1− (1 + θx)−k

]β−1
e[(1+θx)

k−1]
β

, x > 0. (4.43)

The density plot of the OCL distribution exhibit varying shapes such as; in-

creasing, decreasing and non monotonically increasing shapes among others, as

shown in Figure 4.3. The hazard rate function exhibited; upside down bathtub,

decreasing and increasing failure rates, for some selected values.
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Figure 4.3: Plots of density and hazard rate functions of OCL distribution

The quantile function for the Odd Chen Lomax distribution is obtained as

QG(u) =
1

θ





1−




(
log
(

1− log(1−u)
λ

)) 1
β

1 +
(

log
(

1− log(1−u)
λ

)) 1
β







− 1
k

− 1


 , 0 ≤ u ≤ 1. (4.44)
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The plots of skewness and kurtosis of the OCL distribution is shown in Figure

4.4. From the plots it can be seen that both measures are directly affected by

varying measures and combinations of the parameter values.

Figure 4.4: Plots of skewness and kurtosis of OCL distribution

4.6.3 Odd Chen Weibull Distribution

The Odd Chen Weibull (OCW) distribution is obtained by substituting the cdf

and pdf of Weibull distribution (Weibull, 1951) given by G(x) = 1− e−( xα)
γ

and

g(x) =
(
γ
α

) (
x
α

)γ−1
e−( xα)

γ

respectively into the cdf, pdf and hazard function of

the OC family given by equations (4.1), (4.2) and (4.4). The cdf, pdf and hazard

function of OCW distribution are respectively obtained as

F (x) = 1− exp

[
λ

(
1− exp

(
e(

x
α)

γ

− 1
)β)]

, x > 0, α > 0, β > 0, γ > 0, (4.45)

f(x) =λβ
(γ
α

)(x
α

)γ−1(
1− e−( xα)

γ)β−1
e−( xα)

−γβ
e

(
e(
x
α )
γ
−1
)β
e
λ

(
1−exp

(
e(
x
α )
γ
−1
)β)

,

x > 0

(4.46)
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and

h(x) = λβ
(γ
α

)(x
α

)γ−1(
1− e−( xα)

γ)β−1
e−( xα)

−γβ
e

(
e(
x
α )
γ
−1
)β
, x > 0. (4.47)

A display of plots of the density and hazard rate functions of the OCW distribu-

tion are found in Figure 4.5. The density plot shows shapes such as symmetric,

unimodal right skewed, J and reversed J shapes. The hazard rate plot for some

selected values exhibits increasing and decreasing failure rates, bathtub and up-

side down bathtub shapes.
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Figure 4.5: Plots of density and hazard rate functions of OCW distribution

The quantile function QG(u) the Odd Chen Weibull distribution is given by

QG(u) = α


− log


1−

(
log
(

1− log(1−u)
λ

)) 1
β

1 +
(

log
(

1− log(1−u)
λ

)) 1
β







1
γ

, 0 ≤ u ≤ 1. (4.48)

The OCW distribution can model datasets exhibiting different degrees of skewness

and kurtosis as shown in Figure 4.6.
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Figure 4.6: Plots of skewness and kurtosis of OCW distribution

4.7 Simulation

Validation of the maximum likelihood estimators is carried out in this section us-

ing Monte Carlo simulations. This is done using the estimators of the OCW dis-

tribution. Random numbers from the OCW distribution are generated using the

OCW quantile function in equation (4.48). Setting the initial parameter values;

θ = 0.3, β = 0.8, γ = 0.1 and λ = 0.4, for sample sizes n = 50, 150, 300, 600, 1000,

the simulations are repeated 1500 times for each sample. Repeating similar sam-

ple sizes for the initial parameter values;θ = 0.9, β = 3.5, γ = 2.5 and λ = 0.6,

the simulations are repeated for each sample another 1500 times. The root mean

square error (RMSE) and the average bias (AB) for the estimators of the param-

eters were computed using the expressions

RMSE =

√√√√ 1

N

N∑

i=1

(
θ̂i − θ

)2

and

AB =
1

N

N∑

i=1

(
θ̂i − θ

)
.
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The RMSE, AB and coverage probability (CP) for the estimators of the param-

eters at 95% confidence intervals are presented in Table 4.1. From the table it is

observed that there is convergence of the RMSE and AB in all cases. Thus they

decrease to zero(0) as the sample size increases. The CPs are also observed to be

close the nominal value of 0.95. This emphasizes the effectiveness of the method

of maximum likelihood in estimating the parameters of the OCW distribution.

Table 4.1: Simulation results of AB, RMSE and CP for OCW distribution.
Parameter n I II

AB RMSE CP AB RMSE CP
θ 50 0.5467 0.7802 0.8880 2.8948 3.8475 0.9840

150 0.3836 0.6492 0.8673 1.6762 2.4370 0.9560
300 0.2496 0.5282 0.8633 1.1345 1.6802 0.9467
600 0.1365 0.3922 0.8600 0.7915 1.1433 0.9600
1000 0.0872 0.3048 0.8853 0.6119 0.8900 0.9540

β 50 0.0388 0.1555 0.9833 -2.1826 2.5354 0.4593
150 0.0249 0.0812 0.9740 -1.8235 2.2538 0.5820
300 0.0165 0.0567 0.9820 -1.6394 2.0520 0.6387
600 0.0117 0.0371 0.9813 -1.4499 1.8822 0.6523
1000 0.0072 0.0263 0.9727 -1.2787 1.7325 0.6440

γ 50 -0.0129 0.0962 0.9999 246.9147 966.0244 0.9767
150 -0.0081 0.0732 0.9967 28.4697 107.9522 0.9887
300 -0.0014 0.0620 0.9740 7.6163 21.8327 0.9953
600 0.0021 0.0479 0.9620 2.9083 4.8612 0.9999
1000 0.0016 0.3880 0.9553 2.0458 3.2785 0.9900

λ 50 0.1021 0.4368 0.8947 0.8223 17.0391 0.6080
150 0.0150 0.2060 0.9267 -0.1217 0.7355 0.6553
300 -0.0064 0.1398 0.9307 -0.1766 0.4760 0.7100
600 -0.0104 0.0972 0.9433 -0.1953 0.3604 0.7367
1000 -0.0084 0.0772 0.9393 -0.1898 0.3135 0.7487

4.8 Applications

In this section, real life datasets are used to demonstrate the applications of

the OCB, OCL and OCW distributions in providing good parametric fit. The

maximum likelihood estimates for the parameters of the model were obtained by

maximizing the log-likelihood function of the models. Their performance was then

compared with that of Chen distribution and new generalized Weibull(NGW)

distribution (Zaindin and Sarhan, 2011) using the AD, CM and KS goodness of

fit measures and the AIC, BIC and CAIC information criteria measures. The
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smaller the value of the goodness of fit measures the better the fit to the data.

The negative log-likelihood was also considered for the sake of comparison. The

cdf and pdf of the NGW are respectively given by F (x) =
[
1− e−αx−βxθ

]λ
and

f(x) = λ
(
α + βθxθ−1

)
e−αx−βx

θ
[
1− e−αx−βxθ

]λ−1
.

4.8.1 First Application

Data 1 which consists lifetimes of 50 components, given by Aarset (1987), was

used in this application. Descriptive statistics of the dataset in Table 4.2 shows

that, the minimum and maximum lifetimes of the components recorded were 0.1

and 86 respectively. The average lifetime of a component was 45.686 with a

standard deviation of 32.8353. The high standard deviation might be an indica-

tion of the presence of extreme values. The values of the coefficients of skewness

and kurtosis are -0.1378 and 1.4139 respectively which indicates the dataset is

left-skewed and heavy-tailed (leptokurtic).

Table 4.2: Descriptive statistics of the lifetimes of 50 components
Minimum Maximum Mean Standard deviation Skewness Kurtosis

0.1 86 45.686 32.8353 -0.1378 1.4139

A total time on test (TTT) transform plot of the dataset in Figure 4.7 shows

that the dataset exhibits a modified bathtub shaped failure rate as it starts with

a convex shape with an angle below the 450 line, follows with a concave above

the 450 line, then another convex shape and finally a concave shape.

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.4

0.8

i/n

T(i
/n)

Figure 4.7: TTT-transform plot for the Data 1
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The maximum likelihood and standard error estimates of parameters for the

various distributions for Data 1 are recorded in Table 4.4.

Table 4.3: Maximum likelihood and standard error estimates of parameters
Model Parameter Estimate Standard error z-value p-value

OCB λ̂ 0.0275 0.0133 2.0707 0.0384*

β̂ 0.1241 0.1756 0.7068 0.4797

θ̂ 2.9023 3.909 0.7425 0.4578
γ̂ 3.0213 1.9036 1.5872 0.1125

OCL λ̂ 0.1199 0.0434 2.7591 0.0058*

β̂ 0.3308 0.0828 3.9964 6.43× 10−5*

θ̂ 0.0074 0.003 2.4595 0.0139*

k̂ 6.8406 2.2717 3.0112 0.0026*

OCW λ̂ 0.3606 0.0725 4.9758 6.50× 10−7*

β̂ 0.031 0.0071 4.3529 1.34× 10−2*
α̂ 45.9988 4.1288 11.1409 2.20× 10−16*
γ̂ 5.0701 0.8432 6.0128 1.82× 10−9*

C λ̂ 0.0205 0.0085 2.4077 0.01605*

β̂ 0.3444 0.0212 16.2686 2.20× 10−16*

NGW λ̂ 78.6862 0.0019 41180.9326 2.20× 10−16*

β̂ 3.3297 0.1532 21.7392 2.20× 10−16*
α̂ 0.0245 0.0042 5.7691 7.97× 10−9*

θ̂ 0.0407 0.0138 2.9589 3.10× 10−3*
*: means significant at the 5% significance level

From Table 4.3 it is observed that, all the parameters of OCL, OCW, C and

NGW distributions were significant at 95% confidence level. However for the

OCB distribution, only λ̂ was significant at 5% level of significance, the rest of

the parameter estimates (β̂, θ̂ and γ̂) were not significant.

OCL distribution outperforms the rest of the models as it has the highest log-

likelihood and the lowest values of all the goodness-of-fit measures (KS,AD and

CM) as shown in Table 4.4. It also provides a comparatively reasonable fit as

illustrated by the fact that it has the lowest values for all the measures of infor-

mation criteria considered (AIC, BIC and CAIC).
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Table 4.4: Log-likelihood estimates and goodness of fit measures
Model ` KS CM AD AIC BIC CAIC
OCB -232.01 0.168 0.318 2.001 472.025 479.673 472.914
OCL -225.31 0.145 0.203 1.439 458.618 466.266 459.507
OCW -291.65 0.191 0.255 1.606 591.291 598.940 592.180

C -233.17 0.167 0.324 2.088 470.336 474.160 470.592
NGW -235.60 0.162 0.380 2.368 479.209 486.857 480.098

Figure 4.8 shows the histogram of Data 1 and the densities of the fitted distri-

butions on the left, and the empirical cdf of Data 1 and the fitted cdfs on the

right.
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Figure 4.8: Empirical and fitted density and cdf plots of fitted distributions for
Data 1

It can be observed from the plots in Figure 4.8 that the fitted distributions closely

mimics the empirical density and cdf of the dataset.

The P-P plots of fitted distributions for Data 1 depicts the OCL distribution

as a comparatively better fit for the dataset as shown in Figure 4.9. Though

the OCB, OCW and C distributions also have their observations clustering along

their diagonals, the observations for the OCL distribution are more closely clus-

tered around the diagonal comparatively which is an indication that it provides

a comparatively better fit than the rest.
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Figure 4.9: P-P plots of fitted distributions for Data 1

Figure 4.10 shows the profile log-likelihood plot of OCL distribution’s parameters.

From the plot its can be seen that the estimated parameter values of the OCL

distribution are the maxima.
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Figure 4.10: Profile log-likelihood plot of OCL parameters

4.8.2 Second Application

This application made use of Data 2 which represents the lifetime of a certain

device given by Sylwia (2007). Descriptive statistics of the dataset in Table 4.2

reveals the dataset is left-skewed and thin-tailed (platykurtic) as respectively indi-

cated by the values of the coefficients of skewness (-1.1054) and kurtosis (3.3843).

The minimum and maximum lifetimes of the device recorded were 0.0094 and

12.3549. The mean lifetime of a component was 9.0395 with a standard deviation

of 3.8721.

Table 4.5: Descriptive statistics of the lifetimes of a certain device
Minimum Maximum Mean Standard deviation Skewness Kurtosis

0.0094 12.3549 9.0395 3.8721 -1.1054 3.3843

A total time on test (TTT) transform plot of the dataset in Figure 4.11 shows

that the dataset exhibits a bathtub shaped failure rate as it starts with a convex

shape and follows with a concave shape.
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Figure 4.11: TTT-transform plot for the Data 2

The maximum likelihood and corresponding standard error estimates for Data 2

is presented in Table 4.6.

Table 4.6: Maximum likelihood and standard error estimates of parameters
Model Parameter Estimate Standard error z-value p-value

OCB λ̂ 0.0054 0.0036 1.4781 0.1394

β̂ 0.0619 0.0042 14.9217 2.20× 10−16*

θ̂ 11.0047 0.0014 7737.3026 2.20× 10−16*
γ̂ 0.4419 0.1512 2.9231 0.0035*

OCL λ̂ 0.0403 0.0259 1.5534 0.1203

β̂ 0.5094 0.2121 2.4016 0.0163*

θ̂ 0.0201 0.01 2.0149 0.0439*

k̂ 12.2327 5.5815 2.1916 0.0284*

OCW λ̂ 0.2015 0.0685 2.9409 0.0033*

β̂ 0.0408 0.0181 2.2616 0.0237*
α̂ 4.7534 1.2735 3.7326 0.0002*
γ̂ 3.092 0.828 3.7343 0.0002*

C λ̂ 0.0064 0.0042 1.5237 0.1276

β̂ 0.6886 0.0474 14.5386 2.20× 10−16*

NGW λ̂ 106.72 0.0021 51367.5801 2.20× 10−16*

β̂ 3.2355 0.2269 14.2622 2.20× 10−16*
α̂ 0.0245 0.0042 5.7691 7.97× 10−9*

θ̂ 0.0131 0.0097 1.351 0.1767
*: means significant at the 5% significance level

From Table 4.6 it can be observed that, all the parameters of OCW distribution

were significant at 95% confidence level. The remaining distributions (OCB,

OCL, C and NGW) had one (1) parameter each been statistically insignificant

at 5% significance level.
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The OCL distribution again provided a comparatively better fit for the dataset

owing to the fact that it had the highest log-likelihood and the smallest values

for all the goodness-of-fit measures (KS, AD and W) as well as all information

criteria (AIC, BIC and CAIC) used as shown in Table 4.7.

Table 4.7: Log-likelihood estimates and goodness-of-fit measures of fitted distri-
butions
Model ` KS CM AD AIC BIC CAIC
OCB -75.97 0.1414 0.1343 0.9131 159.9333 165.5381 161.5333
OCL -72.19 0.0971 0.0666 0.4823 152.3888 157.9936 153.9888
OCW -116.5 0.0199 0.0478 0.3095 241.0092 246.614 242.6092

C -77.24 0.1469 0.1719 1.1505 158.4785 161.2808 158.9229
NMW -85.87 0.2219 0.4194 2.5874 179.7422 185.347 181.3422

The densities of fitted distributions and histogram of Data 2, and the empirical

and fitted cdfs of the dataset are respectively shown on the left and right sides of

Figure 4.12.
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Figure 4.12: Empirical and fitted density and cdf plots of fitted distributions for
Data 2

From the plots in Figure 4.12, though all the fitted distributions try to mimic

the empirical density and cdf of Data 2, it is the OCL distribution that does so

much closely.
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Figure 4.13 graphically confirms that the OCL provides a better fit for the dataset

comparatively as its observations are more closely clustered around the diagonal

than the other competing models thus OCB, OCW, C and NGW distributions.

0.0 0.4 0.8

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

OCB Distribution

Observed Probability

E
xp

e
ct

e
d
 P

ro
b
a
b
ili

ty

0.0 0.4 0.8

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

OCL Distribution

Observed Probability

E
xp

e
ct

e
d
 P

ro
b
a
b
ili

ty

0.0 0.4 0.8

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

OCW Distribution

Observed Probability

E
xp

e
ct

e
d
 P

ro
b
a
b
ili

ty

0.0 0.4 0.8

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C Distribution

Observed Probability

E
xp

e
ct

e
d
 P

ro
b
a
b
ili

ty

0.0 0.4 0.8

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

NGW Distribution

Observed Probability

E
xp

e
ct

e
d
 P

ro
b
a
b
ili

ty

Figure 4.13: P-P plots of fitted distributions for Data 2

The profile log-likelihood plot of OCL distribution’s parameters are displayed in

Figure 4.14. All the estimated parameter values of the OCL distribution are the

maxima as shown in the plot.
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Figure 4.14: Profile log-likelihood plot of OCL parameters

4.9 Summary

The flexibility of generalized models in modeling varying datasets remains a

strong motivation for developing new families of distributions. In this chap-

ter, a new family of distribution called the OC family is developed. Statistical

properties such as the stochastic ordering, order statistics, moments, uncertainty

measures and entropies of the new family are derived. Maximum likelihood esti-

mators of parameters for the family, were obtained. Three special distributions

of the new family were developed and their applications demonstrated using two

real datasets. A comparison of the results revealed that the OCL provided a

better parametric fit to these datasets.
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CHAPTER FIVE

CHEN GENERATED FAMILY OF DISTRIBUTIONS

5.1 Introduction

The Chen generated family of distributions is presented in this chapter. Its statis-

tical properties, such as; the quantile function, moments, stochastic orderings and

order statistics among others, are derived. The parameters of the new family are

estimated and new distributions developed from the new family. The application

of the new models are then demonstrated using real dataset.

5.2 Chen Generated Family of Distributions

Let T be a Chen distributed continuous random variable. Suppose G(x;Ψ) is

the baseline cdf of an arbitrary continuous random variable X on any continuous

support say (−∞,∞) and Ψ is a (p × 1) vector of associated parameters. The

cdf of the Chen generated (CG) family of distributions (F (x)) is defined as;

F (x) =

∫ G(x;Ψ)

0

f(t)dt = A

[
1− eλ

(
1−eG(x;Ψ)β

)]
,−∞ < x <∞, λ > 0, β > 0,

(5.1)

where A = 1
1−eλ(1−e) and λ and β are shape parameters.

The density function of the family is then obtained by differentiating the cdf in

equation (5.1) as

f(x) = Aλβg(x;Ψ)G(x;Ψ)β−1eG(x;Ψ)βe
λ
(
1−eG(x;Ψ)β

)
,−∞ < x <∞. (5.2)

Proposition 5.1. The density function of the CG family of distributions is a

well-defined pdf.
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Proof. The pdf f(x) of a distribution is well-defined if it is a non-negative

function and when integrated over the support of X is one.

It is worth noting that f(x) is non-negative. Suppose the support of X be

(−∞,∞), then

∫ ∞

−∞
f(x)dx =

∫ ∞

−∞
Aλβg(x;Ψ)G(x;Ψ)β−1eG(x;Ψ)βe

λ
(
1−eG(x;Ψ)β

)
dx.

Let u = λ
(

1− eG(x;Ψ)β
)

, then as x → −∞, G(x;Ψ) → 0 and u → 0 and as

x→∞, G(x;Ψ)→ 1 and u→ λ (1− e).

Also, du
dx

= λβg(x;Ψ)G(x;Ψ)β−1eG(x;Ψ)β , implying that

dx =
du

λβg(x;Ψ)G(x;Ψ)β−1eG(x;Ψ)β
.

Hence ∫ ∞

−∞
f(x)dx =

∫ λ(1−e)

0

Aeudu = 1.

This completes the proof.

The survival function which is the compliment of the cdf for the CG family is

given by

S(x) = 1− A
[
1− eλ

(
1−eG(x;Ψ)β

)]
,−∞ < x <∞, λ > 0, β > 0, (5.3)

whilst the corresponding failure rate function is given by

h(x) =
Aλβg(x;Ψ)G(x;Ψ)β−1eG(x;Ψ)βe

λ
(
1−eG(x;Ψ)β

)

1− A
[
1− eλ(1−eG(x;Ψ)β)

] ,−∞ < x <∞. (5.4)
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5.3 Mixture Representation of Distribution

Mixture representation plays a useful role in the derivation of the statistical prop-

erties of the new family of distribution. Hence the mixture representation of the

pdf of the CG family of distributions is derived in this section.

Proposition 5.2. The mixture representation of the pdf of the CG family is

obtained as

f(x) = Aλβ
∞∑

i=0

∞∑

j=0

∞∑

k=0

k∑

l=0

ωijklg(x)G(x)l,−∞ < x <∞, (5.5)

where

ωijkl =
(−1)i+k+l(i+ 1)jλieλ

i!j!



β(j + 1)− 1

k






k

l


.

Proof. By applying Taylor series expansion, the pdf of the CG family f(x) in

equation (5.2) is expressed as

f(x) = Aλβg(x)G(x)β−1
∞∑

i=0

∞∑

j=0

(−1)iλi

i!

(i+ 1)j

j!
G(x)β(j+1)−1.

The expression for f(x) can be rewritten as;

f(x) = Aλβg(x)
∞∑

i=0

∞∑

j=0

(−1)iλi

i!

(i+ 1)j

j!
[1− (1−G(x))]β(j+1)−1.

Further expanding the expression for f(x) using the binomial series expansion

(1− z)a−1 =
∞∑

k=0

(−1)k



a− 1

k


zk, |z| < 1 (5.6)

62



www.udsspace.uds.edu.gh 

 

 

 

 

for any real non-integer a > 0 yields;

f(x) = Aλβg(x)
∞∑

i=0

∞∑

j=0

(−1)iλi

i!

(i+ 1)j

j!

∞∑

k=0

(−1)k



β(j + 1)− 1

k


(1−G(x))k.

Assuming a in equation (5.6), an integer, the index in the sum from the expansion

stops at a finite number k = a− 1, hence

f(x) = Aλβ
∞∑

i=0

∞∑

j=0

∞∑

k=0

k∑

l=0

(−1)i+k+l(i+ 1)jλieλ

i!j!



β(j + 1)− 1

k






k

l.


g(x)G(x)l.

(5.7)

This completes the proof.

From equation (5.7), the CG family density is expressed as a product of the

parameters and the sum of the product of the pdf and weighted power series of

the baseline distribution.

Let ω∗ijkl =
ωijkl
l+1

and πl+1 = (l + 1)g(x)G(x)l. The mixture representation of

the pdf f(x) in equation (5.7) can alternatively be expressed in terms of the

exponentiated-G (expo-G) density function as

f(x) = Aλβ
∞∑

i=0

∞∑

j=0

∞∑

k=0

k∑

l=0

ω∗ijklπl+1(x),−∞ < x <∞, (5.8)

where πl+1 is the expo-G density function with power parameter (l + 1).

5.4 Statistical Properties

This section discusses some of the statistical properties of the CG family of dis-

tributions. These include: quantile functions, non-central moments, moments,

generating functions, inequality measures, entropies, residual life, stochastic or-

dering and order statistics.
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5.4.1 Quantile Function

The usefulness of the quantile function cannot be overemphasized as they are

used for simulaton purposes. Also, measures of skewness and kurtosis can be

computed based on the quantile measures.

Proposition 5.3. The quantile function for CG family of distributions is given

by

QG(u) = xu = G−1
(

ln

[
1− ln [(1− u/A)]

λ

]) 1
β

, 0 ≤ u ≤ 1. (5.9)

Proof. The quantile function QG(u) of a random variable is defined as the inverse

of the cdf, F (xu) = P (X ≤ xu) = u, u ∈ (0, 1). Replacing x with xu in equation

(5.1), equating F (xu) to u and making xu the subject yields the quantile function.

The median of the family is obtained by substituting u = 0.5 in equation (5.9).

5.4.2 Moments, Moment Generating Functions and In-

complete moments

The moments, moment generating functions and incomplete moments are dis-

cussed in this section.

5.4.2.1 Moments

Moments are very essential in statistical analysis as they can be used to study

important features (such as tendencies, variation, skewness, kurtosis and so on)

of a distribution.

Proposition 5.4. The rth non-central moment of the CG family is given by

µ
′
r = Aλβ

∞∑

i=0

∞∑

j=0

∞∑

k=0

k∑

l=0

ωijklτ(r,l), r = 1, 2, ..., (5.10)

where τ(r,l) =
∞∫
−∞

xrg(x)(G(x))ldx is the probability weighted moment of the
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baseline distribution G(x).

Proof. The rth non-central moment is defined as

E(Xr) = µ
′
r =

∞∫

−∞

xrf(x)dx, r = 1, 2, ....

Hence, substituting the mixture form of the density f(x) in equation (5.5) into

the definition of E(Xr), the rth non-central moment of the CG family is given by

µ
′
r = Aλβ

∞∑

i=0

∞∑

j=0

∞∑

k=0

k∑

l=0

ωijkl

∞∫

−∞

xrg(x)(G(x))ldx. (5.11)

This completes the proof.

Let G(x) = u, 0 ≤ u ≤ 1. This implies that x = G−1(u) = QG(u) and g(x)dx =

du. The rth non-central moment in equation (5.10), µ
′
r can be expressed in terms

of the quantile function as

µ
′
r = Aλβ

∞∑

i=0

∞∑

j=0

∞∑

k=0

k∑

l=0

ωijkl

1∫

0

QG(u)ruldu. (5.12)

5.4.2.2 Moment Generating Functions

Moment generating functions if they exist are very useful in establishing the

moments of a random variable.

Proposition 5.5. The moment generating function of the CG family is given by

MX(t) = Aλβ
∞∑

i=0

∞∑

j=0

∞∑

k=0

∞∑

r=0

k∑

l=0

(t)r

r!
ωijklτ(r,l),t=1,2,.... (5.13)

Proof. By definition, the moment generating function is given by

MX(t) =

∫ ∞

−∞
etxf(x)dx, t = 1, 2, ....
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Expanding MX(t) using Taylor series yields

MX(t) =
∞∑

r=0

(t)r

r!

∫ ∞

−∞
xrf(x)dx.

Substituting the expression for the rth non-central moment of the CG random

variable µ
′
r in equation (5.10) into the expression of MX(t) completes the proof.

Alternatively, letting G(x) = u, 0 ≤ u ≤ 1, x = QG(u) and dx = du
g(x)

, the moment

generating function MX(t) can be expressed in terms of quantile functions as;

MX(t) = Aλβ
∞∑

i=0

∞∑

j=0

∞∑

k=0

k∑

l=0

ωijkl

1∫

0

etQG(u)uldu. (5.14)

5.4.2.3 Incomplete Moments

Proposition 5.6. The rth incomplete moment of the CG family of distributions

is given by

Mr(y) = Aλβ
∞∑

i=0

∞∑

j=0

∞∑

k=0

k∑

l=0

ωijkl

y∫

−∞

xrg(x)(G(x))ldx, r = 1, 2, .... (5.15)

Proof. The rth incomplete moment is defined as

Mr(y) =

y∫

−∞

xrf(x)dx, r = 1, 2, ....

Substituting the mixture representation of the density function f(x) in equation

(5.5) into the definition of the incomplete moment Mr(y) completes the proof.

The incomplete moments can also be expressed in terms of the quantile function.

Letting G(x) = u, 0 ≤ u ≤ 1, then x = QG(u) and dx = du
g(x)

. Substituting

these terms into the expression for the incomplete moments in equation (5.15),
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the incomplete moments is expressed in terms of the quantile function as;

Mr(y) = Aλβ

y∑

−∞

∞∑

j=0

∞∑

k=0

k∑

l=0

ωijkl

G(y)∫

0

QG(u)ruldu. (5.16)

5.4.3 Inequality Measures

Lorenz and Bonferroni curves are applied in so many fields such as economet-

rics, demography, reliability, medicine and insurance. They are generally used in

studying inequality measures like income and poverty.

5.4.3.1 Lorenz Curve

The Lorenz curve LF (y) for incomplete moments is defined as

LF (y) =
1

µ

y∫

−∞

xf(x)dx.

The Lorenz curve for the CG family is obtained by substituting the mixture

representation of the density f(x) in equation (5.5) to yield

LF (y) =
Aλβ

µ

∞∑

i=0

∞∑

j=0

∞∑

k=0

k∑

l=0

ωijkl

y∫

−∞

xg(x)(G(x))ldx. (5.17)

The Lorenz curve for the CG family can also be expressed in terms of the quantile

function by letting G(x) = u. Then, x = QG(u) and dx = du
g(x)

, substituting these

terms into the expression for the Lorenz curve in equation (5.17) gives the Lorenz

curve for the CG family in terms of the quantile function as

LF (y) =
Aλβ

µ

∞∑

i=0

∞∑

j=0

∞∑

k=0

k∑

l=0

ωijkl

G(y)∫

0

QG(u)uldu, 0 ≤ u ≤ 1. (5.18)
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5.4.3.2 Bonferroni Curve

Bonferroni curve BF (y) is defined as

BF (y) =
LF (y)

F (y)
,

hence that for the CG family is obtained by substituing the expression for the

Lorenz curve LF (y) into equation (5.17). The Bonferroni curve for the CG family

is given by

LF (y) =
Aλβ

µF (y)

∞∑

i=0

∞∑

j=0

∞∑

k=0

k∑

l=0

ωijkl

y∫

−∞

xg(x)(G(x))ldx. (5.19)

5.4.4 Mean Residual Life

The mean residual life of a component (which is the average survival time of the

component after it has exceeded a specific time y) is defined as E(X − y|X > y).

Proposition 5.07. The mean residual life of a CG random variable is given by

M̄(y) =
1

1− F (y)


µ− Aλβ

∞∑

i=0

∞∑

j=0

∞∑

k=0

k∑

l=0

ωijkl

y∫

−∞

xrg(x)(G(x))ldx


− y. (5.20)

Proof. The mean residual life is defined as

M̄(y) =
1

1− F (y)


µ−

y∫

−∞

xf(x)dx


− y.

The mean residual life of a CG random variable is then obtained by substituting

the mixture representation of the density f(x) in equation (5.5) into the definition
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of the mean residual life M̄(y) as follows

M̄(y) =
1

1− F (y)


µ− Aλβ

∞∑

i=0

∞∑

j=0

∞∑

k=0

k∑

l=0

ωijkl

y∫

−∞

xrg(x)(G(x))ldx


− y,

hence the proof.

5.4.5 Entropy

Entropy is a measure of variation or uncertainty of a random variable. Its appli-

cation spans across probability theory, engineering and science in general.

5.4.5.1 Rényi’s Entropy

Proposition 5.8. Rényi’s entropy for the CG random variable is given by;

IR(δ) =
1

1− δ log


(Aλβ)δ

∞∑

i=0

∞∑

j=0

∞∑

k=0

k∑

l=0

$ijkl

∞∫

−∞

g(x)δ(G(x))ldx


 , δ 6= 1, δ > 0,

(5.21)

where

$ijkl =
(−1)i+k+l(λδ)i

i!

(i+ δ)j

j!
eλδ




β(j + δ)− 1

k







k

l


 .

Proof. The Rényi’s entropy (Rényi, 1961) for a random variable with pdf f(x),

is defined as;

IR(δ) =
1

1− δ log



∞∫

−∞

f δ(x)dx


 , δ 6= 1, δ > 0.

An expression for f δ(x) is obtained by algebraically manipulating f(x) in equation

(5.2) as follows

f δ(x) = (Aλβ)δg(x)δG(x)δβ−1eδG(x)βeλδe−λδe
G(x)β

.
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Applying Taylor series expansion to f δ(x) yields

f δ(x) = (Aλβ)δeλδg(x)δ
∞∑

i=0

∞∑

j=0

(−1)i(λδ)i(i+ δ)j

i!j!
[1− (1−G(x))]β(j+δ)−1.

Further applying binomial series expansion to the expression of f δ(x) yields

f δ(x) =(Aλβ)δ
∞∑

i=0

∞∑

j=0

∞∑

k=0

k∑

l=0

(−1)i+k+l(λδ)i

i!

(i+ δ)j

j!

× eλδ



β(j + δ)− 1

k







k

l


 g(x)δ(G(x))l.

The expression for f δ(x) can be rewritten as

f δ(x) = (Aλβ)δ
∞∑

i=0

∞∑

j=0

∞∑

k=0

k∑

l=0

$ijklg(x)δ(G(x))l,

where

$ijkl =
(−1)i+k+l(λδ)i

i!

(i+ δ)j

j!
eλδ




β(j + δ)− 1

k







k

l


 .

Substituting f δ(x) into IR(δ) completes the proof.

5.4.6 Stochastic Ordering

Ordering mechanism in data can easily be shown using stochastic ordering. Let

X and Y be random variables with cdfs FX(x) and FY (x) respectively. X is less

than Y in likelihood ratio order (X ≤ir Y ), if the function f(x)/g(x) is decreasing

for all x.

Proposition 5.9. Let X ∼ CG(λ1, β, ψ) and Y ∼ CG(λ2, β, ψ), then X is less

than Y in likelihood ratio order (X ≤ir Y ) if λ2 < λ1.
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Proof. The ratio of the pdfs of X and Y is given by

fX(x)

fY (x)
=
λ1
λ2
e
(λ1−λ2)

(
1−eG(x)β

)
.

To determine if the function is decreasing, the differential of the logarithm of the

expression is taken as follows

d

dx

[
log

(
f(x)

g(x)

)]
= β(λ2 − λ1)g(x)G(x)β−1eG(x)β .

It can clearly be seen from the expression that the function is decreasing for all

x if λ2 < λ1.

5.4.7 Order Statistics

Proposition 5.10. The pdf for the pth order statistic of the CG family of

distributions is given by

fXp:n(x)=
n!Aλβ

(p− 1)!(n− p)!

p−1∑

i=0

∞∑

j=0

∞∑

k=0

∞∑

l=0

l∑

m=0

Dijklmg(x)G(x)m, (5.22)

where

Dijklm =
(−1)i+j+l+m[λ(n− p+ i+ 1)]j

i!

(j + 1)k

k!

×




p− 1

i







β(k + 1)− 1

l







l

m


 eλ(n−p+i+1).

Proof. The pdf for the pth order statistic Xp:n, of an independent identically

distributed random sample X1, X2, ..., Xn of size n, fXp:n(x), is given by;

fXp:n(x) =
n!

(p− 1)!(n− p)! [F (x)]p−1[1− F (x)]n−pf(x), p = 1, 2, ..., n.
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Expanding [F (x)]p−1 using binomial series expansion yields

[F (x)]p−1 =

p−1∑

i=0

(−1)i




p− 1

i


[1− F (x)]i

Substituting [F (x)]p−1 into the density of the pth order statistic fXp:n(x) yields

fXp:n(x) =
n!

(p− 1)!(n− p)!

p−1∑

i=0

(−1)i




p− 1

i


[S(x)]n−p+if(x),

where [S(x)]n−p+i = [1− F (x)]n−p+i.

An expression for [S(x)]n−p+if(x) can be obtained by algebraically manipulating

it using a similar concept as that used for expanding the density f(x) of the CG

family.

Applying Taylor series expansion to [S(x)]n−p+if(x) given by

[S(x)]n−p+if(x) = Aλβg(x)G(x)β−1eG(x)βe
λ(n−p+i+1)

(
1−eG(x)β

)
,

yields

[S(x)]n−p+i f(x) =Aλβg(x)G(x)β−1eλ(n−p+i+1)

×
∞∑

j=0

∞∑

k=0

(−1)j[λ(n− p+ i+ 1)]j(j + 1)k

i!k!
G(x)βk.

Further applying binomial series expansion to [S(x)]n−p+if(x) gives;

[S(x)]n−p+if(x) =Aλβg(x)eλ(n−p+i+1)

×
∞∑

j=0

∞∑

k=0

∞∑

l=0

l∑

m=0

(−1)j+l+m[λ(n− p+ i+ 1)]j(j + 1)k

i!k!

×




β(k + 1)− 1

l







l

m


G(x)m.
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Subsequently, substituting the expression of [S(x)]n−p+if(x) into that of fXp:n(x)

yields

fXp:n(x) =
n!Aλβ

(p− 1)!(n− p)!

p−1∑

i=0

∞∑

j=0

∞∑

k=0

∞∑

l=0

l∑

m=0

(−1)i+j+l+m[λ(n− p+ i+ 1)]j

i!

× (j + 1)k

k!




p− 1

i







β(k + 1)− 1

l







l

m


g(x)G(x)m,

hence the proof.

5.4.7.1 Moments of Order Statistics

Proposition 5.11. The rth non central moment of the pth order statistic, E(Xr
p:n)

of the CG family of distributions is given by,

E(Xr
p:n) =

n!Aλβ

(p− 1)!(n− p)!

p−1∑

i=0

∞∑

j=0

∞∑

k=0

∞∑

l=0

l∑

m=0

Dijklmτ(r,m) (5.23)

where τ(r,m) =
∞∫
−∞

xrg(x)G(x)mdx is the probability weighted moment of the

baseline distribution.

Proof. The rth non-central moment of the pth order statistic is given by

E(Xr
p:n) = µ

′(p:n)
r =

∞∫

−∞

xrfXp:n(x)dx.

Substituting the expression for the pdf of the pth order statistic fXp:n(x) in equa-

tion (5.22) into the definition of E(Xr
p:n) yields

E(Xr
p:n) =

n!Aλβ

(p− 1)!(n− p)!

p−1∑

i=0

∞∑

j=0

∞∑

k=0

∞∑

l=0

l∑

m=0

Dijklm

∞∫

−∞

xrg(x)G(x)mdx,

hence the proof.
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5.5 Parameter Estimation

The parameters of the CG family are estimated in this section using maximum

likelihoodestimation method.

5.5.1 Maximum Likelihood Estimation

Given a random sample x1, x2, ..., xn of size n with parameters λ, β and ψ from

the CG family of distribution. Let ν = (λ, β, ψ)T be a (p× 1) parameter vector,

the total log-likelihood function is given by

`(ν) =n logAλβ +
n∑

i=1

log g(xi;ψ) + (β − 1)
n∑

i=1

logG(xi;ψ)

+
n∑

i=1

G(xi;ψ)β + λ
n∑

i=1

(1− eG(xi;ψ)
β

)

(5.24)

The parameters are then estimated by partially differentiating the total log-

likelihood function with respect to the parameters of the CG family as follows.

∂`

∂λ
=
n

λ
+
n(1− e)eλ(1−e)

1− eλ(1−e) +
n∑

i=1

(
1− eG(xi;ψ)

β
)
, (5.25)

∂`

∂β
=
n

λ
+

n∑

i=1

logG(xi;ψ) +
n∑

i=1

G(xi;ψ)β logG(xi;ψ)

− λ
n∑

i=1

G(xi;ψ)βeG(xi;ψ)
β

logG(xi;ψ)

(5.26)

and

∂`

∂ψ
=

n∑

i=1

g
′
k(xi;ψ)

G(xi;ψ)
+ (β − 1)

n∑

I=1

G
′
k(xi;ψ)

G(xi;ψ)
+

n∑

i=1

G
′
K(xi;ψ)G(xi;ψ)β−1

− λβ
n∑

i=1

G
′
K(xi;ψ)G(xi;ψ)β−1eG(xi;ψ)

β

,

(5.27)

where g
′
K(xi;ψ) = ∂g(xi;ψ)

∂ψ
and G

′
K(xi;ψ) = ∂G(xi;ψ)

∂ψ
.
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Equating the score functions to zero and numerically solving the system of equa-

tions using techniques such as the quasi Newton-Raphson method, gives the max-

imum likelihood estimates for the parameters. The interval estimates of the pa-

rameters are obtained by first finding the observed information matrix given by

J(ϑ) = ∂2`
∂q∂r

(for q, r = λ, β, ψ and ϑ = (λ, β, ψ)T ), whose elements can be numer-

ically computed. Under the regularity conditions, as n→∞, ϑ̂ ∼ Np(0, J(ϑ̂)−1),

where J(ϑ̂) is the observed information matrix evaluated at ϑ̂. The approxi-

mate 100(1 − ρ)% confidence intervals (where ρ is the significance level) can be

constructed using the asymptotic normal distribution.

5.6 Some Special Distributions

The CG family of distributions can be used to extend many distributions to create

more flexibility in their application. In this section some special distributions were

developed.

5.6.1 Chen Burr III Distribution

Suppose that the baseline distribution is BurrIII (Burr, 1942), its cdf and pdf

are given by G(x) =
(
1 + x−θ

)−γ
and g(x) = γθx−θ−1

(
1 + x−θ

)−γ−1
, x > 0, θ >

0, γ > 0 respectively. The cdf of Chen Burr III (CB) is obtained by substituting

the cdf of Burr III distribution G(x) into the cdf of the CG family in equation

(5.1). The cdf of CB distribution is given by

F (x) = A
[
1− exp

(
λ
(

1− e(1+x−θ)
−γβ))]

, x > 0, α > 0, β > 0, γ > 0, λ > 0.

(5.28)

Its corresponding density and hazard functions are respectively obtained by sub-

stituting the pdf and cdf of the Burr III distribution into the density and hazard
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functions expressions for the CG family. They are respectively given by

f(x) =Aλβγθ(x)−θ−1
(
1 + x−θ

)−γβ−1
exp

[(
1 + x−θ

)−γβ
+ λ

(
1− e(1+x−θ)

−γβ)]
,

x > 0

(5.29)

and

h(x) =
Aλβγθ(x)−θ−1

(
1 + x−θ

)−γβ−1
exp

[(
1 + x−θ

)−γβ
+ λ

(
1− e(1+x−θ)

−γβ)]

1− A
[
1− expλ

(
1− e(1+x−θ)

−γβ)] ,

x > 0.

(5.30)

Plots of the density and hazard rate functions of the CB distribution are displayed

in Figure 5.1. The density plot exhibit varying shapes including unimodal with

different degrees of kurtosis, right skewed and reversed J shapes. The hazard rate

function for some selected values exhibited upside down bathtub, decreasing and

increasing failure rates.
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Figure 5.1: Plots of density and hazard rate functions of CB distribution
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Plots of the skewness and kurtosis of the CB distribution are shown in Figure 5.2.

From the plots it can be seen that varying combinations of the parameters have

varying effects on the measures of skewness and kurtosis of the CB distribution.

Figure 5.2: Plots of skewness and kurtosis of CB distribution

The CB distribution’s quantile function is given by;

QG(u) = xu =

[(
log

(
1−

(
log (1− u/A)

λ

)))− 1
γβ

− 1

]− 1
θ

, u ∈ [0, 1]. (5.31)

5.6.2 Chen Kumaraswamy Distribution

The cdf and pdf of the Kumaraswamy distribution are given by G(x) = 1 −

(1− xa)b and g(x) = abxa−1(1− xa)b−1, 0 < x < 1, a > 0, b > 0 respectively

(Kumaraswamy, 1980). With Kumaraswamy distribution as the baseline distri-

bution, the cdf, pdf and failure rate function of the Chen Kumaraswamy (CK)
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distribution are obtained by substituting the cdf and pdf of the Kumaraswamy

distribution, thus G(x) and g(x) into the expressions of the cdf, pdf and failure

rate function of the CG family in equations (5.1), (5.2) and (5.4) respectively.

The cdf of Chen Kumaraswamy (CK) distribution is given by

F (x) = A
[
1− expλ

[
1− e[1−(1−xa)b]

β]]
, x > 0, a > 0, b > 0, β > 0, λ > 0,

(5.32)

with the corresponding density and hazard rate functions respectively given by

f(x) =Aabλβxa−1(1− xa)b−1
(

1− (1− xa)b
)β−1

exp

[(
1− (1− xa)b

)β]

+ λ
(

1− e(1−(1−xa)b)
β)
, x > 0

(5.33)

and

h(x) =

Aabλβxa−1(1− xa)b−1
(

1− (1− xa)b
)β−1

exp

[(
1− (1− xa)b

)β]

1−
[
1− expλ

[
1− e[1−(1−xa)b]

β]]

+
λ
(

1− e(1−(1−xa)b)
β)

1− expλ
[
1− e[1−(1−xa)b]

β] , x > 0.

(5.34)

Plots of the density and hazard rate functions of the CK distribution are displayed

in Figure 5.3. The plot of the density shows shapes such as the J and reversed J

shapes, left and right skewed unimodal shapes, and left skewed shape. The hazard

rate plot for some selected values exhibits increasing and decreasing failure rates,

unimodal and bathtub shapes.
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Figure 5.3: Plots of density and hazard rate functions of CK distribution

The plots of skewness and kurtosis of the CK distribution are shown in Figure

5.4. Varying measures and combinations of the parameter values have different

effects on the measures of skewness and kurtosis. For instance, inceasing values

of the parameter a results in increasing measures of kurtosis and a right tailed

distribution as shown by the plots.

Figure 5.4: Plots of skewness and kurtosis of CK distribution

The quantile function is obtained as

QG(u) = xu =


1−

(
1−

(
log

(
1−

(
log (1− u/A)

λ

))) 1
β

) 1
b




1
a

, u ∈ [0, 1].

(5.35)
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5.6.3 Chen Weibull Distribution

The Chen Weibull distribution is another special ditribution developed from the

CG family using the Weibull distribution (Weibull, 1951) as the baseline. The cdf

and pdf of the Weibull distribution are respectively given by G(x) = 1− e−( xα)
γ

and g(x) =
(
γ
α

) (
x
α

)γ−1
e−( xα)

γ

. Substituting cdf and pdf of the Weibull distribu-

tion into the expresions of the cdf and pdf of the CG family in equations (5.1)

and (5.2). The cdf and pdf of Chen Weibull (CW) distribution are respectively

given by

F (x) = A

[
1− expλ

[
1− e

(
1−e−( xα )

γ)β]]
, x > 0, α > 0, β > 0, γ > 0 (5.36)

and

f(x) =Aλβ
(γ
α

)(x
α

)γ−1(
1− e−( xα)

γ)β−1

× exp

[
λ
(

1− e−( xα)
γ)β
−
(x
α

)γ
+
(

1− e−( xα)
γ)]

, x > 0.
(5.37)

The hazard rate function for the CG family is also obtained by substituting cdf

and pdf of the Weibull distribution into the expression of the hazard rate function

of the CG family in equation (5.4). The hazard rate function for the CG family

is given by

h(x) =
Aλβ

(
γ
α

) (
x
α

)γ−1(
1− e−( xα)

γ)β−1

1− A
[
1− expλ

[
1− e

(
1−e−( xα )

γ)β]]

× exp

[
λ
(

1− e−( xα)
γ)β
−
(x
α

)γ
+
(

1− e−( xα)
γ)]

, x > 0.

(5.38)

Plots of the density exhibit right and left skewed shapes, left and right skewed

unimodal shapes and reversed J shapes as shown in Figure 5.5. The hazard rate

plot of the CW distribution for some selected values exhibit varying shapes such

as increasing and decreasing failure rates, right and left skewed unimodal shapes
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and upside down bathtub shape.
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Figure 5.5: Plots of density and hazard rate functions of CW distribution

The CW distribution can model datasets exhibiting varying degrees of skewness

and kurtosis as shown in Figure 5.6.

Figure 5.6: Plots of skewness and kurtosis of CW distribution

The quantile function of the CW distribution is given by

QG(u) = xu = α

(
− log

(
1−

(
log (1− u/A)

λ

) 1
β

)) 1
γ

, u ∈ [0, 1]. (5.39)
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5.7 Simulations

Monte Carlo simulations were performed in this section to investigate the be-

havior of the maximum likelihood estimators of the parameters. For illustration

purposes, the simulation experiments were undertaken using the Chen Weibull

distribution. The experiments were replicated for N = 1500 times using sample

size n = 50, 150, 300, 600, 1000 and parameter values I : λ = 1.9, β = 0.9, α =

0.8, γ = 4.8 and II : λ = 0.5, β = 0.5, α = 0.5, γ = 0.5. The average bias (AB),

root mean square error (RMSE) and coverage probability (CP) of the confidence

intervals for the estimators of the parameters were estimated as shown in Table

5.1.

Table 5.1: Monte Carlo Simulation Results
n Parameter I II

AB RMSE CP AB RMSE CP
50 λ -0.5854 1.0708 0.9987 0.4737 0.9182 0.9913

β 3.8663 56.4303 0.9977 2.6341 5.2212 0.9990
α -0.1005 0.1836 0.9977 0.6564 1.4488 0.9180
γ -0.0171 2.4805 0.9327 0.0876 0.303 0.9920

150 λ -0.2607 1.1688 0.9793 0.5179 0.9948 0.9873
β 0.6373 1.2615 0.9945 1.6927 2.3435 0.9990
α -0.0534 0.1321 0.9867 0.6499 1.268 0.9600
γ -0.1023 1.7291 0.9360 0.0652 0.1958 0.9927

300 λ -0.1324 1.2618 0.9607 0.5254 1.0150 0.9793
β 0.4988 0.9901 0.9973 1.5134 1.8010 0.9067
α -0.0396 0.1125 0.9853 0.5978 1.1114 0.9727
γ -0.2452 1.2307 0.9393 0.0484 0.1303 0.9913

600 λ -0.0231 1.191 0.9592 0.4924 1.0072 0.9580
β 0.3936 0.5929 0.9900 1.4374 1.5874 0.7500
α -0.0240 0.0950 0.9633 0.5487 1.0468 0.9793
γ -0.2420 0.9657 0.9433 0.0405 0.1034 0.9827

1000 λ 0.0428 1.1763 0.9367 0.4089 0.8572 0.9393
β 0.3599 0.5053 0.964 1.3880 1.4766 0.6780
α -0.0173 0.0856 0.9407 0.4867 0.9565 0.9747
γ -0.2526 0.8181 0.9367 0.0402 0.0934 0.9513

From Table 5.1, the ABs and RMSEs for the estimators generally decreases to

zero as the sample size increases. This implies that as the sample size increases

the accuracy and consistency of the maximum likelihood estimators are achieved.

Also, the CPs for most of the estimators are quite close to the nominal value of
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0.95. Thus, we can say that the maximum likelihood technique works very well

to estimate the parameters of the Chen Weibull distribution.

5.8 Applications

In this section the performance of some of the new distributions developed in

providing good parametric fits to real life datasets is demonstrated. Its goodness-

of-fit measures are compared with competing models such as; exponentiated Chen

(EC) (Chaubey and Zhang, 2015), Generalized Weibull (EW) (Mudholkar and

Srivastava, 1993) and Kumaraswamy exponentiated Chen (KEC) (Khan et al.,

2018) distributions.

The cdf and pdf of the EC distribution are respectively given by

F (x) =
(
1− exp

[
λ
(
1− exp

(
xβ
))])α

and

f(x) = αβλx(β−1)ex
β

exp
[
λ
(

1− exβ
)](

1− exp
[
λ
(

1− exβ
)])α−1

.

That for EW distribution are given by

F (x) =
(
1− e−(λx)γ

)α

and

f(x) = αγλγx(γ−1)
(
1− e−(λx)γ

)α−1
e−(λx)

γ

.

The cdf and pdf for the KEC distribution are given by

F (x) = 1−
[
1−

(
1− exp

(
α
(
1− exp(xβ)

)))aθ]b
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and

f(x) =
abαβθx(β−1)exp

(
xβ + α

(
1− exp(xβ)

))(
1− exp

(
α
(
1− exp(xβ)

)))(aθ−1)
(

1− (1− exp (α (1− exp(xβ))))aθ
)(1−b) .

In obtaining the maximum likelihood estimates for the parameters, the log-

likelihood function of the models were maximized using the bbmle package’s sub-

routine mle2 in R (Bolker, 2014). The maximum likelihood estimates with the

largest maxima was chosen after using a wide range of initial values.

5.8.1 First Application

The dataset used in this application (Data 3 ) consists the fatigue times of 6061-

T6 aluminum coupons cut parallel with the direction of rolling and oscillated at

18 cycles per second found in Birnbaum and Saunders (1969). The minimum and

maximum fatigue times of 6061-T6 aluminum coupons were 70 and 212 seconds

respectively as shown by the table of descriptive statistics of the dataset in Table

5.5. The mean fatigue times of 6061-T6 aluminum coupons recorded was 133.7327

with a standard deviation of 32.8353. The dataset is positively skewed and light-

tailed (platykurtic) as shown by the values of the coefficients of skewness and

kurtosis which are 0.3305 and 1.0528 respectively.

Table 5.2: Descriptive statistics of the fatigue time of 6061-T6 aluminum coupons
Minimum Maximum Mean Standard deviation Skewness Kurtosis

70 212 133.7327 22.3557 0.3305 1.0528

A preliminary exploration of the dataset on the shapes of the hazard rate function

showed that the dataset has an increasing hazard rate as shown by the TTT plot

in Figure 5.7 which has a concave shape.
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Figure 5.7: TTT-transform plot for the datasets

The maximum likelihood estimates of the parameters for the fitted distributions,

and their corresponding standard errors of for the dataset are displayed in Table

5.3. All except one parameter (λ and β respectively) each of the CW and KEC

distributions were significant at 5% significance level. All the other distributions

(EC, EW and CB) had all their parameters significant at 5% significance level.

Table 5.3: Maximum likelihood and standard error estimates of parameters
Model Parameter Estimate Standard error z-value p-value

CW λ̂ 6.7749 4.5924 1.4752 0.1401

β̂ 35.2091 2.8166 12.5006 2.2× 10−16*
α̂ 49.2897 2.5753 19.1394 2.2× 10−16*
γ̂ 1.0187 0.1675 6.0829 1.18× 10−9*

KEC â 4.3355 0.6977 6.2144 5.151× 10−10*

b̂ 2.2857 1.5572 1.4679 0.1421
α̂ 0.0209 0.0047 4.3969 1.098× 10−5*

β̂ 0.3237 0.0145 22.3788 2.2× 10−16*

θ̂ 4.4725 0.6761 6.6154 3.705× 10−11*
EC α̂ 1236.1 4.1476× 10−6 2.9802× 108 2.2× 10−16*

β̂ 0.2446 0.0083 29.328 2.2× 10−16*

λ̂ 0.2889 0.0390 7.4014 1.347× 10−13*
EW α̂ 55.1400 0.0007 75801.4070 2.20× 10−16*

β̂ 1.4931 0.1063 14.0420 2.20× 10−16*

λ̂ 0.0205 0.0014 14.2460 2.20× 10−16*

CB λ̂ 82.3588 11.9649 6.8834 5.845× 10−12*

β̂ 65.5650 11.9498 5.4867 4.095× 10−8*

θ̂ 1.4247 0.0568 25.0785 2.2× 10−16*
γ̂ 77.4226 10.1125 7.6562 1.916× 10−14*

*: means significant at the 5% significance level
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The CW distribution provides a comparatively better fit for the dataset than the

KEC, EW, EC and CB distributions the as it has the lowest values for all the

measures of information criteria considered (AIC, BIC and CAIC) as shown in

Table 5.4. It also has the highest log-likelihood and the lowest values of all the

goodness of fit measures (KS, AD and W) which is a good indication that the

data follows the specified distribution.

Table 5.4: Goodness-of-fit statistics and information criteria
Model ` KS CM AD AIC BIC CAIC
CW -446.99 0.064 0.046 0.299 901.984 912.365 902.41
KEC -447.22 0.061 0.047 0.323 904.436 917.411 905.081
EW -450.62 0.096 0.134 0.783 907.241 915.026 907.494
EC -446.99 0.110 0.194 1.127 913.190 920.975 913.442
CB -456.27 0.065 0.054 0.345 920.539 931.000 920.956

This is further confirmed by the histogram of Data 3 and the densities of the

fitted distributions, and the empirical and fitted cdfs for Data 3 as respecively

shown on the left and right sides of Figure 5.8. From the fitted plot, it is observed

that the CW distribution’s density and cdf mimic the empirical density and cdf

of Data 3 much more closely compared to the rest of the fitted distributions.
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Figure 5.8: Empirical and fitted density and cdf plots of data1

86



www.udsspace.uds.edu.gh 

 

 

 

 

The P-P plots in Figure 5.9 graphically indicates that, the CW distribution pro-

vides a better fit for the dataset in comparison with KEC, EC, EW and CB dis-

tributions, as as its observations are comparatively more closely clustered around

the diagonal than the other distributions.
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Figure 5.9: P-P plots of fitted distributions for data1

The profile likelihoods of the estimated parameters of the CW distribution for

the dataset are shown in Figures 5.10 . From the plots, it is observed that all the

estimated values for the parameters are the maxima.
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Figure 5.10: Profile log-likelihood plot of CW parameters for data1

5.8.2 Second Application

This application was carried out using Data 4 which consists the survival times

(in days) of 72 guinea pigs injected with different amount of virulent tubercle

bacilli studied by Bjerkedal (1960). A TTT plot of the dataset showed that the

dataset has an increasing hazard rate as shown in Figure 5.11.
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Figure 5.11: TTT-transform plot for the datasets
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Descriptive statistics of the dataset in Table 5.5 shows that the minimum and

maximum survival times of the 72 guinea pigs injected with different amount of

virulent tubercle bacilli were 10 and 555 days respectively. The average survival

times of guinea pigs was 177 days with a standard deviation of 103 days. The

high value of standard deviation might be an indication of the presence of extreme

values in the dataset. The dataset is positively skewed with a coefficient of

skewness value of 1.3413 and light-tailed (platykurtic) with a coefficient of kurtosis

value of 1.9885.

Table 5.5: Descriptive statistics of the Survival times of guinea pigs
Minimum Maximum Mean Standard deviation Skewness Kurtosis

10 555 176.8333 103.4654 1.3413 1.9885

Compared to the competing models, the CW distribution with its four parameters

provides a better fit for the datasets as it has the highest log-likelihood and the

smallest value for all the goodness of fit measures used as shown in Table 5.6. It

also has the lowest values of all the information criteria (AIC, BIC and CAIC)

considered.

Table 5.6: Goodness-of-fit statistics and information criteria
Model ` KS CM AD AIC BIC CAIC
CW -425.85 0.092 0.090 0.564 859.704 868.810 860.301
CB -426.46 0.106 0.087 0.572 860.835 869.941 861.432

KEC -425.87 0.093 0.094 0.581 861.604 872.987 862.513
EW -435.56 0.145 0.232 1.603 877.894 884.724 878.247
EC -429.69 0.124 0.153 1.089 869.634 876.464 869.987

All but one parameter (λ) each of the CW and EW distributions were significant

at 5% significance level as shown in Table 5.7. The rest of the distributions (EC,

KEC and CB) had all their estimated parameters significant at 5% significance

level.
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Table 5.7: Maximum likelihood and standard error estimates of parameters
Model Parameter Estimate Standard error z-value p-value

CW λ̂ 19.3660 36.0090 0.5378 0.5907

β̂ 15.7420 1.2421 12.6736 2.2× 10−16*
α̂ 30.9452 12.4911 2.4774 0.0132*
γ̂ 0.3095 0.0981 3.1552 0.0016*

CB λ̂ 116.7489 0.1776 657.4517 2.2× 10−16*

β̂ 1.1130 0.3878 2.8703 0.0041*

θ̂ 0.3893 0.0284 13.7226 2.2× 10−16*
γ̂ 34.9340 12.1659 2.8715 0.0041*

KEC â 0.1923 0.2340 0.8217 0.4112

b̂ 15.9390 0.0058 2761.7 2.2× 10−16*
α̂ 0.4490 0.4124 1.0887 0.2763*

β̂ 0.1161 0.0375 3.0907 0.0020*

θ̂ 149.57 0.0003 521180 2.2× 10−16*
EC α̂ 163.36 0.0002 910695.135 2.2× 10−16*

β̂ 0.1381 0.0079 17.481 2.2× 10−16*

λ̂ 0.8646 0.0772 11.199 2.20× 10−16*
EW α̂ 242.2554 0.0941 2574.0359 2.20× 10−16*

β̂ 0.2718 0.0220 12.3433 2.20× 10−16*

λ̂ 4.6262 2.3780 1.9454 0.0517
*: means significant at the 5% significance level

The left side of Figure 5.12 shows the densities of the fitted distributions and a

histogram of Data 4, whilst the right side displays the empirical and fitted cdfs

of the dataset.
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Figure 5.12: Empirical and fitted density and cdf plots of Data 4
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As seen from the plots in Figure 5.12, though all the fitted distributions mim-

ics the empirical density and cdf of the dataset, the CW distribution does so

much more closely. This further confirms that, the CW provides a comparatively

reasonable fit to the dataset.

The P-P plots in Figure 5.13 also indicates the CW distribution provides a better

fit for the dataset in comparison with CB, KEC, EC and EW distributions. From

the plots, it can be seen that the CW distribution had its observations much more

clustered along the diagonals comparatively.
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Figure 5.13: P-P plots of fitted distributions for data2

The profile likelihoods of the estimated parameters of the CW distribution for

the dataset are shown in Figure 5.14. From the plots, it is observed that the

estimated values for the parameters are the maxima.
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Figure 5.14: Profile log-likelihood plot of CW parameters for data2

5.9 Summary

The focus of most researchers is on developing new families that are generaliza-

tions of existing distributions to provide better fit for the modeling of life data. In

this chapter, a new family of distributions called the CG family was developed and

studied. Statistical properties, such as; quantile functions, moments, incomplete

moments, generating function, entropies, stochastic ordering and order statistics,

of the new family were derived. Estimators for the parameters of the new family

were developed using the method of maximum likelihood. A demonstration of the

application of the special distribution developed from the family was carried out

using two real datasets. A comparison of the results with that of other existing

distributions showed that the special distribution developed from the CG family

provide a better parametric fit to these datasets.
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CHAPTER SIX

SUMMARY, CONCLUSIONS AND

RECOMMENDATIONS

6.1 Introduction

The summary, conclusions and recommendations for future works are presented

in this chapter.

6.2 Summary

Classical distributions do not always provide reasonable fit to all forms of datasets,

hence, the quest to generate distributions with more desirable and flexible prop-

erties that can model real life datasets of varying shapes of density and failure

rate functions. Currently, the focus is on the developing new families that are

generalizations of existing distributions.

The study proposed two new generators of statistical distributions, OC and CG

families of distributions, for generalizing existing distributions. The generaliza-

tion approach used for obtaining the generators is the T-X approach, using the

tranformations W [G(x)] = G(x) and W [G(x)] = G(x)
1−G(x)

for the OC and CG

families of distributions respectively.

The pdf, cdf and hazard functions of the generators were developed and the

mixture representation of the density were derived. Other statistical properties,

such as; the quantile functions, moments, generating functions, order statistics,

inequality measures, entropies, mean residual life and stress strength reliability

were also derived. The parameters of the generators were then estimated using

maximum likelihood estimation method.
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New distributions were developed from the generators. These include; OCB,

OCL, OCW, CB, CK and CW distributions. The pdf, cdf, hazard and quantile

functions of the special distributions were established, whilst their skewness, kur-

tosis, density and hazard functions, were plotted, to give a graphical presentation

of some of the type of datasets these distributions are capable of modeling. These

plots revealed that the distributions are suitable for modeling lifetime datasets of

varying shapes of density and hazard rate functions (both monotonic and non-

monotonic shapes) exhibiting varying degrees of skewness and kurtosis. Simula-

tions were then carried out to investigate the properties of the estimators of the

parameters of some of the distributions developed, CW and OCL distributions.

The usefulness of the new distributions developed was then demonstrated using

four datasets. Two datasets, Data 1 and 2, were used to demonstrate the applica-

tion of the distributions developed from the OC generator, thus OCB, OCL and

OCW distributions. The other two datasets, Data 3 and 4, were then used to

demonstrate the applications of the distributions developed from the CG family

thus CB, CK and CW distributions in modeling real life datasets.

Exploratory analysis of Data 1 and 2 revealed that, Data 1 is left-skewed, heavy-

tailed (leptokurtic) and exhibits a modified bathtub shaped failure rate. Data

2 is left-skewed, light-tailed (platykurtic) and exhibits a bathtub shaped failure

rate. The maximum likelihood estimates of the parameters for the models were

obtained by maximizing their log-likelihood functions. To examine how well the

dataset corresponded to the fitted distributions, the AD, KS and CM tests were

carried out, testing the hypothesis that; the data follow the specified distribu-

tion against the alternate that it does not. The results indicated that all the

distribution provided good-fits to the datasets.

Comparative analysis were also carried out using the log-likelihood and the infor-

mation criteria; AIC, BIC and CAIC. The performances of OCB, OCL and OCW

distributions were compared with that of Chen and NGW distributions. From
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the results, OCL distribution outperformed the rest of the models as it had the

highest log-likelihood and the lowest values for all the measures of the informa-

tion criteria considered for both datasets. This was further graphically supported

by the plots of the histograms and empirical cdf of the fitted distributions. The

comparatively closer clustering of the observations of the OCL distribution along

the diagonals of its P-P plots for both datasets also atest to the fact. A profile

log-likelihood plot of OCL distribution’s parameters showed that, its estimated

parameter values are the maxima.

Data 3 and 4 were used to demonstrate the applications of CB and CW distri-

butions. Preliminary analysis of the dataset revealed that both datasets were

positively skewed, light-tailed (platykurtic) and had increasing hazard rates.

Goodness-of-fit tests carried out showed that all the distributions fitted provided

a good fit to the datasets. A comparison of the performances of CB and CW

distributions against EC, EW and KEC distributions showed that, the CW dis-

tribution provided a comparatively better fit for the datasets, than the rest of

the models. This was further supported by the plots of the histogram and em-

pirical cdfs, and the P-P plots of fitted distributions for both datasets. Profile

log-likelihood plot of CW distribution’s parameters indicated that, its estimated

parameter values are the maxima.

6.3 Conclusion

The study developed two new generators of statistical distributions, OC and CG

families of distributions, for generalizing existing distributions to improve upon

their flexibility in modeling real datasets.

The new families developed have closed forms of quantile making simulations

possible and very easy. The hazard functions exhibit various shapes of failure

rates, both monotonic and non-monotonic failure rates. This makes them suitable

for modeling datasets of varying kinds.

95



www.udsspace.uds.edu.gh 

 

 

 

 

The OC and CG families of distributions were then used to modify the Burr III,

Lomax, Kumaraswamy and Weibull distributions. Six special distributions were

developed; OCB, OCL, OCW, CB, CK and CW distributions. The developed

distributions are very flexible in modeling datasets, as they exhibit varying shapes

of density and failure rates, for different combinations of parameter values. Also,

the maximum likelihood estimators of these distributions are consistent as shown

by the results of simulations carried out.

Finally, the developed distributions are very useful in modeling real dataset and

provide a consistently better parametric fit to some specific datasets than some

existing candidate distributions.

6.4 Recommendations

This study considered only two generators, other generators of the Chen distri-

bution can be developed by considering other methods of developing new distri-

butions or using other transformations of the T-X approach.

A detailed study of the new distributions is needed to investigate their character-

ization and statistical properties including moments, generating functions, order

statistics and stress strength reliability among others.

The study used only complete samples for the demonstration of the applications

of the developed distributions, however some studies sometimes result in the

generation of incomplete samples. Hence, further studies should consider the use

of incomplete samples for the application.

Finally, the study only took into consideraton univariate situation, however a

phenomenon may be influenced by more than one independent variable, hence a

bivariate or multivariate extension of this work should be considered for further

studies. Thus the developed distributions may be used to develop parametric

regression models for analyzing bivariate or multivariate datasets.
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6.5 Major Contributions

The study proposed two new generators based on the Chen distribution for

generalizing existing distributions to improve upon their flexibility in modeling

datasets.

The statistical properties were derived and their parameters estimated. New

distributions were proposed from the generators and a demonstration of their

application shown using real life datasets.
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APPENDIX

A. Data and Source

1. Data 1 consists lifetimes of 50 components, given by Aarset (1987).

Table 6.1: Data1: Lifetimes of 50 components
0.1 0.2 1 1 1 1 1 2 3 6 7 11 12 18 18 18
18 18 21 32 36 40 45 46 47 50 55 60 63 63 67 67
67 67 72 75 79 82 82 83 84 84 84 85 85 85 85 85
86 86

2. Data 2 represents the lifetime of a certain device given by Sylwia (2007).

Table 6.2: Data 2: Lifetime of a certain device
0.0094 0.05 0.4064 4.6307 7.1645 7.2316 8.2616 9.2662
9.3812 9.5223 9.8783 10.4791 11.076 11.325 11.5284 11.9226
12.0294 12.5381 12.8049 13.4615 13.853 5.1741 5.8808 6.3348
10.4077 10.0192 9.9346 12.1835 12.074 12.3549

3. Data 3 consists the fatigue times of 6061-T6 aluminum coupons cut parallel

with the direction of rolling and oscillated at 18 cycles per second found in

Birnbaum and Saunders (1969).

Table 6.3: Data 3: Fatigue time of 101 6061-T6 aluminum coupons
70 90 96 97 99 100 103 104 104 105 107 108 108 108
109 109 112 112 113 114 114 114 116 119 120 120 120 121 121
121 123 124 124 124 124 124 128 128 129 129 130 130 130
131 131 131 131 131 132 132 132 133 134 134 134 134 134
136 136 137 138 138 138 139 139 141 141 142 142 142 142
142 142 144 144 145 146 148 148 149 151 151 152 155 156
157 157 157 157 158 159 162 163 163 164 166 166 168 170
174 196 212
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4. Data 4 consists the survival times (in days) of 72 guinea pigs injected with

different amount of virulent tubercle bacilli studied by Bjerkedal (1960).

Table 6.4: Data 4: Survival times of guinea pigs injected with different amount
of tubercle bacilli.

10 33 44 56 59 72 74 77 92 93 96 100 100 102
105 107 107 108 108 108 109 112 113 115 116 120 121 122
122 124 130 134 136 139 144 146 153 159 160 163 163 168
171 172 176 183 195 196 197 202 213 215 216 222 230 231
240 245 251 253 254 255 278 293 327 342 347 361 402 432
458 555
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Abstract
Classical distributions do not always provide reasonable fit to all forms of datasets,
hence the need to generalize existing distributions to enhance their flexibility in mod-
eling of data. The study developed the odd Chen-G family of distributions. It derives
the statistical properties of the new family such as the quantile, moments, and order
statistics. Though capable of generalizing other distributions, the study proposed three
special distributions; odd Chen Burr III, odd Chen Lomax and odd Chen Weibull dis-
tributions. The application of the new family is then demonstrated using real data.

Keywords Odd · Chen · Lomax · Statistical distribution · Quantile

Mathematics Subject Classification 62E15 · 60E05

1 Introduction

There are numerous univariate statistical distributions in literature for modeling
dataset, notably among the classical continuous parametric ones are Weibull, gamma,
beta, log-normal and exponential distributions. However, the complex nature of certain
researches often results in datasets which is difficult to model using these classical
distributions as they do not always produce reasonable fit. To achieve flexibility in
the modeling of datasets, researchers are continuously developing new distributions,
which are generalizations of existing ones using techniques such as exponentia-
tion and the T -X approach. Some generalized families of distributions in literature
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include; Zubair-G [1], extended odd Fréchet-G [2], Kumaraswamy-G [3], beta-G
[4], transformed-transformer (T -X) family [5], exponentiated T -X [6], exponentiated
generalized T -X [7],Weibull-G [8], odd generalized exponential family [9], odd Topp-
Leone odd log-logistic-G family [10] and odd Fréchet-G family [11].

Though a two-parameter distribution, the Chen distribution has the ability to model
bathtub shaped failure rate functions amongothers desirable properties [12]. It however
lacks a scale parameter which makes it less flexible for modeling datasets [13]. The
cumulative distribution function (cdf), G(x) for Chen distribution is given by

G(x) � 1 − e
λ
(
1−ex

β
)
, x > 0, λ > 0, β > 0. (1)

This study proposes a new family of distribution called the odd Chen-G (OCG) family
of distributions using the T -X approach.

Let G(x ;ψ) be baseline cdf and ψ be a vector of associated parameters, the cdf
F(x) of the OCG family of distributions is defined as

F(x) �
G(x ;ψ)

1−G(x ;ψ)∫

0

f (t)dt � 1 − e
λ

(
1−e

(
G(x ;ψ)

1−G(x ;ψ)

)β)

, x > 0, λ > 0, β > 0, (2)

where λ and β are extra shape parameters. Differentiating the cdf in Eq. (2), the
probability density function (pdf) f (x) of the family is obtained as

f (x) � λβg(x ;ψ)G(x ;ψ)β−1[1 − G(x ;ψ)]−(β+1)e

(
G(x ;ψ)

1−G(x ;ψ)

)β

e
λ

(
1−e

(
G(x ;ψ)

1−G(x ;ψ)

)β)

, x > 0.
(3)

The corresponding survival S(x) and hazard h(x) functions are respectively given
by

S(x) � e
λ

⎛
⎝1−e

(
G(x ;ψ)

1−G(x ;ψ)

)β ⎞
⎠
, x > 0 (4)

and

h(x) � λβg(x ;ψ)G(x ;ψ)β−1[1 − G(x ;ψ)]−(β+1)e

(
G(x ;ψ)

1−G(x ;ψ)

)β

, x > 0 λ > 0, β > 0.
(5)

For simplicity, let G(x ;ψ) be denoted as G(x) in the rest of paper. Mixture rep-
resentation of the pdf and derivation of statistical properties of the OCG family of
distributions is presented in Sect. 2, followed by the estimation of its parameters in
Sect. 3. In Sect. 4, some proposed special distributions from the OCG family are pre-
sented. The properties of estimators of the parameters of these special distributions
are examined using simulations in Sect. 5 and demonstrations of the usefulness of the
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special distributions using real life datasets are shown in Sect. 6. Concluding remarks
are captured in Sect. 7.

2 Mixture Representation and Statistical Properties

Expansions of the density function of the family are made in this section. Also, statis-
tical properties of the family such as quantile, moments, order statistics and entropies
are derived.

2.1 Mixture Representation

The mixture representation of the pdf is essential in the derivation of the statistical
properties of the OCG family of distributions. After applying Taylor series expansion,
the OCG pdf in Eq. (3) becomes

f (x) � λβg(x)eλ
∞∑
i�0

∞∑
j�0

(−1)iλi

i!

(i + 1) j

j!
G(x)β( j+1)−1[1 − G(x)]−[β( j+1)+1]. (6)

Further expanding Eq. (3) using the generalized binomial series expansion,

(1 − z)−a �
∞∑
k�0

(
a + k − 1

k

)
zk, |z| ≤ 1, a < 0,

the expression for f (x) becomes

f (x) � λβeλg(x)
∞∑
i�0

∞∑
j�0

∞∑
k�0

(−1)iλi

i!

(i + 1) j

j!

(
β( j + 1) + k

k

)
G(x)β( j+1)+k−1.

Assuming a an integer in the binomial series expansion, the expression of the
mixture representation of the pdf for the OCG family is

f (x) � λβ

∞∑
i�0

∞∑
j�0

∞∑
k�0

∞∑
m�0

m∑
q�0

νi jkmqg(x)G(x)q , (7)

where

νi jkmq � (−1)i+mλi (i + 1) j

i! j!
eλ

(
β( j + 1) + k

k

)(
β( j + 1) + k − 1

m

)(
m
q

)
.
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Equation (7) expresses the pdf of the OCG family as a product of its parameters and
sum of the product of the pdf and weighted power series of the baseline distribution
function. Also, expressing f (x) in terms of exponentiated-G (expo-G) density yields

f (x) � λβ

∞∑
i�0

∞∑
j�0

∞∑
k�0

∞∑
m�0

m∑
q�0

ν∗
i jkmq

πq+1(x), (8)

where

ν∗
i jkmq

� νi jkmq

q + 1
and πq+1(x) � (q + 1)g(x)(G(x))q

is the expo-G density function with power parameter (q + 1).

2.2 Quantile Function

Random number generation for simulation purposes is one of the essential uses of the
quantile function.

Proposition 1 The quantile function for the OCG family of distributions is given by

QG(u) � G−1

⎡
⎢⎢⎣

(
log
(
1 − log(1−u)

λ

)) 1
β

1 +
(
log
(
1 − log(1−u)

λ

)) 1
β

⎤
⎥⎥⎦, 0 < u < 1. (9)

Proof The quantile function QG(u) of a random variable X is defined as the inverse
of the cdf. Hence, replacing x with xu , u ∈ (0, 1) in Eq. (2), equating F(xu) to u and
making xu the subject yields the quantile function.

The median of the family is obtained when u � 0.5. �

2.3 Moments, Moment Generating Functions and Incomplete Moments

Moments are useful in the study of the characteristics of a distribution such as skewness
and kurtosiswhilst incompletemoments are key in computingmeasures such asLorenz
and Bonferroni curves.

2.3.1 Moments

Proposition 2 The rth non-central moment for the OCG family of distributions is

μ
′
r � λβ

∞∑
i�0

∞∑
j�0

∞∑
k�0

∞∑
m�0

m∑
q�0

νi jkmqτ(r ,q), (10)

where
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τ(r ,q) �
∞∫

−∞
xr g(x)(G(x))qdx

is the weighted moment of the baseline distribution G(x).

Proof The rth non-central moment for a random variable X is defined as μ
′
r �∫∞

−∞ xr f (x)dx . Substituting the mixture density f (x) from Eq. (7) into the defini-
tion yields

μ
′
r � λβ

∞∑
i�0

∞∑
j�0

∞∑
k�0

∞∑
m�0

m∑
q�0

νi jkmq

∞∫

−∞
xr g(x)(G(x))qdx .

Alternatively, the rth non-centralmoment is defined in terms of the quantile function
as

μ
′
r � λβ

∞∑
i�0

∞∑
j�0

∞∑
k�0

∞∑
m�0

m∑
q�0

νi jkmq

1∫

0

uq Qr
G
(u)du, 0 < u < 1. (11)

where u � G(x) and QG(u) is the quantile function of the baseline distribution. �

2.3.2 Moment Generating Functions

Proposition 3 The moment generating function MX (t) for the OCG family of distri-
butions is given by

MX (t) � λβ

∞∑
i�0

∞∑
j�0

∞∑
k�0

∞∑
m�0

m∑
q�0

∞∑
r�0

tr

r !
νi jkmqτ(r ,q). (12)

Proof Generally, the moment generating function for a random variable X is defined
as MX (t) � ∫∞

−∞ etx f (x)dx . Hence, expanding MX (t) using Taylor series yields

MX (t) �
∞∑
r�0

tr

r !

∞∫

−∞
xr f (x)dx .

Subsequently, substituting the expression for the rth non-central moment into the
definition of MX (t) yields

MX (t) � λβ

∞∑
i�0

∞∑
j�0

∞∑
k�0

∞∑
m�0

m∑
q�0

∞∑
r�0

tr

r !
νi jkmqτ(r ,q).
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MX (t) can further be expressed in terms of quantile function as

MX (t) � λβ

∞∑
i�0

∞∑
j�0

∞∑
k�0

∞∑
m�0

m∑
q�0

∞∑
r�0

νi jkmq

1∫

0

etQG (x)uqdu, 0 < u < 1. (13)

�

2.3.3 Incomplete Moments

Incomplete moments play a key role in the computation of statistical measures such
as the mean deviations about the mean and median.

Proposition 4 The incomplete moments Mr (y) of the OCG family of distributions is
given by

Mr (y) � λβ

∞∑
i�0

∞∑
j�0

∞∑
k�0

∞∑
m�0

m∑
q�0

νi jkmq

y∫

−∞
xr g(x)Gq (x)dx (14)

Proof The incomplete moments of a random variable X is defined as Mr (y) �∫ y
−∞ xr f (x)dx . Substituting f (x) in Eq. (7) into the expression yields

Mr (y) � λβ

∞∑
i�0

∞∑
j�0

∞∑
k�0

∞∑
m�0

m∑
q�0

νi jkmq

y∫

−∞
xr g(x)Gq (x)dx .

Alternatively, Mr (y) may be expressed in terms of quantile function as

Mr (y) � λβ

∞∑
i�0

∞∑
j�0

∞∑
k�0

∞∑
m�0

m∑
q�0

νi jkmq

G(y)∫

0

uq Qr
G(u)du. (15)

�

2.4 Order Statistics

Order statistics are very useful in many areas of statistical theory most especially
extreme-value theory. The pdf for the pth order statistic X p:n , of the ordered random
sample X(1) ≤ X(2) ≤ · · · ≤ X(n) of size n is denoted by fX p:n (x).

Proposition 5 The pdf for the pth order statistic of the OCG family of distributions is
the obtained as

fX p:n (x) � λβ

p−1∑
i�0

∞∑
j�0

∞∑
k�0

∞∑
l�0

∞∑
m�0

m∑
n�o

Di jklmng(x)G(x)n, (16)
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where

Di jklmn � (−1)i+ j+mn! (λ(n − p + i + 1)) j ( j + 1)keλ(n−p+i+1)

j! k! (p − 1)! (n − p)!

×
(
p − 1
i

)(
β(k + 1) + l

l

)(
β(k + 1) + l − 1

m

)(
m
n

)
·

Proof The pdf for the pth order statistic X p:n , of a random sample X1, X2, . . . , Xn

of size n, fX p:n (x), is generally defined as

fX p:n (x) � n!

(p − 1)! (n − p)!
[F(x)]p−1[1 − F(x)]n−p f (x), p � 1, 2, . . . , n.

Expanding [F(x)]p−1 in the definition of fX p:n (x) using binomial series expansion
yields,

[F(x)]p−1 �
p−1∑
i�0

(−1)i
(
p − 1
i

)
[1 − F(x)]

i

.

Substituting it back into the expression of fX p:n (x) yields

fX p:n (x) � n!

(p − 1)! (n − p)!

p−1∑
i�0

(−1)i
(
p − 1
i

)
[S(x)]n−p+i f (x),

where

[S(x)]n−p+i � [1 − F(x)]n−p+i � e
λ(n−p+i)

(
1−eG(x)β

)
.

Algebraically manipulating

[S(x)]n−p+i f (x) � λβg(x)G(x)β−1eG(x)β e
λ(n−p+i+1)

(
1−eG(x)β

)

using Taylor series expansion yields;

[S(x)]n−p+i f (x) �λβg(x)G(x)β−1eλ(n−p+i+1)

×
∞∑
j�0

∞∑
k�0

(−1) j [λ(n − p + i + 1)] j

i!

( j + 1)k

k!
G(x)βk ·
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Further applying binomial series expansion gives;

[S(x)]n−p+i f (x) �λβg(x)eλ(n−p+i+1)×
∞∑
j�0

∞∑
k�0

∞∑
l�0

∞∑
m�0

m∑
n�0

(−1) j+m[λ(n − p + i + 1)] j

i!

( j + 1)k

k!

×
(

β(k + 1) + l
l

)(
β(k + 1) + l − 1

m

)(
m
n

)
G(x)n ·

Subsequently, substituting the expression of [S(x)]n−p+i f (x) into that of fX p:n (x)
yields

fX p:n (x) � λβ

p−1∑
i�0

∞∑
j�0

∞∑
k�0

∞∑
l�0

∞∑
m�0

m∑
n�o

Di jklmng(x)G(x)n .

�

2.4.1 Moments of Order Statistics

Proposition 6 The rth non-central moment of the pth order statistic, E(Xr
p:n), of the

OCG family of distributions is given by,

E(Xr
p:n) � λβ

p−1∑
i�0

∞∑
j�0

∞∑
k�0

∞∑
l�0

∞∑
m�0

m∑
n�0

Di jklmnτr ,n, (17)

where τr ,n � ∫∞
−∞ xr g(x)G(x)ndx is the probability weighted moment of the baseline

distribution.

Proof The rth moment of the pth order statistic of a random variable is defined as
E(Xr

p:n) � ∫∞
−∞ xr fX p:n (x)dx . Hence, substituting the pdf for the pth order statistic

in Eq. (16) into the expression of E(Xr
p:n), completes the proof. �

2.5 Stochastic Ordering

Stochastic ordering is used to show the ordering mechanism of a dataset. A random
variable X with cdf FX (x) is less than Y with cdf FY (x) in likelihood ratio order
(X ≤lr Y ), if the function fX (x)

/
fY (x) is decreasing for all x .

Proposition 6 Let X ∼ OCG(x ; λ1, β, ψ) and Y ∼ OCG(x ; λ2, β, ψ). Then X is
less than Y in likelihood ratio order (X ≤lr Y ) if λ2 < λ1.

Proof To determine whether the ratio of the pdfs of X and Y ,

fX (x)

fY (x)
� λ1

λ2
e
(λ1−λ2)

(
1−e

(
G(x)

1−G(x)

)β)
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is an increasing or decreasing function, we take the differential of its logarithm. If

λ2 < λ1 then d
dx

(
log
(

fX (x)
fY (x)

))
< 0 for all x. Hence, X is smaller than Y in likelihood

ratio order (X ≤lr Y ) and by implication X is smaller than Y in stochastic order
(X ≤st Y ). �

2.6 Inequality Measure

Several fields like insurance, econometrics and reliability employ Lorenz and Bonfer-
roni curves in the study of inequality measures like income and poverty.

2.6.1 Lorenz Curve

Lorenz curve is defined as LF (y) � 1
μ

∫ y
−∞ x f (x)dx , hence for the OCG family of

distributions, it is given by

LF (y) � λβ

μ

∞∑
i�0

∞∑
j�0

∞∑
k�0

∞∑
m�0

m∑
q�0

νi jkmq

y∫

−∞
xg(x)Gq (x)dx . (18)

Alternatively, it can be expressed in terms of quantile function as

LF (y) � λβ

μ

∞∑
i�0

∞∑
j�0

∞∑
k�0

∞∑
m�0

m∑
q�0

νi jkmq

G(y)∫

0

uq QG (u)du. (19)

2.6.2 Bonferroni Curve

The Bonferroni curve is another inequality measure given by BF (y) � LF (y)
F(y) . From

Eq. (19), the Bonferroni curve for the OCG family of distributions is obtained as

BF (y) � λβ

μF(y)

∞∑
i�0

∞∑
j�0

∞∑
k�0

∞∑
m�0

m∑
q�0

νi jkmq

y∫

−∞
xg(x)Gq (x)dx . (20)

2.7 Mean Residual Life

The mean residual life is the expected residual life or the average survival time of the
component after it exceeds a specific time y. It plays a very useful role in reliability
studies.

Proposition 7 The mean residual life of a CG random variable Y is given by

M(y)� 1

F(y)

⎡
⎣μ − λβ

∞∑
i�0

∞∑
j�0

∞∑
k�0

∞∑
m�0

m∑
q�0

νi jkmq

y∫

−∞
xg(x)Gq (x)dx

⎤
⎦− y. (21)
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Proof The mean residual life is defined as M(y) � E(X − y/X > y), thus

M(y) � 1

F(y)

⎡
⎣μ −

y∫

−∞
x f (x)dx

⎤
⎦− y.

Substituting the mixture density f (x) in Eq. (7) into the expression of M(y) yields
the proof. �

2.8 Entropy

Entropy measures the variation or uncertainty of a random variable. Its application
spans across several disciplines some of which include; econometrics, engineering,
probability theory and science in general.

2.8.1 Rényi’s Entropy

The application of entropy as ameasure of variation or uncertainty of a randomvariable
can be seen in many discipline some of which include; engineering, econometrics and
financial mathematics.

Proposition 8 Renyi’s entropy for the CG random variable is given by

IR(δ) � 1

1 − δ
log

⎡
⎣(λβ)δ

∞∑
i�0

∞∑
j�0

∞∑
k�0

∞∑
l�0

l∑
m�0

ηi jklm

∞∫

−∞
g(x)δG(x)mdx

⎤
⎦, δ 	� 1, δ > 0

(22)

where

ηi jklm � (−1)i+l(λδ)i (i + δ) j eλδ

i! j!
×

(
β( j + δ) + δ + k − 1

k

)(
β( j + δ) − δ + k

l

)(
l
m

)
·

Proof Let X be a random variable with pdf f (x), the Rényi’s entropy [14] is given by

IR(δ) � 1

1 − δ
log

⎡
⎣

∞∫

−∞
f δ(x)dx

⎤
⎦, δ 	� 1, δ > 0.

From Eq. (3),

f δ(x) �
⎡
⎢⎣λβg(x)G(x)β−1[1 − G(x)]−(β+1)e

(
G(x)

1−G(x)

)β

e
λ

(
1−e

(
G(x)

1−G(x)

)β)⎤
⎥⎦

δ
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Expanding f δ(x) using a similar concept as used in obtaining the mixture representa-
tion of the density function yields

f δ(x) � (λβ)δ
∞∑
i�0

∞∑
j�0

∞∑
k�0

∞∑
l�0

l∑
m�0

ηi jklmg(x)
δG(x)m,

where

ηi jklm � (−1)i+l(λδ)i (i + δ) j eλδ

i! j!
×

(
β( j + δ) + δ + k − 1

k

)(
β( j + δ) − δ + k

l

)(
l
m

)
·

Substituting f δ(x) into the expression for IR(δ) yields

IR(δ) � 1

1 − δ
log

⎡
⎣(λβ)δ

∞∑
i�0

∞∑
j�0

∞∑
k�0

∞∑
l�0

l∑
m�0

ηi jklm

∞∫

−∞
g(x)δG(x)mdx

⎤
⎦.

�

2.8.2 Shannon’s Entropy

The Shannon’s entropy [14] for a random variable X with pdf f (x) is a special case
of the Rényi’s entropy when δ ↑ 1. It is defined as ηX � E(− log f (x)). For the OCG
family of distribution it is given by

ηX � E

⎡
⎣− log

⎛
⎝λβ

∞∑
i�0

∞∑
j�0

∞∑
k�0

∞∑
m�0

m∑
q�0

νi jkmqg(x)G(x)q

⎞
⎠
⎤
⎦. (23)

2.8.3 Delta Entropy

The δ-entropy is given by

H (δ) � 1

1 − δ
log

⎡
⎣1 −

∞∫

−∞
f δ(x)dx

⎤
⎦.

Hence the δ-entropy for the OCG family of distributions is given by

IR(δ) � 1

1 − δ
log

⎡
⎣1 − (λβ)δ

∞∑
i�0

∞∑
j�0

∞∑
k�0

∞∑
l�0

l∑
m�0

ηi jklm

∞∫

−∞
g(x)δG(x)mdx

⎤
⎦, δ 	� 1, δ > 0.

(24)
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2.9 Stress–Strength Reliability

The stress strength reliability is the probability of the component to perform without
fail, a specified function under specified conditions for a given level of stress.

Proposition 9 The Stress strength reliability R of the OCG family is given by

R � 1 − λβ

∞∑
i�0

∞∑
j�0

∞∑
k�0

∞∑
l�0

l∑
m�0

ϕi jklm

∞∫

−∞
g(x)G(x)mdx,

(25)

where

ϕi jklm � (−1)i+l (2λ)i (i + 1) j e2λ

i! j!

(
β( j + 1) + k

k

)(
β( j + 1) + k − 1

l

)(
l
m

)
.

Proof Suppose X1 ∼ (λ, β,ψ) is a strength random variable and X2 ∼ (λ, β,ψ) is
a stress random variable both from the OCG family. The stress strength reliability is
defined by

R � P(X2 < X1) �
∞∫

−∞
f (x)F(x)dx � 1 −

∞∫

−∞
f (x)S(x)dx .

Algebraically manipulating f (x)S(x) in the expression of R in a similar manner as
the mixture of f (x) in Eq. (7) yields

f (x)S(x) � λβ

∞∑
i�0

∞∑
j�0

∞∑
k�0

∞∑
l�0

l∑
m�0

ϕi jklmg(x)G(x)m,

where

ϕi jklm � (−1)i+l (2λ)i (i + 1) j e2λ

i! j!

(
β( j + 1) + k

k

)(
β( j + 1) + k − 1

l

)(
l
m

)
.

Substituting the expression of f (x)S(x) obtained back into R yields the proof. �

3 Parameter Estimation

The parameters of the OCG family are estimated in this section using the method of
maximum likelihood. Given a random sample x1, x2, . . . , xn of size nwith parameters
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λ, β and ψ from the OCG family of distribution. Let υ � (λ, β,ψ)T be a (p × 1)
parameter vector, the total log-likelihood function is given by

� � n log λβ +
n∑

i�1

log g(x ;ψ) + (β − 1)
n∑

i�1

logG(x ;ψ) + λ

n∑
i�1

(
1 − e

(
G(x ;ψ)

1−G(x ;ψ)

)β
)

− (β + 1)
n∑

i�1

log[1 − G(x ;ψ)]
n∑

i�1

(
G(x ;ψ)

1 − G(x ;ψ)

)β

. (26)

partially differentiating the likelihood function yields the components of the score
function U (υ) � (∂�/∂λ, ∂�/∂β, ∂�/∂ψ)T as follows

d�

dλ
� n

λ
+

n∑
i�1

(
1 − e

(
G(x ;ψ)

1−G(x ;ψ)

)β
)

, (27)

d�

dβ
� n

β
+

n∑
i�1

logG(x ;ψ) −
n∑

i�1

log[1 − G(x ;ψ)]

+
n∑

i�1

(
G(x ;ψ)

1 − G(x ;ψ)

)β

log

(
G(x ;ψ)

1 − G(x ;ψ)

)

− λ

n∑
i�1

(
G(x ;ψ)

1 − G(x ;ψ)

)β

log

(
G(x ;ψ)

1 − G(x ;ψ)

)
e

(
G(x ;ψ)

1−G(x ;ψ)

)β

, (28)

d�

dψ
�

n∑
i�1

g
′
k(x ;ψ)

g(x ;ψ)
+ (β − 1)

n∑
I�1

G
′
k(x ;ψ)

G(x ;ψ)
+ (β + 1)

n∑
i�1

G
′
k(x ;ψ)

[1 − G(x ;ψ)]

+ β

n∑
i�1

G
′
K (x ;ψ)G(x ;ψ)β−1

[1 − G(x ;ψ)]β+1
− λβ

n∑
i�1

G
′
K (x ;ψ)G(x ;ψ)β−1

[1 − G(x ;ψ)]β+1
e

(
G(x ;ψ)

1−G(x ;ψ)

)β

,

(29)

where g
′
K (x ;ψ) � dg(x ;ψ)

dψ
,g

′′
K (x ;ψ) � d2g(x ;ψ)

dψ2 ,G
′
K (x ;ψ) � dG(x ;ψ)

dψ
and

G
′′
K (x ;ψ) � d2G(x ;ψ)

dψ2 .
The estimators of the parameters are then obtained by setting Eqs. (27), (28) and

(29) to zero and solving them numerically using the iterative methods such as the
Newton–Raphson type algorithms. The observed information matrix J (υ), is required
for interval estimation of the parameters. It can be estimated as J (υ) � ∂2�

∂i∂ j for
(i, j � λ, β,ψ) whose elements are evaluated numerically.

4 Some Special Distributions

Generalization of several distributions can be made using the OCG family of distribu-
tions. Three special distributions; odd Chen Burr III (OCB), odd Chen Lomax (OCL)
and odd Chen Weibull (OCW) were developed in this section.

123



www.udsspace.uds.edu.gh 

 

 

 

 

Annals of Data Science

Fig. 1 plots of density and hazard rate functions of OCB distribution

4.1 Odd Chen Burr III Distribution

The cdf and pdf of Burr III (the baseline) distribution are respectively G(x) �(
1 + x−θ

)−γ
and g(x) � γ θx−θ−1

(
1 + x−θ

)−γ−1
, x > 0, θ > 0, γ > 0. Substi-

tuting G(x) and g(x) into Eqs. (2), (3) and (4), respectively yields the cumulative
distribution, probability density and hazard functions of the OCB distribution. The
cdf and pdf of the OCB distribution are given by

F(x) � 1 − e
λ

(
1−e

[
(1+x−θ )

γ −1
]−β

)

, x > 0, θ > 0, β > 0, γ > 0, λ > 0 (30)

and

f (x) � λβγ θx−(θ+1)(1 + x−θ
)−(γ β+1)

[
1 − (1 + x−θ

)−γ
]−(β+1)

e

[(
1+x−θ

)γ −1
]−β

e
λ

(
1−e

[
(1+x−θ )

γ −1
]−β

)

, x > 0.

(31)

Its hazard function is given by

h(x) � λβγ θx−(θ+1)(1 + x−θ
)−(γ β+1)

[
1 − (1 + x−θ

)−γ
]−(β+1)

e

[(
1+x−θ

)γ −1
]−β

, x > 0. (32)

The OCB distribution exhibits increasing, decreasing, unimodal left and right
skewed shapes of density function and for some selected values it exhibits bathtub,
upside down bathtub, modified upside down bathtub, decreasing and increasing failure
rates as shown by its density and hazard rate plots in Fig. 1.

The quantile function QG(u) for the Odd Chen Burr III distribution is given by

QG (u) �

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎣

(
log
(
1 −

(
log(1−u)

λ

))) 1
β

1 +
(
log
(
1 −

(
log(1−u)

λ

))) 1
β

⎤
⎥⎥⎦

− 1
γ

− 1

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

− 1
θ

, 0 < u < 1. (33)
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Fig. 2 Plots of density and hazard rate functions of OCL distribution

4.2 Odd Chen Lomax Distribution

The cdf and pdf of the Lomax distribution [15] is respectively given by G(x) � 1 −
(1 + θx)−k and g(x) � θk(1 + θx)−(k+1),x > 0, k > 0, θ > 0. The cdf and pdf of the
OCL distribution is given by

F(x) � 1 − e
λ

(
1−e

[
(1+θx)k−1

]β)

, x > 0, λ > 0, θ > 0, β > 0, k > 0 (34)

and

f (x) � λβθk(1 + θx)βk−1
[
1 − (1 + θx)−k

]β−1
e
[
(1+θx)k−1

]β
e
λ

(
1−e

[
(1+θx)k−1

]β)

, x > 0. (35)

Its hazard function is given by

h(x) � λβθk(1 + θx)βk−1
[
1 − (1 + θx)−k

]β−1
e
[
(1+θx)k−1

]β
, x > 0. (36)

The density plot of the OCL distribution exhibit varying shapes such as increasing,
decreasing and non monotonically increasing shapes among others as shown in Fig. 2.
The hazard rate function exhibited upside down bathtub, decreasing and increasing
failure rates for some selected values.

The quantile function for the Odd Chen Lomax distribution is obtained as

QG(u) � 1

θ

⎡
⎢⎢⎢⎣

⎛
⎜⎜⎝1 −

⎛
⎜⎜⎝

(
log
(
1 − log(1−u)

λ

)) 1
β

1 +
(
log
(
1 − log(1−u)

λ

)) 1
β

⎞
⎟⎟⎠

⎞
⎟⎟⎠

− 1
k

− 1

⎤
⎥⎥⎥⎦, 0 < u < 1. (37)
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Fig. 3 Plots of the density and hazard rate function of OCW distribution

4.3 Odd ChenWeibull Distribution

The cdf and pdf of Weibull distribution are G(x) � 1 − e−( x
α )

γ

and g(x) � ( γ
α

)
( x

α

)γ−1
e−( x

α )
γ

respectively. The cdf and pdf of OCW distribution is obtained as

F(x) � 1 − e

λ

⎡
⎢⎢⎣1−e

(
e(

x
α )

γ

−1

)β
⎤
⎥⎥⎦
, x > 0, α > 0, β > 0, γ > 0 (38)

and

f (x) � λβ
(γ

α

)( x
α

)γ−1(
1 − e−( x

α )
γ
)β−1

e−( x
α )

−γβ

e

(
e(

x
α )

γ

−1

)β

e

λ

⎛
⎜⎜⎝1−e

(
e(

x
α )

γ

−1

)β
⎞
⎟⎟⎠
, x > 0.

(39)

Its hazard function is given by

h(x) � λβ
(γ

α

)( x
α

)γ−1(
1 − e−( x

α )
γ
)β−1

e−( x
α )

−γβ

e

(
e(

x
α )

γ

−1

)β

x > 0. (40)

A display of plots of the density and hazard rate functions of the OCW distribution
are found in Fig. 3. The density plot shows shapes such as symmetric, unimodal right
skewed, J and reversed J shapes. The hazard rate plot for some selected values exhibits
increasing and decreasing failure rates, bathtub and upside down bathtub shapes.

The quantile function QG(u) the Odd Chen Weibull distribution is given by

QG(u) � α

⎡
⎢⎢⎣− log

⎛
⎜⎜⎝1 −

(
log
(
1 − log(1−u)

λ

)) 1
β

1 +
(
log
(
1 − log(1−u)

λ

)) 1
β

⎞
⎟⎟⎠

⎤
⎥⎥⎦

1
γ

, 0 < u < 1. (41)
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Table 1 Simulation results of AB, RMSE and CP for OCW distribution

Parameter n (θ � 0.3, β � 0.8, γ � 0.1, λ � 0.4) (θ � 0.9, β � 3.5, γ � 2.5, λ � 0.6)

AB RMSE CP AB RMSE CP

θ 50 0.5467 0.7802 0.8880 2.8948 3.8475 0.9840

150 0.3836 0.6492 0.8673 1.6762 2.4370 0.9560

300 0.2496 0.5282 0.8633 1.1345 1.6802 0.9467

600 0.1365 0.3922 0.8600 0.7915 1.1433 0.9600

1000 0.0872 0.3048 0.8853 0.6119 0.8900 0.9540
β 50 0.0388 0.1555 0.9833 − 2.1826 2.5354 0.4593

150 0.0249 0.0812 0.9740 − 1.8235 2.2538 0.5820

300 0.0165 0.0567 0.9820 − 1.6394 2.0520 0.6387

600 0.0117 0.0371 0.9813 − 1.4499 1.8822 0.6523

1000 0.0072 0.0263 0.9727 − 1.2787 1.7325 0.6440
γ 50 − 0.0129 0.0962 0.9999 246.9147 966.0244 0.9767

150 − 0.0081 0.0732 0.9967 28.4697 107.9522 0.9887

300 − 0.0014 0.0620 0.9740 7.6163 21.8327 0.9953

600 0.0021 0.0479 0.9620 2.9083 4.8612 0.9999

1000 0.0016 0.3880 0.9553 2.0458 3.2785 0.9900
λ 50 0.1021 0.4368 0.8947 0.8223 17.0391 0.6080

150 0.0150 0.2060 0.9267 − 0.1217 0.7355 0.6553

300 − 0.0064 0.1398 0.9307 − 0.1766 0.4760 0.7100

600 − 0.0104 0.0972 0.9433 − 0.1953 0.3604 0.7367

1000 − 0.0084 0.0772 0.9393 − 0.1898 0.3135 0.7487

5 Simulation

Validation of the maximum likelihood estimators is carried out in this section using
Monte Carlo simulations. This is done using the estimators of the OCW distribution.
Random numbers from the OCW distribution are generated using the OCW quantile
function in Eq. (43). Setting the initial parameter values; θ � 0.3, β � 0.8, γ � 0.1
and λ � 0.4, for sample sizes n � 50, 150, 300, 600, 1000, the simulations are
repeated 1500 times for each sample. Repeating similar sample sizes for the initial
parameter values; θ � 0.9,β � 3.5, γ � 2.5 andλ � 0.6, the simulations are repeated
for each sample another 1500 times. The root mean square error (RMSE), the average
bias (AB) and coverage probability (CP) for the estimators of the parameters at 95%
confidence intervals are presented in Table 1. From Table 1 it is observed that there
is convergence of the RMSE and AB in all cases. Thus they decrease to zero(0) as
the sample size increases. The CPs are also observed to be close the nominal value
of 0.95. This emphasizes the effectiveness of the method of maximum likelihood in
estimating the parameters of the OCW distribution.
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Table 2 Lifetimes of 50
components (Data 1)

0.1 0.2 1 1 1 1 1 2 3 6 7 11 12

18 18 18 18 18 21 32 36 40 45 46 47 50

55 60 63 63 67 67 67 67 72 75 79 82 82

83 84 84 84 85 85 85 85 85 86 86

Table 3 Lifetime of a certain device (Data 2)

0.0094 0.0500 0.4064 4.6307 7.1645 7.2316 8.2616 9.2662 9.3812 9.5223

9.8783 10.4791 11.0760 11.3250 11.5284 11.9226 12.0294 12.5381 12.8049 13.4615

13.8530 5.1741 5.8808 6.3348 10.4077 10.0192 9.9346 12.1835 12.0740 12.3549

6 Applications

In this section, real life datasets are used to demonstrate the applications of the OCB,
OCL and OCW distributions in providing good parametric fit. The maximum like-
lihood estimates for the parameters of the model were obtained by maximizing the
log-likelihood function of the models using the bbmle package in R [16]. Their per-
formance was then compared with new generalized Weibull distribution (NGW) [17]
using goodness of fit measures such as Anderson–Darling statistic(AD), Cramer-von
misses distance values (CM), Kolmogorov–Smirnov statistic(KS), Akaike informa-
tion criteria (AIC),Bayesian information criteria (BIC) andHannanQuinn information
Criteria (HQIC). The smaller the value of the goodness of fit measures the better the fit
to the data. The negative log-likelihoodwas also considered for the sake of comparison.
The cdf and pdf of the NGW are respectively given by

F(x ;α, η, θ, ϕ) �
[
1 − e

(−αx−ηxθ
)]ϕ

and

f (x ;α, η, θ, ϕ) � ϕ
(
α + ηθxθ−1

)
e
(−αx−ηxθ

) [
1 − e

(−αx−ηxθ
)]ϕ−1

, x

> 0, α > 0, η > 0, θ > 0, ϕ > 0.

The first dataset used for the application, Data 1 in Table 2 consists of lifetimes of
50 components, given by [18] and the second dataset Data 2 in Table 3 represent the
lifetime of a certain device given by [19] both found in [17].

A total time on test (TTT) transform plot of the dataset in Fig. 4 shows that both
datasets have modified bathtub failure rate function.

6.1 First Application

All the parameters of OCL, OCW and NGWdistributions were significant at 95%con-
fidence level, however only λ̂ of the OCB distribution was significant at 5% level of
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Fig. 4 TTT-transform plot for the datasets

Table 4 Maximum likelihood and standard error (in parenthesis) estimates of parameters

model α̂ λ̂ β̂ θ̂ γ̂ k̂ η̂ ϕ̂

OCB 0.0275 0.1241 2.9023 3.0213

(0.0133) (0.1756) (3.909) (1.9036)

OCL 0.1199 0.3308 0.0074 6.8406

(0.0434) (0.0828) (0.003) (2.2717)

OCW 45.9988 0.3606 0.0310 5.0701

(4.1288) (0.0725) (0.0071) (0.8432)

NGW 0.0245 0.0407 3.3297 78.6862

(0.0042) (0.0138) (0.1532) (0.0019)

Table 5 Log-likelihood estimates and goodness of fit measures

Model � AIC BIC CAIC KS AD W

OCB − 232.01 472.0250 479.6731 472.9139 0.1678 2.0008 0.3177

OCL − 225.31 458.6183 466.2664 459.5072 0.1453 1.4385 0.2030

OCW − 291.65 591.2914 598.9395 592.1803 0.1912 1.6060 0.2553

NGW − 235.60 479.2089 486.8570 480.0978 0.1620 2.3681 0.3800

Bolded values means best based on the goodness of fit measures

significance. Table 4 shows the estimates of the maximum likelihood and their respec-
tive standard errors for Data1.

OCL distribution outperforms the rest of the models as it has the highest log-
likelihood and the lowest values of all the goodness of fit measure and provides a
comparatively reasonable fit as shown in Table 5 and Fig. 5 respectively.

The estimated parameter values of the OCL distribution are the maxima as shown
by the profile likelihood plots in Fig. 6.
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Fig. 5 Empirical and fitted density and cdf plots of fitted distributions for Data 1

Fig. 6 Profile log-likelihood plot of OCL parameters

6.2 Second Application

The maximum likelihood and corresponding standard error estimates for Data2 is
presented in Table 6. OCL distribution again provided a comparatively better fit for
the dataset owing to the fact that it had the highest log-likelihood and the smallest
values for all the goodness of fit measures used as shown in Table 7.

This is further confirmed by the plots of its empirical and fitted density and cdf
plots in Fig. 7.

The estimated parameter values of the OCL distribution are the maxima as illus-
trated by the plot of profile likelihood in Fig. 8.

7 Conclusion

The flexibility of generalized models in modeling varying datasets remains a strong
motivation for developing new families of distributions. The study developed a new
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Table 6 Maximum likelihood and standard error (in parenthesis) estimates of parameters

model α̂ λ̂ β̂ θ̂ γ̂ k̂ η̂ ϕ̂

OCB 0.0054 0.0619 11.0047 0.4419

(0.0036) (0.0042) (0.0014) (0.1512)

OCL 0.0402 0.5094 0.0201 12.2327

(0.0259) (0.2121) (0.01) (5.5816)

OCW 4.7534 0.2015 0.0408 3.092

(1.2735) (0.0685) (0.0181) (0.828)

NMW 0.202 0.0131 3.2355 106.7165

(0.03) (0.0097) (0.2269) (0.0021)

Table 7 Log-likelihood estimates and goodness of fit measures of fitted distributions

model � AIC BIC CAIC KS AD W

OCB − 75.97 159.9333 165.5381 161.5333 0.1414 0.9131 0.1343

OCL − 72.19 152.3888 157.9936 153.9888 0.0971 0.4823 0.0666

OCW − 116.5 241.0092 246.614 242.6092 0.0199 0.3095 0.0478

NMW − 85.87 179.7422 185.347 181.3422 0.2219 2.5874 0.4194

Bolded values means best based on the goodness of fit measures

Fig. 7 Empirical and fitted density and cdf plots of fitted distributions for Data 2

family of distribution called the OCG family. Statistical properties such as the stochas-
tic ordering, order statistics, moments, uncertainty measures and entropies of the new
family are derived. Three special distributions of the new family were developed.
Maximum likelihood estimates for the parameters of the special distributions were
obtained. A demonstration of the application of the special distribution developed was
carried out using two real datasets. A comparison of the results revealed that the OCL
provided a better parametric fit to these datasets.
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Fig. 8 Profile log-likelihood plot of OCL parameters
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Chen-G class of distributions
Lea Anzagra1*, Solomon Sarpong1 and Suleman Nasiru1

Abstract: The quest to generate distributions with more desirable and flexible
properties for the modeling of data has led to an intense focus on the development of
new families that are generalizations of existing distributions by researchers. A new
family of distributions called the chen generated family is developed in this study. Its
statistical properties such as the quantile, moments, incomplete moments, stochastic
ordering and order statistics are derived by using the method of maximum likelihood,
estimators for the parameters of the new family are developed. Three special dis-
tributions, Chen Burr III, Chen Kumaraswamy and Chen Weibull, are proposed from
the new family, though it can generalize other distributions. A demonstration of the
usefulness of the new family is performed using real dataset.

Subjects: advanced mathematics; applied mathematics; statistics & probability

Keywords: Chen; Weibull; distribution; moments; stochastic ordering; quantile
Jel: 62e15; 60e05

1. Introduction
The accuracy of parametric statistical inference andmodeling of datasets largely depends on howwell
the probability distribution fits the given dataset once it hasmet all distributional assumptions. Several
studies have been carried out on statistical distributions in the quest to generate distributions with
more desirable and flexible properties that can model real-life datasets of varying shapes of density
and failure rate functions. Currently, most studies are focused on developing new families that are
generalizations of existing distributions to provide better fit to the modeling of data. These families of
distributions are constructed by either compounding two or more distributions or adding one or more
parameters to the baseline model. Many authors have extensively reviewed the various families of
distributions (Hamedani, Yousof, Rasekhi, Alizadeh, & Najibi, 2018; Lee, Famoye, & Alzaatreh, 2013;
Nasiru, 2018; Nasiru, Mwita, & Ngesa, 2018; Zubair, 2018).
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In this study a new class of distributions is developed and proposed using the T-X approach
(Alzaatreh, Lee, & Famoye, 2013). The Chen generated (CG) family of distributions is obtained
by compounding the two-parameter Chen distribution (Chen, 2000) and an arbitrary baseline
cumulative distribution function (cdf) of a continuous random variable. The main motivation for
developing this family is to improve the flexibility of the existing classical distributions, thus to
enabling them to provide a better fit to real data sets than other candidate distributions with
the same number of parameters and model different kinds of failure rate (monotonic and non-
monotonic).

The remaining sections of the paper follow this order: the Chen generated (CG) family of
distributions is defined in section 2. The mixture representation of the probability density
function (pdf) is presented in section 3. Some statistical properties of the family of distributions
are derived in section 4. The estimators for the parameters of the family are developed in
section 5. Some special distributions from the CG family of distributions are proposed and
discussed in section 6. Simulations to examine the properties of estimators of parameters of
the special distributions are carried out in section 7. Real-life data set is used to demonstrate
the application of the special distributions in section 8. Concluding remarks of the study are
captured in section 9.

2. Chen generated a family of distributions
Let T be a Chen distributed continuous random variable, its cdf denoted by FðtÞ is given by FðtÞ ¼
1� eλ 1�et

β
� �

; t > 0 (Chen, 2000). Also, let GðxÞand gðxÞ be the respective cdf and pdf of an arbitrary
continuous random variable X. The cdf of the CG family is defined as;

FðxÞ ¼
ðGðxÞ
0

fðtÞdt ¼ A 1� eλ 1�eGðxÞ
β

� �� �
; x > 0; λ > 0; β > 0; (1)

where A ¼ 1�
1� eλ 1�eð Þ is a normalizing constant, λ and β are scale and shape parameters,

respectively. The pdf fðxÞ of the family is given by;

fðxÞ ¼ AλβgðxÞGðxÞβ�1eGðxÞ
β

eλ 1�eGðxÞ
β

� �
;x > 0; λ > 0; β > 0: (2)

The survival function, SðxÞof the CG family is;

SðxÞ ¼ 1� A 1� eλ 1�eGðxÞ
β

� �� �
; x > 0; λ > 0; β > 0: (3)

The failure rate or hazard function, hðxÞof the family is obtained as follows:

hðxÞ ¼ AλβgðxÞGðxÞβ�1eGðxÞ
β

eλ 1�eGðxÞ
β

� �
1� A 1� eλ 1�eGðxÞβð Þh i ; x > 0; λ > 0; β > 0: (4)

3. Mixture representation of distribution
Mixture representation plays a useful role in the derivation of the statistical properties of the new
family of distributions. Hence, the mixture representation of the pdf of the CG family of distribu-
tions is derived in this section.

By applying Taylor series expansion, the pdf of the CG family in Equation (2) is expressed as

fðxÞ ¼ AλβeλgðxÞGðxÞβ�1 ∑
1

i¼0
∑
1

j¼0

ð�1Þiλi
i!

ðiþ 1Þj
j!

GðxÞβðjþ1Þ�1: (5)

Equation (5) can be rewritten as;
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fðxÞ ¼ AλβeλgðxÞ ∑
1

i¼0
∑
1

j¼0

ð�1Þiλi
i!

ðiþ 1Þj
j!

1� ð1� GðxÞÞ½ �βðjþ1Þ�1:

fðxÞ is further expanded using the binomial series expansion ð1� zÞa�1 ¼ ∑
1

k¼0
ð�1Þk a� 1

k

� �
zk;

jzj < 1 for any real non-integer a > 0 as follows:

fðxÞ ¼ AλβeλgðxÞ ∑
1

i¼0
∑
1

j¼0

ð�1Þiðiþ 1Þjλi
i!j!

∑
1

k¼0
ð�1Þ

k βðjþ 1Þ � 1
k

� �
1� GðxÞð Þk:

Assuming a an integer in the binomial expansion,

fðxÞ ¼ Aλβ ∑
1

i¼0
∑
1

j¼0
∑
1

k¼0
∑
k

l¼0
ωijklgðxÞ GðxÞð Þl; (6)

where

ωijkl ¼
ð�1Þiþkþlðiþ 1Þjλieλ

i!j!
βðjþ 1Þ � 1

k

� �
k
l

� �
:

From Equation (6), the CG family’s density is expressed as a product of the parameters and the
sum of the product of the pdf and weighted power series of the baseline distribution function GðxÞ.

Alternatively, Equation (6) can further be written in terms of the exponentiated-G (expo-G)
density function as

fðxÞ ¼ Aλβ ∑
1

i¼0
∑
1

j¼0
∑
1

k¼0
∑
k

l¼0
ω�
ijklπlþ1ðxÞ; (7)

where ωijkl
� ¼ ωijkl

lþ1 and πlþ1ðxÞ ¼ ðlþ 1ÞgðxÞ GðxÞð Þl is the expo-G density function with the power
parameter ðlþ 1Þ.

4. Statistical properties
This section discusses some of the statistical properties of the CG family of distributions. These
include: quantile function, non-central moments, moments, generating functions, inequality mea-
sures, entropies, residual life, stochastic ordering and order statistics.

4.1. Quantile function

Proposition 1. The quantile function for CG family of distributions is given by

QGðuÞ ¼ xu ¼ G�1 ln 1� lnð1� u=AÞ
λ

� �� �1
β

; 0 < u < 1; (8)

Proof. The quantile function QGðuÞ of a random variable X is defined as
FðxuÞ ¼ PðX � xuÞ ¼ u;u 2 ð0;1Þ. Replacing x with xu in Equation (1), equating FðxuÞ to u and making
xu the subject yields the quantile function. The median of the family is obtained by substituting
u ¼ 0:5 in Equation (8).

4.2. Moments, moment generating functions and incomplete moments
Moments are very essential in statistical analysis as they can be used to study important features
(such as tendencies, variation, skewness, kurtosis and so on) of a distribution.

4.2.1. Non-central moments

Proposition 2. The rth non-central moment of the CG family is given by
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μ
0
r ¼ Aλβ ∑

1

i¼0
∑
1

j¼0
∑
1

k¼0
∑
k

l¼0
ωijklτðr;lÞ ;r ¼ 1;2; :::; (9)

where τðr;lÞ ¼
ð1

�1
xrgðxÞ GðxÞð Þldx is the probability weighted moment of the baseline distribu-

tion GðxÞ:

Proof. The rth non-central moment is defined as EðXrÞ ¼ μ
0
r ¼

ð1
�1

xrfðxÞdx, thus using the mixture

form of the density, the rth non-central moment of the CG family is given by

μ
0
r ¼ Aλβ ∑

1

i¼0
∑
1

j¼0
∑
1

k¼0
∑
k

l¼0
ωijkl

ð1
�1

xrgðxÞ GðxÞð Þldx:

Alternatively, the rth non-central moment of the CG family can be described in terms of the
quantile function as follows;

Let GðxÞ ¼ u; x ¼ G�1ðuÞ ¼ QGðuÞ; dGðxÞ
dx ¼ du

dx ¼ gðxÞ and gðxÞdx ¼ du. From Equation (9),

μ
0
r ¼ Aλβ ∑

1

i¼0
∑
1

j¼0
∑
1

k¼0
∑
k

l¼0
ωijkl

ð1
0

QGðuÞruldu: (10)

4.2.2. Moment generating functions

Proposition 3. The moment generating function of the CG family is given by

MXðtÞ ¼ Aλβ ∑
1

i¼0
∑
1

j¼0
∑
1

k¼0
∑
1

r¼0
∑
k

l¼0

ðtÞr
r!

ωijklτðr;lÞ: (11)

Proof. By definition, the moment generating function is given by MXðtÞ ¼
ð1

�1
etxfðxÞdx, expanding

MXðtÞ using Taylor series, MXðtÞ ¼ ∑
1

r¼0

ðtÞr
r!

ð1
�1

xrfðxÞdx.

But from Equation (9),
ð1

�1
xrfðxÞdx ¼ Aλβ ∑

1

i¼0
∑
1

j¼0
∑
1

k¼0
∑
k

l¼0
ωijklτðr;lÞ; hence the proof.

Alternatively, letting GðxÞ ¼ u, the moment generating function can be expressed in terms of
quantile functions as;

MXðtÞ ¼ Aλβ ∑
1

i¼0
∑
1

j¼0
∑
1

k¼0
∑
k

l¼0
ωijkl

ð1
0

etQGðuÞuldu: (12)

4.2.3. Incomplete moments

Proposition 4. The rth incomplete moment of the CG family of distribution is given by

MrðyÞ ¼ Aλβ ∑
1

i¼0
∑
1

j¼0
∑
1

k¼0
∑
k

l¼0
ωijkl

ðy
�1

xrgðxÞ GðxÞð Þldx; r ¼ 1;2; :::: (13)

Proof. The rth incomplete moment is defined as MrðyÞ ¼
ðy

�1
xrfðxÞdx: Substituting the mixture

representation of the density function into the definition of the rth incomplete moments completes
the proof.

Alternatively, letting GðxÞ ¼ u, the incomplete moments can be expressed in terms of the
quantile function as;
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MrðyÞ ¼ Aλβ ∑
1

i¼0
∑
1

j¼0
∑
1

k¼0
∑
k

l¼0
ωijkl

ðGðyÞ
0

QGðuÞruldu: (14)

4.3. Inequality measures
Lorenz and Bonferroni curves are applied in so many fields such as econometrics, demography,
reliability, medicine and insurance. They are generally used in studying inequality measures like
income and poverty.

4.3.1. Lorenz curve
The Lorenz curve LFðyÞ for incomplete moments is defined as LFðyÞ ¼ 1

μ

ðy
�1

xfðxÞdx for the CG family,
it is given by;

LFðyÞ ¼ Aλβ
μ

∑
1

i¼0
∑
1

j¼0
∑
1

k¼0
∑
k

l¼0
ωijkl

ðy
�1

xgðxÞ GðxÞð Þldx: (15)

Alternatively, letting GðxÞ ¼ u, LFðyÞ can be expressed in terms of the quantile functions as;

LFðyÞ ¼ Aλβ
μ

∑
1

i¼0
∑
1

j¼0
∑
1

k¼0
∑
k

l¼0
ωijkl

ðGðyÞ
0

QGðuÞuldu (16)

4.3.2. Bonferroni curve
Bonferroni curve BFðyÞ is defined as BFðyÞ ¼ LFðyÞ

FðyÞ , hence for the CG family it is given by;

BFðyÞ ¼ Aλβ
μFðyÞ ∑

1

i¼0
∑
1

j¼0
∑
1

k¼0
∑
k

l¼0
ωijkl

ðy
�1

xgðxÞ GðxÞð Þldx: (17)

4.4. Mean residual life
The mean residual life of a component (which is the average survival time of the component after
it has exceeded a specific timey) is defined as EðX � y=X>yÞ:

Proposition 5. The mean residual life of a CG random variable Y is given by

MðyÞ ¼ 1
1� FðyÞ μ� Aλβ ∑

1

i¼0
∑
1

j¼0
∑
1

k¼0
∑
k

l¼0
ωijkl

ðy
�1

xgðxÞ GðxÞð Þldx
24 35� y: (18)

Proof. The mean residual life is defined as MðyÞ ¼ 1
1�FðyÞ μ�

ðy
�1

xfðxÞdx
24 35� y. Substituting fðxÞ in

Equation (6) into MðyÞ gives the mean residual life.

4.5. Entropy
Entropy is a measure of variation or uncertainty of a random variable. Its application spans across
probability theory, engineering and science in general.

4.5.1. Rényi’s entropy
The Rényi’s entropy (Rényi, 1961) for a random variable with pdf fðxÞ, is defined as;

IRðδÞ ¼ 1
1� δ

log
ð1
�1

f δðxÞdx
� �

; δ�1; δ>0

Proposition 5. Renyi’s entropy for the CG random variable is given by;

IRðδÞ ¼ 1
1� δ

log Aλβð Þδ ∑
1

i¼0
∑
1

j¼0
∑
1

k¼0
∑
k

l¼0
$ijkl

ð1
�1

gðxÞδ GðxÞð Þldx
24 35; δ�1; δ > 0; (19)
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where

$ijkl ¼
ð�1Þiþkþl λδð Þi

i!
ðiþ δÞj

j!
eλδ

βðjþ δÞ � 1
k

� �
k
l

� �

Proof. From Equation (2), f δðxÞ ¼ Aλβð ÞδgðxÞδGðxÞδβ�1eδGðxÞ
β

eλδe�λδeGðxÞ
β

Adopting similar concept for expanding the density, f δðxÞ becomes

f δðxÞ ¼ Aλβð Þδ ∑
1

i¼0
∑
1

j¼0
∑
1

k¼0
∑
k

l¼0
$ijklgðxÞδ GðxÞð Þl

where $ijkl ¼ ð�1Þiþkþl λδð Þi
i!

ðiþδÞj
j! eλδ

βðjþ δÞ � 1
k

� �
k
l

� �
. Substituting f δðxÞ into IRðδÞ completes the

proof.

4.6. Stochastic ordering
Ordering mechanism in data can easily be shown using stochastic ordering. Let X and Y be random
variables with cdfs FXðxÞ and FYðxÞ respectively. X is less than Y in likelihood ratio order ðX�lrYÞ, if
the function fðxÞ=gðxÞ is decreasing for all x.

Proposition 6. Let X~CGðλ1; β;ψÞ and Y~CGðλ2; β;ψÞ, where ψ is a ðp� 1Þ vector of parameters
associated with the baseline distribution. X is less than Y in likelihood ratio order ðX�lrYÞ if λ2<λ1.

Proof. The ratio of their pdfs is given by fXðxÞ
fYðxÞ ¼

λ1
λ2
eðλ1�λ2Þð1�eGðxÞ

β Þ
, which is a decreasing function if λ2<λ1.

4.7. Order statistics
The pdf for the pth order statistic Xp:n, of an independent identically distributed random sample
X1; X2; :::; Xn of size n,fXp:nðxÞ, is given by;

fXp:nðxÞ ¼
n!

ðp� 1Þ!ðn� pÞ! FðxÞ½ �p�1 1� FðxÞ½ �n�pfðxÞ; p ¼ 1;2; . . . ;n:

Expanding FðxÞ½ �p�1 using binomial expansion, FðxÞ½ �p�1 ¼ ∑
p�1

i¼0
ð�1Þi p� 1

i

� �
1� FðxÞ½ �

i

. Substituting

into the density of the pth order statistic yields,

fXp:nðxÞ ¼
n!

ðp� 1Þ!ðn� pÞ! ∑
p�1

i¼0
ð�1Þi p� 1

i

� �
SðxÞ½ �n�pþifðxÞ

where SðxÞ½ �n�pþi ¼ 1� FðxÞ½ �n�pþi.

Hence, the pdf for the pth order statistic is given by;

fXp:n xð Þ ¼ n!
p� 1ð Þ! n� pð Þ! ∑

p�1

i¼0
�1ð Þi p� 1

i

� �
AλβgðxÞG xð Þβ�1eG xð Þβ � eλ n�pþiþ1ð Þ 1�eGðxÞ

β
� �

(20)

Employing a similar concept of expanding the density of the CG family, a mixture representation of
the pdf of the pth order statistic is defined as;

fXp:nðxÞ¼
n!Aλβ

ðp� 1Þ!ðn� pÞ! ∑
p�1

i¼0
∑
1

j¼0
∑
1

k¼0
∑
1

l¼0
∑
l

m¼0
DijklmgðxÞGðxÞm; (21)

where

Dijkl ¼
ð�1Þiþjþlþm λðn� pþ iþ 1Þ½ �j

i!
jþ 1ð Þk
k!

p� 1
i

� �
βðkþ 1Þ � 1

l

� �
lð Þeλðn�pþiþ1Þ:
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4.7.1. Moments of order statistics

The rth non-central moment of the pth order statistic is given by EðXr
p:nÞ ¼ μ

0ðp:nÞ
r ¼

ð1
�1

xrfXp:n ðxÞdx.
Substituting Equation (21) into EðXr

p:nÞ; the rth non-central moment of the pth order statistic of the

CG random variable is given by,

EðXr
p:nÞ ¼

n!Aλβ
ðp� 1Þ!ðn� pÞ! ∑

p�1

i¼0
∑
1

j¼0
∑
1

k¼0
∑
1

l¼0
∑
l

m¼0
Dijklmτðr;mÞ (22)

where τðr;mÞ ¼
ð1

�1
xrgðxÞGðxÞmdx is the probability weighted moment of the baseline distribution.

5. Parameter estimation
Maximum likelihood estimation method was used in estimating the parameters for the family of
distribution for similar reasons as stated in Nasiru et al. (Nasiru et al., 2018). Given a random
sample x1; x2; :::; xn of size n from the CG family of distributions, the total log-likelihood function is
given by

, ¼ n logAλβþ ∑
n

i¼1
log gðxi;ψÞ þ ðβ� 1Þ ∑

n

i¼1
logGðxi;ψÞ þ ∑

n

i¼1
Gðxi;ψÞβþλ ∑

n

i¼1
1� eGðxi ;ψÞ

β
	 


; (23)

where ψ is a ðp� 1Þ vector of parameters associated with the baseline distribution.

The parameters are then estimated by partially differentiating the total log-likelihood function
with respect to the parameters of the CG family as follows.

@,

@λ
¼ n

λ
þ nð1� eÞeλð1�eÞ

1� eλð1�eÞ þ ∑
n

i¼1
ð1� eGðxi ;ψÞ

β Þ; (24)

@,
@β ¼ n

λ þ ∑
n

i¼1
logGðxi;ψÞ þ ∑

n

i¼1
Gðxi;ψÞβ logGðxi;ψÞ�λ ∑

n

i¼1
Gðxi;ψÞβeGðxi;ψÞ

β

logGðxi;ψÞ (25)

and

@,

@ψ
¼ ∑

n

i¼1

g
0
kðxi;ψÞ
Gðxi;ψÞ

þ ðβ� 1Þ ∑
n

I¼1

G
0
kðxi;ψÞ
Gðxi;ψÞ

þ ∑
n

i¼1
G

0
Kðxi;ψÞGðxi;ψÞβ�1 � λβ ∑

n

i¼1
G

0
Kðxi;ψÞGðxi;ψÞβ�1eGðxi ;ψÞ

β

;

(26)

where g
0
Kðxi;ψÞ ¼ @gðxi;ψÞ

@ψ and G
0
Kðxi;ψÞ ¼ @Gðxi ;ψÞ

@ψ .

Equating the score functions to zero and numerically solving the system of equations using
techniques such as the quasi Newton-Raphson method, gives the maximum likelihood esti-
mates for the parameters. The interval estimates of the parameters are obtained by first
finding the observed ðp� pÞ information matrix given by Jð#Þ ¼ @2,

@q@r (for q; r ¼ λ; β;ψ and

# ¼ ðλ; β;ψÞT), whose elements can be numerically computed. Under the regularity conditions,

as n ! 1, #̂eNpð0; Jð#̂Þ�1Þ, where Jð#̂Þ is the observed information matrix evaluated at #̂: The

approximate100ð1� ρÞ% confidence intervals (where ρ is the significance level) can be con-
structed using the asymptotic normal distribution.

6. Some special distributions
The CG family of distributions can be used to extend many distributions to create more flexibility in
their applications. In this section some special distributions were developed.
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6.1. Chen Burr III distribution
Suppose that the baseline distribution is Burr III (Burr, 1942), it’s cdf and pdf are given by GðxÞ ¼
1þ x�θ
� ��γ and gðxÞ ¼ γθx�θ�1 1þ x�θ

� ��γ�1, x > 0; θ > 0; γ > 0 respectively. The cdf of Chen Burr

III (CB) is given by

FðxÞ ¼ A 1� exp λ 1� e 1þx�θð Þ�γβ	 
	 
h i
; x > 0; α > 0; β > 0; γ > 0; λ > 0: (27)

Its corresponding density and hazard functions are, respectively

fðxÞ ¼ Aλβγθ xð Þ�θ�1 1þ x�θ
� ��γβ�1

exp 1þ x�θ
� ��γβ þ λ 1� e 1þx�θð Þ�γβ	 
h i

; x > 0 (28)

and

hðxÞ ¼
Aλβγθ xð Þ�θ�1 1þ x�θ

� ��γβ�1 exp 1þ x�θ
� ��γβ þ λ 1� e 1þx�θð Þ�γβ	 
h i

1� A 1� exp λ 1� e 1þx�θð Þ�γβ
	 
h i ; x > 0: (29)

Plots of the density and hazard rate functions of the CB distribution are displayed in Figure 1. The
density plot exhibit varying shapes including unimodal with different degrees of kurtosis, right
skewed and reversed J shapes. The hazard rate function for some selected values exhibited upside
down bathtub, decreasing and increasing failure rates.

The CB distribution’s quantile function QGðuÞ is given by;

QGðuÞ ¼ xu ¼ log 1� log 1� u=A
� �

λ

� �� �� �� 1
γβ

� 1

" #�1
θ

:

Figure 1. Plots of density and
hazard rate functions of CB
distribution.

Figure 2. Plots of the density
and hazard rate function of CK
distribution.
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6.2. Chen Kumaraswamy distribution
The Chen Kumaraswamy (CK) distribution uses the Kumaraswamy distribution (Kumaraswamy,
1980) with pdf and cdf respectively given by GðxÞ ¼ 1� 1� xað Þb and gðxÞ ¼ abxa�1 1� xað Þb�1,
0 < x < 1; a > 0; b > 0 as the baseline distribution. The cdf of CK distribution is given by

FðxÞ ¼ A 1� exp λ 1� e 1� 1�xað Þb½ �β
� �� �

x > 0; a > 0; b > 0; β > 0; λ > 0; (30)

with its corresponding density and hazard rate functions, respectively, given by

fðxÞ ¼ Aλβabxa�1 1� xað Þb�1 1� 1� xað Þb
	 
β�1

exp 1� 1� xað Þb
	 
β

þ λ 1� e 1� 1�xað Þbð Þβ
� �� �

; x > 0

(31)

and

hðxÞ ¼
Aλβabxa�1 1� xað Þb�1 1� 1� xað Þb

	 
β�1
exp 1� 1� xað Þb

	 
β
þ λ 1� e 1� 1�xað Þbð Þβ
� �� �

1� 1� exp λ 1� e 1� 1�xað Þb½ �β
� �� � ; x > 0:

(32)

Plots of the density and hazard rate functions of the CK distribution are displayed in Figure 2. The
plot of the density shows shapes such as; the reversed J, left skewed, right skewed and unimodal
shapes among others. The hazard rate plot for some selected values exhibits increasing and
decreasing failure rates, unimodal and bathtub shapes.

The quantile function QGðuÞ is obtained as.

QGðuÞ ¼ xu ¼ 1� 1� log 1� log 1� u=A
� �

λ

� �� �� �1
β

 !1
b

264
375

1
a

6.3. Chen Weibull distribution
Chen Weibull (CW) distribution is obtained using Weibull distribution (Weibull, 1951) with cdf and
pdf, respectively, given by GðxÞ ¼ 1� e�

x
αð Þγ and gðxÞ ¼ γ

α

� �
x
α

� �γ�1e�
x
αð Þγas baseline distribution. The

cdf and pdf of the CW distribution are, respectively, given by

FðxÞ ¼ A 1� exp λ 1� e 1�e�
x
αð Þγ� �β� �� �

; x > 0; α > 0; β > 0; λ > 0; γ > 0 (33)

Figure 3. Plots of density and
hazard rate function of CW
distribution.
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and

fðxÞ ¼ Aλβ
γ

α

	 
 x
α

	 
γ�1
1� e�

x
αð Þγ

	 
β�1
exp λ 1� e�

x
αð Þγ

	 
β
� x

α

	 
γ
þ 1� e�

x
αð Þγ

	 
� �
; x > 0: (34)

The hazard rate function is given by

hðxÞ ¼
Aλβ γ

α

� �
x
α

� �γ�1 1� e�
x
αð Þγ

	 
β�1
exp λ 1� e�

x
αð Þγ

	 
β
� x

α

� �γ þ 1� e�
x
αð Þγ

	 
� �
1� A 1� exp λ 1� e 1�e�

x
αð Þγ� �β� �� � ; x > 0: (35)

The CW distribution’s plots of its density exhibit; right skewed, left skewed, unimodal and reversed
J shapes among others as shown in Figure 3. The hazard rate plot of the CW distribution for some
selected values exhibits varying shapes such as increasing and decreasing failure rates, right and
left skewed unimodal shapes and upside down bathtub shape.

The quantile function QGðuÞ of the CW distribution is given by

QGðuÞ ¼ xu ¼ α � log 1� log 1� u=A
� �

λ

� �1
β

 ! !1
γ

:

7. Simulations
Monte Carlo simulations were performed in this section to investigate the behavior of the maximum
likelihood estimators of the parameters. For illustration purposes, the simulation experiments were
undertaken using the Chen Weibull distribution. The experiments were replicated for N ¼ 1500 times
using sample size n ¼ 50;150;300;600;1000 and parameter values I : λ ¼ 1:9; β ¼ 0:9;α ¼ 0:8; γ ¼
4:8 and II : λ ¼ 0:5; β ¼ 0:5; α ¼ 0:5; γ ¼ 0:5. The average bias (AB), root-mean-square error (RMSE) and
coverage probability (CP) of the 95% confidence intervals for the estimators of the parameters were
estimated. From Table 1, the ABs and RMSEs for the estimators generally decrease to zero as the sample
size increases. This implies that as the sample size increases the accuracy and consistency of the
maximum likelihood estimators are achieved. Also, the CPs for most of the estimators are quite close
to the nominal value of 0.95. Thus, we can say that themaximum likelihood techniqueworks verywell to
estimate the parameters of the Chen Weibull distribution.

8. Applications
In this section the performance of the CW distribution in providing good parametric fits to real-life
datasets is demonstrated. Its goodness of fit measures are compared with competing models such as;
exponentiated Chen (EC) (Chaubey & Zhang, 2015), extendedWeibull (EW) (Xie, Tang, & Goh, 2002) and

Figure 4. TTT-transform plots
for the datasets.
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Kumaraswamy exponentiated Chen (KEC) (Khan, King, & Hudson, 2018) distributions. The information
criteria and goodness of fit measures used are; Akaike information criteria (AIC), Bayesian information
criteria (BIC), consistent Akaike information criteria (CAIC), HQ information Criteria (HQIC), Kolmogorov–

Figure 5. Empirical and fitted
density and cdf plots of data1.

Figure 6. Empirical and fitted
density and cdf plots of data2.
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Smirnov statistic(KS),Cramer-von misses distance values (CM) and Anderson Darling statistic (AD). In
obtaining the maximum likelihood estimates for the parameters, the log-likelihood function of the
models were maximized using the bbmle package’s subroutine mle2 in R (Bolker, 2014). The maximum
likelihood estimates with the largest maxima were chosen after using a wide range of initial values.

For illustration, the first dataset (data1) consists of the fatigue times of 6061-T6 aluminum
coupons cut parallel with the direction of rolling and oscillated at 18 cycles per second found in
Birnbaum & Saunders (Birnbaum & Saunders, 1969), whilst the second dataset (data2) represents
survival times of guinea pigs injected with different amounts of tubercle bacilli studied by Bjerkedal
(Bjerkedal, 1960). These datasets are given in Tables 2 and 3.

A preliminary exploration of the datasets on the shapes of the hazard rate functions showed
that data1 has an increasing hazard rate function whilst data two have a unimodal hazard rate
function as shown in Figure 4.

The maximum likelihood estimates and the corresponding standard errors of the parameters of the
fitted distributions for both datasets and their goodness of fit measures are displayed in Tables 4 and 5
respectively. The parameters of all the distributions were significant at 5% significance level, with the
exception of CW and KEC distributions which had only one of their parameters (λandbrespectively)
significant at 15% significance level.

Figure 7. P-P plots of fitted dis-
tributions for data1.
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Compared to the competing models, the CW distribution with its four parameters provides
a better fit for the datasets as it has the smallest value for all the goodness of fit measures
used as shown in Table 5.

This is further confirmed by the plots of densities and cdfs of the empirical and fitted distribu-
tions as shown in Figures 4 and 5. From the fitted plot, it is observed that the CW provides
a reasonable fit to the density.

The P-P plots also indicates the CW distribution provides a better fit for both datasets in
comparison with KEC, EC and EW distributions as shown in Figures 6 and 7.

The profile likelihoods of the estimated parameters of the CW distribution for the datasets are
shown in Figures 8 and 9. From the plots, it is observed that the estimated values for the
parameters are the maxima.

9. Conclusion
The focus ofmost researchers is geared towards developing new families of distributions for generalizing
existing distributions to provide better fit for themodeling of life data. A new family of distribution called
the CG family is developed and studied. Its statistical properties such as the quantile, moments,
incompletemoments, generating function, entropies, stochastic orderingandorder statisticsarederived.
Estimators for the parameters of the new family were developed using the method of maximum
likelihood. A demonstration of the application of the special distribution developed from the family
was carried out using two-real datasets. A comparison of the results with that of other existing distribu-
tions showed that the special distribution developed from the CG family provide a better parametric fit to
these datasets.

Figure 8. P-P plots of fitted dis-
tributions for data2.

Anzagra et al., Cogent Mathematics & Statistics (2020), 7: 1721401
https://doi.org/10.1080/25742558.2020.1721401

Page 18 of 20



www.udsspace.uds.edu.gh 

 

 

 

 

Funding
The authors received no direct funding for this research.

Author details
Lea Anzagra1

E-mail: lanzagra@uds.edu.gh
ORCID ID: http://orcid.org/0000-0002-8609-1681
Solomon Sarpong1

E-mail: ssarpong@uds.edu.gh
Suleman Nasiru1

E-mail: sulemanstat@gmail.com
ORCID ID: http://orcid.org/0000-0001-6652-4251
1 Department of statistics, Faculty of mathematical
sciences, University for development studies, Navrongo,
Ghana.

Citation information
Cite this article as: Chen-G class of distributions, Lea
Anzagra, Solomon Sarpong & Suleman Nasiru, Cogent
Mathematics & Statistics (2020), 7: 1721401.

References
Alzaatreh, A., Lee, C., & Famoye, F. (2013). A newmethod for

generating families of continuous distributions.
Metron, 71(1), 63–79. doi:10.1007/s40300-013-0007-y

Birnbaum, Z. W., & Saunders, S. C. (1969). Estimation for
a family of life distributions with applications to
fatigue. Journal of Applied Probability, 6, 328–347.
doi:10.2307/3212004

Bjerkedal, T. (1960). Acquisition of resistance in guinea
pies infected with different doses of virulent

tubercle bacilli. American Journal of Hygeine, 72
(1), 130–148.

Bolker, B. (2014). Tools for general maximum likelihood
estimation. R development core team.

Burr, I. W. (1942). Cumulative frequency functions. Annals
of Mathematical Statistics, 13, 215–232. doi:10.1214/
aoms/1177731607

Chaubey, Y. P., & Zhang, R. (2015). An extension of Chen’s
family of survival distributions with bathtub shape or
increasing hazard rate function. Communications in
Statistics - Theory and Methods, 44(19), 4049–4064.
doi:10.1080/03610926.2014.997357

Chen, Z. (2000). A new two-parameter lifetime distribu-
tion with bathtub shape or increasing failure rate
function. Statistics & Probability Letters, 49, 155–161.
doi:10.1016/S0167-7152(00)00044-4

Cordeiro, G. M., & de Castro, M. (2011). A new family of
generalized distributions. Journal of Statistical
Computation and Simulation, 81(7), 883–898.
doi:10.1080/00949650903530745

Hamedani, G. G., Yousof, H. M., Rasekhi, M., Alizadeh, M., &
Najibi, S. M. (2018). Type I general exponential class
of distributions. Pakistan Journal of Statistics and
Operation Research, 14(1), 39–55. doi:10.18187/pjsor.
v14i1.2193

Khan, M. S., King, R., & Hudson, I. L. (2018). Kumaraswamy
exponentiated Chen distribution for modelling life-
time data. Applied Mathematics and Information
Sciences, 12(3), 617–623. doi:10.18576/amis/120317

Kumaraswamy, P. (1980). Generalized probability
density-function for double-bounded

Figure 9. Profile log-likelihood
plot of CW parameters for
data1.

Anzagra et al., Cogent Mathematics & Statistics (2020), 7: 1721401
https://doi.org/10.1080/25742558.2020.1721401

Page 19 of 20



www.udsspace.uds.edu.gh 

 

 

 

 

random-processes. Journal of Hydrology, 462, 79–88.
doi:10.1016/0022-1694(80)90036-0

Lee, C., Famoye, F., & Alzaatreh, A. Y. (2013). Methods for
generating families of univariate continuous distri-
butions in the recent decades. WIREs Computational
Statistics, 5(3), 219–238. doi:10.1002/wics.1255

Nasiru, S. (2018). Extended Odd Fréchet-G family of dis-
tributions. Journal of Probability and Statistics, 2018,
1–12. doi:10.1155/2018/2931326

Nasiru, S., Mwita, P. N., & Ngesa, O. (2018). Exponentiated
generalized power series family of distributions.
Annals of Data Science, 6(3), 463–489. doi:10.1007/
s40745-018-0170-3

Rényi, A. (1961). On measures of entropy and information.
Proceedings of the Fourth Berkeley Symposium on
Mathematical Statistics and Probability, Contributions to
the Theory of Statistics, 1, 547–561.

Weibull, W. (1951). A statistical distribution function of wide
applicability. Journal of Applied Mechanics, 18, 293–296.

Xie, M., Tang, Y., & Goh, T. N. (2002). A modified Weibull
extension with bathtub-shaped failure rate function.
Reliability Engineering and System Safety, 76(3),
279–285. doi:10.1016/S0951-8320(02)00022-4

Zubair, A. (2018). The Zubair-G family of distributions:
Properties and applications. Annals of Data Science.
doi:10.1007/s40745-018-0169-9

©2020 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.

You are free to:
Share — copy and redistribute the material in any medium or format.
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made.
You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
No additional restrictions

Youmay not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

Cogent Mathematics & Statistics (ISSN: 2574-2558) is published by Cogent OA, part of Taylor & Francis Group.

Publishing with Cogent OA ensures:

• Immediate, universal access to your article on publication

• High visibility and discoverability via the Cogent OA website as well as Taylor & Francis Online

• Download and citation statistics for your article

• Rapid online publication

• Input from, and dialog with, expert editors and editorial boards

• Retention of full copyright of your article

• Guaranteed legacy preservation of your article

• Discounts and waivers for authors in developing regions

Submit your manuscript to a Cogent OA journal at www.CogentOA.com

Anzagra et al., Cogent Mathematics & Statistics (2020), 7: 1721401
https://doi.org/10.1080/25742558.2020.1721401

Page 20 of 20


