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 ABSTRACT

In modeling real-life events with respect to probability theory, two particular characteristics are

considered, either the probability distribution is Flexible or the distribution is Tractable. Statis-

tically, in order to retain the originality of the data, appropriate probability distribution needs to

be employed rather than to transform the existing dataset. Classical distributions lack the ability

to model and describe some important real-life events. Hence, the derived compound distribu-

tions are most appropriately employed to increase flexibility and capability to model real-life

datasets. This study modified the weighted Weibull distribution with respect to Exponentiated

Weighted Weibull and Geometric Weighted Weibull distributions which were obtained and de-

rived having an interest in statistical theory. The shapes of the probability density function

and hazard rate functions are investigated, as well as some structural statistical properties of

the distribution. The study reports the use of the maximum likelihood estimation to determine

unknown parameters by means of the Machov Chain Monte Carlo simulation and application

using four illustrative datasets. The study shows the two derived modifications are obtained,

which are the Geometric Weighted Weibull and the Exopnentiated Weighted Weibull. It is fur-

ther reported that, the two derived distributions have superior performance compared with other

modifications of the distributions. The The processes were performed using the R-Software. It

is recommended that further study can be extended based on the derived distributions to con-

struct autoregressive processes.
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 CHAPTER 1

INTRODUCTION

1.1 Background of the Study
Flexibility and tractability are essential ingredients at the heart of modeling probability distribu-

tions (Oguntunde et al., 2016; Ofosu et al., 2016). Oguntunde et al. (2016) contrast tractability

and flexibility. They explained tractable as how a function of the distribution is transform with

less effort and normally applies in the simulation of random samples. On the other hand, flexi-

bility means the addition of parameters to the distribution to improve on the model.

Statistically, it is necessary to retain the originality of the data set by employing appropriate

probability distribution for a good fit rather than to transform the existing data. Consequently,

previous literature had shown that there is a need to ensure existing classical distributions are ex-

tended and modified (Merovci , 2015), this could enhance the capability and increase flexibility

to model real-life data sets. To broaden a current standard distribution, different methodologies

could be employed. For example, the flexibility of a statistical distribution can be expanded uti-

lizing generalisation which includes utilizing generalised family of distribution. The flexibility

can likewise be expanded by altering the existing distribution.

Weibull distribution has become more useful compared with other distributions, more espe-

cially in the practice of lifetime data modeling. In the study by Abbas et al. (2019), they stated

that in the field like; financial, biomedical, engineering, insurance, actuarial and environmental

sciences it is not suitable to adopt classical distribution. In these fields, classical models be-

come only relevant when there is a need to select models for applications. In that case, many

researchers have come up with several extensions of models. Notwithstanding that, there is still

a call to improve upon existing models for flexibility in data modeling.

Generalisation of Weibull distribution has attracted several researchers to seek an extension of

the distribution which increases flexibility in modeling real-life data. The Weibull distribution

1
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is not a suitable model to explain non-monotone hazard rate function (HRF), such as unimodal,

U-shape, or bathtub form (Abbas et al., 2019; Aleem el al., 2013; Sarhan and Apaloo , 2013).

To extend the Weibull distribution, Mudholkar and Srivastava (1993) developed exponentiated

Weibull distribution that exhibits unimodal and bathtub shape. Pal et al. (2006) have exten-

sively dealt with this distribution by estimating unknown parameters and mathematical prop-

erties. According to Al-Saleh and Agarwal (2006), hazard function can exhibit unimodal and

bathtub shapes in their extended version of the Weibull distribution. Further extended Weibull

distribution was also proposed by Zhang and Xie (2007) by executing the Marshall and Olkin

(1997) approach of including another parameter. They developed extended Weibull by finding

the product of cumulative hazard function and eλx. New weighted Weibull (WW) distributions

were proposed by implementing the Nasiru family of distribution (Nasiru , 2015; Abbas et al.,

2019).

It is very important to develop and improve Weibull distribution because; firstly, it enhances

the theoretical interpretation of the data. Secondly, improving judgment on model fit, and pre-

senting a model whose empirical fit better suits a specific dataset. This implies that it provides

a solution for data interpretation and model specification. The theory of weighted distribution

provides a technique for fitting models to the unknown weight functions (Saghira et al., 2017).

When modeling monotone hazard rates, the Weibull distribution has been a powerful proba-

bility distribution which has received appreciable usage in reliability analysis, while weighted

distributions are used to adjust the probabilities of the events as observed and recorded. The

Weibull distribution provides a good alternative to exponential, gamma, and lognormal distri-

bution in biological studies and life testing (Nasiru et al., 2018; Almalki and Yuan , 2013; Zhang

and Xie , 2007).

However, certain lifetime data; business life cycles, human mortality records, and graduate

unemployment require non-monotonic shapes like the modified unimodal, bathtub shape, and

unimodal. Such bathtub hazard curve have almost level center segments and the corresponding

densities have a positive anti mode. A case of a bathtub shape failure rate is the human mortality

2
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involvement in a high newborn child death rate which decreases quickly to arrive at a low. It at

that point stays at that level for many years before getting once more. Unimodal failure rates

can be seen in course of a sickness whose mortality arrives at a top after some limited period

and afterward gradually declines. Modified weighted Weibull distributions often fit the first and

middle phases of the hazard functions. However, it lacks the credibility to fit the last phase of

the bathtub and the modified unimodal shapes.

Recently, various weighted versions of Weibull and exponential distributions have been pro-

posed in the literature. For example, Azzalini (1985) proposed a method of obtaining weighted

model by adding shape parameter. Azzalinis method has been used extensively for several sym-

metric and non-symmetric distributions (Mudholkar and Srivastava , 1993; Abbas et al., 2019).

Nasiru (2015) used a similar approach to introduce a weighted version of the Weibull distribu-

tion and a three-parameter weighted Weibull distribution studied and its statistical properties.

The capability of the new distribution was exhibited by applying it to a lifetime dataset. Bad-

mus and Bamiduro (2014) had introduced an exponentiated weighted Weibull model which is

introduced to result a model that is superior to both weighted Weibull and Weibull distributions

as far as the estimate of their characteristics. An expansion of exponential distribution has been

given by Nadarajah and Kotz (2006), utilizing the logit of Beta distribution and the link func-

tion of the Beta. From that point forward broad work has been done utilizing the logit of beta

distribution in literature. For example, Gupta et al. (1998) proposed a generalised exponential

distribution that gives an option in contrast to exponential and Weibull distributions. Mudholkar

and Srivastava (1993) studied an exponentiated Weibull.

The new modified weighted Weibull distributions were derived from the concept of the weighted

Weibull distribution, to provide a better flexibility extension and tractability of the mathemat-

ical concepts that can be used in much wider situations. This research modified the weighted

Weibull distribution proposed by the weighted version of (Nasiru , 2015) concerning the follow-

ing; exponentiated generalised weighted Weibull distribution and geometric weighted Weibull

distribution, were obtained and its statistical properties were studied which interest to statistical

theory.

3
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1.2 Statement of the Problem

The standard distributions such as Weibull, exponentiated and gamma distributions have mono-

tonic hazard rate functions in solving reliability problems, in any case, they do not give para-

metric fit to practical applications to model the complex lifetime of a system. Statistically, it is

necessary to retain the originality of the data set by employing appropriate probability distri-

bution for goodness-of-fit rather than to transform the existing data. Literature has shown that

there is a need to ensure that classical distributions are modified and extended (Merovci , 2015).

However, certain lifetime data; business life cycles, human mortality records, and graduate un-

employment require non-monotonic shapes including; modified unimodal, bathtub shape, and

unimodal. For example, if a man begins a business, it is normal that the risk would not be con-

sistent, the risk may be high at the underlying stage and decrease over the long haul. Clearly,

classical distributions cannot describe and model some significant real-life events. Hence, com-

pound distributions could be most appropriate, this research is all about implementing the ex-

tended Nasiru (2015) weighted Weibull distribution to model compound lifetime of a system.

Model specification and interpretation are the hallmark of weighted distributions for efficient

and effective modeling of statistical data (Saghira et al., 2017). Modified weighted Weibull

distributions often fit the first and middle phases of the hazard functions. However, it lacks the

credibility to fit the last phase of the bathtub and the modified unimodal shapes.

The aim of this generalisation is to introduce new modified weighted Weibull distribution that

was derived from the concept of the weighted distribution to provide a better flexibility exten-

sion and tractability of the mathematical concepts of the weighted Weibull (WW) distribution.

1.3 The Objectives of the Study

1.3.1 General Objective

The general objective is to study and develop some modifications of the weighted Weibull dis-

tribution.

4
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1.3.2 Specific Objectives

1. To develop geometric weighted Weibull distribution.

2. To develop exponentiated weighted Weibull distribution.

3. To develop estimators for estimating the parameters.

4. Demonstrate the application of various modifications using real data.

1.4 Significance of the Study
Bourguignon et al. (2014) posit that in the recent past, many standard distributions for modeling

real-life data set have been employed but not rarely in applied areas such as insurance modeling

and lifetime analysis. To address the challenges encountered on some real-life datasets in terms

of flexibility, it is relevant to add shape parameters to the baseline distribution. This makes it

more flexible in examining the tail characteristic. Thus, to fit the third phase of the modified

unimodal well.

The knowledge of the appropriate distribution of real datasets greatly improves the sensitiv-

ity, power, and efficiency of the statistical test associated with the datasets. Hence, developing a

new extended distribution with additional shape parameters to improve their goodness-of-fit is

paramount. The new compound distribution can be valuable in the areas of distribution theory

in statistics, insurance, and modeling real-life dataset relating to demography to construct a life

table. Also, the compound distribution can be helpful in describing real-life phenomena whose

failure rate is not constant. Thus, non-monotonic hazard rate functions are well fitted to describe

the datasets with the following patterns; modified unimodal, unimodal, and bathtub hazard rate.

1.5 Scope of the Study
The baseline distribution the researcher implemented in this study was Nasirus family of dis-

tribution because is an improvement over the exponentiated generalised Weibull distribution.

The study was restricted to the modification of Nasiru (2015) weighted Weibull distribution to

achieve the stated objectives.

5
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1.6 Definition of Terms
Asymmetry: It implies the distribution needs balance or it is lopsided.

Baseline Distribution: Parent distribution that is being extended.

Bathtub Shape: The shapes describe a curve that has three parts, namely; decreasing, constant,

and increasing.

Degree of Freedom: Is the number of observation (pieces of information) in the data that are

free to vary when estimating statistical parameters.

Failure Rate: It can also be called hazard function, hazard rate, the force of mortality, and risk.

It is the frequency at which a component or system fails.

Inverted Bathtub Shape: This is the direct inverse of a bathtub shape. Such a bend likewise

has three sections however in this methodical way; increasing, constant, and decreasing.

Monotonic Function: Refers to whether the function is increasing or decreasing. Observing

the graph and check its derivative can be used to determine if a function is monotonic.

Weighted distribution: Is used to adjust the probability of events as observed and recorded.

1.7 Limitations of the Study
The developed models are well fitted for skewed datasets which lack the capability for modeling

symmetrical types of datasets.

1.8 Organization of the Study
Chapter one introduces the basic concepts that resulted in the development of the compound

distributions which comprises; the statement of the problem, general and specific objectives,

the significance of the study, and the scope of the study. Chapter two introduces the families

of weighted Weibull distribution which are extensively discussed. The literature search on the

study variable or the mathematical and statistical properties were reviewed appropriately with

the various modifications distributions. Chapter three highlights the various statistical methods

employed to achieve the stated objectives. The major statistical and mathematical concepts im-

plemented are; parameter estimation method of maximum likelihood estimation (MLE) which

is used to estimate unknown parameters. We consider criteria like the Kolmogorov-Smirnov test

6
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statistics (K-S), Cramr-Von Mises (W*), and Log-likelihood Ratio Test (lnL) as its goodness-

of-fit. Information criteria such as Akaike Information Criteria (AIC) and Bayesian Information

Criteria (BIC) are also considered. Chapter four focuses on the development of the new geomet-

ric weighted Weibull (GWW) distribution that satisfied objective 1, objective 3, and objective 4.

Chapter five introduces a new modification of the exponentiated weighted Weibull (EWW) dis-

tribution and its cumulative distribution function (CDF) and probability density function (PDF),

which satisfied objective 2. Chapter six, comprises the summary, conclusions of the thesis, and

presents possible future work.

7
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 CHAPTER 2

LITERATURE REVIEW

2.1 Introduction
Several studies that have been completed in the past which are identified with the stated ob-

jectives of the study are discussed in this chapter. The researcher delved into some competi-

tive models to the introduced distributions and their characteristics functions. Exponentiated

generalised weighted Weibull distributions and geometric weighted Weibull distributions were

thoroughly reviewed.

2.2 Historical Development of Weibull Distribution
The pioneer of Weibull distribution was the Swedish physicist Waloddi Weibull (Weibull ,

1951). According to Hallinan Jr (1993), Weibull was the first to introduce a location pa-

rameter and scale parameter to make the distribution meaningful. With the improvement of

the distribution, Waloddi was considered as the pioneer of Weibull distribution. Weibull used

the distribution in 1939 in examining breaking strength of material (Lai et al. , 2003). Several

researchers have used his work in different areas; climate and weather, forestry, engineering,

quality control, maintenance and replacement, geography, and other fields. Failures rate of a

phenomena being observed and recorded can be modelled by using Weibull distribution (Rinne

, 2008; Murthy et al., 2004). Fisher (1934) used the method of weighted to weight the count of

component to form distribution of recorded observations.

Recently, authors utilized the idea of weighted methodology for various purposes (Nasiru ,

2015; Zhang and Xie , 2007; Marshall and Olkin , 1997; Lai et al. , 2003; Aryal et al. , 2016;

Almalki and Yuan , 2013; Abbas et al., 2019), were extended generalised proposed models,

since Weibull distribution is not a suitable model to explain the non-monotone hazard rate func-

tion such as unimodel, U-shaped or bathtub form. The researcher observed that there is a gap

in the literature in view of the fact that extensive works have not been done toward the path of

8
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weighted Weibull distributions for statistical theory and practices.

2.3 Some Important Modifications of the Weibull Distribu-

tion

Modified forms of the Weibull distributions were proposed by many authors purposely for non-

monotonic shapes. For instance, two-parameter truncated and flexible Weibull extension devel-

oped have a bathtub shaped hazard function (Bebbington et al., 2007; Zhang and Xie , 2007).

Exponentiated Weibull distribution introduced for three-parameter by Mudholkar and Srivastava

(1993). Analysts have created different modified types of the Weibull distribution to accomplish

non-monotonic shapes. The two-parameter flexible Weibull extension introduced by Badmus

and Bamiduro (2014) has a force of mortality exhibits bathtub shape. Exponentiated modified

Weibull extension distribution by Sarhan and Apaloo (2013) which exhibits a bathtub-shape

pattern. Generalisations of the Weibull distribution have been impetus for researchers to pro-

pose extended distribution of modeling lifetime data set to increase flexibility. Almalki and

Yuan (2013) have also applied their distribution in a serial system by putting together the mod-

ified Weibull and Weibull distribution. Al-Saleh and Agarwal (2006) showed that the risk

function can display unimodal and bathtub shapes by extended version of the Weibull distribu-

tion.

2.4 Conceptualization of the Weighted Weibull Distributions

Weibull distribution commonly applied lifetime distributions in different areas or fields with

many applications. The PDF and CDF are traceable and closed forms which result into sim-

ple expressions of survival and risk rates. Suppose the random variable r follows the Weibull

distribution. Then, probability density function and the cumulative distribution of the Weibull

distribution (Weibull , 1951) respectively;

q (r) = αθrθ−1 exp
(
αrθ

)
, r > 0 (2.1)

9
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Q (r) = 1− exp
(
αrθ

)
, r > 0. (2.2)

where α > 0 and θ > 0 are the scale and shape parameter respectively. The corresponding

survival function:

Q̄(r) = exp
(
αrθ

)
, r > 0. (2.3)

Its hazard rate h(r):

h (r) =
q(r)
S (r)

h (r) = αθrθ−1, r > 0 (2.4)

Hazard rate can exhibit; increasing, decreasing or constant depending on θ > 0, θ < 0 or θ = 1

this does not show any kind of non-monotonic shapes. Aleem el al. (2013) proposed and derived

modified weighted distribution with its PDF as:

fw(r) =

[
1−w(tr)

]c f (r)
E[1−w(tr)]c , r ∈ R, (2.5)

Fr(θr) = w(tr)

The weighted Weibull derived by Nasiru (2015) family as:

q(r;λ,α,θ) = Kg0(r)G0(λr), r > 0, (2.6)

Its PDF and CDF of another weighted Weibull distribution (WWD), respectively

q(r) = (1 + λθ)αθrθ−1e−(αrθ+α(λr)θ , r > 0 (2.7)

and

Q(r) = 1− eαrγ(1+λγ)
, r,α,λ > 0, (2.8)
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Scale parameter is denoted as α, whilst γ,λ are shape parameters. Corresponding survival

function of the model:

Q̄(r;γ,α,λ) = 1− F(r;γ,α,λ) = e−αrγ(1+λγ)
(2.9)

Hazard rates:

h(r) =
q(r)
Q̄(r)

= (1 + λγ)αγrγ−1 (2.10)

2.5 Some Important Weighted Weibull Probability Distribu-

tions
This section review some important parametric and non-parametric families of weighted Weibull

distributions and their characteristics, including shapes of their hazard functions, probability

density function, and cumulative distribution functions of the various study.

2.5.1 Exponentiated Weibull Distribution

Mudholkar and Srivastava (1993) have used their exponential Weibull (EW) distribution with

applications to flood and bus-motor failure data which were two-parameter traceable modifica-

tion of the distribution. They introduced parameter as a shape to the distribution.

With its PDF and CDF of the EW distribution respectively:

q (r : α,θ,λ) = λαθrθ−1e−αrθ
(
1− e−αrθ

)λ−1
, r > 0 (2.11)

and

Q (r : α, θ,λ) =

(
1− e−αrθ

)λ
, r > 0 (2.12)

where α,θ,γ > 0, θ and λ represents shape parameters and scale parameter. Setting =1, it trans-

forms the distribution to Weibull distribution. The EW distribution transforms to generalised

Rayleigh distribution (GR) when θ = 2 Surles and Padgett (2002). Setting θ = 1,2 and λ = 1

particular cases of the exponential and Rayleigh distributions are derived.
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2.5.2 Modified Weibull Extension

Xie et al. (2002) developed modified Weibull extension having a J-shape force of mortality rate.

They derived PDF and CDF respectively as follows:

g (r : α,θ,λ) = λα
θ−1
θ rθ−1eαrθexp

[
λα

−1
θ

(
1− e−αrθ

)]
, r > 0 (2.13)

and

G (r : α,θ,λ) = 1− exp
[
λα

−1
θ

(
1− e−αrθ

)]
, r > 0 (2.14)

where α,θ,γ > 0. In order to transform modified Weibull to Weibull distribution, must be set to

a smaller value in a way that 1− e−αrθ is approximately equal to −αrθ (Xie et al., 2002).

The failure function is:

h (r;α,θ,λ) = λα
θ−1
θ rθ−1eαrθ (2.15)

θ is the shape parameter. The PDF of the modified Weibull shows decreasing, unimodal or

decreasing followed by unimodal.

2.5.3 Odd Weibull Distribution

This distribution was proposed by Cooray (2006). He obtained this distribution by combining

inverse Weibull distributions and odds of the Weibull to form three-parameter unknown model.

Q (r;α,θ,λ) = 1−
[
1 +

(
eαrθ − 1

)λ]−1

, r > 0 (2.16)

where α > 0, θ,γ > 0, shape parameter are and . PDF and hazard function as follows, respec-

tively:

Q (r;α,θ,λ) = αθλrθ−1eαrθ
(
eαrθ − 1

)λ−1
[
1 +

(
eαrθ − 1

)λ]−2

, r > 0 (2.17)
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and

h (r;α,θ,λ) = αθλrθ−1eαrθ
(
eαrθ − 1

)λ−1
[
1 +

(
eαrθ − 1

)λ]−1

, r > 0 (2.18)

The failure function accommodates the non-monotonic shapes:

2.5.4 Additive Weibull distribution

The additive Weibull distribution was proposed by Xie and lai (1996) which exhibits bathtub

shaped of the failure function. The derived PDF, CDF and the failure function of the model are,

respectively:

q(r) = (αθrθ−1 + βγrγ−1)e−αrθ−βrγ , r > 0, (2.19)

Q(r) = 1− e−αrθ−βrγ , r > 0, (2.20)

h(r) = αθrθ−1 + βγrγ−1 (2.21)

where γ < 1 and α, θ, β > 0. It follows Weibull distribution when = 0 or = 0. The failure rate

is monotonically increases when and are greater than one. For special case, additive Weibull

will transform to Sarhan and Apaloo (2013) when γ > 0 and θ = 1.

2.5.5 Modified Weibull distribution

Lai et al. (2003) derived three-parameter distribution known as modified Weibull distribu-

tion. They studied some of its statistical properties and adopted maximum likelihood estimation

method to estimate the unknown parameters.

Q(r) = 1− e−βrγeλr
, r > 0, (2.22)

The corresponding PDF and failure rate are, respectively

q(r) = β(γ+ λr)rγ−1eλre−βrγeλr
, r > 0. (2.23)

and

h(r) = β(γ+ λx)rγ−1eλr, r > 0. (2.24)
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2.5.6 Kumaraswamy Modified Weibull distribution

Cordeiro et al. (2012) developed Kumaraswamy Modified Weibull distribution which was an

improvement on the modification of the Weibull distribution. The CDF, PDF and the hazard

function are respectively:

Q(r) = 1− {1− [1− exp(−αrθeλr)]a}b, r > 0 (2.25)

q(r) = abαrθ−1(θ+ λr)(λr−αrθeλr[1− exp(αrθeλr)]a−1 ×K, (2.26)

where K = {1− [1− exp(−αrθeλr)]a}b−1

and

h(r) =
abαrθ−1(θ+ λr)(λr−αrθeλr[1− exp(αrθeλr)]a−1

{1− [1− exp(−αrθeλr)]a
}

, r > 0 (2.27)

where a, b, α, θ, λ > 0. Special cases include the generalised modified Weibull distribution,

modified Weibull, Log Weibull and the Kumaraswamy Weibull distribution.

2.5.7 Weighted Weibull distribution

Nasiru (2015) proposed another generalisation of the Weibull distribution with the baseline

distribution of modified weighted version of Azzalini (1985). The probability density function

and cumulative density of the new class of the weighted Weibull distribution are respectively:

q (r) =
(
1 + λγ

)
αγrγ−1e−αrγ(1+λγ), r, α, λ > 0 (2.28)

and

Q(r) = 1− e(−αrγ+α(λr)γ (2.29)
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where, α is a scale parameter and γ,λ are shape parameter. The corresponding survival function

of the distribution is given by:

Q̄
(
r;γ,α,λ

)
= 1−Q

(
r;γ,α,λ

)
= e−αrγ(1+λγ) (2.30)

and the hazard function is:

h (r) =
q (r)
Q̄ (r)

=
(
1 + λγ

)
αγrγ−1 (2.31)

2.5.8 The Exponentiated generalised family of distribution

Gupta et al. (1998) proposed an exponentiated generalised family of distribution technique

to enhance flexibility of the existing model for modelling life-time dataset. Suppose a random

variable X has an arbitrary baseline distribution G(x), the CDF and PDF of the distributions are

repectively

Q (r) =
[
G (r)

]β, r > 0. (2.32)

and

q (r) = β
[
G (r)

]β−1g (r) (2.33)

where r > 0 ”and” β > 0 represent shape parameter, G(r) and g(r) are the cdf and pdf respec-

tively of the parent distribution. In Oguntunde et al. (2016), proposed exponentiated generalised

Weibull and its statistical properties including the PDF, CDF, survival, failure rate, quantile and

estimation of parameters were derived. The Exponentiated Generalised Frechet distribution was

explored by (Abd-Elfattah et al., 2016).

2.5.9 Techniques for Generating new Discrete Distribution

Najarzandegan and Alamatsaz (2017) state techniques for generating new discrete distribu-

tions. Firstly, by using existing baseline distribution, its probability mass function (PMF) is

well defined and using any probability density function (pdf) or survival function of a parent

continuous distribution. Over the last years, new classes of the distributions have received con-
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siderable attentions. For instance, the discrete normal distribution was introduced by Lisman et

al. (1972). Similarly, generalised inverse Weibull-Poisson Mahmoudi and Torki (2011), alpha-

skew-Laplace Harandi and Torki (2015), discrete beta-exponential Nekoukhou et al. (2015)

exponential geometric and generalisation of weighted geometric distribution Nekoukhou et al.

(2015) were also introduced and studied. Secondly, is to define weighted version of a baseline

distribution, as introduced by Patil Rao (1978). For example, Bhati and Joshi (2018) proposed

the weighted geometric distribution using this method.

In this study, the researcher implemented the second approach on geometric distribution with

the appropriate weighted function defined by Nekoukhou et al. (2012). Supposed sample

N say X1,X2,X3 . . .XN are independent and identically distributed (iid) random variables from

WW distribution. Consider the N is distributed according to the geometric distribution with

PDF

P(N = n) = θ(n−1)(1− θ), n = 1,2, ..., 0 ≤ θ< 1. (2.34)

Nekoukhou et al. (2012) proposed discrete geometric exponential distribution with the CDF of

X for x > 0 can be obtained as follows:

Q (r) = P (X ≤ r) =

∞∑
n=1

P (X ≤ r,N = n)

Q(r) =

∞∑
n=1

P(X ≤ r|N = n)P(N = n) (2.35)

The marginal CDF of X is given by

Q (r) = P (X = r) =
(1− θ) Q (r)
1− θ

[
Q (r)

] (2.36)

Let W = max {r1,r2,r3 . . .rN} then the conditional CDF of W—N=n is given by

QW |N=n (w) =

(
1− e−αwβ

(
1+λβ

))n
. (2.37)
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2.6 Information Criteria
The researcher at a point would increase the number of parameters, which would improve the

fitting of the data set that will directly result in increase of the likelihood. Maximum likelihood

preferred when there are many parameters in the model for better comparison. Then, an in-

formation criteria can be used to make a comparison between different other statistical models

which may have different numbers of parameters. The measures; Akaike Information Criterion

(AIC), Bayesian Information Criterion (BIC), Corrected Akaike Information Criterion (AICc),

and Consistent Akaike Information Criterion (CAIC) are widely used information criteria for

selecting the appropriate model among different others models.
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 CHAPTER 3

METHODOLOGY

3.1 Introduction
This chapter highlights on various methods, the researcher employed to achieve the stated objec-

tives. The major statistical and mathematical concepts the researcher adopted were; parameters

estimation, goodness of fit test, hazard function, quantile, survival function, entropy, and order

statistics. Appropriate statistical software including; Mathematica and R software were used in

executing the statistical analyses in this study.

3.2 Parameter Estimation
According to Ramachandran and Tsokos (1978) there are several methods to estimate unknown

parameters; Maximum Likelihood Estimation, Least Square Estimation, Method of Moment

(MOM), and Bayesian Estimation. In this study, the maximum likelihood estimation approach

was utilized to estimate unknown parameters.

3.3 The Method of Maximum Likelihood Estimation (MLE)
Maximum likelihood is mostly used to estimate parameters that are unknown in statistical mod-

eling. This method of parameter estimates was pioneered by Fisher (1934). MLE is the most

widely used classical approach for the estimation of parameters of a probability distribution.

It is based on a likelihood function. The likelihood function attains its maximum at a specific

value of the parameters. It enjoys many desirable properties including; invariance property,

asymptotic normality, consistency, and asymptotic efficiency (Nassar et al. , 2018). MLE fo-

cuses on the joint PDF for all observed counts.

Let r1,r2, . . . ,rn be independent identically distributed random variables of size n with pdf or

pmf q(r;φ),φ unknown parameter (Ramachandran and Tsokos , 1978). The following are steps
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in the estimation of parameters:

The likelihood function is derived.

q
(
r1 . . . .,rn|Φ

)
=

n∏
i=1

q (ri;Φ) (3.1)

Taking logarithm of the Likelihood function

L
(
φ|r1 . . . .,rn

)
=

n∏
i=1

q(ri;Φ)

L
(
φ|r1 . . . .,rn

)
=

n∑
i=1

logq(ri;Φ) (3.2)

Differentiating eqn (3.2) and equating to zero.

∂L
(
φ|r1 . . . .,rn

)
∂φ

= 0, i = 1,2 . . .k (3.3)

Solving system of non-linear likelihood equations simultaneously for φi.

3.4 Goodness-of-Fit
This is the statistical technique employed by the researcher to examine whether the random sam-

ple came from a particular distribution. In this study, the researcher adopted; the log-likelihood

ratio test, Kolmogorov-Smirnov test, Information criteria, and Total Time on Test.

3.4.1 The Log-likelihood Ratio Test (LRT)

The Log-likelihood Ratio Test can be used to compare two models that are nested.

Let rr,r2, . . . ,rn be independent identically distributed random variables of size n with pdf q(r;φ)

and Φ0,Φ1 are nested.

Formulation of the hypothesis required:

H0 : Φ ∈ Φ0
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H0 : Φ ∈ Φ1

The LRT depends on the likelihood ratio as:

w = 2ln
(

L0 (Φ)
L1 (Φ)

)
(3.4)

The decision is drawn, based on the distribution with the largest likelihood value as the best

model fit.

3.4.2 Kolmogorov-Smirnov Test (K-S)

This test computes the distance between the empirical distribution function Qn(r) of the given

data and the estimated cumulative distribution function Q∗(r) of the candidate distribution.

The calculated K-S statistics are then computed with the tabulated K-S significance levels, α.

If there are more than one distribution to be compared, the distribution with the smallest K-S is

more appropriate.

The value of K-S test statistics is defined by

K − S test = Max1≤i≤n

∣∣∣∣∣∣Qn (ri)−
i− 1

n
,
1
n
−Q∗(r)

∣∣∣∣∣∣ (3.5)

3.4.3 Total Time on Test

The total time on test can be represented as TTT- transform, and is a visual technique to test

whether the sample data set follows the distribution of the bathtub shape of the hazard rate func-

tion. TTT-transform provides a visualization of the shape of the hazard rate. Aarset (1987) used

the TTT-transform to test if a random sample belongs to a distribution with a bathtub shaped

hazard rate.

The TTT-transform of distribution with CDF C is defined as

H−1 (
p
)

= ∫
C−1(p)

0 S (u)du, p ∈ 0,1 (3.6)
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The scaled TTT-transform of the distribution is

ϕC
(
p
)

=
H−1 (

p
)

H−1 (1)
(3.7)

The curve ϕC(P) versus 0 ≤ P ≤ 1 is called the scaled TTT-transform

3.4.4 Conceptualization of the Weighted Weibull (Nasiru, 2015)

f (x,λ,α,θ) = Kg0(x)G0(λx), x > 0, (3.8)

f (x) = (1 + λθ)αθxθ−1e−(αxθ+α(λx))θ , x > 0 (3.9)

F(x) = 1− e(αxθ+α(λx))θ , x,α,λ (3.10)

Corresponding survival function and hazard function, respectively.

F̄(x;γ,α,λ) = 1− (x;γ,α,λ) = e−αxγ(1+λγ)
(3.11)

h(x) =
f (x)
F̄

= (1 + λγ)αγxγ−1 (3.12)

3.4.5 Exponentiated Generalised Family of Distribution

Gupta et al. (1998) proposed an exponentiated generalised family of distribution technique

to enhance flexibility of the existing model for modelling life-time dataset. Suppose a random

variable X has an arbitrary baseline distribution G(x), the CDF and PDF of the distributions are

repectively

Q (r) =
[
G (r)

]β, r > 0. (3.13)
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and

q (r) = β
[
G (r)

]β−1g (r) (3.14)

where r > 0 ”and” β > 0 represent shape parameter, G(r) and g(r) are the cdf and pdf respec-

tively of the parent distribution. In Oguntunde et al. (2016), proposed exponentiated generalised

Weibull and its statistical properties including the PDF, CDF, survival, failure rate, quantile and

estimation of parameters were derived. The Exponentiated Generalised Frechet distribution was

explored by (Abd-Elfattah et al., 2016).

3.4.6 Nekoukhou Generator, (2012)

In this study, the researcher implemented the second approach on geometric distribution with

the appropriate weighted function defined by Nekoukhou et al. (2012). Supposed sample

N say X1,X2,X3 . . .XN are independent and identically distributed (iid) random variables from

WW distribution. Consider the N is distributed according to the geometric distribution with

PDF

P(N = n) = θ(n−1)(1− θ), n = 1,2, ..., 0 ≤ θ< 1. (3.15)

Nekoukhou et al. (2012) proposed discrete geometric exponential distribution with the CDF of

X for x > 0 can be obtained as follows:

Q (r) = P (X ≤ r) =

∞∑
n=1

P (X ≤ r,N = n)

Q(r) =

∞∑
n=1

P(X ≤ r|N = n)P(N = n) (3.16)

The marginal CDF of X is given by

Q (r) = P (X = r) =
(1− θ) Q (r)
1− θ

[
Q (r)

] (3.17)
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3.4.7 Information Criteria

The outcome of adding parameters to the probability distribution of the model number of param-

eters which would improve the fitting of the data set that will directly increase of the likelihood.

Maximum likelihood is preferred when there are many parameters in the model for better com-

parison. The Akaike Information Criterion (AIC), (Akaike , 1974) was used instead of some

other discrimination criteria because it is asymptotically efficient. The Akaike Information Cri-

terion (AIC), computed as:

AIC = −2L
(
Φ;yi

)
+ 2k (3.18)

Φ represents MLE of φ and k is the number of parameters. The model with the minimum AIC

would be the best model to fit the data set.

The Bayesian Information Criteria is appropriate in a situation when the sample size is not

large or the model has too many parameters. This method was due to Schwarz (1978) and is

defined by

BIC = k ln(n)− 2L(Φ,yi) (3.19)

3.5 Build up of the structure of the model
The two main models of the thesis were arrived at by compounding the Weighted Weibull

distribution with Gupta et al. (1998) to develop the EWW distribution. Also, the Weighted

Weibull distribution was equally compounded with the Nekoukhou et al. (2012) to develop the

GWW, these procedures are depicted in the Figure 3.1.
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Figure 3.1: The structure of the models
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3.6 Sources of data
This study is a quantitative research and the datasets were obtained from secondary sources,

extracted from textbooks and Joournal for further analysis. The applications of the models

were demonstrated using four real datasets to prove the flexibility of the GWW and the EWW

distributions.

3.6.1 Application 1: Real data for strength of 1.5cm Glass Fibers

The data comprises 63 observations on the strength of 1.5cm glass fibers measured at the Na-

tional Physical Laboratory, England.

Table 3.1: Real data for strength of 1.5cm Glass fiber

0.55 0.93 1.25 1.36 1.49 1.52 1.58 1.64 1.68 1.73
1.81 2.0 0.74 1.04 1.27 1.39 1.49 1.53 1.59 1.61
1.66 1.68 1.76 1.82 2.01 0.77 1.11 1.28 1.42 1.50
1.54 1.60 1.62 1.66 1.69 1.76 1.84 2.24 0.81 1.13
1.29 1.48 1.5 1.55 1.61 1.62 1.66 1.70 1.77 1.84
0.84 1.24 1.30 1.48 1.51 1.55 1.61 1.63 1.67 1.70
1.78 1.89 1.61

3.6.2 Application 2: Failure and running times dataset

The dataset represents failure and running times for sample devices from an Eld Tracking Study.

The dataset has been previously studied by Merovci (2015). The dataset has thirty observations

and can be found in Table 3.2.

Table 3.2: Failure and running times of devices

2.75 0.13 1.47 0.23 1.81 0.30

0.65 0.10 3.00 1.73 1.06 3.00

3.00 2.12 3.00 3.00 3.00 0.02

2.61 2.93 0.88 2.47 0.28 1.43

3.00 0.23 3.00 0.80 2.45 2.66

25



www.udsspace.uds.edu.gh 

 

 

 

 

3.6.3 Application 3: Electronic Components Failure Rate Data

Lifetime data of 20 electronic components studied by Nasiru (2015). The data is shown in

Table 3.3

Table 3.3: Lifetimes of 20 electronics components

0.03 0.22 0.73 1.25 1.52 1.8 2.38 2.87 3.14 4.72
0.12 0.35 0.79 1.41 1.79 1.94 2.4 2.99 3.17 5.09

3.6.4 Application 4: Weight of the Diamond Stones in Carat

Data obtained from Singfat (1996) which represents the weight of the diamond stones in carat.

To show the applicability and the assessment of the merit of the proposed model, we use the

data set indicated in Table 3.4.

Table 3.4: Weight of the diamond stones in carat

1.4575 0.3092 0.3642 0.0119 0.0664 2.6125 0.6027 0.1693 0.5894 0.1558
0.7701 0.0626 0.5350 0.1352 0.4024 0.2872 1.2177 2.6257 0.3954 0.4107
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 CHAPTER 4

GEOMETRIC WEIGHTED WEIBULL DISTRIBUTION

4.1 Introduction

In this chapter, Geometric weighted Weibull (GWW) distribution is introduced. The GWW

distribution was obtained by compounding the geometric and weighted Weibull distribution

which satisfied objective one. The probability density function, cumulative distribution func-

tion, survival function, and failure rate of the GWW were defined. The model has four unknown

parameters, and the hazard function can take different shapes. Thus, decreasing, increasing,

bathtub-shape, and unimodal. Some structural statistical properties of the model are discussed

such as quantile, moments, moment generating function, incomplete moment, Renyi entropy,

mean residual life, and order statistics. The method of MLE was adopted to estimate unknown

parameters of the GWW four-parameter distribution. Monte Carlo simulation method is dis-

cussed using the quantile function.

4.2 Developing the Geometric Weighted Weibull Distribution

Supposed sample N say X1,X2,X3 . . .XN are independent and identically distributed (iid) ran-

dom variables from WW distribution. Consider the N is distributed according to the geometric

distribution with PDF: Nekoukhou et al. (2012) proposed discrete geometric exponential dis-

tribution with the CDF of X for x > 0 can be obtained as:

Q(r) =

∞∑
n=1

P(X ≤ r|N = n)P(N = n). (4.1)

The marginal CDF of X is given by

Q (r) = P (X = r) =
(1− θ) Q (r)
1− θ

[
Q (r)

] . (4.2)
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Let W = max {r1,r2,r3 . . .rN} then the conditional CDF of W—N=n is given by

QW |N=n (w) =

(
1− e−αwβ

(
1+λβ

))n
. (4.3)

That is the weighted Weibull cumulative distribution with parameters n, θ,λ , and α

The Geometric Weighted Weibull distribution (GWW) is defined by the marginal CDF of w,

Q(w) =

(1− θ)
(
1− e−αwβ(1+λβ)

)
1− θ

(
1− e−αwβ(1+λβ)

) , λ, α, β > 0, w > 0. (4.4)

The associated PDF is given by:

q(w) =
(1− θ)αβ(1 + λβ)wβ−1e−αwβ(1+λβ)[

1− θ
(
1− e−αwβ(1+λβ)

)]2 , w > 0. (4.5)

Figure 4.1 shows that the PDF of GWW distribution is quite flexible for modeling survival data.

This implies that the distribution exhibits symmetrical, right-skewed, left-skewed, unimodal

shapes with small and large values of skewness and kurtosis measure.

Figure 4.1: Plots of the density curves for different parameters values

The corresponding survival and hazard rate functions are respectively given:

S (w) =
e−αwβ(1+λβ)

1− θ
(
1− e−αwβ(1+λβ)

) , w > 0, (4.6)
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and

h(w) =
(1− θ)αβ(1 + λβ)wβ−1[
1− θ

(
1− e−αwβ(1+λβ)

)] , w > 0. (4.7)

The GWW model shows flexibility in accommodating all forms of the hazard rate function as

shown in Figure 4.2. Such as monotonically decreasing, monotonically increasing, unimodal

and inverted bathtub shapes for different combination of the values of the parameters.

Figure 4.2: Plots of the failure rate for some parameter values

4.3 Mixture Representation
Proposition 4.3.1. The density of GWW distribution can be written as

qw(w) = (1− θ)(1 + λβ)αβwβ−1
∞∑

i=0

(i + 1)θie−α(i+1)wβ(1+λβ). (4.8)

using expansion of power series

Proof. By Equation (4.6)

(1− x)−n =

∞∑
i=0

 n + i− 1

i

 xi, |x| < 1and n > 0,

expanding the denominator of Equation (4.6) yields
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[
1− θ(1− e−αwβ(1+λβ))

]−2
=

∞∑
i=0

 2 + i− 1

i

θie−αwβ(1+λβ)i,

=

∞∑
i=0

θi

 i + 1

i

e−αiwβ(1+λβ).

By applying the relation

 n

r

 = n!
(n−r)!r! we have

[
1− θ(1− e−αwβ(1+λβ))

]−2
=

∞∑
i=0

(i + 1)!θi

(i + 1− i)!i!
e−αiwβ(1+λβ)

[
1− θ(1− e−αwβ(1+λβ))

]−2
=

∞∑
i=0

(i + 1)θie−αiwβ(1+λβ).

The density function in equation (4.6) can be written as

qw(w) = (1− θ)(1 + λβ)αβwβ−1e−αwβ(1+λβ) ∗

∞∑
i=0

(i + 1)θie−αiwβ(1+λβ).

Hence

qw(w) = (1− θ)(1 + λβ)αβwβ−1
∞∑

i=0

(i + 1)θie−α(i+1)wβ(1+λβ).

�

4.4 Statistical Properties
Some important statistical characteristics of the derived model such as quantile, moments, in-

complete moment, moment generating function, Rényi entropy, mean residual life, and order

statistics were discussed.

4.4.1 Quantile

Quantile is the inverse cumulative distribution function used to generate random samples of the

distribution. It can also serve as an alternative to the probability density function.

Proposition 4.4.1. The quantile function z of the Geometric weighted Weibull distribution can

be expressed as
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 Qw(z) =

− 1
α(1 + λβ)

log
(
1 + θ(z− 1)− z

1 + θ(z− 1)

) 1
β

,z ∈ [0,1] . (4.9)

Proof. Using the CDF of the Geometric weighted Weibull distribution as defined in equation

(4.5), it represented as Qw (z) = Q−1 (z) �

The quantile function is obtained by solving the equation

(1− θ)
(
1− e−αwβ(1+λβ)

)
1− θ

(
1− e−αwβ(1+λβ)

) = z.

By cross multiplying, we have

e−αwβ(1+λβ) =
1 + θz− θ− z
1 + θ(z− 1)

.

Taking the logarithm of both sides gives

−αwβ(1 + λβ) = log
(
1− z + θ(z− 1)

1 + θ(z− 1)

)
.

Further,

wβ = −
1

α(1 + λβ)
log

(
1− z + θ(z− 1)

1 + θ(z− 1)

)
.

and the quantile is given as

Qw(z) =

− 1
α(1 + λβ)

log
(
1 + θ(z− 1)− z

1 + θ(z− 1)

) 1
β

,z ∈ [0,1] .

4.4.2 Moments

Moments are used to compute various measures of central tendency, variation, kurtosis, and

skewness among others.

Proposition 4.4.2. The sth moments of W say µs, is given by
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µ′s = (1− θ)

∞∑
i=0

(i + 1)θiΓ

(
s
β + 1

)
[
α(1 + λβ)

] s
β (i + 1)

s
β+1

. s = 1,2, ... (4.10)

Proof. By definition, the sth moments of GWW model

µ′s =

∞∫
0

wsq(w)dw.

Using the mixture representation GWW density in equation (4.9)

µ′s =

∞∫
0

ws(1− θ)(1 + λβ)αβwβ−1
∞∑

i=0

(i + 1)θie−α(i+1)wβ(1+λβ)dw.

Furthermore,

µ′s = (1− θ)(1 + λβ)αβ
∞∑

i=0

(i + 1)θi

∞∫
0

wswβ−1e−α(i+1)wβ(1+λβ)dw. (4.11)

Let z = α(1 + λγ)(1 + i)wβ,as w → 0,z→ 0,as w →∞,z→∞.

Also,

w =

[
z

α(1 + λγ)(1 + i)

]1
β

dz
dw

= α(1 + λγ)β(1 + i)wβ−1

dz
(i + 1)

= α(1 + λβ)β(1 + i)wβ−1dw.

Hence, equation (4.13) becomes

µ′s = (1− θ)
∞∑

i=0

(i + 1)θi

∞∫
0


(

z
α(i + 1)(1 + λβ)

) 1
β


r

e−z dz
(i + 1)

.

Further,

µ′s = (1− θ)
∞∑

i=0

(i + 1)θi

∞∫
0

z
s
β+1−1[

α(i + 1)(1 + λβ)
] s
β

e−z dz
i + 1

.
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Applying some mathematical algebra, we obtain

µ′s = (1− θ)
∞∑

i=0

(i + 1)θiΓ

(
s
β + 1

)
[
α(1 + λβ)

] s
β (i + 1)

s
β+1

, s = 1,2, . . . .

�

4.4.3 Moment Generating Function (MGF)

This involves putting together all the moments for a random variable in a single expression.

With the MGF it is easier to obtain the moments of higher powers of the probability distribution.

Proposition 4.4.3. The MGF of a random variable follows GWW can be expressed as

Mw(t) = (1− θ)
∞∑

s=0

∞∑
i=0

(i + 1)θiΓ

(
s
β + 1

)
[
α(1 + λβ)

] s
β (i + 1)

s
β+1

. s = 1,2, ... (4.12)

Proof. By definition, the MGF is defined as

Mw(t) = E(etW) =

∞∫
0

etwq(w)dw.

Using Taylor series,

Mw(t) = E

 ∞∑
s=0

tsws

s!

 ,
Mw(t) =

∞∑
s=0

ts

s!
E
[
ws

]
,

Mw(t) =

∞∑
s=0

ts

s!
µ′s .

Substituting µ′s into it and after some algebra, we have moments generating the function of

GWW. Since Mw(t) =
∞∑

s=0

ts

s!E
[
ws] , we have

Mw(t) = (1− θ)
∞∑

s=0

∞∑
i=0

(i + 1)θiΓ

(
s
β + 1

)
[
α(1 + λβ)

] s
β (i + 1)

s
β+1

.

�

33



www.udsspace.uds.edu.gh 

 

 

 

 

4.4.4 Incomplete Moment

The incomplete moments are also known as the conditional moments that describes the shape

of many distributions. It plays an important role in measuring inequality, for example; income

quantiles, Lorenz, and Bonferroni curves.

Proposition 4.4.4. The sth incomplete moments of W can be expressed as

ϕ′s(w) = (1− θ)
∞∑

i=0

(i + 1)θiγ( s
β + 1,α(i + 1)(1 + λβ)wβ)[

α(i + 1)(1 + λβ)
] s
β (i + 1)

s
β+1

, s = 1,2, . . . . (4.13)

Proof. By definition

ϕ′s(w) =

w∫
0

tsq(t)dt

Substitute in Equation (4.9),

ϕ′s(w) =

y∫
0

ts(1− θ)(1 + λβ)αβtβ−1
∞∑

i=0

(i + 1)θie−α(i+1)tβ(1+λβ)dt,

ϕ′s(w) = (1− θ)(1 + λβ)αβ
∞∑

i=0

(i + 1)θi

w∫
0

tstβ−1e−α(i+1)(1+λβ)tβdt.

Similarly, as w → 0,z→ 0,as t = w,z = α(i + 1)(1 + λβ)wβ

dy =
dz

α(i + 1)(1 + λγ)wβ−1 ,

w =

[
z

α(i + 1)(1 + λβ)

] 1
β

,

The incomplete moments, after some simplification gives

ϕ′s(w) = (1− θ)
∞∑

i=0

(i + 1)θi

α(i+1)(1+λβ)wβ∫
0

z
s
β+1−1[

α(i + 1)(1 + λβ)
] s
β

e−z dz
i + 1

.

Using the definition of gamma function,
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ϕ′s(w) = (1− θ)
∞∑

i=0

(i + 1)θiγ( s
β + 1,α(i + 1)(1 + λβ)wβ)[

α(i + 1)(1 + λβ)
] s
β (i + 1)

s
β+1

, s = 1,2, . . . .

�

4.4.5 Rényi Entropy

The entropy is used to measure the randomness of the systems. To examine the uncertainty of

the random variable Rényi entropy can be employed.

Proposition 4.4.5. Rényi entropy of GWW is given as

IR =
1

1− δ
log

(1− θ)δ(1 + λβ)
δ
(αβ)δ

∞∑
i=0

 2δ+ i− 1

i

θi
Γ

(
δ(β−1)−β+1

β

)
[
α(i + 1)(1 + λβ)

]( δ(β−1)+1
β

)
 .

(4.14)

Proof. By definition

IR =
1

1− δ
log


∞∫

0

qqδ(w)dw

 , δ > 0, δ , 1.

Based on the GWW density function in equation (4.9)

[
q(r)

]δ
=

(1− θ)δ(1 + λγ)δ(αβ)δwδ(β−1)e−αδw
β(1+λβ)[

1− θ(1− e−αwβ(1+λβ))
]2δ ,

Using the mixture representation concept, we have

[
1− θ(1− e−αwβ(1+λβ))

]−2δ
=

∞∑
i=0

 2δ+ i− 1

i

θie−αi(1+λβ)wβ
.

Thus,

[
q(w)

]δ
= (1− θ)δ(1 + λβ)δ(αβ)δ

∞∑
i=0

 2δ+ i− 1

i

θiwδ(β−1)e−α(i+1)(1+λβ)wβ
.

This simplified to

IR =
1

1− δ
log

A ∗
∞∑

i=0

 2δ+ i− 1

i

θi
∫ ∞

0
wδ(β−1)e−α(i+1)(1+λβ)wβ

dw

 ,
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Where A = (1− θ)δ(1 + λβ)δ(αβ)δ.

Let z = α(1 + λγ)(1 + i)wβ, as w → 0,z→ 0, as w →∞, z→∞.

w =

[
z

αβ(1 + λβ)(1 + i)

]1
β

dz
dw

= αβ(1 + λβ)(1 + i)wβ−1dw

dw =
dz

αβ(1 + λβ)(i + 1)wβ−1 .

Substituting w and the differential of z with respect to w, we obtain

IR =
1

1− δ
log

A
∞∑

i=0

 2δ+ i− 1

i

θi
∫ ∞

0

( z
α(i+1)(1+λβ)

)1
β


δ(β−1)−β+1

e−z dz
α(i+1)(1+λβ)

 ,
After some simplification, we have

IR =
1

1− δ
log

A
∞∑

i=0

 2δ+ i− 1

i

θi
∫ ∞

0

 zδ(β−1)−β+1[
α(i + 1)(1 + λβ)

] δ(β−1)−β+1
β +1

e−zdz

 .
We obtain

IR =
1

1− δ
log

A
∞∑

i=0

 2δ+ i− 1

i

θi
Γ
δ(β−1)−β+1

β[
α(i + 1)(1 + λβ)

] δ(β−1)+1
β

 , δ > 0, δ , 1.

�

4.4.6 Mean Residual Life (MRL)

In reliability studies, the life expectancy is an important characteristic of the model (Gupta et

al. , 1998). MRL uniquely determines the distribution function and describes the aging process.

MRL is appropriately used for non-parametric and parametric modeling. Actuaries applied
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MRL for the determination of premiums and insurance claims for life insurance products.

Proposition 4.4.6. The MRL of the GWW distribution is given by

mW(w) =

µ′1 −(1− θ)
∞∑

i=0

(i+1)θiγ( 1
β+1,α(i+1)(1+λβ)wβ)

[α(i+1)(1+λβ)]
1
β (i+1)

1
β+1


S (t)

− t. (4.15)

Proof. By definition

mW(t) = E
[
W − t|W > t

]
=

1
S (t)

∞∫
t

(w− t)rq(w)dw, t > 0,

where

S (t) = 1−Q(t),

is the survival function.

mW(t) =
µ′1 −ϕ1(w)

s(t)
− t

Substituting the first incomplete moments yield

mW(w) =

µ′1 −(1− θ)
∞∑

i=0

iθiγ( 1
β+1,α(i+1)(1+λβ)wβ)

[α(i+1)(1+λβ)]
1
β (i+1)

1
β+1


S (t)

− t.

�

4.4.7 Order Statistics

Order statistics assume a significant function in quality control testing and reliability to predict

the failure of future items based on the times of a few early failures. This technique has in

recent times extensively used in statistical inferences partly because some of their properties do

not depend on the distribution from which the random sample is obtained.

Proposition 4.4.7. The density of the Order Statistics of a random sample from a GWW can be
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expressed as

qk:n (w) =
n!

(k− 1)! (n− k)!

n−k∑
i=0

(1)i

 n− k

i

[Q (w)
]k+i−1q(w), k = 1,2,3, . . . ,n. (4.16)

Proof. By definition

gk:n (w) =
n!

(k− 1)! (n− k)!
q (w)

[
Q (w)

]k−1[1−Q (w)
]n−k, f or k = 1,2,3, . . . ,n

Using the binomial expansion

gk:n (w) =
n!

(k− 1)! (n− k)!

n−k∑
i=0

(1)i

 n− k

i

[Q (w)
]k+i−1q(x),k = 1,2,3, . . . ,n.

�

4.5 Parameter Estimation
In this section, MLE method was employed to estimate unknown parameters of the GWW four-

parameter distribution.

4.5.1 Maximum Likelihood Estimation

The maximum likelihood estimation method is the most widely used classical approach for

estimating the parameters of a probability distribution model and is based on a likelihood func-

tion. The likelihood function attains its maximum at a specific value of the parameters. It

enjoys many desirable properties including asymptotic normality, asymptotic efficiency, invari-

ance property, and consistency (Nasiru et al., 2018).

Ley y1...,yn be a random sample of size from the GWW (θ,α,β,λ) distribution. The log-

likelihood function for the vector of parameters ξ = (θ,α,β,λ)T becomes

L = n log(1− θ) + n log(α) + n log
(
β
)
+ n log

(
1 + λβ

)
+

(
β− 1

) n∑
i=1

logyi × B, (4.17)
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where

B = −

n∑
i=1

(
αyi

β
(
1 + λβ

))
− 2

n∑
i=0

log(1− θ
(
1− e−α×yi

β×
(
1+λβ

))
.

Components of the score vector U(ξ) are obtained by partially differentiating the log-likelihood

function.

The associated components of the score function U(ξ) =

[
∂L
∂θ ,

∂L
∂α ,

∂L
∂β ,

∂L
∂λ

]T
are

∂L
∂θ

= −
n

1− θ
− 2

n∑
i=0

−1 + e−α
(
1+λβ

)
yβi

1−
(
1− e−α(1+λβ)yβi

)
θ
. (4.18)

∂L
∂α

=
n
α
−

n∑
i=1

(
1 + λβ

)
yβi − 2

n∑
i=0

−
e−α

(
1+λβ

)
yβi θ

(
1 + λβ

)
log[e]yβi

1−
(
1− e−α(1+λβ)yβi

)
θ

. (4.19)

∂L
∂β

=
n
β

+
nλβ log[λ]

1 + λβ
+

n∑
i=1

logyi −V −W, (4.20)

where

V = 2
n∑

i=0

+

e−α
(
1+λβ

)
yβi θ log[e]

(
−αλβ log[λ]yβi −α

(
1 + λβ

)
log

[
yi
]
yβi

)
1−

(
1− e−α(1+λβ)yβi

)
θ

and

W =

n∑
i=1

(
αλβ log[λ]yβi +α

(
1 + λβ

)
log

[
yi
]
yβi

)
.

and

∂L
∂λ

=
nβλ−1+β

1 + λβ
−

n∑
i=1

αβλ−1+βyβi − 2
n∑

i=0

−
e−α

(
1+λβ

)
yβi αβθλ−1+β log[e]yβi

1−
(
1− e−α(1+λβ)yβi

)
θ

. (4.21)

The MLE can be derived by solving the nonlinear equations numerically for the unknown pa-

rameters. A good set of initial values is essential. The numerical result is derived directly with

the application of lifetime data set using statistical software R. Details code have been provided

in appendix A2.
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4.6 Monte Carlo Simulation Geometric Weighted Weibull
In this section, the Monte Carlo simulation experiment was executed to examine the proper-

ties of the maximum likelihood estimator for the parameters of the GWW distribution. All the

computations were done by R-software (see appendix A1 for R-code). Random samples for the

simulation were generated using the quantile function of the GWW distribution. The simulation

was performed with four different combinations of the parameter values of α,θ,β and λ.

The properties of the estimators were investigated by calculating average estimates of the pa-

rameters and the corresponding RMSE. In particular, we have considered samples sizes =25,

50, 75 and 100. the experiments, on each of the samples were replicated 1000 times. In such

case, four parameter were used, these are (α,θ,β and λ) = (0.1, 0.3, 0.2, 0.1), (α,θ,β and λ)

= (0.1, 0.3, 0.2, 0.2), (α,θ,β and λ) = (0.1, 0.3, 0.2, 0.4) and (α,θ,β and λ) = (0.1, 0.3, 0.4,

0.5). Table 4.1 and 4.2 respectively displays the average bias (AB) and root mean square error

(RMSE) for the maximum likelihood estimators.The AB for some estimators of the parameters

decreases as the sample size increases while it fluctuates for others. The RMSE for estimators

of all the parameters showed a decreasing values with increasing sample size. We observe that

all the estimators satisfy desirable properties of the MLE.
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Table 4.1: Monte Carlo Simulation Results, AB and RMSE (in parentheses) for GWW Distri-
bution

Parameter
Val

n ABIAS/RMSE

A θ β λ α̂ β̂ λ̂ θ̂

0.1 0.3 0.2 0.1 25 0.0261
(0.0967)

0.0055
(0.0447)

0.0204
(0.0683)

-0.0154
(0.3265)

50 0.0227
(0.0870)

0.0021
(0.0362)

0.0247
(0.0808)

-0.0206
(0.3148)

75 0.0273
(0.0919)

-0.0018
(0.0320)

0.02559
(0.0792)

-0.0042
(0.3102)

100 0.0273
(0.0890)

-0.0023
(0.0301)

0.0246
(0.0810)

0.0058
(0.3025)

Parameter
Val

n ABIAS/RMSE

0.1 0.3 0.2 0.2 25 0.0242
(0.1012)

0.0083
(0.0462)

0.0272
(0.1244)

-0.0204
(0.3300)

50 0.0246
(0.0862)

0.0006
(0.0342)

0.0255
(0.1081)

-0.0069
(0.3125)

75 0.0241
(0.0855)

-0.0003
(0.0317)

0.0338
(0.1141)

-0.0026
(0.3123)

100 0.0314
(0.0916)

-0.0041
(0.0316)

0.0403
(0.1207)

0.0226
(0.3114)

Table 4.2: Monte Carlo Simulation Results, AB and RMSE (in parentheses) for GWW Distri-
bution

Parameter
Val

n ABIAS/RMSE

A θ β Λ α̂ β̂ λ̂ θ̂

0.1 0.3 0.2 0.4 25 0.0226
(0.0942)

0.0182
(0.0941)

0.0227
(0.1435)

-0.0211
(0.327)

50 0.0280
(0.0936)

0.0015
(0.0752)

0.0376
(0.1503)

-0.0010
(0.328)

75 0.0247
(0.0848)

-0.0023
(0.0644)

0.0319
(0.1332)

-0.0065
(0.3121)

100 0.0227
(0.0792)

-0.0042
(0.0601)

-0.0327
(0.1331)

-0.0072
(0.3020)

0.1 0.3 0.4 0.5 25 0.0179
(0.0926)

0.0205
(0.0934)

0.0451
(0.2412)

-0.0333
(0.3246)

50 0.0214
(0.0850)

0.0050
(0.0714)

0.0484
(0.2271)

-0.0219
(0.3144)

75 0.0213
(0.0789)

-0.0006
(0.0628)

0.0507
(0.2220)

-0.0010
(0.3093)

100 0.0235
(0.0807)

-0.0031
(0.059)

0.0459
(0.2144)

-0.0049
(0.3016)
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4.7 APPLICATION
The applications of the GWW distribution was demonstrated in this section using two real

datasets to illustrate the potentiality of the GWW model, the fit of the GWW distribution was

compared with that of other existing competitive models. The smaller these statistics are, the

better the fit. The result is obtained using algorithm provided in appendix A3.

4.7.1 Application 1: Real Data for Strength of 1.5cm Glass Fibers

An application to a real data set to prove the flexibility of the GWW distribution was carried

out. The geometric weighted Weibull (GWW), weighted Weibull (WW), Exponentiated Weibull

(EW), exponentiated generalised weighted Weibull (EGWW), Weibull (W), new Weibull expo-

nential (NWE), and Additive Weibull (AddW) were fit to a real data set taken from Smith and

Naylor (1987).

Table 4.3 shows the summary statistics of the strength of 1.5cm glass fibers with a measured

average of 1.51. The skewness for this dataset is 0.92, positive skewness assumes the size of

the right-handed tail is longer than the tail of left-hand. Since the skewness is between 0.1 and

1, the data are moderately skewed.

Table 4.3: Descriptive Statistics of Strength of 1.5cm Glass Fiber

MinimumMean Maximum Variance SkewnessKurtosis

0.55 1.51 2.24 0.11 0.92 1.10
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The data shows an increasing failure rate since the plot is concave above 45 degree line as dis-

played in Figure 4.3

Figure 4.3: TTT-Transform for the strength of 1.5cm Glass Fiber

The estimates for the parameters of the fitted models with their corresponding standard errors,

z-value, and p-value are provided in Table 4.4. The significance of the parameters was verified

by using the standard error test at a 5% significance level. For the WW model, MLE for the

three parameters was also significant and for EW, the parameter was not significant. Only b̂

was significant for EGWW and for AddW model only θ̂ was significant.
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Table 4.4: Maximum Likelihood Estimates and the Standard Errors for Strength of 1.5cm Glass
Fiber

Distribution Estimate Std. error z-value p-value
GWW α̂ =0.34375 1.1418e-03 -2.1969 0.02802*

λ̂ =1.00583 1.3702e-09 1.4761e+07 < 2e-16*
γ̂ =3.20315 8.5446e-01 8.5353e+00 < 2e-16*
θ̂ =0.93980 1.9822e-02 9.8956e+02 < 2e-16*

WW α̂ =0.05978 0.02052 2.9136 0.003573*
λ̂ =0.06885 7.3061e-08 9.4239e+05 <2.2e-16*
θ̂ = 5.7797 5.7619e-01 1.0031e+01 <2.2e-16*

EW λ̂ = 0.6837 0.25757 2.6547 0.00793*
γ̂ = 0.02069 0.026005 0.7959 0.42608
β̂ = 7.19678 1.71433 4.1980 2.693e-05*

EGWW α̂ =0.043908 3.51283 2.1147e+06 0.57256
λ̂ = 0.779181 16.605228 0.0469 0.962574
θ̂ = 7.28690 1.708452 4.2652 1.997e-05
â = 0.37950 9.23147 6.2546 1.71662
b̂ =0. 671015 0.248950 2.6954 0.007031*

W γ̂ = 5.78012 0.020505 2.9146 0.00356*
β̂ = 0.05977 0.57601 10.0346 <2.2e-16*

NWE α̂ = 0.24964 11.00443 0.0227 0.9819
λ̂ = 1.65840 117.18543 0.0142 0.9887

AddW α̂ = 0.06239 0.03659 1.7053 0.08814
γ̂ = 7.434526 1.222366 6.0821 1.186e-09
β̂ = 0.018312 0.016336 1.1210 0.26230
θ̂ = 2.7718 1.3371 2.0730 0.03817*

The values of the test statistics measures and discrimination criteria methods of the fitted mod-

els are in Table 4.5. In Table 4.5, we compare the fit of the GWW model with some common

lifetime models; WW, EW, W, EGWW, NEW and AddW. The result shows that GWW model

provides a good fit to the data set. This result is confirmed from AIC and BIC values since

GWW distribution has the minimum values. Considering a significance level of 5%, the GWW

distribution was the only model in which p-values returned from the K-S test was greater than

0.05. The log-likelihood value also revealed that the GWW model assumes better fit to the data

than the other candidates models. The lowest values of the Cramr-Von Mises (W*) statistics

also shown, GWW fits the dataset better than the other fitted models.
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Table 4.5: Measures AIC, BIC and Log-likelihood Test for Strength of 1.5cm Glass Fiber
Dataset

Model lnL AIC BIC W* K-S p-value
GWW -12.73 32.07 40.63 0.1057 0.0999 0.5546
WW -15.21 36.41 42.84 0.2373 0.1523 0.1075
EW -14.68 35.35 41.78 0.2013 0.1469 0.1315
W -15.21 34.41 38.69 0.2373 0.1522 0.1077
EGWW -14.68 39.35 50.07 19.37 1 2.2×10−16

NEW -88.63 181.66 185.94 0.5702 0.418 5.49×10−10

AddW -13.75 35.47 44.04 0.2002 1.7016 2.2×10−16

Figure 4.4 shows the plot of the empirical density and the fitted densities of the distributions.

From the plot, we observe that the GWW distribution has a superior fit among the chosen model

as shown in a visual correlation of the histogram of the information data with the fitted densities.

Figure 4.4: Empirical and Fitted Densities Plot for Strength of 1.5cm Glass Fibers

4.7.2 Application 2: Failure and Running Times Dataset

To investigate the merit of the proposed model, we fit the GWW, weighted Weibull (WW),

new modified Weibull (NMW), and Additive Weibull (AddW) distributions to the failure and

running dataset in Table 3.2. It very well seen from Table 4.6 that the data is negatively skewed

having coefficient of skewness being -0.299 and a variance as 1.32.
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Table 4.6: Summary of Data on Failure and Running Times of Devices

The TTT transform curve of the data set exhibits a convex shape and then followed by an

increasing concave shape above 45 degree line as shown in Figure 4.5. Thus, the failure rate

function of the data set has a bathtub shape.

Figure 4.5: TTT-transform plot for the Failure and Running Times of Devices

Estimates of the competitive models with their corresponding standard errors and z-value are

provided in Table 4.7. The significance of the parameters was verified by using the standard

error test at a 5% significance level. This shows that θ̂ and γ̂ estimates are statistically significant

for GWW, for WW MLEs, the only θ̂ estimate was significant. For AddW model all the four

parameters were statistically significant.
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Table 4.7: The MLEs, Standard Errors and p-value for Failure and Running Data

Distribution Estimate Std. error Z-value P-value

GWW α̂ = 0.56673 18.61055 0.0305 0.975706

θ̂ =0.81885 0.18567 4.4103 1.032e-05*

γ̂ =0.95637 0.26682 3.5843 0.000338*

λ̂ =1.04138 70.15006 0.0148 0.988156

WW α̂ = 0.43633 50.581440 0.0086 0.9931

λ̂ = 0.06396 195.769309 0.0003 0.9997

θ̂ = 1.26504 0.204429 6.1882 6.086e-10*

NMW α̂ = 0.28488 0.0509610 5.5903 2.267e-08*

λ̂ = 0.98277 0.0073221 134.2191 < 2.2e-16*

AddW α̂ = 0.65424 0.057829 11.3135 < 2.2e-16*

γ̂ =1.26506 0.411818 3.0719 0.002127*

β̂ =-0.2044 0.057826 -3.5356 0.0004069*

θ̂ = 1.26505 0.232964 5.4303 5.627e-08*

*: means significant at 5% significance level

Appropriate discrimination criteria and test statistics were computed for each fitted model to

the data. Statistics for comparing the fitted models are provided in Table 4.8. Table 4.8 reveals

GWW distribution was the best model for the dataset. It assumed highest log-likelihood value

of -44.6 and the smallest values for AIC. In order to check the appropriateness of the model,

Kolmogorov Smirnov statistics was considered at the value of 0.1871 that returned the highest

p-value of 0.244, which demonstrated that the Geometric weighted Weibull (GWW) fits well

than the Weighted Weibull (WW) as in Nasiru (2015) and other sub-models.
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Table 4.8: Comparing Models with Discrimination Criteria and Goodness-of-Fit

Model lnL AIC BIC W* K-S p-
value

GWW -44.6 97.19 102.79 0.2639 0.1871 0.244
WW -44.8 98.31 102.52 0.3034 0.2194 0.111
NWE -47.1 98.27 101.07 0.3215 0.2160 0.121
AddW -46.2 100.32 105.92 0.3401 0.2088 0.191

4.8 Summary
The main structural properties of the GWW distribution are investigated and derived. The

GWW distribution exhibits a wide range of shapes with varying skewness and assuming all

possible forms of the hazard function. MLE is employed to evaluate the parameters and nu-

merical examples are also provided. GWW model assumes a superior performance among the

compared distributions as evidenced by the AIC and the K-S values.
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 CHAPTER 5

EXPONENTIATED WEIGHTED WEIBULL

DISTRIBUTION

5.1 Introduction

The Weibull distribution provides a good alternative to exponential, gamma, and lognormal dis-

tribution in biological studies and life testing (Nasiru et al., 2018; Almalki and Yuan , 2013;

Zhang and Xie , 2007). However, certain lifetime data; business life cycle, human mortal-

ity records, and graduate unemployment demand non-monotonic shapes like the modified uni-

modal, bathtub shape, and unimodal. Modified weighted Weibull distributions often fit the first

and middle phases of the hazard functions. However, it lacks the credibility to fit the last phase

of the bathtub and the modified unimodal shapes.

5.2 Exponentiated Weighted Weibull Distribution

Suppose the random variable W follows the exponentiated weighted Weibull (EWW) distribu-

tion. Then the cumulative distribution function (CDF) is:

Q(w) =
(
1− e−αwγ(1+λγ)

)β
,α > 0,λ > 0,γ > 0,w > 0. (5.1)

The corresponding probability density function (PDF) is obtained by differentiating equation

(5.1):

q(w) = αβγ(1 + λγ)wγ−1e−αwγ(1+λγ)
(
1− e−αwγ(1+λγ)

)β−1
, w > 0. (5.2)

Figure 5.1 displays the PDF plots of the EWW that can be symmetric, left skewed, right skewed,

J-shape, reverse J-shape and unimodal.
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Figure 5.1: Combine Plots of Exponentiated Weighted Weibull Density Curves for some Pa-
rameters Values

The survival and hazard rate of the EWW model are respectively:

S (w) = 1−
(
1− e−αwγ(1+λγ)

)β
, w > 0 (5.3)

and

h(w) =
αβγ(1 + λγ)wγ−1e−αwγ(1+λγ)

(
1− e−αwγ(1+λγ)

)β−1

1−
(
1− e−αwγ(1+λγ)

)β ,w > 0 (5.4)

The plots of the hazard function display various attractive shapes such as monotonically de-

creasing, monotonically increasing and bathtub shape for different combinations of the parame-

ter values. The patterns of the different shapes of the EWW make it possible to model monotonic

and non-monotonic failure rates.

Figure 5.2: Combine Plots of the Hazard Rate for EWW at different Parameters Values.
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5.3 Mixture Representation

Proposition 5.3.1. The density of the EWW model can be expressed as

q(w) = αβγ(1 + λγ)wγ−1
∞∑

i=0

(−1)i

 β− 1

i

e−α(1+λγ)(1+i)wγ
. (5.5)

Proof. By definition, using Equation (5.2)

Using the power series expansion

(1− z)β−1 =

∞∑
i=0

(−1)i

 β− 1

i

zi, |z| < 1.

Let z = e−αwγ(1+λγ)

By substituting, we obtain

q(w) = αβγ(1 + λγ)wγ−1e−αwγ(1+λγ)
∞∑

i=0

(−1)i

 β− 1

i

e−iαwγ(1+λγ).

Hence,

q(w) = αβγ(1 + λγ)wγ−1
∞∑

i=0

(−1)i

 β− 1

i

e−α(1+λγ)(1+i)wγ
.

�

5.4 Statistical Properties

The researcher discussed quantile, Rényi entropy, moments, moment generating function, in-

complete moment, reliability, and stochastic ordering as some of the statistical properties of the

model.

5.4.1 Quantile

Quantile is the inverse cumulative distribution function used to generate random samples for the

probability distribution. It can also serve as an alternative to the probability density function.
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Proposition 5.4.1. The quantile function w of the Exponentiated WW distribution can be as:

w =

− log(1− u
1
β )

α(1 + λγ)


1
γ

,u ∈ (0,1). (5.6)

Proof. The quantile function is obtained by solving the equation

(1− e−αwγ(1+λγ)β = u

Hence,

w
γ

=

− log(1− u
1
β )

α(1 + λγ)

 ,

w =

− log(1− u
1
β )

α(1 + λγ)


1
γ

completes the proof. �

5.4.2 Moments

Moments are used to compute various measures of central tendency, variation, kurtosis, and

skewness among others.

Proposition 5.4.2. The moment of a random variable W of an exponentiated weighted Weibull

distribution is given by

µ
′

s = β

∞∑
i=0

(−1)i

 β− 1

i


Γ

(
s
γ + 1

)
[α(1 + λγ)]

s
γ (1 + i)

s
γ+1

. (5.7)

Proof. By definition

µ′s =

∞∫
0

wsq(w)dw,

where f (x) represent the PDF in equation (5.5).
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This implies

µ′s =

∞∫
0

ws.αβγ(1 + λγ)wγ−1
∞∑

i=0

(−1)i

 β− 1

i

e−α(1+λγ)(1+i)wγ
dw

µ′s = αβγ(1 + λγ)
∞∑

i=0

(−1)i

 β− 1

i


∞∫

0

ws.wγ−1e−α(1+λγ)(1+i)wγ
dw.

Let y = α(1 + λγ)(1 + i)wγ,w→ 0,y→ 0,w→∞,y→∞

w =

[
y

α(1 + λγ)(1 + i)

]1
γ

dy
dw

= αγ(1 + λγ)(1 + i)wγ−1

dw =
dy

αγ(1 + λγ)(1 + i)wγ−1 .

By substituting w and dw , we obtain,

µ′s = αβγ(1 + λγ)
∞∑

i=0

(−1)i

 β− 1

i


∞∫

0

ws+γ−1e−α(1+λγ)(1+i)wγ dy
αγ(1 + λγ)(1 + i)wγ−1 .

simplifying, we have

µ′s = β

∞∑
i=0

(−1)i

 β− 1

i

 1

[α(1 + λγ)]
s
γ (1 + i)

s
γ+1

∞∫
0

y
s
γ+1−1e−ydy

Recall,

Γ (a) =

∞∫
0

ta−1e−tdt.

µ′s = β

∞∑
i=0

(−1)i

 β− 1

i


Γ

(
s
γ + 1

)
[α(1 + λγ)]

s
γ (1 + i)

s
γ+1]

.

This completes the proof.
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For the first moment, s = 1 yields

E(w) = β

∞∑
i=0

(−1)i

 β− 1

i


Γ

(
1
γ + 1

)
[α(1 + λγ)]

1
γ (1 + i)

1
γ+1

.

�

5.5 Moment Generating Function
The moment generating function of the EWW distribution has been derived.

Proposition 5.5.1. The MGF of W have an exponentiated weighted Weibull distribution denoted

by Mw(t) can be expressed as

Mw(t) = β

∞∑
s=0

∞∑
i=0

(−1)its

γ!

 β− 1

i


Γ( s

γ + 1)

[α(1 + λγ)]
s
γ (1 + i)

s
γ+1

. (5.8)

Proof. By definition

Mw(t) = E(etw) =

∞∫
−∞

etwq(w)dw,

Using Taylor series

Mw(t) =


∞∫

0

1 +
tw
1!

+
t2w2

2!
+ ...+

tnwn

n!
+ ...

q(w)dw

Mw(t) = E

 ∞∑
s=0

tsW s

s!


Mw(t) =

∞∑
s=0

ts

s!
E

[
W s

]

Mw(t) =

∞∑
s=0

ts

s!
µ′s.

Where µ′s is defined in equation (5.7)

Mw(t) = β

∞∑
s=0

∞∑
i=0

(−1)its

γ!

 β− 1

i


Γ

(
s
γ + 1

)
[α(1 + λγ)]

s
γ (1 + i)

s
γ+1

.
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This completes the proof. �

5.6 Reliability

The reliability of a component plays a significant role in the stress-strength analysis of a model.

Proposition 5.6.1. If X is the strength and is the stress, then the reliability of the component R

can be expressed as

R =

∞∑
i=0

(−1)i

 2β− 1

i


Γ

(
s
γ + 1

)
[α(1 + λγ)]

s
γ (1 + i)

s
γ+1]

. (5.9)

Proof. By definition

R =

∞∫
0

q(w)Q(w)dw = 1−

∞∫
0

q(w)Q̄(w)dw.

This implies

q(w)Q(w) = αβγ(1 + λγ)wγ−1e−αwγ(1+λγ)(1− e−αwγ(1+λγ))2β−1,

R =

∞∫
0

αβγ(1 + λγ)wγ−1e−αwγ(1+λγ)(1− e−αwγ(1+λγ))
2β−1

dw.

Using the power series expansion, we obtain

R =

∞∑
i=0

(−1)i

 2β− 1

i


∞∫

0

αβγ(1 + λγ)wγ−1e−α(1+λγ)(1+i)wγ
dw.

Let y = α(1 + λγ)(1 + i)wγ,w→ 0,y→ 0,w→∞,y→∞

w =

[
y

α(1 + λγ)(1 + i)

]1
γ

dy
dw

= αγ(1 + λγ)(1 + i)wγ−1

dw =
dy

αγ(1 + λγ)(1 + i)wγ−1 .
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By w substituting dw we obtain

R =

∞∑
i=0

(−1)i

 2β− 1

i


∞∫

0

αβγ(1 + λγ)wγ−1e−y dy
αγ(1 + λγ)(1 + i)wγ−1 .

Canceling out the same variables,

R =

∞∑
i=0

(−1)i

 2β− 1

i

 1

[α(1 + λγ)]
s
γ (1 + i)

s
γ+1

∞∫
0

y
s
γ+1−1e−ydy

Γ (a) =

∞∫
0

ta−1e−tdt

R =

∞∑
i=0

(−1)i

 2β− 1

i


Γ

(
s
γ + 1

)
[α(1 + λγ)]

s
γ (1 + i)

s
γ+1]

.

This completes the proof. �

5.6.1 Stochastic Ordering

Proposition 5.6.2. The stochastic ordering of a random variables X1 ∼ EWW(α,λ,γ,β1)andX2 ∼

EWW(α,λ,γ,β2) can be expressed as

d
dx

log
f (x1)
f (x2)

=
(β1 − β2)αxγ(1 + λγ)(

1− e−αxγ(1+λγ)
) . (5.10)

Proof. By definition

f (x1) = αβ1γ(1 + λγ)xγ−1e−αxγ(1+λγ)(1− e−αxγ(1+λγ))β1−1

f (x2) = αβ2γ(1 + λγ)xγ−1e−αxγ(1+λγ)(1− e−αxγ(1+λγ))β2−1

f (x1)
f (x2)

=

(
β1

β2

) (
1− e−αxγ(1+λγ)

)β1−β2
.

Taking logarithm of both sides

log
f (x1)
f (x2)

= log
(
β1

β2

)
+ (β1 − β2)log

(
1− e−αxγ(1+λγ)

)
.
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By differentiating
d
dx

log
f (x1)
f (x2)

=
(β1 − β2)αxγ(1 + λγ)(

1− e−αxγ(1+λγ)
) ,

If β1 > β2, then
d
dx

log
(

f (x1)
f (x2)

)
< 0,X1 ≤ X2.

This completes the proof. �

5.6.2 Rényi Entropy

To examine the uncertainty of the random variable Rényi entropy can be employed.

Proposition 5.6.3. Rényi entropy for a random variable X having an exponentiated weighted

Weibull distribution can be expressed as

IR(δ) =
1

1− δ

A
∞∑
0

(−1)i

 δβi
 1[
αδ(1 + λγ)(1 + i)

]δ(1−1
γ )−γ+2

Γ

(
δ(1− 1

γ )− γ+ 2
) , (5.11)

where δ > 0, δ , 1.

Proof. By definition

IR =
1

1− δ
log


∞∫

0

f (x)dx


δ

, δ > 0, δ , 1,

[
f (x)

]δ
=

(
αβγ(1 + λγ)

)δ
xδ(γ−1)e−αδxγ(1+λγ)(1− e−αxγ(1+λγ))δβ.

After some simplification

IR =
1

1− δ
log

(αβγ(1 + λγ)
)δ ∞∫

0

xδ(γ−1)e−αδxγ(1+λγ)(1− e−αxγ(1+λγ))
δβ

dx

 ,
Using the binomial expansion,

IR =
1

1− δ
log


(
αβγ(1 + λγ)

)δ ∞∫
0

∞∑
0

(−1)i

 δβi
xδ(γ−1)e−αδ(1+λγ)xγdx
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Further

IR =
1

1− δ
log

A
∞∑
0

(−1)i

 δβi

∞∫

0

xδ(γ−1)e−αδ(1+λγ)(i+1)xγdx

 .
Let y = αδ(1 + λγ)(1 + i)xγ, x→ 0, y→ 0, x→∞, y→∞

x =

[
y

αδ(1 + λγ)(1 + i)

]1
γ

dy
dx

= αδ(1 + λγ)(1 + i)xγ−1

dx =
dy

αδ(1 + λγ)(1 + i)xγ−1

We write

IR(δ) =
1

1− δ

A
∞∑
0

(−1)i

 δβi

∞∫

0

[
y

αδ(1 + λγ)(1 + i)

]δ(γ−1)
γ

e−y.
dy

αδ(1 + λγ)(1 + i)xγ−1



IR(δ) =
1

1− δ

A
∞∑
0

(−1)i

 δβi

∞∫

0

[
y

αδ(1 + λγ)(1 + i)

]δ(γ−1)
γ

[
y

αδ(1 + i)(1 + λγ)

]1−γ

B

 ,

where B =
dy

αδ(1+i)(1+λγ)

IR(δ) =
1

1− δ

A
∞∑
0

(−1)i

 δβi

∞∫

0

[
y

αδ(1 + λγ)(1 + i)

]δ(1−1
γ )−γ+1 [

e−y

αδ(1 + i)(1 + λγ)

]
dy



IR(δ) =
1

1− δ

A
∞∑
0

(−1)i

 δβi

∞∫

0

 y
δ(1−1

γ )−γ+1

[
αδ(1 + λγ)(1 + i)

]δ(1−1
γ )−γ+2


δ(γ−1)
γ

e−ydy

 ,
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IR(δ) =
1

1− δ

A
∞∑
0

(−1)i

 δβi


Γ(δ(1− 1
γ )− γ+ 2)[

αδ(1 + λγ)(1 + i)
]δ(1−1

γ )−γ+2

 .
This completes the proof. �

5.6.3 Incomplete Moment

The incomplete moments are also known as the conditional moment that describes the shape of

many distributions.

Proposition 5.6.4. The incomplete moment of Y can be expressed as

ρr(x) =

∞∑
i=0

(−1)i

 β− 1

i

 1[
α(i + 1)(1 + λγ)

] γ
γ1

α(i+1)(1+λγ)xγ∫
0

[z]
γ
γ1 e−z dz

(i + 1)
(5.12)

Proof. By definition

ρr(x) =

x∫
0

yr f (y)dy

ρr(x) =

x∫
0

yrαβγ(1 + λγ)yγ−1e−αyγ(1+λγ)(1− e−αyγ(1+λγ))β−1dy

ρr(x) =

x∫
0

yrαβγ(1 + λγ)yγ−1
∞∑

i=0

(−1)i
(
β− 1i

)
e−α(i+1)(1+λγ)yγ)β−1dy

ρr(x) = αβγ(1 + λγ)
∞∑

i=0

(−1)i
(
β− 1i

) x∫
0

yr.yγ−1.e−α(i+1)(1+λγ)yγ)β−1dy

Let z = α(i + 1)(1 + λγ)yγ,

y→ 0,z→ 0,y = x,z→ α(i + 1)(1 + λγ)xγ

dy =
dz

αγ(i + 1)(1 + λγ)yγ−1 ,
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y =

[
z

α(i + 1)(1 + λγ)

] 1
γ

,

ρr(x) =

∞∑
i=0

(−1)i

 β− 1

i


α(i+1)(1+λγ)xγ∫

0

[
z

α(i + 1)(1 + λγ)

] γ
γ1

e−z dz
(i + 1)

,

ρr(x) =

∞∑
i=0

(−1)i

 β− 1

i

 1[
α(i + 1)(1 + λγ)

] γ
γ1

α(i+1)(1+λγ)xγ∫
0

[z]
γ
γ1 e−z dz

(i + 1)
.

This completes the proof. �

5.6.4 Order of Statistics

These statistics have been applied in statistical theory and practice, in order to explore the

behavior of the outliers Let y1...,yn be a random sample of size n from the GWW (θ,α,β,λ)

distribution and also let Y1:n,Y2:n, ...Yn:n represent the corresponding order statistics drawn from

this sample, has the probability density function of the Kth order statistics as follows:

fk:n(x) =
n!

(k− 1)! (n− k)!
f (y)F(y)k−1[1− F(y)

]n−1, (5.13)

where the function F(x) and f (x) are the CDF and PDF of the EWW model.

Using the binomial expansion

[
1− F(y)

]n−1
=

n−1∑
r=0

 n− k

r

(−1)rF(x)r (5.14)

Substituting equation (5.14) into equation (5.13), we obtain the expression as

fk:n(y) =
n!

(k− 1)!r! (n− k)!
f (y)F(y)k−1

n−1∑
r=0

 n− k

r

(−1)rF(y)r (5.15)
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Simplifying Equation (5.15), we have

fk:n(y) =

n−k∑
r=0

n!
(k− 1)!r! (n− k)!

(−1)r f (y)F(y)k+r−1 (5.16)

Therefore, the PDF of the smallest t order statistics denotes of the proposed model is

f1:n(y) =

n−1∑
r=0

n!
r!(n− 1− r)!

(−1)rαβγ(1 + λγ)yγ−1e−αyγ(1+λγ)
(
1− e−αyγ(1+λγ)

)β(1−r)−1
(5.17)

The PDF of the largest order statistics denotes X(n) of the proposed model is given by:

fn:n(y) =

n−1∑
r=0

n!
r!(n− 1− r)!

(−1)rαβγ(1 + λγ)yγ−1e−αyγ(1+λγ)
(
1− e−αyγ(1+λγ)

)β(1−r)−1
(5.18)

5.7 Parameter Estimation

Assume x1..., xn be a random sample of size n from the EWW (γ,α,β,λ) distribution. The

log-likelihood function for the vector of parameters ξ = (γ,α,β,λ)T becomes

L =

n∏
i=1

αβγ(1 + λγ)xγ−1e−αxγ(1+λγ)
(
1− e−αxγ(1+λγ)

)β−1
(5.19)

L = αnβnγn(1 + λγ)n

 n∏
i=1

xγ−1


 n∏

i−1

e−αxγ(1+λγ)


 n∏

i−1

[
1− e−αxγ(1+λγ)

]
β−1

. (5.20)

Taking the natural logarithm of L

L = n lnα+ n lnβ+ n lnγ+ n ln(1 + λγ) + (γ− 1)
n∑

i=1

ln xi ×H, (5.21)

where H = −α(1 + λγ)
n∑

i=1
xi
γ + (β− 1)

n∑
i=1

ln
(
1− e−αxi

γ(1+λγ)
)
.

Components of the score vector U(ξ) are obtained by partially differentiating the log-likelihood

function.

The associated components of the score function U(ξ) =

[
∂L
∂α ,

∂L
∂β ,

∂L
∂λ ,

∂L
∂γ ,

]T
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are

∂L
∂α

=
n
α
−

n∑
i=1

(
1 + λγ

)
xγi +

(
−1 + β

) n∑
i=1

e−α(1+λγ)xγi
(
1 + λγ

)
log[e] xγi

1− e−α(1+λγ)xγi
(5.22)

∂L
∂β

=
n
β

+

n∑
i=1

log
[
1− e−α(1+λγ)xγi

]
(5.23)

∂L
∂λ

=
nγλ−1+γ

1 + λγ
−

n∑
i=1

αγλ−1+γxγi +
(
−1 + β

) n∑
i=1

e−α(1+λγ)xγi αγλ−1+γ log[e] xγi
1− e−α(1+λγ)xγi

(5.24)

∂L
∂γ

=
n
γ

+
nλγ log[λ]

1 + λγ
+

n∑
i=1

log
[
xi
]
−

n∑
i=1

(
αλγ log[λ] xγi +α

(
1 + λγ

)
log

[
xi
]
xγi

)
E, (5.25)

where

E =
(
−1 + β

) n∑
i=1

−
e−α(1+λγ)xγi log[e]

(
−αλγ log[λ] xγi −α

(
1 + λγ

)
log

[
xi
]
xγi

)
1− e−α(1+λγ)xγi

.

A good set of initial values is essential. The numerical result is derived directly with the ap-

plication of lifetime data set using statistical software R, see appendix B2 for the appropriate

code.
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5.8 Numerical Illustration
In this section, random numbers are generated and two real datasets are considered.

5.8.1 Simulation Study

In this section, we study the performance of the MLE estimators of the unknown parameters of

the EWW distribution by implementing the Monte Carlo simulation method. A random sample

of sizes n = 50,100,150 and 200 is generated from the quantile function given in Equation (5.6)

of the distribution. Comparisons of different methods are made using the estimated values of

parameters, the average Bias, and the mean square error MSE for 1000 replicates. The pro-

cesses were performed using the R-Software (see the appropriate code provided in appendix

B1).

The purpose of generating random numbers is to know if:

• There exists any discrepancy between the average estimates and the true values, whether

it would be small or not.

• The MLE would converge to the true value in all cases when the sample size increases.

• The standard errors of the MLEs would decrease as the sample size increases.

The results of this simulation study are in Table 5.1. Table 5.1 reveals the average BIAS and

Root Mean Square Error (in the parentheses) for the maximum likelihood estimator (γ,α,β,λ) =

(7.5,0.3,0.2,7.1) for n = 50,100,150,200. ABIAS decreases for estimators of some parameters

as the sample size increases while for others it fluctuates. The RMSE for the estimators on av-

erage decreases for all parameters as the sample size increases. The process is repeated, in this

case, the parameter values are fixed at (γ,α,β,λ) = (7.6,0.3,0.2,7.1) for n = 50,100,150,200.

The ABIAS for some estimators of the parameters also decreases as the sample size increases

while it fluctuates others. The RMSE for the estimators of all the parameters showed a decreas-

ing pattern.
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Table 5.1: MLEs, ABIAS and RMSE (in parentheses) for EWW Simulation Study for different
Parameters Values

Parameter

Val

n ABIAS/RMSE

α γ β Λ α̂ β̂ λ̂ γ̂

0.3 7.5 0.2 7.1 50 0.1775

(0.7908)

0.1860

(0.4882)

-1.6118

(2.3212)

0.3770

(0.8755)

100 0.07704

(0.1765)

0.1132

(0.1548)

-1.3071

(1.7839)

0.2462

(0.5015)

150 0.05215

(0.1426)

0.0948

(0.1236)

-1.1773

(1.5848)

0.2015

(0.4073)

200 0.0313

(0.1223)

0.0802

(0.10267)

-1.0019

(1.3933)

0.1704

(0.3540)

α γ β Λ n α̂ β̂ λ̂ γ̂

0.3 7.6 0.2 7.1 50 0.1442

(0.3274)

0.1959

(0.3584)

-1.555

(2.3174)

0.4233

(1.2247)

100 0.0557

(0.1729)

0.1174

(0.1682)

-1.2376

(1.8304)

0.2706

(0.6123)

150 0.0227

(0.1235)

0.0928

(0.1196)

-1.0549

(1.4962)

0.1994

(0.4173)

200 0.0069

(0.0959)

0.0809

(0.1005)

-0.9762

(1.3248)

0.1788

(0.3661)
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Table 5.2: MLEs, ABIAS and RMSE (in parentheses) for EWW Simulation Study for different
Parameters Values

Parameter

Val

n ABIAS/RMSE

α γ β Λ N α̂ β̂ λ̂ γ̂

0.3 7.4 0.4 7.2 50 0.1313

(0.3492)

0.2003

(0.4759)

-1.5599

(2.3102)

0.3209

(1.5249)

100 0.0397

(0.2048)

0.1231

(0.1716)

-1.2249

(1.8098)

0.1651

0.4325

150 0.0001

(0.1484)

0.0933

(0.1217)

-1.030

(1.4946)

0.1156

(0.3180)

200 -0.0249

(0.1251)

0.0811

(0.1037)

-0.9257

(1.3096)

0.1004

(0.2902)

α γ β Λ α̂ β̂ λ̂ γ̂

0.3 7.4 0.4 7.2 50 0.1040

(0.3697)

0.2143

(0.5994)

-0.1727

(2.4955)

0.0795

(0.6254)

100 0.015

(0.1505)

0.0741

(0.2150)

0.1276

(1.8968)

-0.0137

(0.3261)

150 -0.0058

(0.1058)

0.0452

(0.1478)

0.1672

(1.5942)

-0.0249

(0.2777)

200 -0.0073

(0.0907)

0.0452

(0.1294)

0.0636

(1.4041)

-0.0108

(0.2414)

5.8.2 Applications

In order to investigate the advantage of the EWW proposed model, we apply two lifetime

datasets. We consider criteria like the Kolmogorov-Smirnov test statistics (K-S), Log-likelihood

Ratio Test (lnL), Akaike Information Criteria (AIC), and Bayesian Information Criteria (BIC).

The better distribution corresponds to the smallest (W*), (K-S), (lnL), (AIC), and (BIC) values.

The computations were done using R-Software (see appendix B3).
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5.8.3 Application 3: Electronic Components Failure Rate Data

The study fit the exponentiated weighted Weibull, weighted Weibull, exponentiated general

weighted Weibull, and exponentiated Weibull distribution to real data of 20 electronic compo-

nents Nasiru (2015). The data is shown in Table 3.3. Table 5.3 gives a descriptive summary of

the 20 electronic components of lifetime data. Table 5.3 shows the average electronic compo-

nents failure rate at 1.94 and having a coefficient of skewness of 0.60 and kurtosis of the value

of 2.72 of the data which have positive skewness and kurtosis.

Table 5.3: Descriptive statistics of electronic components life data

MinimumMean Maximum Variance Skewness Kurtosis

0.03 1.94 5.09 2.06 0.60 2.72

The dataset shows a bathtub failure rate since the TTT-transform plot is first concave above 45

degree line and then followed by convex shape as shown in Figure 5.3.

Figure 5.3: TTT-Transform plot for the Lifetime of Electronic Component
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The accuracy of the approximation of the standard error of the MLEs in Table 5.4 was verified

by using the standard error test which states that for a parameter to be significant at the 5%

significance level the standard error should be less than half the parameter values. This output

shows that MLEs for the parameters for EWW was not statistically significant. For the WW

model only θ was significant and for the EGWW, the parameters γ and a were significant.

Table 5.4: Maximum likelihood estimates and the standard errors for electronic components

Distribution Estimate Std error z-value p-value

EWW α̂ = 0.0082 0.07476 0.1093 0.9130

λ̂ = 0.5743 5.2515049 0.1094 0.9129

γ̂ =3.4149 3.8971 0.8763 0.3809

β̂ =0.2365 0.3281 0.7207 0.4711

WW α̂ =0.1221 4.9928 0.0245 0.9805

λ̂ = 2.1456 102.766 0.0209 0.9833

θ̂ = 1.1961 0.2248 5.3197 1.04×10−7∗

EGWW α̂ =0.0037 9.9347e-03 0.3700 0.7114

λ̂ = 0.0371 6.2953e-04 58.9293 <2×10−16*

θ̂ = 2.5948 1.5907e+0 1.6312 0.1028

â = 10.1457 1.9592e-03 5178.4089 <2×10−16*

b̂ =0.3294 2.5999e-01 1.2669 0.2052

*: means significant at 5% significance level

Appropriate information criteria and goodness-of-fit statistics computed for each fitted model to

the data. Statistics for comparing the fitted models are presented in Table 5.5. Table 5.5 reveals

that EWW distribution was the best model for the dataset since it has the highest log-likelihood

value of -31.47 and the smallest values for AIC, BIC and CAIC. To check the appropriate-

ness of the model, Kolmogorov Smirnov statistics was considered at the value of 0.1309. The

67



www.udsspace.uds.edu.gh 

 

 

 

 

Anderson-Darling (A*) statistics at 0.214 also demonstrated that the exponentiated weighted

Weibull (EWW) fits the data set better than the Weighted Weibull (WW) Nasiru (2015) and

other sub-models.

Table 5.5: Goodness - of - Fit Statistics

Model Log-

likelihood

AIC BIC K-S p-

value

W*

EWW -31.47 70.9 74.2 0.1039 0.9667 0.0323

WW -32.79 71.6 74.6 0.1271 0.8638 0.0712

EGWW -31.57 73.1 78.1 0.1052 0.9630 0.0344

In order to gain more insight into the EWW distribution, a visual correlation of the histogram

of the information data with the fitted density functions was developed. Similarly, it is clear in

Figure 5.3 that the EWW fits the left and right peaks of the histogram better.

Figure 5.4: Plots of empirical density and densities of the fitted distribution for the electronic
components data.
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5.8.4 Application 4: Weight of the Diamond Stones in Carat

Illustration of the performance of the proposed model with data obtained from Singfat (1996)

which represents the weight of the diamond stones in carat. To show the applicability and the

assessment of the merit of the proposed model, we use the data set indicated in Table 3.4.

Table 5.6 gives a descriptive summary of the data which have positive skewness and kurtosis.

Table 5.6: Descriptive Statistics for weight of diamond stones dataset

Mean Median SD Variance Skewness Kurtosis

0.659 0.40 0.765 0.584 1.896 2.950

The dataset exhibits a bathtub failure rate since the TTT-transform plot is first convex below the

45 degree line and then followed by concave shape above it as shown in Figure 5.5.

Figure 5.5: TTT-Transform plot for the weight of the Diamond Stones

Table 5.7 shows the MLEs of the parameters, their standard errors, z-values and the p-values for

the fitted EWW, WW, EGWW and AddW distributions. The individual contribution to EWW
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is not statistically significant, since the p-values are above the threshold of 0.05. Only theta that

is significantly accounted for WW. Similarly, theta and alpha are also significant due AddW.

Table 5.7: MLEs, Standard error and p-value for weight of the diamond stones dataset

Distribution Estimate Std error z-value p-value

EWW α̂ = 0.7552 28.8227 0.0262 0.9791

λ̂ = 2.8497 254.1984 0.0112 0.9911

γ̂ =0.6453 0.3928 1.6429 0.1004

β̂ =2.0213 2.4774 0.8159 0.4146

WW α̂ =0.96319 101.17830 0.0095 0.9924

λ̂ = 0.55677 172.29280 0.0032 0.9974

θ̂ = 0.9218 0.15698 5.8726 4.29×10−9∗

EGWW α̂ =1.11822 39.45855 0.0283 0.9774

λ̂ = 1.34105 109.33363 0.0123 0.9902

θ̂ = 0.64531 0.39281 1.6428 0.1004

â = 0.90702 32.00593 0.0283 0.9774

b̂ =2.02172 2.47817 0.8158 0.4146

AddW α̂ =1.21714 0.17049 7.1392 9.385e-13

β̂ = 0.30743 0.17049 1.8033 0.07134

θ̂ = 0.92188 0.23580 3.9095 9.248e-05

γ̂ = 0.92190 0.71410 1.2910 0.19671

* means significant at 5% level

Table 5.8 reveals that the two-information criterion employed for the fitted model to the data,

the EWW is more flexible than EGWW and AddW but unfavorable to Weighted Weibull dis-

tribution. According to Oguntunde et al. (2016), the lowest information criteria are considered

to be the best fit, more flexible, and capable than the other models. The result is also similar

to Obayelu et al. (2014) which concluded that the distribution can be more tractable but could

not perform better than competitive distributions. This result is in accordance with what was
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obtainable in other notable researches. Obayelu et al. (2014), with respect to the probability

characteristic of the distribution. For example, according to Oguntunde et al. (2016), the char-

acteristics of the model could either be flexible or tractable. Hence, The EWW distribution is

strongly viewed to be more tractable and capable than the Weighted Weibull distribution defined

by Nasiru (2015) and more flexible as compared to EGWW and AddW to the Weight of the

Diamond Stones in the Carat dataset.

Table 5.8: Comparing models with Information criteria and Goodness-of-Fit for diamond
dataset

Model lnL AIC BIC W* K-S p-value
GWW -11.35 30.7 34.68 0.040 0.111 0.943
WW -11.54 29.1 32.07 0.329 0.135 0.8165
EGWW -11.36 32.7 37.68 6.556 0.999 2.2*10−16

AddW -11.55 31.1 35.07 0.052 0.134 0.8164

5.9 Summary
Modification of the exponentiated weighted Weibull (EWW) distribution is derived and its prob-

ability characteristics were obtained. The shapes of its probability density function and failure

rate are investigated. Statistical properties of EWW are derived. The method of maximum like-

lihood estimation is used to estimate the unknown parameters. The performance of the MLE

estimators of the unknown parameters of the distribution by implementing the Monte Carlo sim-

ulation method. We provide applications to two datasets to prove the flexibility of the model.

The EWW distribution is considered to be more tractable and capable than the weighted Weibull

distribution.
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 CHAPTER 6

CONCLUSION AND RECOMMENDATIONS

6.1 Introduction
In this chapter, the conclusion, recommendations, and directions for further studies are pre-

sented.

6.2 Conclusion
In modeling real-life events with respect to probability theory, two particular characteristics are

considered, either the probability distribution is Flexible or the distribution is Tractable. Sta-

tistically, to retain the originality of the data, appropriate probability distribution needs to be

employed rather than to transform the existing dataset. The knowledge of the appropriate dis-

tribution of real datasets greatly improves the sensitivity, power, and efficiency of the statistical

test associated with the data sets.

New compound distributions based on the weighted Weibull distribution have been proposed

having an interest in statistical theory and its structural statistical properties studied . The pro-

posed models provide a better flexibility extension and tractability of the mathematical concepts

of the weighted Weibull (WW) distribution.

The idea is to model the systems connected in parallel setting, so that the hazard function is

either monotonic or non-monotonic. The study consider N systems function independently and

producing a certain product at a given time. Failure of device often occurs due to the present of

an unknown number of initial defects in the system so that the hazard function is motononically

increasing, monotonically decreasing, bathtub and unimodal. By using the proposed model, the

distributions have appropriately improved flexibility.

In this study, the proposed modification of the GWW distribution and its cumulative distri-
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bution function (CDF) and probability density function (PDF) were derived. We have studied

structural statistical properties of GWW distribution and several analytical properties and shown

that it is a tractable distribution. We have also shown that the GWW provides excellent fits to

two data set. Estimation of the unknown parameters was obtained by adopting the method of

maximum likelihood estimation (MLE). Monte Carlo simulation experiment was carried out to

examine the properties of the maximum likelihood estimator for the parameters of the GWW

distribution. For each data set, the proposed modification was shown to give better fit than sev-

eral other competitors including the weighted weibull distribution .

Finally, we introduced a new modification of the Exponentiated Weighted Weibull (EWW) dis-

tribution and its characteristics functions were obtained. Statistical properties of EWW were de-

rived. We estimated the four unknown parameters by maximum likelihood estimation method.

We studied the performance of the MLE estimators of the unknown parameters of the EWW

distribution by implementing the Monte Carlo simulation method. We fitted the exponentiated

weighted Weibull, weighted Weibull, exponentiated generalised weighted Weibull and expo-

nentiated Weibull distribution to a real data of 20 electronic components. It revealed that EWW

fits the left and right peaks of the histogram well of the electronic components data. Also, we

fit weight of the diamond stones dataset to the EWW distribution and other models. The re-

sults shown that the information criteria of AIC and BIC for EWW distribution is higher than

the WW distribution, the EWW distribution did not provide a better fit than the WW distribu-

tion for weight of the diamond stones dataset. The study revealed that the EWW distribution

goodness-of-fit returns lower statistics than WW. Hence, the EWW distribution is more tractable

and capable than the weighted Weibull distribution.

In conclusion, the proposed models have a better representation of the datasets than the other

competitive models.
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6.3 Recommendations
This study recommends the following:

1. The study can further be extended based on the derived distributions to construct autore-

gressive processes.

2. Further study can be done by employing different estimation techniques to estimate un-

known parameters.

3. In this study, the stochastic representation X = max(X1,X2, ...,XN) was adopted to propose

the geometric weighted Weibull distribution. Further study can be adopted by consider-

ing stochastic representation X = min(X1,X2, ...,XN) to construct for the case of systems

connected in series.

6.4 Contribution to knowledge

• The extensions of the weighted Weibull distribution have been developed.

• Algorithms were developed in R programming as a code to achieve the results in the

study.

• The study has shown that the extended weighted Weibull distributions fit the dataset better

than the standard distributions.
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R-CODE FOR SIMULATION OF GWW DISTRIBUTION

###### Simulation code for GWW##########

############## Quantile function ##############

quantile<-function(alpha,beta,lambda,theta,u){

A<-(1-(theta*(u-1))-u)

B<-(1+(theta*(u-1)))

C<-log(A/B)

D<-(-1/(alpha*(1+(lambdaˆbeta))))

quant<-(D*C)ˆ(1/beta)

return(quant)

}

######################## Negative Log-likelihood #############

LLa<-function(par){

alpha=par[1]

beta=par[2]

lambda=par[3]

theta=par[4]

A<-(alpha*(xˆbeta)*(1+(lambdaˆbeta)))

B<-(1-theta)*(1-exp(-A))

C<-(1-theta*(1-exp(-A)))

############## GWW_PDF ###########

p=(1+(lambdaˆbeta))*alpha*beta*(xˆ(beta-1))

q=(1-theta)*p*exp(-A)

r=(1-(theta*(1-exp(-A))))ˆ2

GWW_PDF<-q/r

NLLa<--sum(log(GWW_PDF))

return(NLLa)

}

###Algorithm for Monte Carlo Simulation Study

library(numDeriv)
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library(Matrix)

alpha=0.1

beta=0.2

lambda=0.1

theta=0.3

n1=c(25,50,75,100)

for(j in 1:length(n1)){

n=n1[j]

########################################

N=1000

#########################################

mle_alpha<-c(rep(0,N))

mle_beta<-c(rep(0,N))

mle_lambda<-c(rep(0,N))

mle_theta<-c(rep(0,N))

LC_alpha<-c(rep(0,N))

UC_alpha<-c(rep(0,N))

LC_beta<-c(rep(0,N))

UC_beta<-c(rep(0,N))

LC_lambda<-c(rep(0,N))

UC_lambda<-c(rep(0,N))

LC_theta<-c(rep(0,N))

UC_theta<-c(rep(0,N))

count_alpha=0

count_beta=0

count_lambda=0

count_theta=0

temp=1

##### if 3 parameters 9, if 4 parameter 16 and so on, in the matrix space ######
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HH1<-matrix(c(rep(2,16)),nrow=4,ncol=4)

HH2<-matrix(c(rep(2,16)),nrow=4,ncol=4)

for(i in 1:N)

{

print(i)

flush.console()

repeat{

x<-c(rep(0,n))

# Generate a random variable from uniform distribution

u<-0

u<-runif(n,min=0,max=1)

for(k in 1:n){

x[k]<-quantile(alpha,beta,lambda,theta,u[k])

}

#Maximum likelihood estimation

mle.result<-nlminb(c(alpha,beta,lambda,theta),LLa,lower=c(0,0,0,0))

temp=mle.result$convergence

if(temp==0){

temp_alpha<-mle.result$par[1]

temp_beta<-mle.result$par[2]

temp_lambda<-mle.result$par[3]

temp_theta<-mle.result$par[4]

HH1<-hessian(LLa, c(temp_alpha,temp_beta,temp_lambda,temp_theta))

if(sum(is.nan(HH1))==0&(diag(HH1)[1]>0)&(diag(HH1)[2]>0)&(diag(HH1)[3]>0)&(diag(HH1)[4]>0)){

HH2<-solve(HH1)

#print(det(HH1))

}

else{

temp=1}

}
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if((temp==0)&(diag(HH2)[1]>0)&(diag(HH2)[2]>0)&(diag(HH2)[3]>0)&(diag(HH2)[4]>0)&(sum(is.nan(HH2))==0)){

break

}

else{

temp=1}

}

temp=1

mle_alpha[i]<-mle.result$par[1]

mle_beta[i]<-mle.result$par[2]

mle_lambda[i]<-mle.result$par[3]

mle_theta[i]<-mle.result$par[4]

HH<-hessian(LLa,c(mle_alpha[i],mle_beta[i],mle_lambda[i],mle_theta[i]))

H<-solve(HH)

LC_alpha[i]<-mle_alpha[i]-qnorm(0.975)*sqrt(diag(H)[1])

UC_alpha[i]<-mle_alpha[i]+qnorm(0.975)*sqrt(diag(H)[1])

if((LC_alpha[i]<=alpha)&(alpha<=UC_alpha[i])){

count_alpha=count_alpha+1

}

LC_beta[i]<-mle_beta[i]-qnorm(0.975)*sqrt(diag(H)[2])

UC_beta[i]<-mle_beta[i]+qnorm(0.975)*sqrt(diag(H)[2])

if((LC_beta[i]<=beta)&(beta<=UC_beta[i])){

count_beta=count_beta+1

}

LC_lambda[i]<-mle_lambda[i]-qnorm(0.975)*sqrt(diag(H)[3])

UC_lambda[i]<-mle_lambda[i]+qnorm(0.975)*sqrt(diag(H)[3])

if((LC_lambda[i]<=lambda)&(lambda<=UC_lambda[i])){

count_lambda=count_lambda+1

}

LC_theta[i]<-mle_theta[i]-qnorm(0.975)*sqrt(diag(H)[3])

UC_theta[i]<-mle_theta[i]+qnorm(0.975)*sqrt(diag(H)[3])
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if((LC_theta[i]<=theta)&(theta<=UC_theta[i])){

count_theta=count_theta+1

}

}

#Calculate Average Bias

ABias_alpha<-sum(mle_alpha-alpha)/N

ABias_beta<-sum(mle_beta-beta)/N

ABias_lambda<-sum(mle_lambda-lambda)/N

ABias_theta<-sum(mle_theta-theta)/N

print(cbind(ABias_alpha,ABias_beta,ABias_lambda,ABias_theta))

#Calculate RMSE

RMSE_alpha<-sqrt(sum((alpha-mle_alpha)ˆ2)/N)

RMSE_beta<-sqrt(sum((beta-mle_beta)ˆ2)/N)

RMSE_lambda<-sqrt(sum((lambda-mle_lambda)ˆ2)/N)

RMSE_theta<-sqrt(sum((theta-mle_theta)ˆ2)/N)

print(cbind(RMSE_alpha,RMSE_beta,RMSE_lambda,RMSE_theta))

}

APPENDIX A2: R-code for Maximum likelihood estimates for Strength of 1.5cm Glass Fibers

library(AdequacyModel)

library(pracma)

########  LOAD DATA INTO R  #############

library(bbmle)

xh<-c(0.55, 0.93, 1.25, 1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2.0, 0.74, 1.04, 1.27, 1.39, 1.49, 1.53, 1.59, 1.61, 1.66, 1.68, 1.76, 1.82, 2.01, 0.77, 1.11, 1.28, 1.42, 1.50, 1.54, 1.60, 1.62, 1.66, 1.69, 1.76, 1.84, 2.24, 0.81, 1.13, 1.29, 1.48,  1.5, 1.55, 1.61, 1.62, 1.66, 1.70, 1.77, 1.84, 0.84, 1.24, 1.30, 1.48, 1.51, 1.55, 1.61, 1.63, 1.67, 1.70, 1.78, 1.89)

#################    GWgW    #####################################

LLh<-function(alpha ,theta, gamma, lambda){

A<-(alpha*(xhˆgamma)*(1+(lambdaˆgamma)))

84



www.udsspace.uds.edu.gh 

 

 

 

 

p<-(1+(lambdaˆgamma))*alpha*gamma*(xhˆ(gamma-1))

q<-(1-theta)*p*exp(-A)

r<-(1-(theta*(1-exp(-A))))ˆ2

GWW_PDF<-q/r

###CDF GWgW #####

##m<-(1-theta)*(1-exp(-A))

##n<-(1-(theta*(1-exp(-A))))

##cdf_GwgW<-m/n

NLLh<--sum(log(GWW_PDF))

return(NLLh)}

fith<- mle2(LLh, start=list(alpha=1.4,theta=0.8, gamma=1.3, lambda=), method="BFGS", data=list(xh))

fith

summary(fith)

AIC(fith)

BIC(fith)

vcov(fith)

##################  WEIGHTED WEIBULL   ################################

LLh<-function(alpha ,lambda, theta){

A<-(alpha*(xhˆtheta))+(alpha*((lambda*xh)ˆtheta))

B<-(1+(lambdaˆtheta))*alpha*theta

C<-xhˆ(theta-1)

#WgW_CDF<-1-exp(-A)

WgW_PDFh<-B*C*exp(-A)

NLLh<--sum(log(WgW_PDFh))

return(NLLh)}

#alpha=0.6 ,lambda=1.2, theta=0.31

fith<- mle2(LLh, start=list(  alpha=0.6 ,lambda=1.2, theta=0.31), method="BFGS", data=list(xh))

fith
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summary(fith)

AIC(fith)

BIC(fith)

vcov(fith)

######### EXPONENTIATED WEIBULL ###########################################

LLh<-function(beta ,gamma, lambda){

W_PDF<-beta*gamma*(xhˆ(beta-1))*exp(-gamma*(xhˆbeta))

W_CDF<-1-exp(-gamma*(xhˆbeta))

EW_PDF<-lambda*(W_PDF)*(W_CDF)ˆ(lambda-1)

#EG_CDF<-(W_CDF)ˆlambda

NLLh<--sum(log(EW_PDF))

return(NLLh)}

fith<- mle2(LLh, start=list( beta=0.61 ,gamma=0.12, lambda=0.31), method="BFGS", data=list(xh))

fith

summary(fith)

AIC(fith)

BIC(fith)

vcov(fith)

########################   WEIBULL ##########################

LLd<-function( beta, gamma){

WEIBULL_PDF<- beta*gamma*(xhˆ(beta-1))*exp(-gamma*(xhˆbeta))

###CDF_Weibull<-(1-exp(-gamma*(xhˆbeta)))

NLLd<--sum(log(WEIBULL_PDF))

return(NLLd)}

fitd<- mle2(LLd, start=list(beta=1.19 , gamma=1.4), method="BFGS", data=list(xh))

fitd

summary(fitd)

AIC(fitd)
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BIC(fitd)

vcov(fitd)

##Exponentiated Generalised exponential weighted weibull ########

LLh<-function(a, b, alpha ,lambda, theta){

A<-alpha*((xh)ˆtheta)+alpha*(lambda*xh)ˆtheta

B<-1+(lambdaˆtheta)

#CDF_EGNWWD=(1-(1-exp(-A))ˆa)ˆb

#CDF_EGNWWD=

### the Probability density function #######

p<-a*b*alpha*theta*((xh)ˆ(theta-1))*B

q<-(1-(1-exp(-A)))ˆ(a-1)

r<-(1-(1-(1-exp(-A)))ˆa)ˆ(b-1)

PDF_EGNWWD=p*q*r*exp(-A)

NLLh<--sum(log(PDF_EGNWWD))

return(NLLh)}

fith<- mle2(LLh, start=list(a=2.6, b=1.4, alpha=1.1, lambda=2.1, theta=0.3), method="BFGS", data=list(xh))

fith

summary(fith)

AIC(fith)

BIC(fith)

vcov(fith)

##### Oguntunde, the  new weighted exponential distribution #####

LL<-function(alpha, lambda){

PDF<-(1+lambda)*alpha*(exp((1+lambda)*(-alpha*xh)))

NLL<--sum(log(PDF))

return(NLL)}

fit<- mle2(LL, start=list( alpha=1.2,lambda=1.13), method="BFGS", data=list(xh))

fit
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summary(fit)

AIC(fit)

BIC(fit)

vcov(fit)

### exponentiated general ####

LLh<-function(alpha ,lambda, theta){

A<-lambda*alpha*theta*(xhˆ(theta-1))*(exp(-alpha*xhˆtheta))

B<-(1-(exp(-alpha*xhˆtheta)))ˆ(lambda-1)

#WgW_CDF<-1-exp(-A)

WgW_PDFh<-A*B

NLLh<--sum(log(WgW_PDFh))

return(NLLh)}

fith<- mle2(LLh, start=list( alpha=1.21 , lambda=1.2, theta=1.3), method="BFGS", data=list(xh))

fith

summary(fith)

AIC(fith)

BIC(fith)

vcov(fith)

######### additive weibull ######################

LLh<-function(alpha, gamma, beta, theta){

A<-alpha*theta*xhˆ(theta-1)

B<-beta*gamma*xhˆ(gamma-1)

C<-exp(-alpha*xhˆtheta-(beta*xhˆgamma))

PDF<-(A+B)*C

NLL<--sum(log(PDF))

return(NLL)}

fit<-mle2(LLh,start=list(alpha=0.8, gamma=0.6, beta=1.1, theta=0.8), method="BFGS", data=list(xh))

fit
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summary(fit)

AIC(fit)

BIC(fit)

vcov(fit)

APPENDIX A3: R-Code for Analysing goodness-of-fit for Strength of 1.5cm Glass Fibers

> library(AdequacyModel)

> library(pracma)

> xh<-c(0.55, 0.93, 1.25, 1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2.0, 0.74, 1.04, 1.27, 1.39, 1.49, 1.53, 1.59, 1.61, 1.66, 1.68, 1.76, 1.82, 2.01, 0.77, 1.11, 1.28, 1.42, 1.50, 1.54, 1.60, 1.62, 1.66, 1.69, 1.76, 1.84, 2.24, 0.81, 1.13, 1.29, 1.48,  1.5, 1.55, 1.61, 1.62, 1.66, 1.70, 1.77, 1.84, 0.84, 1.24, 1.30, 1.48, 1.51, 1.55, 1.61, 1.63, 1.67, 1.70, 1.78, 1.89)

> GWW_PDF<-function(par,xh){

+ alpha=par[1]

+ theta=par[2]

+ gamma=par[3]

+ lambda=par[4]

+ A<-(alpha*(xhˆgamma)*(1+(lambdaˆgamma)))

+ p<-(1+(lambdaˆgamma))*alpha*gamma*(xhˆ(gamma-1))

+ q<-(1-theta)*p*exp(-A)

+ r<-(1-(theta*(1-exp(-A))))ˆ2

+ GWW_PDF<-q/r

+ }

> ################ GWW CDF ##############################

> GWW_CDF<-function(par,xh){

+ alpha=par[1]

+ theta=par[2]

+ gamma=par[3]

+ lambda=par[4]

+

+ A<-(alpha*(xhˆgamma)*(1+(lambdaˆgamma)))

+ m<-(1-theta)*(1-exp(-A))
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+ n<-(1-(theta*(1-exp(-A))))

+ GWW_CDF<-m/n

+

+   return(GWW_CDF)

+ }

> ####### Use the parameter values generated in the MLE results #########

> #  alpha     theta     gamma    lambda

> #0.3437477 0.9397980 3.2031520 1.0058321

> fitg<-goodness.fit(pdf=GWW_PDF,cdf=GWW_CDF,data=xh,method="BFGS",starts=c(0.3437477, 0.9397980, 3.2031520, 1.005832 ))

Warning message:

In ks.test(x = data, y = "cdf", par = as.vector(parameters)) :

ties should not be present for the Kolmogorov-Smirnov test

>

> fitg

$W

[1] 0.1056847

$A

[1] 0.5912285

$KS

One-sample Kolmogorov-Smirnov test

data:  data

D = 0.099984, p-value = 0.5546

alternative hypothesis: two-sided

$mle

[1] 0.3437479 0.9397974 3.2031520 1.0058321

$AIC

[1] 32.06722

$‘CAIC ‘

[1] 32.75687

$BIC
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[1] 40.63976

$HQIC

[1] 35.43884

$Erro

[1] 4.44457904 0.07409753 0.93686727 8.06151380

$Value

[1] 12.03361

$Convergence

[1] 0

> ##################  WEIGHTED WEIBULL

> WW_PDF<-function(par,xh){

+ alpha=par[1]

+ lambda=par[2]

+ theta=par[3]

+

+ A<-(alpha*(xhˆtheta))+(alpha*((lambda*xh)ˆtheta))

+ B<-(1+(lambdaˆtheta))*alpha*theta

+ C<-xhˆ(theta-1)

+ WW_PDF<-(B*C*exp(-A))

+ }

>

> ##### WW cdf ###

> WW_CDF<-function(par,xh){

+ alpha=par[1]

+ lambda=par[2]

+ theta=par[3]

+ K<-(alpha*(xhˆtheta))+(alpha*((lambda*xh)ˆtheta))

+ WW_CDF<-(1-exp(-K))

+ }
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>

> ####### Use the parameter values generated in the MLE results

>  ##alpha     lambda      theta

> ## 0.05978470 0.06885147 5.77971940

>

> fitg<-goodness.fit(pdf=WW_PDF,cdf=WW_CDF,data=xh,method="BFGS",starts=c(0.05978470, 0.06885147, 5.77971940))

Warning message:

In ks.test(x = data, y = "cdf", par = as.vector(parameters)) :

ties should not be present for the Kolmogorov-Smirnov test

>

> fitg

$W

[1] 0.2372656

$A

[1] 1.30385

$KS

One-sample Kolmogorov-Smirnov test

data:  data

D = 0.15232, p-value = 0.1075

alternative hypothesis: two-sided

$mle

[1] 0.05978470 0.06885147 5.77971940

$AIC

[1] 36.41368

$‘CAIC ‘

[1] 36.82046

$BIC

[1] 42.84309

$HQIC

[1] 38.9424
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$Erro

[1]   0.02048009 393.42498603   0.57515587

$Value

[1] 15.20684

$Convergence

[1] 0

> ####### EXPONENTIATED WEIBULL pdf#########

> EW_PDF<-function(par,xh){

+ beta=par[1]

+ gamma=par[2]

+ lambda=par[3]

+

+ W_PDF<-beta*gamma*(xhˆ(beta-1))*exp(-gamma*(xhˆbeta))

+ W_CDF<-(1-exp(-(gamma)*(xhˆbeta)))

+ EW_PDF<-lambda*(W_PDF)*(W_CDF)ˆ(lambda-1)

+ }

>

> ## exponentiated weibull cdf###

>

> EG_CDF<-function(par,xh){

+ beta=par[1]

+ gamma=par[2]

+ lambda=par[3]

+ W_CDF<-(1-exp(-(gamma)*(xhˆbeta)))

+

+ EG_CDF<-(W_CDF)ˆlambda

+

+ }

>    ###  beta      gamma     lambda
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> ###7.19678872 0.02069777 0.68379835

>

>fitg<-goodness.fit(pdf=EW_PDF,cdf=EG_CDF,data=xh,method="BFGS",starts=c(7.19678872, 0.02069777, 0.68379835))

Warning messages:

1: In goodness.fit(pdf = EW_PDF, cdf = EG_CDF, data = xh, method = "BFGS",  :

$W

[1] 0.2012911

$A

[1] 1.118081

$KS

One-sample Kolmogorov-Smirnov test

data:  data

D = 0.14697, p-value = 0.1315

alternative hypothesis: two-sided

$mle

[1] 7.19678872 0.02069777 0.68379835

$AIC

[1] 35.35377

$‘CAIC ‘

[1] 35.76055

$BIC

[1] 41.78317

$HQIC

[1] 37.88249

$Erro

[1] 1.51167547 0.02286453 0.23091346

$Value

[1] 14.67688

$Convergence
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[1] 0

> ########################   WEIBULL PDF ####

> W_PDF<-function(par,xh){

+ beta=par[1]

+ gamma=par[2]

+ W_PDF<- beta*gamma*(xhˆ(beta-1))*exp(-(gamma)*(xhˆbeta))

+ }

> ##### weibull cdf ####

> W_CDF<-function(par,xh){

+ beta=par[1]

+ gamma=par[2]

+ W_CDF<-(1-exp(-(gamma)*(xhˆbeta)))

+ }

>

>   ##beta      gamma

> ##5.78011790 0.05976476

> fitg<-goodness.fit(pdf=W_PDF,cdf=W_CDF,data=xh,method="BFGS",starts=c(5.78011790,0.05976476))

Warning message:

In ks.test(x = data, y = "cdf", par = as.vector(parameters)) :

ties should not be present for the Kolmogorov-Smirnov test

>

> fitg

$W

[1] 0.2372574

$A

[1] 1.303806

$KS

One-sample Kolmogorov-Smirnov test

data:  data

D = 0.15227, p-value = 0.1077
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alternative hypothesis: two-sided

$mle

[1] 5.78011793 0.05976631

$AIC

[1] 34.41368

$‘CAIC ‘

[1] 34.61368

$BIC

[1] 38.69995

$HQIC

[1] 36.09949

$Erro

[1] 0.57503067 0.02046513

$Value

[1] 15.20684

$Convergence

[1] 0

> ##Exponentiated Generalised exponential weighted weibull PDF ##

> PDF_EGNWWD<-function(par,xh){

+ a=par[1]

+ b=par[2]

+ alpha=par[3]

+ lambda=par[4]

+ theta=par[5]

+ A<-alpha*((xh)ˆtheta)+alpha*(lambda*xh)ˆtheta

+ B<-1+(lambdaˆtheta)

+ p<-a*b*alpha*theta*((xh)ˆ(theta-1))*B

+ q<-(1-(1-exp(-(A))))ˆ(a-1)

+ r<-(1-(1-(1-exp(-(A))))ˆa)ˆ(b-1)
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+

+ PDF_EGNWWD=p*q*r*exp(-(A))

+ }

> ### CDF_EGNWWD###

>  CDF_EGNWWD<-function(par,xh){

+ a=par[1]

+ b=par[2]

+ alpha=par[3]

+ lambda=par[4]

+ theta=par[5]

+

+ H<-alpha*((xh)ˆtheta)+alpha*(lambda*xh)ˆtheta

+ B<-1+(lambdaˆtheta)

+

+ CDF_EGNWWD=(1-(1-exp(-(H)))ˆa)ˆb

+

+ }

>   ##a          b      alpha     lambda      theta

> ##0.37950460 0.67101465 0.04390804 0.77918145 7.28690555

> fitg<-goodness.fit(pdf=PDF_EGNWWD,cdf=CDF_EGNWWD,data=xh,method="BFGS",starts=c(0.37950460,0.67101465,0.04390804,0.77918145,7.28690555))

> fitg

$W

[1] 19.36569

$A

[1] 124.4331

$KS

One-sample Kolmogorov-Smirnov test

data:  data

D = 1, p-value < 2.2e-16

alternative hypothesis: two-sided
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$mle

[1] 0.37950460 0.67101465 0.04390812 0.77918145 7.28690555

$AIC

[1] 39.35105

$‘CAIC ‘

[1] 40.40368

$BIC

[1] 50.06672

$HQIC

[1] 43.56557

$Erro

[1] 5.0177614 0.2484242 0.2096007 9.4294440 1.7040478

$Value

[1] 14.67552

$Convergence

[1] 0

> ##### Oguntunde, the  new weighted exponential distribution #####

> NMW_PDF<-function(par,xh){

+ alpha=par[1]

+ lambda=par[2]

+ NMW_PDF<-(1+lambda)*alpha*(exp((1+lambda)*(-alpha*xh)))

+ }

> ### CDF_NMW###

>  NMW_CDF<-function(par,xh){

+ alpha=par[1]

+ lambda=par[2]

+ CDF_NMW<-(1-(exp((1+lambda)*(-(alpha)*xh))))

+ }

> ##alpha    lambda

> ##0.2496403 1.6584020
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> fitg<-goodness.fit(pdf=NMW_PDF,cdf=NMW_CDF,data=xh,method="BFGS",starts=c(0.2496403, 1.6584020))

> fitg

$W

[1] 0.5702018

$A

[1] 3.127042

$KS

One-sample Kolmogorov-Smirnov test

data:  data

D = 0.418, p-value = 5.497e-10

alternative hypothesis: two-sided

$mle

[1] 0.2496411 1.6584020

$AIC

[1] 181.6606

$‘CAIC ‘

[1] 181.8606

$BIC

[1] 185.9469

$HQIC

[1] 183.3464

$Erro

[1]  5.37465 57.23501

$Value

[1] 88.83032

$Convergence

[1] 0

> ### exponentiated general PDF ####
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> EgW_PDFh<-function(par,xh){

+ alpha=par[1]

+ lambda=par[2]

+ theta=par[3]

+

+ A<-lambda*alpha*theta*(xhˆ(theta-1))*(exp(-(alpha)*xhˆtheta))

+ B<-(1-(exp(-(alpha)*xhˆtheta)))ˆ(lambda-1)

+ EgW_PDFh<-A*B

+ }

>

> ### exponentiated general CDF ####

> EgW_CDF<-function(par,xh){

+ alpha=par[1]

+ lambda=par[2]

+ theta=par[3]

+ K<-lambda*alpha*theta*(xhˆ(theta-1))*(exp(-(alpha)*xhˆtheta))

+ EgW_CDF<-1-exp(-K)

+ }

> ##alpha    lambda     theta

> ##0.0202602 0.6793453 7.2254723

> fitg<-goodness.fit(pdf=EgW_PDFh,cdf=EgW_CDF,data=xh,method="BFGS",starts=c(0.0202602, 0.6793453, 7.2254723))

Error in if (cdf(par = starts, x = domain[2]) != 1) warning("The cdf function informed is not a cumulative distribution function! The function no takes value 1 in Inf.") :

missing value where TRUE/FALSE needed

> fitg

$W

[1] 0.5702018

$A

[1] 3.127042

$KS

One-sample Kolmogorov-Smirnov test
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data:  data

D = 0.418, p-value = 5.497e-10

alternative hypothesis: two-sided

$mle

[1] 0.2496411 1.6584020

$AIC

[1] 181.6606

$‘CAIC ‘

[1] 181.8606

$BIC

[1] 185.9469

$HQIC

[1] 183.3464

$Erro

[1]  5.37465 57.23501

$Value

[1] 88.83032

$Convergence

[1] 0

> library(AdequacyModel)

> library(pracma)

> ### Additive weibull PDF ####

> AddW_PDF<-function(par,xh){

+ alpha=par[1]

+ gamma=par[2]

+ beta=par[3]

+ theta=par[4]

+ A<-alpha*theta*xhˆ(theta-1)

+ B<-beta*gamma*xhˆ(gamma-1)
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+ C<-exp(-(alpha)*xhˆtheta-(beta*xhˆgamma))

+ AddW_PDF<-(A+B)*C

+ }

>

> ### additive weibull CDF ####

> AddW_CDF<-function(par,xh){

+ alpha=par[1]

+ gamma=par[2]

+ beta=par[3]

+ theta=par[4]

+ L<-exp(-(alpha)*xhˆtheta-(beta*xhˆgamma))

+  AddW_CDF<-(1-exp(L))

+ }

>

>  ##alpha      gamma       beta      theta

> ##0.06239614 7.43452591 0.01831173 2.7718383

alternative hypothesis: two-sided

$mle

[1] 0.06239614 7.43452591 0.01831173 2.77183830

$AIC

[1] 35.46688

$‘CAIC ‘

[1] 36.15654

$BIC

[1] 44.03942

$HQIC

[1] 38.8385

$Erro

[1] 0.03586973 1.14553789 0.01526985 1.32158460

$Value
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[1] 13.73344

$Convergence

[1] 0

APPENDIX A4: R-code for developing GWW Histogram for Strength of 1.5cm Glass Fibers

library(AdequacyModel)

library(pracma)

########  LOAD DATA INTO R  #############

library(bbmle)

x<-c(0.55, 0.93, 1.25, 1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2.0, 0.74, 1.04, 1.27, 1.39, 1.49, 1.53, 1.59, 1.61, 1.66, 1.68, 1.76, 1.82, 2.01, 0.77, 1.11, 1.28, 1.42, 1.50, 1.54, 1.60, 1.62, 1.66, 1.69, 1.76, 1.84, 2.24, 0.81, 1.13, 1.29, 1.48,  1.5, 1.55, 1.61, 1.62, 1.66, 1.70, 1.77, 1.84, 0.84, 1.24, 1.30, 1.48, 1.51, 1.55, 1.61, 1.63, 1.67, 1.70, 1.78, 1.89)

#################    GWgW ######

GWW_PDF<-function(x, alpha ,theta, gamma, lambda){

A<-(alpha*(xˆgamma)*(1+(lambdaˆgamma)))

p<-(1+(lambdaˆgamma))*alpha*gamma*(xˆ(gamma-1))

q<-(1-theta)*p*exp(-A)

r<-(1-(theta*(1-exp(-A))))ˆ2

GWW_PDF<-q/r

return(GWW_PDF)

}

GWW_CDF<-function(x, alpha ,theta, gamma, lambda){

A<-(alpha*(xˆgamma)*(1+(lambdaˆgamma)))

m<-(1-theta)*(1-exp(-A))

n<-(1-(theta*(1-exp(-A))))

GWW_CDF<-m/n

return(GWW_CDF)

}

################  WgW   #############################
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WgW_PDF<-function(x, alpha ,lambda, theta){

A<-(alpha*(xˆtheta))+(alpha*((lambda*x)ˆtheta))

B<-(1+(lambdaˆtheta))*alpha*theta

C<-xˆ(theta-1)

WgW_PDF<-B*C*exp(-A)

return(WgW_PDF)

}

WgW_CDF<-function(x, alpha ,lambda, theta){

A<-(alpha*(xˆtheta))+(alpha*((lambda*x)ˆtheta))

WgW_CDF<-1-exp(-A)

return(WgW_CDF)

}

############  EW  #####

EW_PDF<-function(x,beta ,gamma, lambda){

W_PDF<-beta*gamma*(xˆ(beta-1))*exp(-gamma*(xˆbeta))

W_CDF<-1-exp(-gamma*(xˆbeta))

EW_PDF<-lambda*(W_PDF)*(W_CDF)ˆ(lambda-1)

return(EW_PDF)

}

EW_CDF<-function(x,beta ,gamma, lambda){

W_CDF<-1-exp(-gamma*(xˆbeta))

EW_CDF<-(W_CDF)ˆlambda

return(EW_CDF)

}

################  Weibull ######

W_PDF<-function(x, beta, gamma){
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W_PDF<- beta*gamma*(xˆ(beta-1))*exp(-gamma*(xˆbeta))

return(W_PDF)

}

W_CDF<-function(x, beta, gamma){

W_CDF<-(1-exp(-(gamma)*(xˆbeta)))

return(W_CDF)

}

##Exponentiated Generalised exponential weighted weibu##

EGWW_PDF<-function(x, a, b, alpha ,lambda, theta){

A<-alpha*((x)ˆtheta)+alpha*(lambda*x)ˆtheta

B<-1+(lambdaˆtheta)

p<-a*b*alpha*theta*((x)ˆ(theta-1))*B

q<-(1-(1-exp(-A)))ˆ(a-1)

r<-(1-(1-(1-exp(-A)))ˆa)ˆ(b-1)

EGWW_PDF=p*q*r*exp(-A)

return(EGWW_PDF)

}

EGWW_CDF<-function(x, a, b, alpha ,lambda, theta){

A<-alpha*((x)ˆtheta)+alpha*(lambda*x)ˆtheta

EGWW_CDF=(1-(1-exp(-A))ˆa)ˆb

return(EGWW_CDF)

}

##### Oguntunde, the  new weighted exponential distribution###

NMW_PDF<-function(x, alpha, lambda){

NMW_PDF<-(1+lambda)*alpha*(exp((1+lambda)*(-(alpha)*x)))

return(NMW_PDF)

}

NMW_CDF<-function(x, alpha, lambda){
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NMW_CDF<-(1-(exp((1+lambda)*(-(alpha)*x))))

return(NMW_CDF)

}

### Additive weibull PDF ####

AddW_PDF<-function(x, alpha,gamma, beta, theta){

A<-alpha*theta*xˆ(theta-1)

B<-beta*gamma*xˆ(gamma-1)

C<-exp(-(alpha)*xˆtheta-(beta*xˆgamma))

AddW_PDF<-(A+B)*C

return(AddW_PDF)

}

AddW_CDF<-function(x, alpha,gamma, beta, theta){

L<-exp(-(alpha)*xˆtheta-(beta*xˆgamma))

AddW_CDF<-(1-exp(L))

return(AddW_CDF)

}

############## Histogram #

windows(height=10,width=10)

#par(mfrow=c(1,2))

hist(x,probability =T ,main="",ylim=c(0,1.8))

curve(GWW_PDF(x,0.3437477, 0.9397980, 3.2031520, 1.0058321),col="red",add=TRUE)

curve(WgW_PDF(x,0.05978470, 0.06885147, 5.77971940),col="blue",add=TRUE)

curve(EW_PDF(x,7.19678872, 0.02069777, 0.68379835),col="green",add=TRUE)

curve(W_PDF(x,5.78011790, 0.05976476 ),col="yellow",add=TRUE)

curve(EGWW_PDF(x,0.37950460, 0.67101465, 0.04390804, 0.77918145, 7.28690555),col="orange",add=TRUE)

curve(NMW_PDF(x,0.2496403, 1.6584020),col="gold",add=TRUE)

curve(AddW_PDF(x,0.06239614, 7.43452591, 0.01831173, 2.77183831),col="gray",add=TRUE)
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legend("topright",inset=c(0.001,0.01),cex=1.0,legend=c("Empirical","GWgW","WgW","EW","W","EGWW","NMW","AddW"),lty=1,lwd=2,col=c("black","red","blue","green","yellow","orange","gold","gray"))

windows(height=6,width=4)

plot(ecdf(x),ylab="CDF",main="")

curve(GWW_CDF(x,0.3437477, 0.9397980, 3.2031520, 1.0058321),col="red",add=TRUE)

curve(WgW_CDF(x,0.05978470, 0.06885147, 5.77971940),col="blue",add=TRUE)

curve(EW_CDF(x,7.19678872, 0.02069777, 0.68379835),col="green",add=TRUE)

curve(W_CDF(x,5.78011790, 0.05976476 ),col="yellow",add=TRUE)

curve(EGWW_CDF(x,0.37950460, 0.67101465, 0.04390804, 0.77918145, 7.28690555),col="orange",add=TRUE)

curve(NMW_CDF(x, 0.2496403, 1.6584020),col="gold",add=TRUE)

curve(AddW_CDF(x,0.06239614, 7.43452591, 0.01831173, 2.77183831),col="gray",add=TRUE)

legend("topright",inset=c(0.001,0.6),cex=1.0,legend=c("Empirical","GWgW","WgW","EW","W","EGWW","NMW","AddW"),lty=1,lwd=2,col=c("black","red","blue","green","yellow","orange","gold","gray"))

APPENDIX A5: R-Code for Hazard rate of Geometric Weighted Weibull distribution

HAZARD_GWWD<-function(x,alpha,lambda,gamma,theta){

A<-(alpha*(xˆgamma)*(1+(lambdaˆgamma)))

p<-(1+(lambdaˆgamma))*alpha*gamma*(xˆ(gamma-1))

q<-(1-theta)*p*exp(-A)

r<-(1-theta*(1-exp(-A)))ˆ2

GWW_PDF<-q/r

CDF<-((1-theta)*(1-exp(-A)))/(1-(theta*(1-exp(-A))))

GWW_HAZARD<-(GWW_PDF/(1-CDF))

return(GWW_HAZARD)

}

windows(width=20,height=10)

par(mfrow=c(1,2))

curve(HAZARD_GWWD(x,0.1,1.4,1.4,0.9),0,10,col="blue",ylab=expression(paste(’f’,"(x)")),ylim=c(0,2.0),xlab="x",lty=1,lwd=1)

curve(HAZARD_GWWD(x,1.1,0.1,0.3,0.6),0.10,col="green",add=TRUE,lty=1,lwd=1)
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curve(HAZARD_GWWD(x,0.6,2.2,0.9,0.9),0,10,col="red",add=TRUE,lty=1,lwd=1)

legend("topright",inset=c(0.05),cex=1.0,legend=c(expression(paste(alpha,"=",0.1,",",˜lambda,"=",1.4,",",˜gamma,"=",1.4,","˜theta,"=",0.9)),expression(paste(alpha,"=",1.1,",",˜lambda,"=",0.1,",",˜gamma,"=",0.3,","˜theta,"=",0.6)),expression (paste(alpha,"=",0.6,",",˜lambda,"=",2.2,",",˜gamma,"=",0.9,","˜theta,"=",0.9))),lty=1,lwd=2,col=c("blue","green","red"))

curve(HAZARD_GWWD(x,1.2,0.5,0.5,0.9),0,10,col="blue",ylab=expression(paste(’f’,"(x)")),ylim=c(0,0.75),xlab="x",lty=1,lwd=1)

curve(HAZARD_GWWD(x,0.3,0.5,1.1,0.6),0.10,col="green",add=TRUE,lty=1,lwd=1)

curve(HAZARD_GWWD(x,0.8,0.7,0.6,0.9),0,10,col="red",add=TRUE,lty=1,lwd=1)

legend("topright",inset=c(0.05),cex=1.0,legend=c(expression(paste(alpha,"=",1.2,",",˜lambda,"=",0.5,",",˜gamma,"=",0.5,","˜theta,"=",0.9)),expression(paste(alpha,"=",0.3,",",˜lambda,"=",0.5,",",˜gamma,"=",1.1,","˜theta,"=",0.6)),expression (paste(alpha,"=",0.8,",",˜lambda,"=",0.7,",",˜gamma,"=",0.6,","˜theta,"=",0.9))),lty=1,lwd=2,col=c("blue","green","red"))

APPENDIX A6: R-Code for PDF plots for Geometric Weighted Weibull distribution for different parameter values

PDF_GWWD<-function(x,alpha,lambda,gamma,theta){

A<-(alpha*(xˆgamma)*(1+(lambdaˆgamma)))

p<-(1+(lambdaˆgamma))*alpha*gamma*(xˆ(gamma-1))

q<-(1-theta)*p*exp(-A)

r<-(1-theta*(1-exp(-A)))ˆ2

GWW_PDF<-q/r

return(GWW_PDF)

}

windows(width=20,height=10)

par(mfrow=c(1,2))

curve(PDF_GWWD(x,0.1,0.6,1.6,0.9),0,10,col="blue",ylab=expression(paste(’f’,"(x)")),ylim=c(0,0.35),xlab="x",lty=1,lwd=1)

curve(PDF_GWWD(x,0.1,1.1,1.6,0.9),0.10,col="green",add=TRUE,lty=1,lwd=1)

curve(PDF_GWWD(x,0.1,3.0,1.1,0.9),0,10,col="red",add=TRUE,lty=1,lwd=1)

legend("topright",inset=c(0.03),cex=1.0,legend=c(expression(paste(alpha,"=",0.1,",",˜lambda,"=",0.6,",",˜gamma,"=",1.6,","˜theta,"=",0.9)),expression(paste(alpha,"=",0.1,",",˜lambda,"=",1.1,",",˜gamma,"=",1.6,","˜theta,"=",0.9)),expression (paste(alpha,"=",0.1,",",˜lambda,"=",3.0,",",˜gamma,"=",1.1,","˜theta,"=",0.9))),lty=1,lwd=2,col=c("blue","green","red"))

curve(PDF_GWWD(x,0.1,1.9,1.4,0.1),0,10,col="blue",ylab=expression(paste(’f’,"(x)")),ylim=c(0,0.50),xlab="x",lty=1,lwd=1)

curve(PDF_GWWD(x,0.1,0.3,2.2,0.9),0.10,col="green",add=TRUE,lty=1,lwd=1)

curve(PDF_GWWD(x,0.1,0.1,1.9,0.9),0,10,col="red",add=TRUE,lty=1,lwd=1)

legend("topright",inset=c(0.05),cex=1.0,legend=c(expression(paste(alpha,"=",0.1,",",˜lambda,"=",1.9,",",˜gamma,"=",1.4,","˜theta,"=",0.1)),expression(paste(alpha,"=",0.1,",",˜lambda,"=",0.3,",",˜gamma,"=",2.2,","˜theta,"=",0.9)),expression (paste(alpha,"=",0.1,",",˜lambda,"=",0.1,",",˜gamma,"=",1.9,","˜theta,"=",0.9))),lty=1,lwd=2,col=c("blue","green","red"))
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APPENDIX A7: R-Code for analysing Maximum Likelihood Estimates of GWW for Failure and Running Times

library(AdequacyModel)

library(pracma)

########  LOAD DATA INTO R  #############

library(bbmle)

xh<-c(2.75, 0.13, 1.47, 0.23, 1.81, 0.30, 0.65, 0.10, 3.00,1.73, 1.06, 3.00, 3.00, 2.12, 3.00, 3.00, 3.00, 0.02, 2.61, 2.93, 0.88, 2.47, 0.28, 1.43, 3.00, 0.23, 3.00, 0.80, 2.45, 2.66)

#################    GWgW    #####################################

LLh<-function(alpha ,theta, gamma, lambda){

A<-(alpha*(xhˆgamma)*(1+(lambdaˆgamma)))

p<-(1+(lambdaˆgamma))*alpha*gamma*(xhˆ(gamma-1))

q<-(1-theta)*p*exp(-A)

r<-(1-(theta*(1-exp(-A))))ˆ2

GWW_PDF<-q/r

NLLh<--sum(log(GWW_PDF))

return(NLLh)}

fith<- mle2(LLh, start=list(alpha=1.21,theta=0.2, gamma=1.56, lambda=0.82), method="BFGS", data=list(xh))

fith

summary(fith)

AIC(fith)

BIC(fith)

vcov(fith)

################# WWW ###################################################

LLh<-function(alpha ,lambda, theta){

A<-(alpha*(xhˆtheta))+(alpha*((lambda*xh)ˆtheta))

B<-(1+(lambdaˆtheta))*alpha*theta

C<-xhˆ(theta-1)

#WgW_CDF<-1-exp(-A)

WgW_PDFh<-B*C*exp(-A)

NLLh<--sum(log(WgW_PDFh))

return(NLLh)}
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fith<- mle2(LLh, start=list( alpha=1.8 ,lambda=1.3, theta=1.5), method="BFGS", data=list(xh))

fith

summary(fith)

AIC(fith)

BIC(fith)

vcov(fith)

##### Oguntunde, the  new weighted exponential distribution #####

LL<-function(alpha, lambda){

PDF<-(1+lambda)*alpha*(exp((1+lambda)*(-alpha*xh)))

NLL<--sum(log(PDF))

return(NLL)}

fit<- mle2(LL, start=list( alpha=1.2,lambda=1.13), method="BFGS", data=list(xh))

fit

summary(fit)

AIC(fit)

BIC(fit)

vcov(fit)

######### additive weibull ######################

LLh<-function(alpha, gamma, beta, theta){

A<-alpha*theta*xhˆ(theta-1)

B<-beta*gamma*xhˆ(gamma-1)

C<-exp(-alpha*xhˆtheta-(beta*xhˆgamma))

PDF<-(A+B)*C

NLL<--sum(log(PDF))

return(NLL)}

fit<-mle2(LLh,start=list(alpha=2.2, gamma=2.1, beta=1.4, theta=0.1), method="BFGS", data=list(xh))

fit

summary(fit)

AIC(fit)

BIC(fit)
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vcov(fit)

APPENDIX A8: R-Code for goodness-of-fit of GWW for Failure and Running Times Dataset

> library(AdequacyModel)

> library(pracma)

> xh<-c(2.75, 0.13, 1.47, 0.23, 1.81, 0.30, 0.65, 0.10, 3.00,1.73, 1.06, 3.00, 3.00, 2.12, 3.00, 3.00, 3.00, 0.02, 2.61, 2.93, 0.88, 2.47, 0.28, 1.43, 3.00, 0.23, 3.00, 0.80, 2.45, 2.66)

> #################    GWgW

> GWW_PDF<-function(par,xh){

+ alpha=par[1]

+ theta=par[2]

+ gamma=par[3]

+ lambda=par[4]

+ A<-(alpha*(xhˆgamma)*(1+(lambdaˆgamma)))

+ p<-(1+(lambdaˆgamma))*alpha*gamma*(xhˆ(gamma-1))

+ q<-(1-theta)*p*exp(-A)

+ r<-(1-(theta*(1-exp(-A))))ˆ2

+ GWW_PDF<-q/r

+ }

> ################ GWW CDF ##############################

> GWW_CDF<-function(par,xh){

+ alpha=par[1]

+ theta=par[2]

+ gamma=par[3]

+ lambda=par[4]

+ A<-(alpha*(xhˆgamma)*(1+(lambdaˆgamma)))

+ m<-(1-theta)*(1-exp(-A))

+ n<-(1-(theta*(1-exp(-A))))

+ GWW_CDF<-m/n
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+   return(GWW_CDF)

+ }

>

> ####### Use the parameter values generated in the MLE results #########

> #######

>  ## alpha     theta     gamma    lambda

> ##0.5667310 0.8188510 0.9563676 1.0413797

> fitg

$W

[1] 0.2638773

$A

[1] 1.63814

$KS

One-sample Kolmogorov-Smirnov test

data:  data

D = 0.18717, p-value = 0.244

alternative hypothesis: two-sided

$mle

[1] 0.5667324 0.8188497 0.9563681 1.0413800

$AIC

[1] 97.1928

$‘CAIC ‘

[1] 98.7928

$BIC

[1] 102.7976

$HQIC

[1] 98.98582

$Erro

[1] 24.7117756  0.1856016  0.2667750 93.1579972

$Value
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[1] 44.5964

$Convergence

[1] 0

> ##################  WEIGHTED WEIBULL

> WW_PDF<-function(par,xh){

+ alpha=par[1]

+ lambda=par[2]

+ theta=par[3]

+ A<-(alpha*(xhˆtheta))+(alpha*((lambda*xh)ˆtheta))

+ B<-(1+(lambdaˆtheta))*alpha*theta

+ C<-xhˆ(theta-1)

+ WW_PDF<-(B*C*exp(-A))

+ }

>

> ##### WW cdf ###

> WW_CDF<-function(par,xh){

+ alpha=par[1]

+ lambda=par[2]

+ theta=par[3]

+ K<-(alpha*(xhˆtheta))+(alpha*((lambda*xh)ˆtheta))

+ WW_CDF<-(1-exp(-K))

+ }

> ####### Use the parameter values generated in the MLE results

> ###  alpha     lambda      theta

> ### 0.43633231 0.06396642 1.26504503

One-sample Kolmogorov-Smirnov test

data:  data

D = 0.21944, p-value = 0.1112

alternative hypothesis: two-sided

$mle
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[1] 0.43633245 0.06396637 1.26504515

$AIC

[1] 98.31747

$‘CAIC ‘

[1] 99.24054

$BIC

[1] 102.5211

$HQIC

[1] 99.66223

$Erro

[1]       NaN       NaN 0.2044279

$Value

[1] 46.15873

$Convergence

[1] 0

> ##### Oguntunde, the  new weighted exponential distribution #####

> NMW_PDF<-function(par,xh){

+ alpha=par[1]

+ lambda=par[2]

+

+ NMW_PDF<-(1+lambda)*alpha*(exp((1+lambda)*(-alpha*xh)))

+ }

> ### CDF_NMW###

>  NMW_CDF<-function(par,xh){

+ alpha=par[1]

+ lambda=par[2]

+

+ CDF_NMW<-(1-(exp((1+lambda)*(-(alpha)*xh))))

+

+ }
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> ### alpha    lambda

> ### 0.2848870 0.9827704

> fitg

$W

[1] 0.3215435

$A

[1] 1.905793

$KS

One-sample Kolmogorov-Smirnov test

data:  data

D = 0.21607, p-value = 0.1214

alternative hypothesis: two-sided

$mle

[1] 0.2848870 0.9827704

$AIC

[1] 98.27007

$‘CAIC ‘

[1] 98.71452

$BIC

[1] 101.0725

$HQIC

[1] 99.16658

$Erro

[1] 10.47275 72.88965

$Value

[1] 47.13504

$Convergence

[1] 0

> #### additive weibull ###

> AddW_PDF<-function(par,xh){
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+ alpha=par[1]

+ gamma=par[2]

+ beta=par[3]

+ theta=par[4]

+ A<-alpha*theta*xhˆ(theta-1)

+ B<-beta*gamma*xhˆ(gamma-1)

+ C<-exp(-(alpha)*xhˆtheta-(beta*xhˆgamma))

+ AddW_PDF<-(A+B)*C

+ }

> ### additive weibull CDF ####

> AddW_CDF<-function(par,xh){

+ alpha=par[1]

+ gamma=par[2]

+ beta=par[3]

+ theta=par[4]

+ L<-exp(-(alpha)*xhˆtheta-(beta*xhˆgamma))

+  AddW_CDF<-(1-exp(L))

+ }

>  ### alpha      gamma       beta      theta

>  ### 0.6542442  1.2650600 -0.2044464  1.2650558

> fitg<-goodness.fit(pdf=AddW_PDF,cdf=AddW_CDF,data=xh,method="BFGS",starts=c(0.6542442, 1.2650600, -0.2044464, 1.2650558,))

Error in c(0.6542442, 1.26506, -0.2044464, 1.2650558, ) :

argument 5 is empty

> fitg

$W

[1] 0.3215435

$A

[1] 1.905793

$KS

One-sample Kolmogorov-Smirnov test
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data:  data

D = 0.21607, p-value = 0.1214

alternative hypothesis: two-sided

$mle

[1] 0.2848870 0.9827704

$AIC

[1] 98.27007

$‘CAIC ‘

[1] 98.71452

$BIC

[1] 101.0725

$HQIC

[1] 99.16658

$Erro

[1] 10.47275 72.88965

$Value

[1] 47.13504

$Convergence

[1] 0
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