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ABSTRACT

The Hogg’s adaptive scheme is extended to the Gauss Markov Model. The Gauss Markov

model is a statistical procedure which belongs to the class of general linear model. Gauss

Markov model is very sensitive to nonnormality, variance heterogeneity as well as large

sample size. These assumptions may be violated as a result of departures from normality

and small sample size. To overcome these problems, an Adaptive Scheme is adopted. The

Adaptive Scheme is a two step procedure in which a selector statistic is used to first exam-

ine and classify given data based on measures of skewness and tailweight. Afterwards, a

test statistic, independent of the selector statistic is chosen and a test conducted. A One-

way Analysis of Variance and Repeated Measures Design models were considered under

uncorrelated and correlated error distributions respectively. The nine winsorised scores

proposed by Hettmansperger (1984) were used because they are considered the most ap-

propriate rank scores for hypothesis testing. The Winsorised scores as well accommodate

a wide range of distributions which are either symmetric or asymmetric with varying tail-

weights. In addition, the benchmarks for cut-off values for the measures of skewness and

tailweights postulated by Al-Shomrani (2003) in his PhD dissertation were used. 10,000

simulations were conducted to compare the performance of the Adaptive Scheme and

the Gauss Markov model from different continuous distributions under uncorrelated and

correlated errors. Analyses of real datasets were as well performed to ascertain the effi-

ciency of the two tests. The findings favoured the Adaptive Scheme under a broad class

of continuous distributions especially for non-normal distributions. The adaptive scheme

is applicable to both small and large samples. It is therefore recommended that Statis-

ticians, Researchers and Data Analysts be encouraged to use adaptive schemes because

they are applicable to a broad class of distributions.
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CHAPTER ONE

INTRODUCTION

1.1 Background of the study

The Hogg’s adaptive scheme is extended to the Gauss Markov model. In practice, often

the Statisticians, Researchers or the Data Analysts may not have prior knowledge of the

underlying distribution of a statistical model so a procedure which will give optimum

power and efficiency ought to be chosen. For example, if the distribution of errors is

known to be normal in a linear model then inference based on least squares which max-

imises power and efficiency should be chosen. On the other hand, when the assumption

of normality of the error distribution is not met or violated as a result of outliers, then

a more robust method can be used to analyse the problem. The rank-based method,

according to Hájek and Sidák (1967), is robust to outliers and has high efficiency and

power for both normal and non-normal distributions.

The Gauss-Markov model is a statistical procedure mostly used in data analysis. Its

assumptions, among others, are normality of the data, large sample size as well as uncor-

related error terms. The statistical method, Analysis of Variance (ANOVA) is widely used

in experimental designs whose objective is to test appropriate hypothesis about treatment

means and to estimate them from three or more random samples, good sources for details

can be found in (Miller, 1997; Bolton and Bon, 2009; Montgomery, 2013).

Büning (1996) indicated that, Statisticians, Data Analysts as well as Researchers often

rely on the assumptions of normality for Analysis of Variance (ANOVA) models. He con-

cluded that a lot of details on the data is usually ignored thereby violating the assumption

of normality.

Generally, models are believed to be simplified representation of reality, they could be

deterministic or probabilistic in nature. Statistical models should be such that the level

1

 

  

 

 



of uncertainty is reduced to the barest minimum. Hogg (1974) stated that a more realis-

tic approach would be to find statistical procedures good for a broad class of underlying

models, but which are not necessarily best for any of them. Such procedures are robust.

The one-way or two-way ANOVA models which could be reduced to Gauss Markov

model relies mostly on normality, homogeneity of variance and large sample size for it to

be modelled. However, in practise, these assumptions may be violated. ANOVA models

are very sensitive to non-normality and departures from normality may originate from

either skewness or outliers. Wilcox and Keselman (2003) postulated that, small depar-

tures from normality can substantially lower the power when comparing the means of

two or more groups. Zar (1996) indicated though departures from normality could be

remedied by using transformations such as exponential and logarithm, sometimes even

after the transformation, problems with non normality data still occurs. ANOVA mod-

els which are mostly used in clinical trials may have very low enrolment at centres and

hence a small sample size. This will inhibit the efficiency of the statistical procedure used.

One particular problem in which normality assumptions become inappropriate is small

sample size. In most statistical modelling or techniques, sample size must be large enough

for such procedure to be statistically admissible or valid. For small samples, however,

some nonparanetric methods have been developed. Hao and Houser (2012) advocated

for distribution-free (nonparametric) tests for differences in location problems between

samples. A statistical procedure known as Adaptive Scheme would be used to handle

the problems of non normality and small sample size. Adaptive Tests are categorised

under Robust Statistics. Robustness theories according to Huber (1981) and Huber and

Ronchetti (2009) can be described as stability theories of statistical inference and signify

insensitivity to small deviations from the assumptions.

In this thesis, the nine winsorised scores proposed by Hettmansperger (1984) are con-

sidered as the most appropriate rank scores for hypothesis testing because the Winsorised

scores accommodate a wide range of continuous distributions which are either symmet-

2

 

  

 

 



ric or asymmetric with varying tailweights. In practice what practitioners are confronted

with is at what sample size will an adaptive procedure be as efficient as that of parametric

procedure in a Gauss Markov model. This sample size will guide Statisticians in their

modelling process.

The motivation for the study is to find a robust adaptive scheme for Gauss Markov

model. In addition, we want to popularise the adaptive scheme for practising Statisticians,

Researchers and Data Analysts because of the numerous advantages adaptive tests have

over parametric tests. Often, parametric tests are inefficient for analysing nonnormal

distributions. In addition, statistics for testing significant difference of parametric tests

usually rely on large sample size among other assumptions but when sample size is small

as in clinical trials and the presence of outliers in the data, then, there is the need for a

more robust scheme.

1.2 Problem Statement

The Gauss Makov model according to Glen (2018) has these assumptions namely; linear-

ity, non-collinearity, randomness, exogeneity and homoscedasticity. These assupmtions

lend credence to the validity of the ordinary least squares when estimating the regression

parameters. However, in practice, these assumptions are seldomly met fully. As a result,

these assumptions may be violated. When for example, the assumption of exogeneity

is violated, the estimators will be biased and inconsistent. Again, Gauss Markov model

which is a parametric test assumes a normal distribution and large sample size. But in the

event of these assumptions being violated which often happens as in clinical trials where

sample size is usually small at centers, then a more robust method is employed. Similarly,

outliers in data can affect the validity of data analysis and drawing of conclusions if not

handled effectively (Tukey, 1960; Barnett and Lewis, 1994; Al-Shomrani, 2003). To over-

come the problem of normality, large sample size, among others, the adaptive scheme is

applied because it is more efficient and powerful than the parametric tests when data is

generated from nonnormal distibutions, having small sample size and in the presence of

outliers.

3

 

  

 

 



1.3 Objectives of the Study

The general objective for the study is to compare the relative efficiency of the adaptive

scheme to the parametric tests.

The specific objectives are

1. To investigate and identify a more robust scheme for Gauss Markov Model.

2. To identify an adaptive scheme for ANOVA models under uncorrelated errors.

3. To identify an adaptive scheme for ANOVA models under correlated errors.

4. To investigate the relative efficiency of the adaptive scheme and Gauss Markov

model to a symmetric and asymmetric distributions with varying tailweights.

1.4 Research Questions

1. What is the importance of adaptive tests in the scheme of data analysis?

2. What type of data is suitable for Adaptive test?

3. Why should adaptive test be used instead of traditional ANOVA tests?

4. At what sample size is adaptive test most appropriate?

1.5 Justification for the Study

The asymptotic properties of statistical estimates and tests are to a large extent depen-

dent on large sample size but in reality, sample sizes as in clinical trials often has low

enrolment. In this case, the use of the parametric test such as F -test in ANOVA models

would not yield the optimal test because of violation of large sample assumption. In

real-world testing situations reasearchers or data analysts rarely have foreknowledge of

the distribution of the errors in order to apply the most powerful tests, so it is important

to know just how the traditional tests compare to adaptive tests with a variety of nor-

mal and non-normal distributions. Adaptive tests of significance have been confirmed to
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have significant power over traditional tests, Hogg et al. (1975), Büning (2009), Okyere

(2011), O’Gorman (2012), Muhammed Di et al. (2014) and Glen (2018) are good sources

of information.

The study has confirmed that adaptive tests are applicable to all research situations

where the level of significance, size and power of the studies are concerned. Statisticians,

Researchers and Data Analysts are therefore encouraged to use adaptive test to gain

popularity over the parametric test when the underlying error distributions are both

normal and non-normal with varying tailweights.

1.6 Organisation of the Study

This thesis is made up of five chapters, references and appendices. Chapter One deals

with the introduction. In this chapter, the background of the study, problem statement,

objectives of the study, research questions, justification and organisation of the study are

discussed. Chapter Two focuses on the literature review of Gauss Markov model and some

adaptive schemes. The one-way and Repeated Measures ANOVA models and hypothesis

as well as the Traditional F -Test are considered. In Chapter Three, the methods and the-

orems used for the adaptive procedures are the focus . Chapter Four presents the results

and discussions. In this chapter, simulations were conducted to confirm the underlying

error distributions of some continuous distributions. It as well compared the efficiency of

our adaptive scheme and the traditional test. Application of the adaptive scheme on real

data were considered here as well. Chapter Five presents the summary, conclusions of the

study highlighting the major findings and recommendations.
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CHAPTER TWO

LITERATURE REVIEW

This chapter is focused on the review of Gauss-Markov Model and some Adaptive Proce-

dures. The One-way ANOVA and Repeated Measures ANOVA models which are special

cases of Gauss Markov Model are reviewed in this chapter.

2.1 Gauss Markov Model

The Gauss Markov model belongs to the general classes of linear models and is given by

Y = Xβ + e (2.1)

where Y is an n× 1 vector of observed responses, X is an n× p (design) matrix of fixed

constants, β is a p× 1 vector of fixed but unknown parameters, and e is an n× 1 vector

of unobserved random errors. It is assumed that E(e) = 0 and Cov(e) = σ2I is some

unknown parameter. The model (2.1) is called a linear model because the mean of the

response vector Y is linear in the unknown parameter β. Detail information can be seen

in (Christensen, 2001; Monahan, 2008).

There are several statistical models which according to Monahan (2008) are exam-

ples of the general linear model Y = Xβ + e. These examples include but not limited to

Linear Regression models, Analysis of Variance (ANOVA) models and Analysis of Covari-

ance (ANCOVA) model. Regression models generally refer to models for which X is full

rank, while ANOVA models refer to those for which X consists of zeros and ones. Brief

discussions on examples of Gauss Markov model are made in the subsequent subsections
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2.1.1 One - Sample Problem

Given that Y1, Y2, Y3, . . . , Yn is independent and identically distributed (iid) random vari-

ables whose mean is µ and variance σ2 > 0. If e1, e2, . . . , en are iid random variables with

mean E(ei) = 0 and common variance σ2, then model (2.1) can be written in matrix

notation as

Yn×1 =



Y1

Y2
...

Yn


, Xn×1 =



1

1

...

1


, β1×1 = µ, en×1 =



e1

e2
...

en



2.1.2 Simple Linear Regression

A regression model that estimates the relationship between one independent variable and

one dependent variable is termed a simple linear regression. The simple linear regression

model is

Yi = β0 + β1xi + ei (2.2)

for i = 1, 2, 3, . . . , n, where Y is the value of the response (dependent) variable; x the value

of the independent (predictor) variable; and β0 and β1 are unknown regression coefficients;

and ei are uncorrelated random variables whose mean is 0 and common variance σ2 > 0.

If predictor variables x1, x2, x3, . . . , xn are fixed constants which are measured without

error, then model (2.2) is considered a special case of model (2.1). Model (2.2) can be

written in a matrix notation as

Y1

Y2
...

Yn


=



1 x1

1 x2
...

...

1 xn


β0
β1

+



e1

e2
...

en


Y = X β + e
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2.1.3 Multiple Linear Regression

Suppose the response (dependent) variable is Y and the independent variablesX1, X2, X3, . . . , Xk

are linearly related, then the multiple linear regression model is

Yi = β0 + β1xi1 + β2xi2 + β2xi3 + · · ·+ βkxik + ei (2.3)

for i = 1, 2, 3, . . . , n, where β0, β1, β2, . . . , βk are the regression coefficients which must be

estimated from sample data and ei are uncorrelated random variables whose mean is 0

and common variance σ2 > 0. If the independent (predictor) variables are fixed constants

which are measured without error, then model (2.3) is a special case of model (2.1). In

matrix presentation, model (2.3) is written as

Yn×1 =



Y1

Y2

Y3
...

Yn


, Xn×p =



1 x11 x12 x13 . . . x1k

1 x21 x22 x23 . . . x2k

1 x31 x32 x33 . . . x3k
...

...
...

... . . . ...

1 xn1 xn2 xn3 . . . xnk


, βp×1 =



β0

β1

β2
...

βk


, en×1 =



e1

e2

e3
...

en



where p = k + 1. It must be noted that E(e) = 0 and cov(e) = σ2I

2.2 Analysis of Variance

The statistical method, Analysis of Variance (ANOVA), according to Miller (1997) and

Montgomery (2013) is a widely used tool for finding out which factors contribute to

given measurements. This method is common in medicine, agriculture, quality control

applications, commerce, education, among others. The method is based on hypothesis

tests with F -distributed test variables computed from the residual quadratic sum. In the

next subsection, one of the most important sampling distributions will be considered.
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2.2.1 Sampling Distributions

The sampling distribution considered here is the normal distribution because it is one of

the most important distributions. If z is a normal random variable, then the probability

distribution of z is

f(z) =
1

σ
√

2Π
e
−

(z − µ)2

2σ (2.4)

where µ is the finite mean of the distribution and σ2 > 0 the variance. If z1, z2, z3, . . . , zu

are normally and independently distributed random variables with zero mean and variance

1, then the random variable

χ2(u) =
u∑
i=1

z2i (2.5)

follows the chi-square distribution with u degrees of freedom. If χ2
1(u) and χ2

2(v) are two

independent chi-square random variables with u and v degrees of freedom, then the ratio

F (u, v) =
χ2
1/u

χ2
2/v

follows the F -distribution with u numerator and v denominator degrees of freedom.

The probability distribution of F is

h(F ) =
Γ(u+v

2
)(u
v
)
u
2F (u

2
)−1

Γ(u
2
)Γ(v

2
)[(u

v
)F + 1]

u+v
2

, 0 < F <∞. (2.6)

Also a non-central F -distribution is defined, as F (u, v, δ), where δ is a non-centrality. If

δ = 0 the non-central F -distribution becomes the usual F -distribution Monahan (2008).

2.2.2 Parametric F-Test

Suppose Yi1, Yi2, . . . , Yin, where i = 1, 2, . . . , k are independent random variables then

Yij ∼ N(µi, σ
2
i ),
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j = 1, 2, . . . , ni and σ2
1 = σ2

2 = · · · = σ2
k = σ2.

Hypothesis Testing

The hypothesis to be considered is

H0 : µ1 = µ2 = · · · = µk

H1 : µi 6= µj

for some i 6= j

Test Statistics

The test statistic for the likelihood ratio F -test is based on the statistic

F =
(N − k)

∑k
i=1 ni(ȳi − ȳ)2

(k − 1)
∑k

i=1

∑ni

j=1(yij − ȳi)2
(2.7)

where,

N =
k∑
i=1

ni

ȳi =
1

ni

ni∑
j=1

yij

ȳ =
1

N

k∑
i=1

niȳi

The test statistic, under H0, follows an F -distribution with k − 1 and N − k degrees of

freedom.

Decision Rule

H0 is rejected if F ≥ Fα,(k−1),(N−k) where α is a pre-specified level of significance and F

is the test statistic, see Montgomery (2013).

2.2.3 One -Way Analysis of Variance (ANOVA) Model

Analysis of variance problems usually concern data that arise mainly from experimental

design to compare three or more (k > 3) treatment means. For the ith treatment level,

let ni experimental units be selected at random and assigned to the ith treatment.
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The One-way ANOVA model is given by

Yij = µ+ αi + eij


i = 1, 2, 3, . . . , k

j = 1, 2, 3, . . . , ni

(2.8)

where the Yij is the (ij)th observation, µ is the overall mean common to all treatments, αi

is the ith treatment effect and random errors eij are uncorrelated random variables with

zero mean and common variance σ2 > 0. If the k treatment effects α1, α2, α3, . . . , αk are

fixed constants, then model (2.8) is a special case of model (2.1), see Monahan (2008).

Thus,

Yn×1 =



Y11

Y12

Y13
...

Yknk


, Xn×p =



1n1 1n1 0n1 0n1 . . . 0n1

1n2 0n2 1n2 0n2 . . . 0n2

1n3 0n3 0n3 1n3 . . . 0n3

...
...

...
... . . . ...

1nk
0nk

0nk
0nk

. . . 1nk


,

βp×1 =



µ

α1

α2

...

αk


, en×1 =



e11

e12

e13
...

eknk


where p = k + 1, 1ni is an ni × 1 vector of ones and 0ni is an ni × 1 vector of zeros,

E(e) = 0, Cov(e) = σ2I and

n =
k∑
i=1

ni

2.2.4 Layout for One-Way ANOVA

The layout of the One-way ANOVA is illustrated in Table 2.1. In this layout, there are k

treatments, with n1 units receiving Treatment 1, n2 units receiving Treatment 2, . . . , ni

units receiving Treatment k. In other words, Treatment 1 has n1 replications, Treatment

2 has n2 replications and so on. The yield from the ith unit received the jth treatment is
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denoted by Yij.

Table 2.1: Data Layout for One-way ANOVA
Treatment

1 2 3 · · · k
Y11 Y12 Y13 . . . Y1k
Y21 Y22 Y23 . . . Y2k

Y31 Y32 Y33 . . . Y3k

...
...

... . . . ...

Yn11 Yn22 Yn33 . . . Ynik

The objectives will be to test hypothesis about the treatment effects and to estimate

them. For hypothesis testing, the model errors are assumed to be normally and indepen-

dently distributed random variables with mean zero and variance σ2. The variance (σ2)

is assumed to be constant for all factor levels.

2.2.5 Two-Way Crossed ANOVA Without Interaction

Consider an experiment with two factors A and B where Factor A has a levels and Factor

B has b levels. The two-way crossed model without interaction is given by

Yijk = µ+ α1 + βj + eijk,


i = 1, 2, 3, . . . , a

j = 1, 2, 3, . . . , b

k = 1, 2, 3, . . . , nij

(2.9)

where the random errors eijk are uncorrelated random variables with zero mean and a

constant variance σ2 > 0. It is worth noting that model (2.9) is a special case of model

(2.10) when

H0 : γ11 = γ12 = γ21 = γ22 = γ31 = γ32 = 0

is true. That is, the no-interaction model is a reduced version of the interaction model.

The assumptions of the no-interaction models is same as the interaction model. Thus,

E(e) = 0 and Cov(e) = σ2I. The X matrix is not of full rank. The rank of X is r = 4
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and there are p = 6 columns, see Monahan (2008) and Montgomery (2013) for details.

In a matrix notation, for example, with a = 3, b = 2, and nij = 3, then we have

Y =



Y111

Y112

Y113

Y121

Y122

Y123

Y211

Y212

Y213

Y221

Y222

Y223

Y311

Y312

Y313

Y321

Y322

Y323



, X =



1 1 0 0 1 0

1 1 0 0 1 0

1 1 0 0 1 0

1 1 0 0 0 1

1 1 0 0 0 1

1 1 0 0 0 1

1 0 1 0 1 0

1 0 1 0 1 0

1 0 1 0 1 0

1 0 1 0 0 1

1 0 1 0 0 1

1 0 1 0 0 1

1 0 0 1 1 0

1 0 0 1 1 0

1 0 0 1 1 0

1 0 0 1 0 1

1 0 0 1 0 1

1 0 0 1 0 1



, β =



µ

α1

α2

α3

β1

β2

γ11

γ12

γ21

γ22

γ31

γ32



, e =



e111

e112

e113

e121

e122

e123

e211

e212

e213

e221

e222

e223

e311

e312

e313

e321

e322

e323



2.2.6 Two-way Crossed ANOVA Model with Interaction

An experiment with two factors, say, A and B, where Factor A has a levels and Factor B has b levels is

under consideration. The factors A and B are, in general, crossed if every level of A occurs in combination

with every level of B. The two-factor crossed ANOVA model with interaction is given by

Yijk = µ+ αi + βj + γij + eijk


i = 1, 2, 3, . . . , a

j = 1, 2, 3, . . . , b

k = 1, 2, 3, . . . , nij

(2.10)

where the random errors eijk are uncorrelated random variables with zero mean and constant unknowm

variance σ2 > 0. If all the parameters are fixed, then model (2.10) is a special case of model (2.1).

Without loss of generality (WLOG), supppose a = 3, b = 2 and nij = 3 then model (2.10) can be written

in a matrix notation as

13

 

  

 

 



Y =



Y111

Y112

Y113

Y121

Y122

Y123

Y211

Y212

Y213

Y221

Y222

Y223

Y311

Y312

Y313

Y321

Y322

Y323



, X =



1 1 0 0 1 0 1 0 0 0 0 0

1 1 0 0 1 0 1 0 0 0 0 0

1 1 0 0 1 0 1 0 0 0 0 0

1 1 0 0 0 1 0 1 0 0 0 0

1 1 0 0 0 1 0 1 0 0 0 0

1 1 0 0 0 1 0 1 0 0 0 0

1 0 1 0 1 0 0 0 1 0 0 0

1 0 1 0 1 0 0 0 1 0 0 0

1 0 1 0 1 0 0 0 1 0 0 0

1 0 1 0 0 1 0 0 0 1 0 0

1 0 1 0 0 1 0 0 0 1 0 0

1 0 1 0 0 1 0 0 0 1 0 0

1 0 0 1 1 0 0 0 0 0 1 0

1 0 0 1 1 0 0 0 0 0 1 0

1 0 0 1 1 0 0 0 0 0 1 0

1 0 0 1 0 1 0 0 0 0 0 1

1 0 0 1 0 1 0 0 0 0 0 1

1 0 0 1 0 1 0 0 0 0 0 1



, β =



µ

α1

α2

α3

β1

β2

γ11

γ12

γ21

γ22

γ31

γ32



, e =



(e111

e112

e113

e121

e122

e123

e211

e212

e213

e221

e222

e223

e311

e312

e313

e321

e322

e323


where E(e) = 0 and cov(e) = σ2I. The detailed discussion is found in (Monahan, 2008).

2.2.7 Two-Way Nested ANOVA

Consider an experiment with two factors, where one factor, say, Factor B is nested within Factor A.

Thus, every level of Factor B appears with exactly one level of Factor A. The statistical model is given

by

Yijk = µ+ αi + βij + eijk,


i = 1, 2, 3, . . . , a

j = 1, 2, 3, . . . , bi

k = 1, 2, 3, . . . , nij

(2.11)

In this model, µ denotes the overall mean, αi represents the effect due to the ith level of A, and βij

represents the effect of the jth level of B, nested within the ith level of A. If all parameters are fixed, and

the random error eijk are uncorrelated random variables with zero mean and constant unknown variance

σ2 > 0, then model (2.11) is a special case of model (2.1) where E(e) = 0 and cov(e) = σ2I). For example,

with a = 3, b = 2, and nij = 2, then we have
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Y =



Y111

Y112

Y121

Y122

Y211

Y212

Y221

Y222

Y311

Y312

Y321

Y322



, X =



1 1 0 0 1 0 0 0 0 0

1 1 0 0 1 0 0 0 0 0

1 1 0 0 0 1 0 0 0 0

1 1 0 0 0 1 0 0 0 0

1 0 1 0 0 0 1 0 0 0

1 0 1 0 0 0 1 0 0 0

1 0 1 0 0 0 0 1 0 0

1 0 1 0 0 0 0 1 0 0

1 0 0 1 0 0 0 0 1 0

1 0 0 1 0 0 0 0 1 0

1 0 0 1 0 0 0 0 0 1

1 0 0 1 0 0 0 0 0 1



, β =



µ

α1

α2

α3

β11

β12

β21

β22

β31

β32



, e =



e111

e112

e121

e122

e211

e212

e221

e222

e311

e312

e321

e322



2.2.8 Analysis of Covariance

Conducting an experiment to compare k ≥ 2 treatments after adjusting for the effects of a covariate x,

a model for the analysis of covariance (ANCOVA) is given by

Yij = µ+ αi + βixij + eij


i = 1, 2, 3, . . . , k

j = 1, 2, 3, . . . , ni

(2.12)

where the random errors eij are uncorrelated random variables with zero mean and common variance

σ2 > 0. In this model, µ represents the overall mean, αi represent the fixed effect of receiving the ith

treatment (disregarding the covariates), and βi denotes the slope of the line that relates Y to x for the

ith treatment. The xij ’s are assumed to be fixed values measured without error so the model (2.12) is a

special case of model (2.1). Suppose k = 3 and n1 = n2 = n3 = 3 then in matrix notation, model (2.12)

can be written as

Y =



Y11

Y12

Y13

Y21

Y22

Y23

Y31

Y32

Y33



, X =



1 1 0 0 x11 o 0

1 1 0 0 x12 0 0

1 1 0 0 x13 0 0

1 0 1 0 0 x21 0

1 0 1 0 0 x22 0

1 0 1 0 0 x23 0

1 0 0 1 0 0 x31

1 0 0 1 0 0 x32

1 0 0 1 0 0 x33



, β =



µ

α1

α2

α3

β1

β2

β3



, e =



e11

e12

e13

e21

e22

e23

e31

e32

e33


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If all the slopes are equal, say, β1 = β2 = β3 = · · · = βk, then the ANCOVA model reduces to

Yij = µ+ αi + βxij + eij

Let k = 3 and n1 = n2 = n3 = 3, then in matrix notation, model (2.12) can be written as

Y =



Y11

Y12

Y13

Y21

Y22

Y23

Y31

Y32

Y33



, X =



1 1 0 0 x11

1 1 0 0 x12

1 1 0 0 x13

1 0 1 0 x21

1 0 1 0 x22

1 0 1 0 x23

1 0 0 1 x31

1 0 0 1 x32

1 0 0 1 x33



, β =



µ

α1

α2

α3

β


, e =



e11

e12

e13

e21

e22

e23

e31

e32

e33



2.3 Repeated Measures Design

The experimental units or subjects in the field of social, medical and physical sciences, and business are

usually people in experimental design. The differences in experience, training, or background among

the subjects may to a large extent affect the responses eventhough the same treatment may be applied

to the experimental situations. This variability between experimental units would become part of the

experimental error if it is not controlled, and in some cases, it would significantly inflate the error mean

square, making it more difficult to detect real differences between treatments. In other repeated measures

the experimental units or subjects could be different stores in a marketing survey, or plants, or animals

in biological survey. The control of this variability between experimental units (subjects) is overcome by

employing a repeated measures design, (Montgomery, 2013).

A repeated measures design is one in which multiple measurements of the response variable are ob-

tained from each experimental unit or subject. The measurements might be taken serially in time such

as hourly, daily, weekly or monthly. The dependency, or correlation, among responses measured under

the same experimental unit is the defining feature of a repeated measures design.

The repeated measures design in its simplest case is a generalisation of the paired t test. A repeated

measures within-subjects design can be thought of as an extension of the paired t test that involves n ≥ 3

assessments in the same experimental unit. Repeated measures experiments can as well be viewed as a
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type of factorial experiment, with group and time as the two factors.

Repeated Measures ANOVA model for one sample and multiple samples are examples of Two-way

Crossed ANOVA model where time and subjects are crossed for the one sample case. In the case of

multiple samples, Group and Time are crossed. The two factors, Factor A and Factor B could be

subjects and time or group and time depending on the type of the sample.

2.3.1 Repeated Measures ANOVA Model for One Sample

Suppose there are n independent experimental units (subjects) and t treatments or time points. Each

treatment or time point is to be used exactly once on each of n esprimental units. The observation Yij

is the response of subject i at time j. The model for this design is

Yij = µ+ πi + τj + eij


i = 1, 2, 3, . . . , n

j = 1, 2, 3, . . . , t

(2.13)

where µ is the overall mean, πi is a random effect for subject i which is constant over all occasions, τj is

the fixed effect of time j and eij is a random error component specific to subject i at time j.

Assumptions

1 The fixed effects τj are assumed to satisfy the sum-to-zero constraints

t∑
j=1

τj = 0

2 The random effects πi are independent N(0, σ2
π)

3 the random errors eij are independent N(0, σ2
e)

4 The term πi is common to all n measurements on the same subject so, the covariance between Yij

and Yi′ j is not, in general zero.

5 The covariance between Yij and Yi′ j is constant across all treatments and subjects.

It can be said that all the random variables in model (2.13) are independent, the repeated observations

from a subject are correlated. Details are found in Montgomery (2013) and Davis (2002). The repeated

measures ANOVA for One-Sample case can be viewved as a special case of the randomised block design

in which the the block is the individual experimental unit. If all the parameters are fixed, then model

(2.13) is a special case of model (2.1).
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2.3.2 Layout for the One-Sample Case

The layout of a repeated measures design for one sample is shown in Table 2.2.

Table 2.2: Data Layout of a Repeated Measures Design for One Sample Case
Time Points

Subject 1 2 3 . . . j . . . t

1 Y11 Y12 Y13 . . . Y1j . . . Y1t
2 Y21 Y22 Y32 . . . Y2j . . . Y2t
3 Y31 Y32 Y33 . . . Y3j . . . Y3t
...

...
...

... . . . ... . . . ...
i Yi1 Yi2 Yi3 . . . Yij . . . Yit
...

...
...

... . . . ... . . . ...
n Yn1 Yn2 Yn3 · · · Ynj . . . Ynt

The objective of the analysis is to determine whether the distribution of the response variable is changing

over time. For hypothesis testing, the model errors are assumed to be normally and independently

distributed random variables with mean zero and variance σ2. The variance (σ2) is assumed to be

constant for all factor levels. The details can be seen in Davis (2002) and Montgomery (2013).

2.3.3 Repeated Measures ANOVA Model for Multiple Samples

Let us assume that repeated measurements at t time points are obtained from s groups of subjects.

Let nh denote the number of subjects in group h, and let

n =
s∑

h=1

nh.

Let Yhij denote the response at time j from the ith subject in group h then the model for repeated

measures ANOVA for multiple samples follows the two-way ANOVA and is given by

Yhij = µ+ πh + τj + γhj + ehij


h = 1, 2, 3, . . . , s

i = 1, 2, 3, . . . , nh

j = 1, 2, 3, . . . , t

(2.14)

where µ is the overall mean effect, πh is the fixed effect of group h, τj is the fixed effect of time j , γhj is

the interaction of the time and group and ehij is a random error component. Both factors are assumed
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to be fixed, and the treatment group effects are defined as deviations from the overall mean, so

s∑
h=1

πh = 0

and
t∑

j=1

τj = 0.

Similarly, the interaction effects are fixed and are defined such that

s∑
h=1

γhj =
t∑

j=1

γhj = 0.

Let the random errors ehij be uncorrelated random variables with zero mean and constant unknown

variance σ2 > 0. If E(e) = 0 and cov(e) = σ2I, then model (2.14) is a special case of model (2.1).

In the multiple samples Repeated Measures ANOVA design, both row and column effects are of equal

interest. As such, test of hypotheses of interest are:

• Treatment (Group) Effects

H0 : π1 = π2 = · · · = πs = 0

H1 : πh 6= 0 for at least one πh

• Time Effects

H0 : τ1 = τ2 = · · · = τt = 0

H1 : τj 6= 0 for at least one τj

• Interaction Effects

H0 : γhj = 0 for all h, j

H1 : γhj 6= 0 for at least one γhj

The group and time effects could be referred to as row and column treatment effects respectively.

2.3.4 Repeated Measures ANOVA Layout for Multiple Samples

The layout for repeated measures ANOVA for the multiple samples which is an equivalent of a two-way

crossed factorial design is presented in Table 2.3. The two factors Group and Time Point have levels s

and t respectively.
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Table 2.3: Data Layout for Repeated Measures Design for Multiple Samples
Time Points

Group Subject 1 2 . . . j . . . t

1 Y111 Y112 . . . Y11j . . . Y11t

2 Y121 Y122 . . . Y12j . . . Y12t

1
...

...
...

. . .
...

. . .
...

i Y1i1 Y1i2 . . . Y1ij . . . Y1it

...
...

...
. . .

...
. . .

...
n1 Y1n11 Y1n12 . . . Y1n1j . . . Y1nit

1 Y211 Y212 . . . Y21j . . . Y21t

2 Y221 Y222 . . . Y22j . . . Y21t

2
...

...
...

. . .
...

. . .
...

i Y2i1 Y2i2 . . . Y2ij . . . Y2it

...
...

...
. . .

...
. . .

...
n2 Y2n21 Y2n22 . . . Y2n2j . . . Y2n2t

1 Yh11 Yh12 . . . Yh1j . . . Yh1t

2 Yh21 Yh22 . . . Yh2j . . . Yh2t

h
...

...
...

. . .
...

. . .
...

i Yhi1 Yhi2 . . . Yhij . . . Yhit
...

...
...

. . .
...

. . .
...

nh Yhnh1 Yhnh2 . . . Yhnhj . . . Yhnht

1 Ys11 Ys12 . . . Ys1j . . . Ys1t
2 Ys21 Ys22 . . . Ys2j . . . Ys2t

s
...

...
...

. . .
...

. . .
...

i Ysi1 Ysi2 . . . Ysij
. . . Ysit

...
...

...
. . .

...
. . .

...
ns Ysns1 Ysns2 . . . Ysnsj . . . Ysnst

2.4 Covariance Structure

The correlation between time points of repeated measures are assumed to be constant and such covari-

ance structure is called compound symmetry. However, the correlation between time points is higher

when times of measurements are closer than measures that are far apart in time. Variances of repeated

measures change with time. This structure of the covariance is referred to as First Order Autoregressive

(AR(1)) covariance.

The potential patterns of correlation and variance may be combined to produce a complicated covariance

structure of repeated measures, see Davis (2002). The covariance structures discussed here include the

compound symmetry (CS), autoregressive of order 1 AR(1), autoregressive with heterogenuous variance

ARH(1), unstructured (un) and Toeplitz (toep).

The compound symmetry assumes that the correlations between all pairs of measures are the same

and the variances are homogeneous. The AR(1) structure has homogeneous variances and correlations
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that decline exponential with distance. Thus, the correlations between adjacent pairs are greater than

the correlations between distant pairs. The unstructured covariance structure assumes that each pair

of measurements has its own correlation. The Toeplitz structure is similar to the AR(1) in that all

measurements next to each other have the same correlation. However, the corelations do not necessarily

have the same pattern as in the AR(1).

2.4.1 Compound Symmetry

The compound symmetry (CS) covariance structure is given by

∑
=



σ2
π + σ2

e σ2
π σ2

π σ2
π

σ2
π σ2

π + σ2
e σ2

π σ2
π

σ2
π σ2

π σ2
π + σ2

π σπ

σ2
π σ2

π σ2
π σπ + σ2

e



∑
= σ2



1 ρ ρ ρ

ρ 1 ρ ρ

ρ ρ 1 ρ

ρ ρ ρ 1


where

ρ =
σ2
π

σ2
π + σ2

e

= Corr(yij , yij′ ) and σ2 = σ2
π + σ2

e .

The intraclass correlation coefficient ρ ranges from 0 to 1 as
σ2
π

σ2
e

ranges from 0 to∞. The variance σ2
π+σ2

e

and covariances σ2
π are both homogeneous across time.

2.4.2 First Order Autoregressive (AR1)

The first Order Autoregressive AR(1) covariance structure is

∑
= σ2



1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ

ρ3 ρ2 ρ 1


where the Cov(Yij , Yij′ ) = σ2ρ|i−j| for i, j = 1, 2, . . . , t.
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2.4.3 Unstructured

The unstructured covariance structure is

∑
=



σ2
1 σ12 σ13 σ14

σ12 σ2
2 σ23 σ24

σ13 σ23 σ3
3 σ34

σ14 σ24 σ34 σ4
4


where the Cov(Yij , Yij′ ) = σij for i, j = 1, 2, . . . , t

2.4.4 Toeplitz

The Toeplitz covariance structure is given as

∑
=



σ2 σ1 σ2 σ3

σ1 σ2 σ1 σ2

σ2 σ1 σ2 σ1

σ3 σ2 σ1 σ2


,

where the covariance Cov(Yij , Yij′ ) = σ|i−j|+1, for i, j = 1, 2, . . . , t.

2.4.5 Autoregressive with Heterogeneous Variance

The covariance structure for the autoregressive with heterogeneous variance ARH(1) is

∑
=



σ2
1 σ1σ2ρ σ1σ3ρ

2 σ1σ4ρ
3

σ2σ1ρ σ2
2 σ2σ3ρ σ2σ4ρ

2

σ3σ1ρ
2 σ3σ2ρ σ2

3 σ3σ4ρ

σ4σ1ρ
3 σ4σ2ρ

2 σ4σ3ρ σ2
4


,

where the covariance Cov(Yij , Yij′ ) = σiσjρ
|i−j|, for i, j = 1, 2, . . . , t.
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2.5 Estimators and Outliers

The presence of outliers in a dataset is one of the most important topics in statistical inference. An outlier

can be defined as observations which appear to be inconsistent with the remaining set of data. Outliers

can be contaminants, i.e. arising from other distributions or can be typical observations generated from

the assumed model, see Barnett and Lewis (1994). Therefore, outliers need very special attention because

a small departure from the assumed model can have strong negative effects on the efficiency of classical

estimators for location and scale, see Tukey (1960).

2.6 Adaptive Statistical Methods

Adaptive procedures, according to O’Gorman (2004) use the given data to ascertain which statistical

method or technique is the most appropriate and efficient. Generally, it is a two stage procedure. In the

first stage, a selection statistic is computed from the estimate of skewness and tailweight, that is, the

shape of the error distribution of the data. The selector statistic is used to determine the appropriate

statistical procedure for the analysis in the second stage. This procedure has been proven to increase the

power of the test if the error distribution is skewed and makes narrow confidence intervals, are robust for

both validity and efficiency and automatically downweight outliers, which has the effect of making the

results less sensitive to observations that do not agree with the model.

Husková (1985) and Hájek et al. (1999) distinguished between non-restrictive and restrictive adaptive

schemes. In the case of non-restrictive procedures the optimal scores aopt(k) for the locally most powerful

rank test, which depend on the (unknown) underlying distribution function F and its density f , are

estimated directly from the data.

However, in the case of restrictive procedures, a ’reasonable’ family of distributions and a correspond-

ing class of ’suitable’ tests are chosen. At the first stage, the unknown distribution function is classified

with respect to some measures like tailweight and skewness. At the second stage, an appropriate test

for that classified type of distribution is selected and then carried out. Hogg states ’so adapting the test

to the data provides a new dimension to parametric tests which usually improves power of the overall

test’. This two-staged adaptive test maintains the level α for all continuous distribution functions. The

adaptive tests automatically reduce the influence of outliers. They are sometimes said to be robust; but

to be clear about robustness, we should describe the two kinds of robustness.

A test is said to be robust for size if its actual significance level is quite close to the nominal sig-

nificance level, even when the usual assumptions are not met. For example, a test that is derived by
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assuming normality of the error distribution would be robust for size if it maintains its level of significance

with non-normal errors. A test is said to be robust for power if it has high power relative to other tests

when the usual distributional assumptions are not met. Many traditional tests are robust for size with

non-normal errors but are not robust for power. The objective is to develop adaptive tests that are robust

for size and robust for power O’Gorman (2012).

In the parametric case of testing hypotheses the efficiency of a test statistic strongly depends on the

assumption of the underlying distribution of the data, for example, if we assume normality then optimal

tests are available for the one- two- and c-sample location or scale problem such as t-tests, F-tests and

Chi-square-tests Büning (1994).

In the non-parametric nonadaptive case the distribution of the test statistic is not based on a special

distribution of the data like the normal, only the assumption of continuity of the distribution is needed

in general. It is well known, however, that the efficiency of non-parametric tests depends on the under-

lying distribution, too, for example, the Kruskal-Wallis test in the c-sample location problem has high

power for symmetric and medium- up to long-tailed distributions in comparison to its parametric and

non-parametric competitors whereas the Kruskal-Wallis test can be poor for asymmetric distributions.

Büning (1994) indicated that for the practising statistician it is more the rule rather than the exception

that he has no foreknowledge of the underlying distribution of his data. Consequently, one should apply

an adaptive test which takes into account the given data set. A power comparison by means of Monte

Carlo simulation shows that the adaptive test is very efficient over a broad class of distributions in

contrary to its parametric and non-parametric nonadaptive competitors .

2.6.1 Single Location Adaptive Procedures

Bandyopadhyay and Dutta (2007) proposed two adaptive tests for a single location problem without

making assumptions about the symmetry of the continuous distribution of the data. Whereas one is

based on a measure of symmetry, used as a standard of deciding between the Wilcoxon signed rank test

(W+) and the signed test (S+) (the deterministic approach), the other (the probabilistic approach) is

a combination of the signed test and the Wilcoxon signed rank test based on evidence of asymmetry

provided by the p-value from the triples test defined as

λ̂ =
1

(n3 )

=
∑
i<j<k

g(Xi, Xj , Xk)
(2.15)
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and

g(x1, x2, x3) =
1

3

[
sign(x1 + x2 − 2x3) + sign(x1 + x3 − 2x2) + sign(x2 + x3 − 2x1)

]

where sign(X) = 1, 0,−1 according as x >,=, < 0 based on equation (2.15).

For the probabilistic approach, Bandyopadhyay and Dutta (2007) used p to denote the p-value associated

with the observed value of λ̂ in equation (2.15), using the p-value to denote the amount of symmetry of

the distribution present in the data. For any value of p, a Bernoulli trial with probability of success p is

performed. If a success was realized, the Wilcoxon signed rank test was used otherwise, the sign test was

used. The adaptive test rule was: Reject H0 with probability p if W+ > w+ and with probability (1− p)

if S+ > s+ are the upper -critical values of W+ and S+.

However with the deterministic approach, a sample measure of symmetry on which a preliminary test

was based was used. The proposed measure of symmetry was given as

Q =
X(n) − 2X̃ +X(1)

X(n) −X(1)

where −1 ≤ Q ≤ 1, X̃ is the median of the data and X(i) is the order statistics of the data. The

median was equidistant from both extremes if the distribution of the data was symmetric, closer to the

minimum value for a positively skewed distribution and closer to a maximum value for a negatively skewed

distribution. The test statistic was then proposed as

T = S+I(|Q| > c) +W+(|Q| ≤ c)

where I(y) is an indicator function assuming value 1 or 0 depending on whether y is true or false. For all

values of c considered, c = 0.075 was regarded the best in terms of robustness of the test Bandyopadhyay

and Dutta (2007).

Consequently, from simulation studies, when the two adaptive methods were compared, Bandyopad-

hyay and Dutta (2007) concluded that the probabilistic approach was in general found to be very robust

and had high power over the deterministic approach, thus concluding that when nothing was known

about the skewness of the distribution, the probabilistic approach should be used.

2.6.2 Two-Sample Rank Test Statistics

Hao and Houser (2012) presented a seven decade advances of adaptive procedures for non-parametric test

and extensively narrated the progress made in this area. This section employs their material as useful
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reference for this review. For a given f(.), as the probability function of the cumulative distribution

function F (.), let Ri represent the rank of observation Yi(i = 1, 2, . . . , n2) in the order statistics of the

combined sample N = n1 + n2 observations with 1 ≤ Ri ≤ N . Hájek and Sidák (1967) as found in Hao

and Houser (2012) showed that, in general the asymptotically most powerful rank test statistic S depends

on the inverse c.d.f F−1

S =

n2∑
i=1

a(Ri) (2.16)

and

a(Ri) = −f
′(F−1(u))

f(F−1(u))
(2.17)

where u =
Ri

N + 1
is the Y

′

i s rank normalised in the combined sample,
Ri

N + 1
∈ (0, 1) and a(Ri) is defined

as the scores or the ranks, since it maps the observation Yi to the rank of Yi in the combined sample. As

N →∞, F−1(u) shows the corresponding observation using its rank Ri and the inverse c.d.f of the data,

that is a(u) provides the information in the ranks. In later development, Hájek et al. (1999) established

that for any particular distribution of interest models (2.16) and (2.17) provides the most powerful rank

test. Thus as n1, n2 →∞,
S − E(S)√
V ar(S)

∼ N(0, 1). Hence they provided three examples:

1. Normal Score Test

The most powerful rank test for normal distributions, also known as the normal score test is defined

by

Snor =

n2∑
i=1

Φ−1

[
Ri

N + 1

]
(2.18)

where Φ is the c.d.f. of standard normal distribution.

The sampling distribution of Snor is symmetric with mean equal to

E(Snor) = 0

and variance equal to

V ar(Snor) =
n1n2

N(N − 1)

N∑
i=1

[
Φ−1

(
i

N + 1

)]2

The hypotheses of interest are

H0 : ∆ = 0

versus

H1 : ∆ 6= 0,
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where the parameter ∆ denotes a shift in location between the two distributions. Other alternatives

can be used. At an asymptotic level of α, reject H0 in favour of H1 if

|znor| ≥ zα2

where

znor =
Snor√

V arH0
(Snor)

2. Mann-Whitney-Wilcoxon (MWW)

The MWW test was selected as the most powerful rank test once the data was known to have

been drawn from a logistic distribution, with the test statistic given by

Slog =
2n2

N + 1

n2∑
i=1

Ri − n2. (2.19)

The linear transformation of equation (2.19) test statistic is given by

SMWW =

n2∑
i=1

Ri

. The sampling distribution of SMWW is symmetric with mean equal to

E(SMWW ) =
1

2
n2(N + 1)

and the variance is equal to

V ar(SMWW ) =
1

12
n1n2(N + 1)

.

3. Median Test

The median test which was adjudged the most powerful test when the data was from a Laplace

(double exponential) distribution, with the test statistic defined as

Slap =

n2∑
i

sign

(
Ri −

N + 1

2

)
(2.20)

where

sign(X) =


1, if x > 0

0, if x = 0

−1 if x < 0

Equation (2.20) is practically the same as the test that counts the number of Y
′

i s above the median

27

 

  

 

 



of the combined sample and increases by
1

2
when the median falls in the sample of Y

′

i s. Therefore,

Smedian =

n2∑
i=1

1

2

[
sign

(
Ri −

n+ 1

2

)
+ 1

]

=
1

2
Slap + n2

with the mean and variance of the median test given as

E[Smedian] =
n2

2

and

V ar[Smedian] =
n1n2

4(N − 1)

if N is even, and

V ar[Smedian] =
n1n2

4N

if N is odd (Hao and Houser, 2012).

To ascertain the comparative strength of efficiency of these statistics to their parametric counterparts,

the Asymptotic Relative Efficiencies (ARE) (that is, for two consistent test statistics, A and B under

H0, ARE is the reciprocal of the ratio of sample sizes needed to derive similar power against the same

alternative hypothesis H1, taking the limit as the sample size N →∞ as H1 → H0). For instance, Pitman

(1949) computed the asymptotic relative efficiency (ARE) of the Mann-Whitney-Wilcoxon (MWW) test

relative to the t-test as

A.R.Ew,t = 12σ2

[∫
f2(x)dx

]2

where σ is the standard deviation of the underlying distribution of f(x).

2.6.3 Hogg’s Adaptive Scheme

In this section we review the general theory of Hogg-type adaptation. In adaptation, selector statistics are

sought for. These statistics assist us in adapting to some features of an unknown distribution of the given

data. Hogg’s adaptive scheme is a two-stage procedure,(Hogg, 1974). Suppose sampling is done from an

unknown distribution F(t). First the unknown distribution with its regression score is classified by the

skewness and tail weight. This is done through the selector statistics. Second, by the classification, a test

statistic which is independent of the selector statistic is selected and a test performed. This two-stage

adaptive test maintains the level α for all continuous distributions. The main theorem behind adaptation

is stated below.
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Theorem 2.6.1. Lemma

1. Let K denote the class of distribution functions under consideration. Suppose that each of the m

tests based on the statistics T1, T2, ..., Tm is distribution-free over the class K i.e. PH0
(Th ∈ Ch |

f) = α for each F ∈ K, h = 1, ...,m.

2. Let S be some statistic that is statistically independent of T1, T2, ..., Tm under H0 for each F ∈ K.

Suppose S is used to decide which test Th to conduct. (S is called a selector statistic.) Specially,

let Q denotes the set of all values of S with the following decomposition: Q = D1∪D2∪D3...∪Dm

and Dh ∩Dk = ∅ for h 6= k, so that S ∈ Dh corresponds to the decision to use the test Th. The

overall testing procedure is then defined by:

If S ∈ Dh then reject H0 if Th ∈ Ch.

This two-staged adaptive test is, under H0, distribution-free over the class K, i.e. it maintains the

level α for each F ∈ K.

That is

PH0
(rejectH0 | F ) =PH0

[
m⋃
h=1

(S ∈ Dh

∧
Th ∈ Ch | F )]

=

m∑
h=1

PH0(S ∈ Dh

∧
Th ∈ Ch | F )

=
m∑
h=1

PH0
(S ∈ Dh | F ).PH0

(Th ∈ Ch | F )

=α.

m∑
h=1

PH0(S ∈ Dh | F )

=α · (1)

PH0
(rejectH0 | F ) =α

So the procedure of selecting Th using an independent statistics S and then constructing a test of signifi-

cance level α with test statistic Th has an overall significance level α. Hence the overall testing procedure

is defined by, if S ∈ Dm then reject H0 if Th ∈ Ch.

2.6.4 Two Sample Location Problem and Adaptation

The concept of adaptation within the context of two sample location problem is reviewed in this sub

subsection.

Let X1, X2, . . . , Xn1
be an independent and identically distributed (iid) random sample with cumulative

distribution function FX = F (x) and density function fX = f(x). Also, let Y1, Y2, . . . , Yn2 be another

random sample, independent and identically distributed from the cumulative distribution function FY =

F (X−∆) and density function fY = f(X−∆), where ∆ = µy−µx represents a shift in location between

the two distributions, µy and µx are the means of F (X −∆) and F (X) respectively, and F is unknown.
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The objective is to test the hypothesis H0 : ∆ = 0 against H1 : ∆ 6= 0. Hence let n = n1 + n2 represent

the combined sample of both X
′

is and Y
′

i s. Let Z
′

= (X1, X2, . . . , Xn1
;Y1, Y2, . . . , Yn2

) denote the vector

of observations; let n = n1 + n2 denote the total sample. Then the location model can be written as

Zi = ∆ci + ei, 1 ≤ i ≤ n (2.21)

where e1, e2, . . . , en are iid with distribution function F (x),

ci =


0 if 1 ≤ i ≤ n1

1, if n1 + 1 ≤ i ≤ n
(2.22)

and

Zi =


Xi, for 1 ≤ i ≤ n1

Yi−n1 , for n1 + 1 ≤ i ≤ n1 + n2 = n

(2.23)

where Z(i) is the order statistics for Zi. Then under the null hypothesis H0, for Z(i), the conditional

distribution of Zi is discrete with probability
1

n!
for all n! permutations of the vector Zi. This implies

that the conditional distribution does not depend on F (x). Hence by the definition of sufficiency the

order statistics are sufficient for F, (Hogg et al., 2013). Next the completeness of nonparametric family

as found in Bhattacharyya et al. (1977) is considered.

Theorem 2.6.2. Let K be a family of probability distributions for a real or vector random variable Z

and let W = h(Z) be a measurable function with KW denoting the induced family of distributions of W .

If Z is complete with respect to the family K, then W is complete with respect to KW

Under H0, Z(1) < Z(2) < · · · < Z(n), the ordered observations for the combined sample has a

common distribution F ∈ K where K is the family of all distributions absolutely continuous with respect

to Lebesgue measure, a good source of information is (Bhattacharyya et al., 1977). If the function h

such that h(Z1, Z2, . . . , Zn) = (Z(i), Z(2), . . . , Z(n)) is considered, then by Theorem 2.6.2, the combined

ordered sample Z(1) < Z2 < · · · < Z(n) is complete for K. It is worth mentioning that the order statistics

are complete with respect to the corresponding induced family of distributions

Corollary 2.6.1. Let X(1) < X(2) < · · · < X(n) and Y(1) < Y(2) < · · · < Y(n) be the order statistics for

each sample with distributions Fx and Fy respectively, then X(1) < X(2) < · · · < X(n);Y(i) < Y(1) < · · · <

Y(n) are complete with respect to the family distributions induced by Fx and FY , for Fx, FY ∈ K.

The next theorem is based on the above corollary. Since under H0 : Fx = Fy = F the ordered

statistics are complete and that given Zi, the conditional distribution of Zi does not depend on F , it

implies the order statistics are complete and sufficient.

Theorem 2.6.3. Under H0 : Fx = Fy, the order statistics for the combined sample, Z(1) < Z(2) < · · · <

Z(n) are sufficient and complete for F .
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This means that, under H0, the order statistics for the combined sample exhausts all information of

F .

Let T = T [R(X,Y)]) be such a statistic whose distribution is free under H0. Then from Basu’s theorem,

T is a test statistic and ancillary for F . Furthermore, if the ordered combined sample, Z(1), Z(2), . . . , Z(n)

is complete and sufficient for F , then it follows that for all measurable functions G, G(Z(1), Z(2), . . . , Z(n))

is also complete and sufficient for F .

Theorem 2.6.4. Basu’s Theorem

Let T = T [R(X,Y)] be a statistic whose distribution is free of F, then under H0, T and G(Z(1), Z(2), · · · , Z(n))

are independent, for all (measurable) functions G.

Here the T ′s are rank tests, thus, T = T [R(X,Y)] = {T1, T2, T3, · · · , Tr}. This means that the test

statistics depend on the joint ranks of the combined ordered sample Z ′is. Applying Theorem 2.6.1 to the

two sample problem, K is the class of all continuous distribution functions of F and T1, T2, . . . , Tr are

rank statistics. So Ti is distribution-free over K, for i = 1, 2, . . . , r.

Under H0, the order statistics are complete ad sufficient for the common, but unknown distribution

F . This implies for an adaptive scheme, if distribution free statistics are used and the selector is based

on the combined order statistics then the adaptive scheme maintains level.

Definition 2.6.1. (Sufficiency)

Consider a random variable X ∈ Rn on some measurable space Ω. Let K denote a family of distribution

of X such that

K = F (X, θ), θ ∈ Θ

A statistic T ≡ T (X) is said to be sufficient for θ if and only if the conditional distribution of X

given T does not depend on θ for every F ∈ K

2.6.5 The Adaptive Procedure of Hogg, Fisher and Randles (HFR)

There is a pool of score functions, ϕ, from which the most appropriate score is chosen to be implemented

in estimating parameters. Hogg et al. (1975) proposed a two step procedure for choosing an appropriate

score function. In summary, the HFR adaptive procedures are:

1. Selector statistics Q1 for Skewness and Q2 for tailweight are computed.

2. These selector statistics Q1 and Q2 depending on the selection region they fall, informs the choice

and use of the most appropriate rank scores.

The selector statistics is computed as

Q1 =
Ū0.05 − M̄0.5

M̄0.5 − L̄0.05
(2.24)
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Q2 =
Ū0.05 − L̄0.05

Ū0.5 − L̄0.5
(2.25)

where Ū0.05, M̄0.5 and L̄0.05 are the averages of the largest 5%, the middle 50% and the smallest 5% of

the ordered data respectively.

If Q1 is large (say 2 or more) then there is an indication that the distribution is skewed to the right. On

the other hand, if Q1 <
1

2
, the sample indicates left skewed distribution. Large values of Q2 shows heavy

tailed distribution while small values indicates light tailed distribution.

An illustration cited in Hogg et al. (2013), pages 571 - 575 is used.

Let C1lw, C1up, C2lw, and C2up denote some prespecified emperical cutoffs of the measures of skewness

and tailweight for a class of distributions such that the following rules are needed for some scores:

• Q1 < C1lw indicates left-skewed distributions

• Q1 ≥ C1up indicates right-skewed distributions

• C1lw < Q1 < C1up indicates symmetric distributions.

• Q2 < C2lw indicates light tailed distributions

• Q2 ≥ C2up indicated heavy tailed distributions.

• C2lw < Q2 < C2up indicates medium tailed distributions.

The benchmarks proposed by Hogg et al. (1975) is used in this illustration. Some test statistics which de-

pends on the ranks of combined sample are considered here. Thus, letR(X1), R(X2), R(X3), . . . , R(Xn1), R(Y1), R(Y2), R(Y3), . . . , R(Yn2)

denote the combine ranks of X1, X2, X3, . . . , Xn1, Y1, Y2, Y3, . . . , Yn2 of random samples with cdf F (x) and

F (x−∆) respectively. Define the elements of a set of test statistics by

Wi =
n2∑
j=1

ai[R(Yj)], i = 1, 2, 3, 4 (2.26)

where ai(j) = ϕi

[
j

n+ 1

]
, ϕi is an associated score optimal for a specified distribution and n = n1 + n2.

Suppose F (x) can vary from light to heavy tailed distribution, one may consider the Wilcoxon test

W1 =
n2∑
j=1

a1[R(Yj)] (2.27)

where a1(j) = ϕ1

[
j

n+ 1

]
and ϕ1(u) =

√
12(u − 0.5) is an associated optimal score for the logistic

distribution function which is slightly heavier than normal distribution.

As a second example, we consider the Mood’s median test which depends on the ranks

W2 =
n2∑
j=1

a2[R(Yj)] (2.28)
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where a2(j) = ϕ2

[
j

n+ 1

]
and ϕ2(u) = sgn(u − 0.5) is an associated optimal score for the laplace

distribution.

Suppose the right-skewed distribution is considered then

W3 =
n2∑
j=1

a3[R(Yj)] (2.29)

where a3(j) = ϕ3

[
j

n+ 1

]
and ϕ3(u) is an associated optimal score for such a distribution.

For light-tailed distribution,

W4 =
n2∑
j=1

a4[R(Yj)] (2.30)

where a4(j) = ϕ4

[
j

n+ 1

]
and ϕ4(u) is an associated optimal score.

Using the benchmarks proposed by Hogg et al. (1975) and the computed selector statistic, the following

scores will be selected.

Example 2.6.1. Median Test

a(j) =


1, j >

n+ 1

2
,

0, otherwise

Example 2.6.2. Right-skewed

a(j) =


j − n+ 1

2
− 1, j ≤ n+ 1

2
,

0, otherwise

Example 2.6.3. Light-tailed Symmetric

a(j) =


j − n+ 1

2
− 1

2
, j ≤ n+ 1

4
,

j − n+
n+ 1

4
− 1

2
, j ≥ n− n+ 1

4
+ 1,

0, otherwise

Example 2.6.4. Moderate Heavy-tailed

a(j) =


j, 1 ≤ j ≤ n,

0, otherwise
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Table 2.4: Type of Distribution, Benchmark along with their Selected Score
Benchmark Distribution Score Selected
Q2 > 7 Heavy-tailed symmetric ϕ2(u) score (1)

Q1 > 2 and Q2 < 7 Right-skewed ϕ4(u) score(2)
Q1 ≤ 2 and Q2 ≤ 2 Light-tailed symmetric ϕ3(u) score (3)

Elsewhere Moderate heavy-tailed ϕ1(u) score(4)

The order statistics of the combined sample of all n values is used to compute the selector statistics

(Q1, Q2) and is displayed in Table 2.4. For example, if Q1 > 2 and Q2 < 7, the right-skewed distribution

is selected. In all other cases (elsewhere), a model for moderate heavy-tailed distributions are chosen.

These selection regions are shown in fig 2.1

Figure 2.1: Selection Criteria for the HFR Procedure

The selected scores are then used in estimating and testing. As an example to show how the selection

method works, a data set is obtained, the measure of skewness is obtained to be Q1 = 1.5, this is an

indication that the dataset has a nearly symmetric distribution. The measure of tailweight is obtained

next as Q2 = 1.5. These two values are then located on the selection criteria in figure 2.1 to determine

the distribution for the dataset and appropriate scores for that distribution, in this case a light tailed

symmetric model. If Q1 = 1.5 and Q2 = 3.5, then the dataset had indicated heavier-tailed model, so we

would chose the Wilcoxon scores.

2.6.6 Adaptive Rank Tests

Gastwirth (1965) in his study created a path for rank-based adaptive tests. Hogg et al. (1975) in a paper

proposed adaptive procedure simply and effectively used a dataset to choose an efficient rank test from

among a set of alternative tests. The data in this procedure is used two times, first to select and then

to perform the test nonetheless the procedure is termed as "honest" in that the level of significance is

preserved in performing the test. The strength of the HFR procedure lies in how easy it can be im-

plemented and the great power it has compared to the MWW tests. The Hogg Fisher Randles (HFR)
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adaptive method has challenged a large quantity of literature. The HFR test was extended to location

test (one-sample) by Jones (1979) and c-sample trend tests Büning (1996). With more recent works on

adaptive rank test by Xie and Priebe (2000), Xie and Priebe (2002), Kössler and Kumar (2008), Kössler

(2010) and others.

A study by Hao and Houser (2012) investigated the performance of the HFR test under different

sample sizes as well as optimizing some parts of the HFR algorithm. The study confirmed that, adaptive

procedures are substantially more powerful than MWW tests and t-tests and almost as powerful in other

cases. The study also confirmed that adaptive procedures exhibit improved power relative to t-test with

moderate size samples (say 20 ≤ n;m ≤ 40).

On the subject of Rank Test, O’Gorman (2012) stated that, quite a number of adaptive tests are

designed to make better the performance of estimation methods and significance tests. He called a sig-

nificance test adaptive, if the test procedure is altered and improved after collection and examination of

the data. As an example, in using a two-sample adaptive test, data is collected and selection statistics

to determine the test procedure to be applied are calculated. If the data seems to have a normal dis-

tribution, a Wilcoxon rank-sum test is used. If there are outliers contained in the data, then instead a

median test is used. Adaptive methods have more advantages compared to traditional tests. There is

observed to be little power loss to the traditional tests when adaptive methods are used in estimating

linear models with normal error distributions. For long-tailed or skewed error distributions, adaptive

methods are more efficient compared to traditional methods and the effect of outliers is automatically

decreased when adaptive methods are used.

Adaptive methods are constructed carefully in order to maintain their significance level and if that

is done properly the adaptive test will have a probability at or close to α, of rejecting the null hypothesis

when indeed the null hypothesis is true. Statistical properties of the adaptive methods are often superior

to the traditional methods hence they are often recommended for use. The Adaptive method is above all

very straightforward and practical.

Adaptive methods are said to be robust. There are two types of robustness, robustness for power

and size. When a test has high power compared to other tests and the assumptions of the distributions

are not met, it is said to be robust for power. On the other hand if a test maintains the actual level of

significance close to the nominal level then it is robust for size. Often, traditional tests with errors not

normally distributed are not robust for power but are robust for size.
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2.6.7 O’Gorman’s Adaptive Test

As a solution to an adaptive rank test problems, a non-rank based adaptive test was proposed by

O’Gorman (2001). This method makes use of a weighting adaptive scheme. In recent studies, many

variants of the non-rank based method are suggested to allow for increase in a tests power and allow

its usage in much more diverse models. The adaptive weighted test involves two simple steps. First,

observations in the model are assigned weights to generate residuals which can be said to have a normal

distribution. Secondly, a p-value is computed using a method of permutation. In theory, weighted least

squares ensures errors have equal variability. Weights are assigned to observations to make their errors

normally distributed. In the adaptive WLS method, extreme points are assigned smaller weights to de-

crease the effect of outliers. A p-value is computed using a method of permutation which in this case is

lower than p-values obtained from unequal variance and pooled t tests. The simulation study showcased

the fact that the t test losses power to the adaptive WLS test when distributions are non-normal. Both

tests, adaptive WLS tests and HFR tests have similar power for distributions that are skewed.

2.6.8 Büning’s Adaptive Test

For model

Z = ∆Ci + ei

where ei has density f and distribution F , the optimal score, ϕf (u) is given by

ϕf (u) =
f
′
[F−1(u)]

f [F−1(u)]

These are optimal in the sense that the corresponding test statistics are asymptotically efficient (Hettmansperger

and McKean, 1998). For example, Gastwirth (1965), Randels and Wolfe (1979), Büning (1994), and Bün-

ing (1996) proposed rank test based on scores corresponding to some selected distributions. They showed

that the scores below with the type of distribution in parenthesis have high power over their targeted

area of distribution (Büning, 2009).

Example 2.6.5 (Gastwirth test (Short Tails)).

a(k) =


k − N + 1

4
, k ≤ N + 1

4

0,
N + 1

4
≤ k ≤ 3(N + 1)

4

k − 3(N + 1)

4
, k >

3(N + 1)

4
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Example 2.6.6 (Kruskal-Wallis (Medium Tails)).

a(k) = k

Example 2.6.7 (Hogg Fisher Randles Test (Right Skewed)).

a(k) =


k − N + 1

2
, k ≤ N + 1

2

0, k >
N + 1

2
.

For left-skewed distributions interchange the terms k − N + 1

2
and 0 in the definition of the score

above.

As an efficient test for long tails, Büning (1996) proposed the Long tail (LT )-test with scores chosen

analogously to Huber’s Ψ -function referring to M -estimates.

Example 2.6.8 (LT-test (Long Tails)).

a(k) =


−N + 1

4
, k <

N + 1

4

k − N + 1

2
,

N + 1

4
≤ k ≤ 3(N + 1)

4
N + 1

4
, k >

3(N + 1)

4

A selector statistics S = (Q̂1, Q̂2) where Q̂1 and Q̂2 are Hogg’s measures of skewness and tailweight

defined by

Q̂1 =
Ū0.05 − M̄0.50

M̄0.50 − L̄0.05

and

Q̄2 =
Ū0.05 − L̄0.05

Ū0.50 − L̄0.50

where Ūλ, (M̄λ, L̄λ) denote the average of the largest (middle, smallest) λN order statistics in the com-

bined sample X(1) ≤ X(2) ≤ X(3) ≤ · · · ≤ X(N). Obviously, Q̂1 ≥ 0; Q̂1 < 1 if the data are skewed to the

left, Q̂1 = 1 if the data are symmetric and Q̂1 > 1 if the data are skewed to the right. Q̂2 ≥ 1, the longer

the tails the greater Q̂2, (Hogg, 1974).

Now, the follwing four categories which are based on S are defines as follows:

D1 =

{
S | 0 ≤ Q̂1 ≤ 2; Q̂2 ≤ 2

}
D2 =

{
S | 0 ≤ Q̂12; 2 < Q̂2 < 3

}
D3 =

{
S | Q̂1 ≥ 0; Q̂2 > 3

}
D4 =

{
S | Q̂1 > 2; 1 ≤ Q̂2 ≤ 3

}
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Büning (1996) proposed the following adaptive test A:

A =



G if S ∈ D1

KW if S ∈ D2

LT if S ∈ D3

HFR if S ∈ D4

,

where

G, KW, LT and HFR denote Gastwirth, Kruskal Wallis, Long Tail and Hogg, Fisher and Randles tests

respectively.

Figure 2.2: Büning’s Adaptive Scheme

For example if Q̂1 = 1.235 and Q̂2 = 3.3 then we have to apply LT -test.

The adaptive test above is based on the measures Q̂1 and Q̂2 calculated from the combined sample

X(1), X(2), X(3) . . . , X(N) in order to guarantee that the resulting test is distribution-free in the sense of

the Lemma. These scores are not standard so we will make use of the nine winsorised scores proposed

by Hettmansperger (1984) in this thesis.

2.6.9 Power of Adaptive Tests

Hogg et al. (1975) in a simulation study showed that their test maintains its level of significance and their

adaptive tests exhibited more power as compared to the traditional methods both parametric and non-

parametric nonadaptive. To demonstrate that the HFR method maintains its significant level, Lemma

is used. The test maintains a level of significance less than or equal to α, though the dataset is used in

obtaining the scores because the tests are distribution-free. Selector statistics and test statistic are also

independent. In addition, Hogg et al. (1975) proved the actual level of significance was approximately α,
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using 15 observations per group in a simulation study.

To demonstrate that adaptive tests are usually more powerful compared to the traditional methods for

error distributions that are not normal, O’Gorman (2012) makes a power comparison between the HFR

test and the pooled t-test for many error distributions using 100,000 datasets for individual distributions

and for each data set 15 observations were used. In this study by O’Gorman (2012), the tests power was

in the rejection proportions obtained from the number of null hypothesis rejected. In conclusion of his

study, the test obtained powers for both t-tests and HFR test with all error distribution. However, HFR

test showed more power over the t-test for a greater number of the distributions. The HFR test however

lost some power to the normal, uniform and bimodal error distributions. According to O’Gorman (2012),

tests based on ranks, make most sense when the datasets can be ranked. That is the HFR adaptive

test, Wilcoxon test among others. This data ranking proved to be a challenge of tests based on ranks

irrespective of their significance and other benefits. As an example, if two groups need to be compared

and a covariate introduced, it could be difficult to find an appropriate rank test.

2.6.10 Okyere’s Adaptive Test

Okyere (2011) extended Hogg’s adaptive test to Linear Mixed Models. A comparison was made among

four adaptive procedures, one parametric procedure and one nonparametric nonadaptive procedure. The

parametric procedure considered here is the maximum likelihood (ML) or restricted maximum likeli-

hood estimates (REML). The adaptive procedures such as Hogg-McKean adaptation on sample (HMS),

Hogg-McKean adaptation on residuals (HMR), Many ranking (MR) and Hogg-McKean-Ignoring-Center

(HMIC) adaptation on sample. For HMS procedure, adaptation is done on the sample from center to

center. Meta analysis is applied to formulate an overall test and estimate of the fixed effect parameter.

The HMR procedure adapts on residual from the robust Wilcoxon fit. Further analyses are similar to

HMS. The HMIC method ignores the centers and adaptation is done on the combined sample. The

theory, analysis of testing and estimating, and formal algorithm for HMR, HMS and HMIC were dis-

cussed. The fourth adaptive scheme is the rank-based many rankings (MR) fitting procedure. Under this

scheme, adaptation is obtained on the center-residuals of the initial fit of the linear mixed model. The

nonparametric nonadaptive procedure, called many rankings Wilcoxon (MRW) is similar to the many

ranking (MR) except that Wilcoxon score is used for each center.

In his work, he demonstrated that an adaptive procedure is applicable to mixed models under ex-

changeable errors. He indicated that besides the exchangeability assumption and the classification of

skewness and tailweight, no other condition is required. It was discovered that the adaptive scheme he

proposed are well behaved over a broad class of distributions ranging from heavy-tailed to light-tailed
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distributions and from symmetric distributions to skewed distributions. At normal distribution, based on

the simulations and numerical examples, the HMS is as efficient as the ML method. When the distribu-

tion of random errors are not normal, his adaptive schemes outperforms ML method. In particular HMS

and HMR are highly efficient for symmetric light tailed, right skewed heavy tailed and left skewed heavy

tailed distributions. The MR procedure and MRW seems to be conservative. The HMIC method did

not perform well among the adaptive procedures. The estimation procedures that have been developed

paved way for diagnostics checking of the fitted model.

2.6.11 Some Current Works on Adaptation

Afrifa-Yamoah et al. (2016) presented work on a robust procedure to fit Oneway ANOVA model under

adaptation on the observed samples. In their work, the data generated are assumed to have been derived

from unknown continuous distributions. The data were used to reveal the underlying distribution by

assessing the associated values for skewness and tailweight proposed by Hogg et al. (1975). This ini-

tial classifications will determine the specific scores functions on which inferences will be based. Simple

adaptive procedures established by Hogg et al. (1975) were used in the estimation of the scores and

were classified according to the family of winsorised Wilcoxon scores. Four procedures were considered

in their work. Three adaptive procedures and one parametric procedure. The adaptive procedures are

the Pure-Hogg where adaptation is done on the samples. They considered adaptation on residuals from

the ordinary least square (OLS) and Wilcoxon t. The F -test is the parametric procedure considered.

Simulation studies were performed to prove the dominance or otherwise of the adaptive procedures over

the parametric procedures over a wide range of continuous distributions.

The findings of the study revealed that although, the F -test displayed superiority in efficiency in

symmetric, medium and light tailed distributions, the adaptive test was more efficient in more broader

class of continuous distributions. The performance of these test at small sample sizes was of much impor-

tance because most sensitive areas of the application of oneway ANOVAmodel often has low sample usage.

Another study on adaptive robust profile analysis of a longitudinal data has been done by (Okyere

et al., 2018). In that study, a statistical test of significance concerning comparison of location of two

independent samples situated in a longitudinal data setting was considered to construct adaptive test for

testing group and time interaction in profile analysis. The study focused on the two dimensional selector

statistics S = (Q∗1, Q
∗
2) where Q∗1 and Q∗2 are respective measures for skewness and tailweight of the

unknown distribution function. The nine winsorised scores were considered as the most appropriate set

of rank scores for testing group and time interaction. From the simulations and real data analysis, the

adaptive appeared to be more efficient than the parametric ANOVA-F test for a class of nonnormal dis-
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tributions. The study and that of Büning (2009) among others consistently demonstrate the advantages

of adaptive tests over the traditional parametric tests nevertheless, adaptive tests are not frequently used

compared to the parametric ones.

Saleem and Sherani (2020) presented paper on Selecting and estimating rank score functions based on

residuals for linear mixed models. They indicated in their paper that the rank-based method is a robust

estimation method in the presence of outliers and performs as an alternative to Ordinary Least Squares

and Restricted Maximum Likelihood Estimate developed for linear models. This estimation method is

based on a pseudo norm established on score functions. The rank-based fit could be sufficiently improved

by selecting the accurate score function according to the underlying distribution of the error term. In

situation where the distribution of the error term is not known, the performance of two selection criteria

developed for linear models for a class of error distribution, thus, symmetric, asymmetric, light-tailed to

heavytailed distributions was investigated by their paper. The two selection schemes for random inter-

cept multilevel models with cluster-correlated error terms were evaluated. The selection of appropriate

score functions is made from a class of suitable score functions. The efficiency of each score function is

compared with other score functions by following the recommended shapes of error distributions. All the

score functions performed well when group size is 30 or more and the individual sample size is 5, 10, 30

and 50. Some of the score functions such as Bentscores1 and Bentscores3 show minimum standard error

among all other score functions even for the smallest sample size and its magnitude reduces as sample size

increases. Another criterion for choosing an appropriate score function is Hogg type adaptive scheme.

A simulation study is conducted based on the Hogg’s adaptive scheme was applied for several shapes of

distributions on the multilevel model. The efficiency of the rank-based fit with the selected score function

is compared with the Wilcoxon score based on minimum standard error. For the case of right-skewed,

moderately heavy-tailed and light-tailed distribution, selected fit from the adaptive scheme is more pre-

cise than Wilcoxon fit. For contaminated normal distribution selected fit is more precise in small sample

sizes only. In group size 30 or more, the selection of score function does not make a significant change in

standard error.

In sample size more than 900, almost for every score function, precision tends to reach 1. The results

indicate the significance of sample size at each level. Generally speaking, when the total sample size is

around 1000, rank-based fit through selected score function and by Wilcoxon fit produces quite similar

standard error of fixed effect estimates. The application of both selection schemes is illustrated through

an example of block design with cluster-correlated errors. All the score functions provided through both

selection procedures give good results in terms of lower standard error and unbiased estimates for multi-

level models compared with restricted maximum likelihood estimate.

The review of adaptive designs have generally indicated the efficiency of the adaptive schemes over
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their parametric and nonparametric non-adaptive tests. However, to the best of our knowledge much

work has not been done by extending adaptive scheme to the Gauss Markove model. In this study, an

adaptive scheme for estimating and testing fixed effects for Gauss Markov model is presented.
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CHAPTER THREE

METHODOLOGY
This chapter focuses on the methods of the adaptive procedures for the work. The rank-based test,

excchangeable random variables, estimation of the scale parameter, asymptotic relative efficiency and

adaptive statistical methods were discussed.

3.1 Rank Based Test

Consider the function

‖v‖ =
n∑
j=1

a[R(vi)]vi, vi ∈ Rn (3.1)

where a(j)′s are the scores such that a(1) ≤ a(2) ≤ · · · ≤ a(n)) and
∑
a(j) = 0 and R(vi) denotes the

rank of vi among the v1, v2, v3, · · · , vn and the scores at each observed data point is generated by

a(i) = ϕ

(
i

N + 1

)
(3.2)

It is assumed that a(j) = −a(n+ 1− j).

The rank-based procedures are used due to the fact that they are robust and the overall dispersion

function denoted D(∆) is convex. It is worth noting that the adaptation is performed at each observed

data points, since it has been established that at each observed data point, under H0 for the model

Zi = viδ + ei, 1 ≤ i ≤ n

the error measurements are exchangeable.

3.1.1 Norms

A norm is a nongegative function ‖.‖ defined on Rn such that

• ‖y‖ ≥ 0 for all y

• ‖y‖ = 0 if and only if y = 0

• ‖ay‖ = |a|‖y‖ for all real a and

• ‖y + z‖ ≤ ‖y‖+ ‖z‖
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Theorem 3.1.1. Suppose aj(1) ≤ aj(2) ≤ aj(3) ≤ · · · ≤ aj(n), and a(j) = −a(n + 1 − j), then the

function ‖.‖ϕ is a pseudo norm

Theorem 3.1.2 (Pseudo-norm). Suppose that a(1) ≤ a(2) ≤ · · · ≤ a(n),
∑
a(j) = 0 and a(j) =

−a(n+ 1− j). Then the function ‖.‖ϕ is a pseudo-norm if it satisfies the following four conditions:

• ‖u+ v‖ϕ = ‖u‖+ ‖v‖ϕ ∀ u, v ∈ Rn

• ‖αu‖ϕ = |α|‖u‖ϕ, ∀α ∈ R, u ∈ Rn

• ‖u‖ϕ ≥ 0 ∀u ∈ Rn

• ‖u‖ϕ = 0 if and only if u1, u2, u3, . . . , un

3.1.2 General Rank Scores

A set of rank scores, equation (3.2), are selected for a nondecreasing score function ϕ which is standardised

as ∫ 1

0

ϕ(u)du = 0

and ∫ 1

0

ϕ2(u)du = 1

The rank-based estimator of β is given by

β̂ϕ = Argmin‖Y −Xβ‖ (3.3)

where

‖v‖ϕ =
N∑
t=1

a(R(vt))vt, v ∈ RN (3.4)

A set of rank-based scores is generated by a function ϕ(u) defined on the interval (0, 1). It is assumed

that ϕ(u) is a square-integrable and, without loss of generality standardised as

∫ 1

0

ϕ(u)du = 0

and ∫ 1

0

ϕ2(u)du = 1

The generated scores are then

aϕ(i) = ϕ

(
i

n+ 1

)
(3.5)
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Because ∫ 1

0

ϕ(u)du = 0,

we may assume that
n∑
i=1

a[i] = 0

satisfying the pitman regularity.

For example, the Wilcoxon pseudo-norm is generated by the score function

ϕ(u) =
√

12

(
u− 1

2

)
(3.6)

and the sign score is generated by

ϕ(u)) = sgn

(
u− 1

2

)
. (3.7)

Hájek and Sidák (1967) showed that, in general, the optimal score function is

ϕ(u) = ϕf (u) = −f
′[F−1(u)]

f [F 1(u)]
(3.8)

The rank test considered in this thesis is of the form

Tϕ =

n∑
i=1

ϕ

[
R(Zi)

n+ 1

]
I(Zi = Yi) (3.9)

where

aϕ(i) = ϕ

(
i

n+ 1

)
,

aϕ(1), aϕ(2), · · · , aϕ(n) are scores and ϕ satisfies the following conditions

• ϕ nondecreasing function and square-integrable (0, 1)

• ϕ is differentiable on (0, 1)

Since ϕ is square integrable, we assume

∫ 1

0

ϕ2(u)du = 1,

see (Hettmansperger and McKean, 1998).

3.1.3 Jaeckel’s Dispersion Function

The geometry of rank-based estimation is similar to that of least squares. In rank based regression

however, the Euclidean distance is replaced with another measure of distance, the Jaeckel’s dispersion
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function defined by the rank based estimator of the shift parameter ∆ denoted by ∆̂ is given by

∆̂ϕ = Argmin‖Z − C∆‖ϕ (3.10)

Denoting the negative of the gradient of ‖Z − C∆‖ by Sϕ(∆) then based on equation (3.1)

Sϕ(∆) =
∑

aϕ[R(Xj −∆)] (3.11)

where ∆̂ϕ approximately solves the equation Sϕ(∆̂ϕ) = 0, see (Hettmansperger and McKean, 2011).

Thus, for each observed data, under the null hypothesis, the gradient of the rank test statistic is

Sϕ =

n2∑
j=1

aϕ[R(Xj)] (3.12)

Since the test statistic only depends on the ranks of the combined sample it is distribution free under the

null hypothesis. Thus

E0(Sϕ) = 0 (3.13)

and

σ2
ϕ = V0(Sϕ)

σ2
ϕ =

n1n2

n(n− 1)

n∑
i=1

a2(i)
(3.14)

where the variance can be expressed as

σ2
ϕ =

n1n2

n(n− 1)

{
1
n

∑n
i=1 a

2(i)

}
σ2
ϕ =

n1n2

n(n− 1)

(3.15)

the approximation is due to the fact that the term in braces is a Riemann sum of

∫ 1

0

ϕ2(u)du = 1

and hence converges to 1, a good source of information is found in (Hettmansperger and McKean, 2011).
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3.1.4 Asymptotic Distribution and Efficacy of ∆̂ϕ

To obtain the asymptotic null distribution of Sϕ using equation (3.12), it follows then that from equations

(2.21) and (2.22) the linear rank statistic is

Sϕ =
n∑
i=1

cia(R(Zi))

Sϕ =
n∑
i=1

(ci − c̄)a(
n

n+ 1
Fn(Zi))

(3.16)

where Fn is the empirical distribution function of Z1, Z2, . . . , Zn. The score function is monotonic and

square integrable. Now, let Tϕ be the random variable defined by

Tϕ =
n∑
i

(ci − c̄)ϕ(F (Zi)). (3.17)

Hence, comparing equations (3.16) and (3.17), it implies that Tϕ is an approximate of Sϕ. Consequently,

under H0 the distribution of Tϕ is approximately normal and has the same distribution as Sϕ on condition

that the second moment of their difference goes to 0, a good source of information is (Hettmansperger

and McKean, 2011). That is

V ar

[
Tϕ − Sϕ
σϕ

]
−→ 0;

hence, Sϕ is asymptotically normal with mean and variance given by the equations (3.13) and (3.14)

respectively. Hence an asymptotic level α test of the H0 : ∆ = 0 versus H1 : ∆ > 0 is reject H0 in favour

of H1 if

Sϕ ≥ zασϕ

where σϕ is defined by (3.14).

It is also assumed that f(x) has a finite Fisher information, This means that f is absolutely continuous,

non decreasing and square integrable ϕ(u) such that

0 ≤ I(f) =

∫ 1

0

ϕ2
f (u)du <∞

and

lim

(
n!

n

)
= λi

, 0 < λi < 1, i = 1, 2 and λ1 + λ2 = 1, see page 109 of (Hettmansperger and McKean, 2011). The square

integrable is defined as

ϕf (u) =
−f ′(F−1(u))

f(F−1(u))
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where f is uniformly bounded.

Defining the scale parameter τϕ as

τ−1
ϕ =

∫ 1

0

ϕ(u)ϕf (u)du

τ−1
ϕ =

∫ 1

0

ϕ(u)

[
−f ′(F−1(u))

f(F−1(u))

]
du

(3.18)

Since the error measurements are independently distributed, then for the asymptotic representation of

∆̂ϕ, the gradient Sϕ(∆) should satisfy the four conditions under subsection 3.1.4 for the observed data,

see Hettmansperger and McKean (2011). Hence Sϕ(∆) is non-increasing which satisfies the the first

condition. Thus, from equation (3.11)

Sϕ(∆) =
2∑
i=1

ϕ

[
n1

n+ 1
Fn1

(Yi −∆) +
n2

n+ 1
Fn2

(Yi)

]
(3.19)

where Fn1 and Fn2 are the empirical distribution functions of X1, X2, . . . , Xn1 and Y1, Y2, . . . , Yn2 respec-

tively, see (Hettmansperger and McKean, 2011). The second condition of subsection 3.1.3 is satisfied if

E[ 1
nSϕ(∆)] = µ(∆) and the µ

′
> 0. Now, from equation (3.19),

E

[
1

n
Sϕ(∆)

]
−→ λ2

∫ ∞
−∞

ϕ[λ1F (x) + λ2F (x−∆)]f(x−∆)dx

= λ2

∫ ∞
−∞

ϕ[λ1F (x+ ∆) + λ2F (x)]f(x)dx

E

[
1

n
Sϕ(∆)

]
= µϕ(∆) > 0

Differentiating µϕ(∆) and evaluating at ∆ = 0, to obtain an asymptotic efficacy results. This is illustrated

as follows;

µ
′

ϕ(0)|∆=0 = λ1λ2

∫ ∞
−∞

ϕ
′
[F (t)]f2(t)dt

= λ1λ2

∫ ∞
−∞

ϕ[F (t)]

[
−f ′(t)
f(t)

]
f(t)dt

λ1λ1

∫ 1

0

ϕ(u)ϕf (u)du

µ
′

ϕ(0)|∆=0 = λ1λ2τ
−1
ϕ > 0

The second condition of Pitman regular is thus satisfied.

For the third condtion to be met, the asymptotic linearity of Sϕ(∆) is given by

1√
n
Sϕ

(
δ√
n

)
=

1√
n
Sϕ(0)− τ−1

ϕ λ1λ2δ +Op(1) (3.20)

uniformly for |δ| ≤ B, where B > 0 and τϕ is as defined in equation (3.18). Finally, from condition 4 of
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subsection 3.1.3,

1√
n

Sϕ(0)√
λ1λ2

∼ N(0.1).

Thus, the efficacy of the test based on Sϕ found on page 111 of Hettmansperger and McKean (2011) is

given by

cϕ =
τ−1
ϕ λ1λ2√
λ1λ2

cϕ = τ−1
ϕ

√
λ1λ2

(3.21)

since the asymptotic efficiency is given by cϕ =
µ
′
(∆)

σ(0)
.

Theorem 3.1.3. Suppose Sϕ(∆) is a Pitman regular with efficacy cϕ, then
√
n(∆̂ − ∆) converges in

distribution to Z ∼ N

(
0,

1

c2ϕ

)
.

Thus, since the estimate ∆̂ϕ solves the equation Sϕ(∆̂) = 0, then, based on the Pitman regulrity and

theorem 3.1.4, the asymptotic distribution of ∆̂ is given by

√
n(∆̂−∆)

D−→ N(0, τ2
ϕ(λ1λ2)−1) (3.22)

By using equation (3.20) and Tϕ = 0 to approximate Sϕ = 0, we have the following result:

√
n∆̂ =

τϕ
λ1λ2

1√
n
Tϕ(0) +Oρ(1) (3.23)

We want to select scores such that the efficacy cϕ (3.21), is as large as possible, or equivalently such that

the asymptotic variance of ∆̂ is as small as possible.

3.2 Exchangeable Random Variables

Error measurements or observations are said to be exchangeable if they are considered independent

and identically distributed (i.i.d), or if they are jointly normal with identical covariances, see Good

(2002). Suppose the two-sample location problem is considered, where X
′

is are random sample, i.i.d with

continuous distribution function F (x) and Y
′

i s being random sample, i.i.d with distribution function

F (x −∆) with the hypothesis defined as H0 : ∆ = 0 versus H1 : ∆ 6= 0, then the exact test for H can

be obtained by transforming the variable by subtracting 0 from each of the X
′

is and ∆ from each of the

Y
′

i s. Thus, "a set of random variables X will be said to be transformably exchangeable if there exists a

transformation(measurable transformation) T , such that TX is exchangeable" see Good (2002).

Theorem 3.2.1. An infinite sequence of random variables (Y1, Y2, . . . , Yn, . . . ) is said to be infinitely ex-

changeable under probability measure P , if the joint probability of every finite subsequence (Yn1, Yn2, . . . , Ynk)
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satisfies (Yn1, Yn2, . . . , Ynk)
d
= (Yτ(ni), Yτ(n2), . . . Yτ(nk)) for all permutations τ defined on the set {1, 2, 3, . . . , k}

An infinite sequence of random variables is said to be infinitely exchangeable, if every finite sequence

of its variables (events) is exchangeable, see Mahmoud (2008).

Definition 3.2.1

The random variables ε1, ε2, . . . , εn, . . . are exchangeable if the n! permutations εk1, εk2, . . . , εkni have the

same ni-dimensional probability distribution. The variables of of an infinite sequence εni are exchangeable

if ε1, ε2, . . . , εni are exchangeable for each ni.

Let’s consider the white-blue Pólya’s urn. An urn containing b blue balls and w white balls. A ball drawn

at random is replaced together with k balls of the same colour. This process is repeated infinitely such

that

Wi =


1, if the ball in the ith draw is white

0, otherwise.

Thus, for the first three picks, the probabilities of all sequences with only 1 blue colour is given by;

P (W1 = 1,W2 = 1,W3 = 0) =
1

2
× 2

3
× 1

4
=

1

12

P (W1 = 1,W2 = 0,W3 = 1) =
1

2
× 1

3
× 2

4
=

1

12

P (W1 = 0,W2 = 1,W3 = 1) =
1

2
× 1

3
× 2

4
=

1

12

Similarly, the probabilities of all sequences of obtaining only one white ball in the

first three picks is given by

P (W1 = 1,W2 = 0,W3 = 0) = P (W1 = 0,W2 = 1,W3 = 0)

= P (W1 = 0;W2 = 0;W3 = 1)

=
1

12

Finally the probabilities of all sequences of the same colour in all three picks is

P (W1 = 1,W2 = 1,W3 = 1) = P (W1 = 0,W2 = 0,W3 = 0)

=
1

4

Suppose a ball drawn at random is replaced together with k balls of the same colour and this process is

repeated infinitely, then for the first five picks, we have P (1, 0, 1, 1, 0) = P (1, 1, 0, 1, 0) = P (1, 1, 1, 0, 0)

P (1, 0, 1, 1, 0) =
w

w + b
× b

w + b+ k
× w + k

w + b+ 2k
× w + 2k

w + b+ 3k
× b+ k

w + b+ 4k

P (1, 1, 0, 1, 0) =
w

w + b
× w + k

w + b+ k
× b

w + b+ 2k
× w + 2k

w + b+ 3k
× b+ 2k

w + b+ 4k
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P (1, 1, 1, 0, 0) =
w

w + b
× w + k

w + b+ k
× w + 2k

w + b+ 2k
× b

w + b+ 3k
× b+ k

w + b+ 4k

It can be seen that for all 5! permutations, the same distribution is obtained.

Theorem 3.2.2 (Lemma). If ε1, ε2, . . . , εni , . . . are independent and identically distributed, then they

are exchangeable, but not conversely.

In the example of Pölya’s Urn, the ε1, ε2, . . . , ε5, . . . are not independent but are exchangeable.

Generally, for W1,W2, . . . ,Wn being an arbitrarily large but fixed n ≥ 2 and there is a total of k

among the indicators that are 1, and the rest 0 occurring at positions 1 ≤ τ1 ≤ τ2 ≤ · · · ≤ τk ≤ n. Then,

the probability of this event is

P (W1 = 0, . . . ,Wτ1−1 = 0,Wτ1 = 1,Wτ1+1 = 0, . . . ,Wτk−1 = 0,Wτk = 1,Wn = 0)

=
1

2
× 2

3
× · · · × τ1 − 1

τ
× 1

τ + 1
× τ1
τ1 + 2

× τ1 + 1

τ1 + 3
× · · · × τ2 − 2

τ2
×

2

τ2 + 1
× τ2 − 1

τ2 + 2
× · · · × τk − k

τk
× k

τk+1
× τk − k + 1

τk + 2
× · · · × n− k

n+ 1

=
k!(n− k)!

(n+ 1)!

(3.24)

Conversely,

P [W1 = 1,W2 = 1, . . . ,Wk = 1,Wk+1 = 0,Wk+2 = 0, . . . ,Wn = 0]

=
1

2
× 2

3
× 3

4
× · · · × k

k + 1
× 1

k + 2
× 2

k + 3
× · · · × n− k

n+ 1

=
k!(n− k)!

(n+ 1)!

(3.25)

Comparing models (3.24) and (3.25), the probability of drawing k white balls in n draws is independent

of where in the sequence the white balls were drawn, see Mahmoud (2008). The characteristics of interest

is that there are k white balls and that all the sequences with the same number of balls have the same

probability.

Theorem 3.2.3 (De Finetti’s). Let ε1, ε2, . . . , εn, . . . be an infinite sequence of random variables. Suppose

that for any n, ε1, ε2, . . . , εn is exchangeable: P (ε1, ε2, . . . , εn) = P (ετ1 , ετ2 , . . . , ετn) for permutations τ

of (1, 2, 3, . . . , n). Then

P (ε1, ε2, . . . , εn) =

∫
{Πn

i=1P (εi/θ)}P (θ)dθ.

for some parameter θ, some prior distribution of θ and some sampling model P (εθ). The prior and

sampling model depend on te form of the belief model P (ε1, ε2, . . . , εn). θ is the parameter that describes

te conditions under which the random variables are generated.

The implication here is that any probability measure describing an exchangeable sequence that is in-

finite can be expressed as a mixture of independent and identically distributed (iid) probability measures.
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3.3 Estimation of the Scale Parameters

For a specific distribution, the optimum scores is selected such that the asymptotic efficacy Cϕ is "as

large as possible" or equivalently the asymptotic variance ∆̂ϕ "is small as possible", a good source of

information is Hettmansperger and McKean (2011).

The scale parameter τϕ is defined as

τ−1
ϕ =

1∫
0

ϕ(u)ϕf (u)du

=

1∫
0

ϕ(u)

{
− f

′
F [−1(u)]

f [F−1(u)]

}
du

(3.26)

ϕf (u) is referred to as the optimal score function. If ∆̂ is an estimator whose variance achieves the

Cramer-Rao lower bound (∀ ∆̂), it is called efficient.

That is;

var(∆̂) ≥

[
d

d∆
E(∆̂)

]2

nI(∆)
(3.27)

Thus for the jth observation in the kth sample, select scores with efficacies as large as possible or with

asymptotic variance τϕ as small as possible, see Hettmansperger and McKean (2011).

The proof of equation (3.26) is shown below

τ−1
ϕ =

1∫
0

ϕ(u)ϕf (u)du

=

1∫
0

ϕ(u)

{
− f

′
F [−1(u)]

f [F−1(u)]

}
du

=

1∫
0

ϕ(u)ϕf (u)du√
1∫
0

ϕ2
f (u)du

√
1∫
0

ϕ(u)du

√√√√√ 1∫
0

ϕf (u)du

=


1∫
0

ϕ(u)ϕf (u)du√
1∫
0

ϕ2
f (u)du× 1


√√√√√ 1∫

0

ϕf (u)du

= ρ

√√√√√ 1∫
0

ϕ2
f (u)du

τ−1
ϕ = ρ

√
I(f)
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where ρ is the correlation coefficient and
∫ 1

0
ϕ2
f (u)du is the Fisher Information denoted by I(f). Hence,

by the Cramér-Rao lowr bound, the smallest asymptotic variance obtainable is asymptotically efficient.

Thus, to maximise τϕ the score function is chosen such that ρ = 1 and ϕ(u) = ϕf (u), see (Hettmansperger

and McKean, 2011). Since ∆̂ϕ is location and scale equivalent, only the form f(x) is needed. Therefore

τϕ =
1√
I(f)

.

The resulting estimate ∆̂ϕ is asymptotically efficient, implying that τi is a consistent estimator for τ.

Hence for an estimator τ, the average of these estimators of tthe data is evaluated resulting in

τ =
1

j

j∑
i=1

τi

which is consistent for τ , see (Rashid et al., 2012)

3.4 Asymptotic Relative Efficiency

For any two test statistics that are consistent, P and Q, of any hypothesis H0, the asymptotic relative

efficiency is the ratio of sample sizes needed to get identical power against the same alternative H1, taking

the limit as the sample size n tends to infinity and as H1 tends to H0, according to (Hao and Houser,

2012). This implies that the asymptotic relative efficiency (ARE) lies in the interval (0,1) when the tests

are positive ie. ARE(P,Q) ∈ (0,∞). When ARE(P,Q) ∈ (0, 1) then the test statistic P is regarded

less efficient than Q, the test P is however considered efficient as the test Q when the ARE(P,Q) = 1,

lastly the test P is more efficient than the testQ when the ARE(P,Q) ∈ (1,+∞), (Hao and Houser, 2012).

Alternatively, let TP and TQ be two linear rank statistics based on the score generating functions P

and Q. Then the asymptotic relative efficiency (ARE) is given by

ARE(TP , TQ/f) =
AE(TP , TQ/f)

AE(TQ/f)
(3.28)

where AE(TP /f) and AE(TQ/f) are the asymptotic efficacies of P and Q respectively, see (Kössler, 2010).

The asymptotic relative efficiency between two tests or estimates based on the score functions ϕ1(u)

and ϕ2(u) or one function relative to other score function is defined by

e(ϕ1, ϕ2) =
C2
ϕ1

C2
ϕ2

=
τ2
ϕ2

τ2
ϕ1

(3.29)
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where Cϕ1
and Cϕ2

are respectively the efficacies of the two estimates and τϕi , i = 1, 2 are scale parameters

of the two score functions.

3.5 Adaptive Scheme

The Adaptive scheme is a two step procedure. The data is first examined and classified based on skewness

and tailweight from a class of continuous distributions. This is done through a selector statistic. Second,

by the classification, a test statistic which is independent of the selector statistic is selected and a test

conducted. This two-staged adaptive procedure maintains the level α for all continuous distribution

functions.

The procedures are as follows:

1 Let Y(1), Y(2) · · · , Y(N) be the combined ordered residuals of independent random samples Y11, Y12, · · · , Y1n1
, Y21, Y22, · · · , Y2n2

, Yn1, Yn2, · · · , Ynnk

from continuous distribution function f(t) with some amount of variations denoted by ∆ among

the samples, that is f(t−∆)

2 Adaptation is based on the residuals after an initial fit of the winsorised Wilcoxon scores on the

observed samples has been done.

3 The nine winsorised scores are incorporated and extended to the HFR test in the context of Gauss

Markov model.

4 Residuals will be obtained from an initial R-fit using Wilcoxon scores.

5 The residuals will be ordered and their distribution will be classified by using both Q∗1 and Q∗2.

6 Once the distribution of these residuals is classified, a corresponding score function will be selected

based on the scores presented in table 3.1.

7 After the selection of the score function, the model will be refit using this selected score function

and an inference such as estimates of parameters can be obtained.

3.5.1 Selector Statistics

The selector statistics aids in selecting score function, S = (Q∗1, Q
∗
2) where Q∗1 and Q∗2 are the respective

measures of skewness and tailweight. The measures of skewness and tail weight are defined respectively

by

Q∗1 =
(m(0.95, 0)−m(0.25, 0.25))

((m(0.25, 0.25)−m(0, 0.95))
(3.30)

Q∗2 =
((m(0.95, 0)−m(0, 95))

((m(0.5, 0)−m(0, 0.5))
(3.31)
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where m(α1, α2) = 1
h

∑n−t2
i=t1+1 Z(i) and

Z ′is are ordered residuals from an initial fit

t1 = [nα1]

t2 = [nα2]

[x] denotes the smallest integer greater than x

h = n− t1 − t2

We want to adapt on residuals, so the combined ordered residuals from an initial fit is used. The measures

of tail weight and skewness of the residuals are obtained by using Q∗1 and Q∗2 respectively.

In this thesis, the benchmarks proposed by Al-Shomrani (2003) as cited in Okyere (2011) for the cut

off values were used. These benchmarks depend on the sample size n.This is a modified version of Hogg

et al. (1975). However, as n→∞, the measures converge to those proposed by Hogg et al. (1975).

For Q∗1,

Lower cut off = 0.36 +
0.68

n

Upper cut off = 2.73− 3.72

n

(3.32)

For Q∗2,

if n < 25,

Lower cut off = 2.17− 3.01

n

Upper cut off = 2.63− 3.94

n

(3.33)

If n > 25, then

Lower cut off = 2.24− 4.68

n

Upper cut off = 2.95− 9.37

n

(3.34)

3.5.2 Winsorisation

Winsorisation is the transformation of statistics by limiting extreme values in the statistical data to

reduce the effect of possibly spurious outliers (Winsor et al., 1947). The distribution of many statistics

can be heavily influenced by outliers. A typical strategy is to set all outliers to a specified percentile

of the data; for example, a 90% winsorisation would see all data below the 5th percentile set to the

5th percentile, and data above the 95th percentile set to the 95th percentile. Winsorised estimators are

usually more robust to outliers than their more standard forms.

Consider the data set consisting of

92, 19,101, 58,1053, 91, 26, 78, 10, 13, -40,101, 86, 85, 15, 89, 89, 28,−5, 41
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(N = 20,mean = 101.5) The data is ordered as follows :

-40,−5, 10, 13, 15, 19, 26, 28, 41, 58, 78, 85, 86, 89, 89, 91, 92,101,101,1053

(N = 20,mean = 101.5)

For the given data the 5th percentile lies between −40 and −5, while the data above the 95th percentile

lies between 101 and 1053. Then a 90% winsorisation would result in the following :

-5, -5, 10, 13, 15, 19, 26, 28, 41, 58, 78, 85, 86, 89, 89, 91, 92,101,101,101

(N = 20, mean = 55.65)

3.5.3 Distinction between Winsorisation and Trimming

Winsorising is not equivalent to simply excluding data which is a simpler procedure, called trimming or

truncation. In a trimmed estimator, the extreme values are discarded. In a winsorised estimator, the

extreme values are instead replaced by certain percentiles. Thus a winsorized mean is not the the same

a trimmed mean. For instance,10% trimmed mean of the data will be obtained from :

−5, 10, 13, 15, 19, 26, 28, 41, 58, 78, 85, 86, 89, 89, 91, 92, 101, 101

(N = 18, mean = 56.5)

The nine Winsorised scores proposed by Hettmansperger (1984) were considered the most appropriate

set of rank scores for testing hypothesis. These could be classified into four generic scores. Thus,

ϕI(u)) =


s3, u > s1

s3 + s3−s2
s1

(u− s1), otherwise

ϕII(u) =


− s3s1 (u− s1), u < s1

− s4
s2−1 (u− 1) + s4, u > s2

0, otherwise

ϕIII(u) =


s2, u < s1

s3 + s2−s3
s1−1 (u− 1), otherwise

ϕIV (u) =


s3, u < s1

s4, u > s2

s3 + s4−s3
s2−s1 (u− s1), otherwise
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where s1, s2, s3,s4 and s5 are parameters and

ai(t) = ϕi

(
t

n+ 1

)
.

Table 3.1 shows the distributions and scores with their corresponding parameters.

Table 3.1: Winsorised Scores
Skewness Tail Weight Score Function
Left Light ϕLL = ϕII , with parameters (s1 = .15, s2 = 0.65, s3 = −1), s4 = 2
Left Medium ϕLM = ϕIII , with parameters (s1 = .3, s2 = −1, s3 = 2.0)
Left Heavy ϕLH = ϕIII , with parameters (s1 = .5, s2 = −1, s3 = 2.0)
Symmetric Light ϕSL = ϕII , with parameters (s1 = .25, s2 = .75, s3 = −1, s4 = 1)

Symmetric Medium Wilcoxon Scores, ϕSM =
√

12[u− 1
2 ]

Symmetric Heavy ϕSH = ϕIV , with parameters (s1 = .25, s2 = .75, s3 − 1, s4 = 1)
Right Light ϕRL = ϕII , with parameters (s1 = .9, s2 = −2, s3 = 1)
Right Medium ϕRM = ϕII , with parameters (s1 = .7, s2 = −2, s3 = 1)
Right Heavy ϕRH = ϕI , with parameters (s1 = .5, s2 = −2, s3 = 1)

Figure 3.1: Plots of the Nine Winsorised Scores

In the case of adaptation on residuals, initial fit is done. Then the residuals are used for the adaptation.

As shown in fig 3.1, 1− 3 represent Left skewed; Left-tailed (LL), Medium-tailed (LM), and Heavy-tailed

(LH). 4−6 are scores for Symmetric with various tailweights. Light-tailed (SL), Medium-tailed (SM) and

Heavy-tailed (SH). Finally 7− 9 represent scores for Right skewed with various tail weights; Light-taied

(RL), Medium-tailed (RM) and Heavy-tailed (RH).
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3.5.4 Adaptive Test and Test Statistics

Let’s define the regions based on selector statistic S corresponding to skewness and tailweight of a

distribution. The nine regions which depend on the selector statistics S = (Q∗1, Q
∗
2) are defined by:

D1 = LL = Q∗1 < Q̂∗1l, Q∗2 < Q̂∗2l

D2 = LM = Q∗1 < Q̂∗1l, Q̂∗2l < Q∗2 < Q̂∗2u

D3 = LH = Q∗1 < Q̂∗1l, Q∗2 > Q̂∗2u

D4 = SL = Q̂∗1l < Q∗1 < Q̂∗1u, Q∗2 < Q̂∗2l

D5 = SM = Q̂∗1l < Q∗1 < Q̂∗1u, Q̂∗2l < Q∗2 < Q̂∗2u

D6 = SH = Q̂∗1l < Q∗1 < Q̂∗1u, Q∗2 > Q̂∗2u

D7 = RL = Q∗1 > Q̂1u, Q∗2 < Q̂2l

D8 = RM = Q∗1 > Q̂∗1u, Q̂∗2l < Q∗2 < Q̂∗2u

D9 = RH = Q∗1 > Q̂∗1u, Q∗2 > Q̂∗2u

where Q̂1l∗, Q̂∗1u, Q̂∗2l, Q̂∗2u

are benchmarks from the ordered samples or residuals (Al-Shomrani, 2003). Each region identifies a type

of score with their corresponding parameters, see Table 3.1 for distributions with their classifications.

The regions are shown on figure 3.2.

Figure 3.2: Regions of Nine Winsorised scores

Let Dk and ϕk be a region and score selected respectively, with k = 1, 2, ..., 9. Then the adaptive test,
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AD(S, ϕ), is

AD(S, ϕ) = Tϕk , S ∈ Dk (3.35)

where

Tϕk(∆) =

n2∑
i=1

aϕk [R(yi −∆)] (3.36)

is a test statistics based on the ranks and score, ϕk, associated with region Dk and hence distribution-free.

Under H0, the mean of Tϕk(∆) is zero. Thus,

EH0 [Tϕk] =

n2∑
i=1

EH0 [aϕk(R(yi))]

=

n2∑
i

n∑
j=1

aϕk(j)
1

n

EH0
[Tϕk] =0

because the ranks of y′is are uniform on the integers 1, 2, 3, · · · , n and

n∑
j=1

aϕk(j) = 0.

Since EH0
[Tϕk] = 0, the variance of Tϕk is obtained as follows.

V arH0
[Tϕk] =EH0

[T 2
ϕk]

=

n2∑
i=1

n2∑
i′=1

EH0
[aϕk(R(yi)aϕk(R(yi′ ))]

=

n2∑
i=1

a2
ϕk(R(yi)) +

∑∑
EH0

[aϕk(R(yi))aϕk(R(yi′ ))]

=

[
n2

n
− n2(n2 − 1)

n(n− 1)

]
s2
a

V arH0
[Tϕk] =

n1n2

n(n− 1)
s2
a

where EH0 [a2
ϕk(R(yi))] =

1

n
s2
a, see Okyere (2011) for more details. From literature, AD(S, ϕ) is asymp-

totically distribution-free. This is because the selector statistic S is based on the order statistics only,

Tϕk-statistics is based on the ranks only and asymptotically critical values are used. Thus for the region

Dk, the corresponding asymptotic decision rule at level α is reject H0 if

∣∣∣∣∣ Tϕk√
V arH0(Tϕk)

∣∣∣∣∣ ≥ zα2
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3.5.5 Overall Test Statistic of Adaptation on Residual

Under H0, it is assumed that the errors in equation (2.14) are exchangeable, thus the order statistics of

the combined residual at each time point are sufficient and complete, (Okyere, 2011). In order to obtain

the test for the hypothesis after the appropriate scores had been selected, the test statistics for the j time

point is developed.

Let ϕkj be the score selected at the jth time point and falls in region k, then the test statistic for that

time point is

Tϕkj =

nh∑
i=1

aj

[
Rj(Y

(j)
i )

]
(3.37)

where Tϕkj has mean

E

[
Tϕkj

]
= 0

and variance

var

[
Tϕkj

]
=
n1nh
n− 1

n∑
l=1

a2
k(l)

see Okyere (2011) for details.

The test

Z =
Tϕkj√

var

[
Tϕkj

] (3.38)

is asymptotically standard normal and distribution free. Hence we pool the test statistic over time points

to obtain the overall test. Thus under H0, the overall test statistic, T is

T =
t∑

j=1

Tϕhj

T =
t∑

j=1

nh∑
i=1

aj

[
Rj(Y

(j)
i )

] (3.39)

which has asymptotic distribution, N(0, t). Hence for the test

H0 : ∆ =0

H1 : ∆ 6=0,

we have to reject H0 in favour of H1 if,

T =

∑t
j=1 Zj√
t

> Zα
2
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One of the challenges with this test statistic is that the Z ′js may cancel out when summing them over

time points so we consider |Zj |. Thus we reject the H0 if

|T | =

∣∣∣∣∣
∑t
j=1 Zj√
t

∣∣∣∣∣ > Zα
2

(3.40)
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CHAPTER FOUR

RESULTS AND DISCUSSION
This chapter focuses on simulation of some distributions and analysis of real data to confirm or otherwise

of the efficiency of the performance of the parametric tests and our adaptive scheme.

4.1 Simulation Results

Simulation for distributions with uncorrelated erros were conducted for Normal (Norm), Contaminated

Normal (CNorm), Logistic (Logis), Laplace (Lap), Lognormal (LNorm), Exponential (Exp), Cauchy

(Cau), Weibull (Wei), Mixture (Mixt) and Pareto (Par) distributions. For correlated errors, simula-

tion was performed for Normal, Laplace and Cauchy distributions. 10,000 simulations were conducted

for different sample sizes for each of the distributions to confirm or otherwise of the underlying error

distributions.

4.1.1 Classification Table

Table 4.1 displays the classification of (Q∗1, Q
∗
2) of distributions with uncorrelated errors for sample size

n1 = n2 = n3 = 100 for each of the distributions, where Q∗1 and Q∗2 are respective measures of skewness

and tailweight.

Table 4.1: Skewness and Tailweight Classification of Adaptive Test
Sel Stats Norm CNorm Logis Lap LNorm Exp Cau Wei Mixt Par

LH 0 0 0 0 0 0 1702 0 1507 0
LL 0 0 0 0 0 0 0 0 0 0
LM 0 0 0 0 0 0 0 0 0 0
RH 0 0 0 0 9939 2958 1508 2939 1409 10000
RL 0 0 0 0 0 0 0 0 0 0
RM 0 0 0 0 61 7042 0 7058 0 0
SH 5 9 2548 9898 0 0 6790 0 7083 0
SL 1 1 0 0 0 0 0 0 0 0
SM 9994 9990 7452 102 0 0 0 3 1 0

The Normal, Contaminated Normal, Logistic, Laplace, Cauchy and Mixture of distributions were all

symmetric but have different tail weights. The Lognormal and Pareto distributions were classified as

right skewed and heavy tailed. The Exponential and Weibull distributions were identified as right skewed

and medium tailed distributions. It is clear from Table 4.1 that as sample size n increases the skewness

and tail weight of the various distributions are identified. Equal sample size of 100 was used for each

of the distributions. It is worth noting that the normal and contaminated normal distributions were
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correctly classified to be symmetric and medium tailed by 99.94% and 99.90% respectively. The Laplace

distribution was correctly classified as symmetric and heavy-tailed by 98.98% and the Lognormal distri-

bution was 98.93% correctly classified as right skewed with heavy tail. The Pareto distribution on the

other hand was 100% classified as a right skewed and heavy tailed distribution.

4.2 Simulation Results for Distributions with Uncorre-

lated Errors

This section presents the results of 10,000 sumulations for the various continuous distributions under

uncorrelated errors. A comparison of the parametric F -test and adaptive test was made. The test

statistic of F is labelled (value) and the residual standard error (σ) were obtained for the F -test. For the

adaptive test, the underlying distribution (score),test statistic (value), scale parameters for the sample

(τs) and residual (τr) were as well obtained.

4.2.1 Normal Distribution

The normal distribution is useful because of the central limit theorem. In its most general form, under

some conditions (which include finite variance), it states that averages of samples of observations of

random variables independently drawn from independent distributions converge in distribution to the

normal, that is, become normally distributed when the number of observations is sufficiently large. The

probability density function (pdf) of the normal distribution is

f(x|µ, σ2) =
1

σ
√

2π
e
−

1

2

(
x− µ
σ

)2

,−∞ < x <∞

where

µ, the mean or expectation of the distribution (and also median and mode) is the location parameter and

−∞ < µ <∞

σ2 is the variance and

σ, the standard deviation is a scale parameter and σ > 0.

If X ∼ (µ, σ2), the cumulative distribution function (cdf) of X is

F ((x|µ, σ2)) =

∫ x

−∞

1

σ
√

2π
e
−

1

2

(
t− µ
σ

)2

dt
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The simplest case of a normal distribution is known as the standard normal distribution. This is a special

case when µ = 0 and σ = 1 , and it is described by this probability density function:

f(x) =
1√
2π
e
−

1

2
x2

Using the normal distribution with the location parameter µ = 0 and scale parameter σ = 1, under H0,

10,000 simulations were run for the various sample sizes. Table 4.2 displays the simulation results for the

Table 4.2: Normal Distribution
Sample Size F-Test Adaptive Test
(n1, n2, n3) Value σ Score Value τs τr
(5, 5, 5) 1.1716 0.9831 SH 2.2919 1.0601 1.0266
(10, 10, 10) 1.0788 0.9901 SM 2.1401 1.0297 1.0201
(15, 15, 15) 1.0507 0.9935 SM 2.1022 1.0274 1.0231
(20, 20, 20) 1.0367 0.9943 SM 2.0485 1.0302 1.0288
(25, 25, 25) 1.0237 0.9957 SM 2.0286 1.0307 1.0304
(30, 30, 30) 1.0138 0.9974 SM 2.0024 1.0292 1.0294
(50, 50, 50) 1.0049 0.9981 SM 2.0023 1.0293 1.0294
(100, 100, 100) 1.0201 0.9993 SM 2.0269 1.0271 1.0271

Normal distribution. The selector statistic for the adaptive test identified the normal distribution as a

symmetric and medium tailed distribution. The parametric F -test performed better than the adaptive

because the residual standard error (σ) reported are less than the estimated scale parameters of the

sample (τs) and residuals (τr) at all levels of the sample sizes considered. However, the two models

failed to reject the null hypothesis of no difference in level means at all sample sizes considered at 5%

significance level. The asymptotic relative efficiency (ARE) of the parametric F -test over the adaptive

test is between 91.7% and 94.7%. Thus, the normal ditribution is more efficient under the parametric

F -test than the adaptive test.

4.2.2 Logistic Distribution

The continuous random variable X is said to have a logistic distribution with parameters µ and σ > 0 if

its probability density function (pdf) satisfies

f(x|µ, σ) =
e
−
x− µ
σ

σ

(
1 + e

−
x− µ
σ

)2 , −∞ < x <∞

64

 

  

 

 



where µ, the mean, is a location parameter and σ > 0 is a scale parameter proportional to the standard

deviation. The cumulative density function of the logistic distribution is given by

F (x;µ, σ) =
1

1 + e
−
x− µ
σ

,


0 ≤ µ ≤ ∞

σ > 0

Using the Logistic distribution with a location parameter µ = 0 and scale parameter σ = 1, 10,000

simulations were carried out. The simulation results are shown in Table 4.3.

Table 4.3: Logistic Distribution
Sample Size F-Test Adaptive Test
(n1, n2, n3) Value σ Score Value τs τr
(5, 5, 5) 1.2139 1.7564 SH 2.3532 1.8070 1.7557
(10, 10, 10) 1.0733 1.7917 SM 2.1579 1.7645 1.7509
(15, 15, 15) 1.0571 1.7977 SM 2.1584 1.7483 1.7414
(20, 20, 20) 1.0367 1.8007 SM 2.1028 1.7446 1.7416
(25, 25, 25) 1.0263 1.8012 SM 2.0828 1.7469 1.7448
(30, 30, 30) 1.0328 1.8053 SM 2.0312 1.7483 1.7470
(50, 50, 50) 1.0067 1.8103 SM 1.9933 0.7459 1.7453
(100, 100, 100) 1.0056 1.8117 SM 2.0098 1.7413 1.7414

The adaptive test classified the logistic distribution as a symmetric and medium tailed distribution. From

Table 4.3, the F -test reported greater residual standard errors (σ) than scale parameters (τs) and (τr)

for sample sizes except the sample size 5 where σ reported less value than the τs. As a result, the

adaptive test performed better than the F -test even though the underlying distribution is symmetric and

a medium tailed. Both models however, failed to reject the null hypothesis at significance level of 5%.

The asymptotic relative efficiency of the adaptive test over the F -test ranges from 92.4% to 99.9%.

4.2.3 Laplace Distribution

The Laplace distribution is also known as double exponential distribution. This distribution is character-

ized by location µ (any real number) and scale λ (has to be greater than 0) parameters. The probability

density function of Laplace (µ, λ) is

f((x|µ, λ)) =
1

2λ
e

−| µ− x |
λ


.

Alternatively, the pdf of Laplace (µ, λ) is given as

f(x|µ, λ) =
1

2λ


e
−
µ− x
λ , ifx < µ

e
−
x− µ
λ , x ≥ µ
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The µ is a location parameter and λ > 0 , which is sometimes referred to as the diversity, is a scale

parameter. If µ = 0 and λ = 1 , the positive half-line is exactly an exponential distribution scaled by
1

2
.

Thus

f(x|µ, λ) =
1

2


ex

e−x
.

The probability density function of the Laplace distribution is also reminiscent of the normal distribution;

however, whereas the normal distribution is expressed in terms of the squared difference from the mean

µ, the Laplace density is expressed in terms of the absolute difference from the mean. Consequently, the

Laplace distribution has fatter tails than the normal distribution.

The cumulative density function looks even more impressive, yet rather easy to integrate because of the

absolute value in the formula

F (x|µ, λ) =


1

2
e
−
x− µ
λ , ifx 6 µ

1− 1

2
e
−
µ− x
λ , ifx > µ

.

The expected value of a Laplace distribution

E(X) = µ

As in the case of other symmetric distributions such as the Normal and the Logistic distributions.

Laplace’s location is the same as its mean, median and mode. The variance is

V ar(X) = 2λ2

Simulation results for 10,000 simulations carried out for Laplace distribution with the location parameter

µ = 0 and a scale parameter λ = 1 are displayed in Table 4.4.

Table 4.4: Laplace Distribution
Sample Size F-Test Adaptive Test
(n1, n2, n3) Value σ Score Value τs τr
(5, 5, 5) 1.1641 1.3535 SH 2.3008 1.2634 1.2377
(10, 10, 10) 1.0680 1.3856 SH 2.1494 1.1955 1.1915
(15, 15, 15) 1.0593 1.3958 SH 2.1568 1.1501 1.1496
(20, 20, 20) 1.0445 1.3988 SH 2.1604 1.1276 1.1270
(25, 25, 25) 1.0177 1.4048 SH 2.0619 1.1308 1.1305
(30, 30, 30) 1.0383 1.4050 SH 2.0784 1.1300 1.1301
(50, 50, 50) 1.0250 1.4063 SH 2.0568 1.1121 1.1120
(100, 100, 100) 1.0112 1.4112 SH 2.0220 1.0956 1.0955

The selector statistic for the adaptive test classified the Laplace distribution as a symmetric and heavy

tailed distribution. The adaptive test outperformed the F -test as the scale parameter for the adaptive

test (τr) is smaller than the F -test (σ). The asypmtotic relative efficiency of the adaptive test over the
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F -test is between 60.3% and 83.6%. At 5% or 1% significance level, the two tests failed to reject the null

hypothesis at all sample sizes under consideration.

4.2.4 Lognormal Distribution

A positive random variable X is log-normally distributed if the logarithm of X is normally distributed,

ln(X) ∼ N(µ, σ2).

A random variable X is said to have the lognormal distribution with parameters µ ∈ R and σ > 0 if

ln(X) has the normal distribution with mean µ and standard deviation σ. Equivalently, X = eY where

Y normally distributed with mean µ and standard deviation σ. The probability density function of the

lognormal distribution with parameters µ and σ is given by

f(x) =
1

xσ
√

2π
e
−

[ln(x)− µ]2

2σ2 , x > 0

The cumulative distribution function (cdf) of the lognormal distribution is

FX(x) = Φ

(
lnx− µ

σ

)

where Φ is the cumulative distribution function of the standard normal distribution (i.e.N(0, 1)). The

expected value of the lognormal distribution is given by

E(X) = e
µ+

1

2
σ2

and the variance

V ar(X) = (eσ
2

− 1)(e2µ+σ2

)

Using the lognormal distribution with location parameter µ = 0 and a scale parameter σ = 1, under H0,

10,000 simulations were conducted. Results for the simulation are presented in Table 4.5.

Table 4.5: Lognormal Distribution
Sample Size F-Test Adaptive Test
(n1, n2, n3) Value σ Score Value τs τr
(5, 5, 5) 1.1463 1.8080 RH 1.9577 0.9671 0.9663
(10, 10, 10) 1.0568 1.9121 RM 1.7346 0.8513 0.8599
(15, 15, 15) 1.0415 1.9783 RH 2.0403 0.7311 0.7353
(20, 20, 20) 1.0214 1.9874 RH 2.0129 0.6781 0.6755
(25, 25, 25) 1.0288 2.0203 RH 2.0420 0.6748 0.6712
(30, 30, 30) 1.0125 2.0398 RM 2.0243 0.6984 0.6951
(50, 50, 50) 1.0079 2.0753 RH 1.9625 0.6556 0.6528
(100, 100, 100) 0.9914 2.1125 RH 1.9459 0.6027 0.6026
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The selector statistic for the adaptive test identified the lognormal distribution as a right skewed and

heavy tailed distribution. The adaptive test performed better than the F -test per the values of the scale

parameter (τr) and the residual standard error (σ). The asymptotic relative efficiency of the two tests

are between 8.1% and 28.6%. Both tests however, failed to reject the null hypothesis of no difference in

level means at all sample sizes considered at 5% significance level.

4.2.5 Exponential Distribution

The continuous random variable X is said to have the exponential distribution with positive parameter

λ if its probability density function (pdf) is given by

f(x;λ) =


λe−λx, x ≥ 0

0, x < 0

The cumulative density function (cdf) of the exponential distribution is given by

F (x;λ) =


1− e−λx, x ≥ 0

0, x < 0

The expected value of the random variable X which has exponential distribution with positive parameter

λ is given by

E(X) =
1

λ

and the variance is

V ar(X) =
1

λ2

Under H0, 10,000 simulations were run for the exponential distribution with a scale parameter λ = 1.

The simulation results are shown in Table 4.6. The selector statistic for the adaptive test showed that

Table 4.6: Exponential Distribution
Sample Size F-Test Adaptive Test
(n1, n2, n3) Value σ Score Value τs τr
(5, 5, 5) 1.1735 0.9422 RH 2.1081 0.7123 0.7057
(10, 10, 10) 1.0874 0.9731 RM 1.7320 0.6302 0.6491
(15, 15, 15) 1.0415 0.9772 RM 2.0308 0.5913 0.6090
(20, 20, 20) 1.0347 0.9851 RM 2.0645 0.5660 0.5682
(25, 25, 25) 1.0410 0.9904 RM 2.0337 0.5672 0.5726
(30, 30, 30) 1.0132 0.9884 RM 1.9999 0.5586 0.5682
(50, 50, 50) 1.0129 0.9941 RM 1.9841 0.5534 0.5544
(100, 100, 100) 1.0112 0.9976 RM 1.9744 0.5250 0.5220

exponential distribution is a right skewed and medium tailed distribution. The estimated scale parameters

(τr) and τs indicate that the adaptive test performed better than the F -test because the estimated scale
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parameters reported less values than the residual standard error (σ) even though, both tests failed to

reject the null hypothesis at 5% or 1% significance level at all the sample sizes. The asymptotic relative

efficiency of the adaptive test over the F -test is between 27.4% to 56.1%.

4.2.6 Weibull Distribution

The Weibull distribution is a continuous probability distribution. The probability density function (pdf)

of a Weibull random variable X is given by

f(x;λ, k) =


k

λ

(
x

λ

)k−1

e
−

x
λ


, x ≥ 0

0, x < 0

where k > 0 is the shape parameter and λ > 0 is the scale parameter of the distribution. The form of the

density function of the Weibull distribution changes drastically with the value of k. For 0 < k < 1, the

density function tends to ∞ as x approaches zero from above and is strictly decreasing. For k = 1, the

density function tends to
1

λ
as x approaches zero from above and is strictly decreasing. For k > 1, the

density function tends to zero as x approaches zero from above, increases until its mode and decreases

after it. The density function has infinite negative slope at x = 0 if 0 < k < 1, infinite positive slope at

x = 0 if 1 < k < 2 and null slope at x = 0 if k > 2. For k = 2 the density has a finite positive slope at

x = 0. As k goes to infinity, the Weibull distribution converges to a Dirac delta distribution centered at

x = λ. Moreover, the skewness and coefficient of variation depend only on the shape parameter.

The cumulative distribution function (cdf) for the Weibull distribution is

F (x;λ, k) =


1− e

−

x
λ

k
, x ≥ 0

0, x < 0

If x = λ, then F (x;λ, k) = 1− e−1 = 0.632.

The expected value of the Weibull distribution is given by

E(X) = λΓ(1 +
1

k
)

and the variance as

V ar(X) = λ2

Γ

(
1 +

2

k

)
−

(
Γ

(
1 +

1

k

))2


Simulation results for Weibull distribution with the shape parameter k > 0 and a scale parameter λ = 1

are shown in Table 4.7. The underlying error distribution of the Weibull distribution was identified by the
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Table 4.7: Weibull Distribution
Sample Size F-Test Adaptive Test
(n1, n2, n3) Value σ Score Value τs τr
(5, 5, 5) 1.1757 0.9423 RH 2.0644 0.7075 0.7002
(10, 10, 10) 1.0605 0.9705 RM 1.7301 0.6291 0.6486
(15, 5, 15) 1.0598 0.9788 RM 2.0527 0.5945 0.6121
(20, 20, 20) 1.0154 0.9834 RM 2.0755 0.5643 0.5665
(25, 25, 25) 1.0306 0.9840 RM 2.0731 0.5641 0.5689
(30, 30, 30) 1.0252 0.9870 RM 1.9691 0.5590 0.5692
(50, 50, 50) 1.0183 0.9926 RM 2.0214 0.5530 0.5542
(100, 100, 100) 0.9953 0.9961 RM 1.9813 0.5252 0.5225

selector statistic as a right skewed and medium tailed. The adaptive test outperformed the F-test because

the estimated scale parameters (τs) and (τr) both reported less values than the residual standard error

(σ). It is worth noting that as the sample size increases the residual standard error (σ) increases whereas

the estimated scale parameters (τs) and (τr) decrease. Notwithstanding, both tests failed to reject the

null hypothesis at 5% or 1% significance level. The asymptotic relative efficiency of the adaptive test (τr)

over the F -test (σ) is between 27.5% and 56.2%.

4.2.7 Cauchy Distribution

The Cauchy distribution is a continuous probability distribution. The Cauchy distribution f(x;x0, γ)

is the distribution of the x-intercept of a ray issuing from (x0, γ) with a uniformly distributed angle.

It is also the distribution of the ratio of two independent normally distributed random variables if the

denominator distribution has mean zero. The Cauchy distribution does not have finite moments of order

greater than or equal to one; only fractional absolute moments exist. The Cauchy distribution has no

moment generating function. The Cauchy distribution has the probability density function (pdf)

f(x;x0, γ) =
1

πγ

[
1 +

(
x− x0

γ

)2
]

f(x;x0, γ) =
1

πγ

[
γ2

(x− x0)2 + γ2

]

where x0 is a location parameter, specifying the location of the peak of the distribution, and γ is the

scale parameter which specifies the half-width at half-maximum (HWHM), alternatively γ2 is full-width

at half-maximum. The special case when x0 = 0 and γ = 1 is called the standard Cauchy distribution

with the probability density function

f(x;x0, γ) =
1

π(1 + x2)
.
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The cumulative density function of Cauchy distribution is given by

F (x;x0, γ) =
1

π
tan−1

(
x− x0

γ

)
+

1

2
.

The Cauchy distribution is an example of a distribution which has no mean, variance or higher moments

defined. Its mode and median are well defined and are both equal to x0. The standard Cauchy distribution

was simulated 10,000 under H0. The results of the simulation are shown in Table 4.8.

Table 4.8: Cauchy Distribution
Sample Size F-Test Adaptive Test
(n1, n2, n3) Value σ Score Value τs τr
(5, 5, 5) 1.0899 26.2994 LH 2.0829 2.7886 2.7844
(10, 10, 10) 1.0320 39.1821 LH 2.2975 2.3935 2.4009
(15, 15, 15) 1.0158 44.0567 SH 2.1192 1.9799 1.9824
(20, 20, 20) 1.0171 64.7010 SH 2.0545 1.9060 1.9073
(25, 25, 25) 1.0109 61.5071 SH 2.0691 1.8858 1.8865
(30, 30, 30) 1.0104 76.9902 SH 2.0246 1.9384 1.9386
(50, 50, 50) 1.0076 64.0498 SH 2.0381 1.8584 1.8588
(100, 100, 100) 1.0076 110.054 SH 2.0110 1.7335 1.7339

The Cauchy distribution is identified by the selector statistic as a symmetric and heavy tailed distribution.

The adaptive test outperformed the traditional F -test as the estimated scale parameters (τr) and (τs)

reported by the adaptive test are smaller than the residual standard error (σ) reported by the F -test for

all sample sizes. Both tests however, failed to reject the null hypothesis of no difference in level means

at all the sample sizes at 5% or 1% significance level.

4.2.8 Contaminated Normal Distribution

Let Z be random samples drawn from normal distributions, I1−ε be a discrete random variable defined

by

I1−ε =


1, with probability 1− ε

0, with probability ε

and assume that Z and I1−ε are independent, see Hogg et al. (2013).

Let Q = ZI1−ε + σcZ(1− I1−ε), then by the independence of Z and I1−ε the cdf of Q is given by

FQ(q) = Pr(Q ≤ q)

FQ(q) = Pr[Q ≤ q, I1−ε = 1] + Pr[Q ≤ q, I1−ε = 0]

FQ(q) = Pr[Q ≤ q

I1−ε
= 1]Pr[I1−ε = 1] + Pr[Q ≤ q

I1−ε
= 0]Pr[I1−ε = 0]

FQ(q) = Pr[Q ≤ q](1− ε) + Pr[Q ≤ q

σc
]ε

FQ(q) = Φ(q)(1− ε) + Φ(
q

σc
)ε
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where σc is the standard deviation of contamination, I1−ε is the characteristics function, ε is the percentage

of contamination. Thus, the pdf of the contaminated distribution is given by

dFQ(q)

dq
= (1− ε)fQ(q) +

ε

σc
fQ(

q

σc
)

Simulation results for normal distribution with the location parameter µ = 0 and scale parameter σ = 1,

contaminated at 5%, 10%, 15% and 20% are displayed in Table 4.9. The underlying error distribution

Table 4.9: Contaminated Normal Distribution
Sample Size Level F-Test Adaptive Test
(n1, n2, n3) % Value σ Score Value τs τr
(5, 5, 5) 5% 1.1915 0.9795 SH 2.3221 1.0557 1.0211
(5, 5, 5) 10% 1.1755 0.9821 SH 2.2739 1.0558 1.0207
(5, 5, 5) 15% 1.2079 0.9777 SH 2.3325 1.0579 1.0227
(5, 5, 5) 20% 1.2075 0.9803 SH 2.3639 1.0583 1.0239
(10, 10, 10) 5% 1.0626 0.9894 SM 2.0979 1.0299 1.0191
(10, 10, 10) 10% 1.1050 0.9915 SM 2.1870 1.0320 1.0204
(10, 10, 10) 15% 1.1039 0.9896 SM 2.1712 1.0292 1.0204
(10, 10, 10) 20% 1.0744 0.9912 SM 2.1312 1.0294 1.0209
(15, 15, 15) 5% 1.0609 0.9926 SM 2.1151 1.0270 1.0229
(15, 15, 15) 10% 1.0496 0.9936 SM 2.1003 1.0271 1.0240
(15, 15, 15) 15% 1.0577 0.9939 SM 2.1007 1.0281 1.0245
(15, 15, 15) 20% 1.0589 0.9936 SM 2.1004 1.0271 1.0233
(20, 20, 20) 5% 1.0410 0.9945 SM 2.0631 1.0296 1.0281
(20, 20, 20) 10% 1.0306 0.9966 SM 2.0549 1.0325 1.0313
(20, 20, 20) 15% 1.0357 0.9955 SM 2.0460 1.0320 1.0307
(20, 20, 20) 20% 1.0307 0.9950 SM 2.0533 1.0294 1.0269
(25, 25, 25) 5% 1.0220 0.9972 SM 2.0182 1.0341 1.0335
(25, 25, 25) 10% 1.0210 0.9971 SM 2.0271 1.0348 1.0335
(25, 25, 25) 15% 1.0270 0.9980 SM 2.0416 1.0334 1.0331
(25, 25, 25) 20% 1.0256 0.9970 SM 2.0170 1.0345 1.0339
(30, 30, 30) 5% 1.0320 0.9962 SM 2.0514 1.0276 1.0275
(30, 30, 30) 10% 1.0232 0.9962 SM 2.0219 1.0283 1.0283
(30, 30, 30) 15% 1.0227 0.9964 SM 2.0371 1.0288 1.0286
(30, 30, 30) 20% 1.0203 0.9967 SM 2.0231 1.0282 1.0280
(50, 50, 50) 5% 0.9994 0.9975 SM 1.9847 1.0287 1.0286
(50, 50, 50) 10% 1.0024 0.9990 SM 2.0011 1.0295 1.0297
(50, 50, 50) 15% 1.0235 0.9986 SM 2.0327 1.0294 1.0295
(50, 50, 50) 20% 1.0204 0.9982 SM 2.0236 1.0297 1.0297
(100, 100, 100) 5% 1.0070 0.9989 SM 2.0026 1.0271 1.0272
(100, 100, 100) 10% 0.9908 0.9997 SM 1.9789 1.0279 1.0279
(100, 100, 100) 15% 1.0160 0.9990 SM 2.0254 1.0269 1.0269
(100, 100, 100) 20% 1.0003 0.9986 SM 1.9861 1.0267 1.0267

of Contaminated Normal distribution was classified by the selector statistic as a symmetric and heavy

tailed distribution when the sample is 5. The underlying error distribution for the remaining samples was

identified as symmetric and medium tailed. The F -test performed better than the adaptive because the

residual standard error (σ) reported for the F -test is smaller than the estimated scale parameters (τr)

and (τs) reported by the adaptive test. Notwithstanding, the two tests failed to reject the null hypothesis

at a significance level of 5% or 1%. The asymptotic relative efficiency of the F -test over the adaptive for

the sample size is between 91.6 % to 94.3%.
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4.2.9 Mixture of Distributions

In this subsection, 10,000 simulations of mixture of distributions for three samples were generated from

the Normal, Laplace and Cauchy distributions respectively and is shown in Table 4.10. The Normal

distribution was generated with the parameter µ = 0 and σ = 1. The parameters for the Laplace

distribution were µ = 0 and λ = 1 and the Cauchy with location parameter x0 = 0 and scale parameter

γ = 1

Table 4.10: Mixture of Distributions
Sample Size F-Test Adaptive Test
(n1, n2, n3) Value σ Score Value τs τr
(5, 5, 5) 1.1740 10.6971 SH 2.6740 1.6893 1.7001
(10, 10, 10) 1.0934 10.0139 LH 2.6780 1.6295 1.6261
(15, 15, 15) 1.0369 88.1010 SH 2.6322 1.5095 1.5088
(20, 20, 20) 1.0345 14.2196 SH 2.6094 1.4928 1.4922
(25, 25, 25) 1.0229 14.5802 SH 2.6327 1.5079 1.5082
(30, 30, 30) 1.0280 16.3163 SH 2.5979 1.5414 1.5415
(50, 50, 50) 1.0151 32.4284 SH 2.7024 1.5213 1.5211
(100, 100, 100) 0.9995 39.4103 SH 3.0333 1.4866 1.4865

The mixture of distributions was classified by the selector statistic as a symmetric and heavy tailed

distribution. The estimated scale parameters (τs) and (τr) suggest that the adaptive test outperformed

the F -test because both (τs) and (τr) reported less values than the residual standard error (σ) at all levels

of the sample sizes. However, with the exception of sample size (100, 100, 100) for the adaptive test, the

two tests failed to reject the null hypothesis of no difference in level means at 5% significance level.

4.2.10 Pareto Distribution

The results of 10,000 simulations for a Pareto distribution with the shape parameter α > 0 and a scale

parameter xm > 0 are displayed in Table 4.11.

Table 4.11: Pareto (Type 1) Distribution
Sample Size F-Test Adaptive Test
(n1, n2, n3) Value σ Score Value τs τr
(5, 5, 5) 1.0151 1.931751 RH 0.6143 3.753535 1.649351

(10, 10, 10) 1.0006 2.831056 RL 1.6782 2.865540 2.083240

(15, 15, 15) 1.0025 2.170659 RH 17.255 1.985443 3.223042

(20, 20, 20) 1.0003 5.460759 RH 61.172 1.104643 1.104643

(25, 25, 25) 1.0030 4.309456 RH 73.991 1.416040 6.096539

(30, 30, 30) 1.0016 9.094951 RL 66.600 2.273335 2.247935

(50, 50, 50) 1.0027 2.503258 RL 347.03 1.789941 3.899241

(100, 100, 100) 1.0010 7.756766 RH 2741.1 5.153249 5.153249

The selector statistic classified the underlying error distribution of a Pareto distribution as a right skewed

and heavy tailed distribution. The estimated scale parameters (τs) and (τr) suggest that the adaptive
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test is a better option than the traditional parametric F test because the estimated scale parameters (τs)

and (τr) reported less values than the residual standard error (σ). The adaptive test failed to reject the

null hypothesis of no difference in level means at sample sizes (5, 5, 5) and (10, 10, 10) but rejected the

null hypothesis at the remaining sample sizes at 5% or 1% significant level. However, the F -test failed

to reject the null hypothesis at all the sample sizes at 5% or 1% level of significance.

4.3 Simulation Results for Distributions with Corre-

lated Errors

In this section, simulation studies were conducted for the adaptive test and the repeated measures ANOVA

test. These two tests were compared under Normal, Laplace and Cauchy distributions. In the simulation

of the repeated measures data, consideration of three time points with three treatment groups were made.

Samples of equal sizes were generated for each treatment group at each of the time points. In each case,

intra-class correlation coefficients of ρ = 0.0, 0.3, 0.5, 0.75 were considered. At each time point, data was

generated under H0 for equation (2.13).

4.3.1 Normal Distribution

Using the normal distribution, under H0, 10,000 simulations were conducted for sample sizes 5, 10, 15 and

20 subjects each with correlation coefficient ρ being 0.0, 0.3, 0.5, 0.75. The results are displayed in Table

4.12. The selector statistics for the adaptive test identified the underlying error distribution of a normal

Table 4.12: Normal Distribution
Sample Size Corr F-Test Adaptive Test
(n1, n2, n3) ρ Value σ Score Value τ

0.00 57.378 0.977 SH 12.009 1.024
(5, 5, 5) 0.30 58.228 0.975 SH 11.977 1.022

0.50 60.094 0.975 SH 12.006 1.030
0.75 67.583 0.959 SM 11.672 0.995
0.00 102.038 0.990 SM 179.439 1.021

(10, 10, 10) 0.30 102.853 0.989 SM 181.592 1.011
0.50 105.369 0.986 SM 187.641 1.015
0.75 109.944 0.979 SM 229.992 0.991
0.00 148.685 0.993 SM 292.075 1.024

(15, 15, 15) 0.30 149.086 0.992 SM 292.339 1.026
0.50 151.293 0.991 SM 296.332 1.022
0.75 154.688 0.988 SM 314.040 1.002
0.00 194.333 0.996 SM 372.332 1.032

(20, 20, 20) 0.30 195.218 0.995 SM 374.670 1.030
0.50 197.545 0.993 SM 378.247 1.029
0.75 201.011 0.993 SM 397.022 1.014

distribution as a symmetric and medium tailed distribution as the sample size increases. From Table
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4.12, the parametric F -test performed better than the adaptive test at all the levels of the sample sizes

considered because the residual standard error (σ) reported less value than the estimated scale parameter

(τ) . Thus, it is confirmed that the parametric F -test is more efficient under normal distribution than

our adaptive test.

4.3.2 Laplace Distribution

Simulation results for Laplace distribution with the location vector µ and definite-postive k×k covariance

matrix (
∑

) are displayed in Table 4.13.

Table 4.13: Laplace Distribution
Sample Size Corr F-Test Adaptive Test
(n1, n2, n3) ρ Value σ Score Value τ

0.00 76.842 0.944 SH 206.132 0.887
(5, 5, 5) 0.30 78.560 0.940 SH 209.047 0.884

0.50 84.738 0.929 SH 224.142 0.878
0.75 94.936 0.924 SH 237.974 0.878
0.00 119.907 0.964 SH 342..521 0.849

(10, 10, 10) 0.30 120.031 0.972 SH 343.324 0.848
0.50 123.409 0.969 SM 354.430 0.844
0.75 126.324 0.968 SM 358.524 0.833
0.00 163.381 0.984 SH 507.221 0.822

(15, 15, 15) 0.30 165.608 0.983 SH 514.363 0.816
0.50 171.576 0.973 SH 525.284 0.813
0.75 178.682 0.907 SH 546.037 0.810
0.00 210.538 0.985 SH 677.762 0.801

(20, 20, 20) 0.30 213.086 0.983 SH 685.978 0.780
0.50 217.272 0.980 SH 688.290 0.800
0.75 222.108 0.980 SH 704.636 0.799

From Table 4.13, the selector statistics classified the underlying error distribution of the Laplace distri-

bution as a symmetric and heavy- tailed. The Laplace distribution performed better under the adaptive

test than the F test because the estimated scale parameter (τ) reported less value than the residual

standard error (σ).

4.3.3 Cauchy Distribution

Simulation results for Cauchy distribution with the location vector µ and a positive-definite of k×k scale

matrix sigma (
∑

) are shown in Table 4.14.

The selector statistic identified the underlying error distribution of Cauchy distribution as symmetric and

heavy-tailed distribution. However, at sample size 10 and intraclass correlation coefficient 0.30, 0.50, 0.75,

the selector statistic indicated left skewed and heavy tailed. From Table 4.14, it is clear that adaptive test

is a better option than the F test for a data known to have been generated from a Cauchy distribution.
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Table 4.14: Cauchy Distribution
Sample Size Corr F-Test Adaptive Test
(n1, n2, n3) ρ Value σ Score Value τ

0.00 13.782 21.512 SH 41.133 10.409
(5, 5, 5) 0.30 13.655 17.519 SH 42.421 5.821

0.50 15.125 16.961 SH 46.607 7.333
0.75 16.502 12.916 SH 48.872 5.503
0.00 12.956 20.028 SH 66.789 2.971

(10, 10, 10) 0.30 12.713 20.178 LH 68.602 2.795
0.50 13.382 19.474 LH 71.184 2.400
0.75 14.203 19.598 LH 76.273 2.364
0.00 12.439 35.722 SH 102.049 2.069

(15, 15, 15) 0.30 12.421 34.535 SH 104.162 2.048
0.50 12.785 33.594 SH 104.610 2.025
0.75 13.431 62.974 SH 110.002 2.012
0.00 12.500 26.679 SH 114.631 1.846

(20, 20, 20) 0.30 12.500 29.653 SH 142.210 1.870
0.50 12.673 75.662 SH 142.602 1.878
0.75 13.226 24.884 SH 143.318 1.896

In all the cases, the adaptive test reported less estimated scale parameter (τ) value than the residual

standard error (σ) so the adaptive test is more efficient than the parametric F -test.

4.4 Application of Adaptive Scheme

In this section, the adaptive scheme is applied to real datasets for one-way ANOVA and repeated measures

ANOVA to acsertain the efficiency of the two tests.

4.4.1 One-way ANOVA

In this subsection, analyses of real datasets on One-way ANOVA for equal and unequal sample sizes were

considered. The datasets for the equal sample size and the unequal sample sizes are shown in Appendices

A and B respectively.

Figure 4.1 clearly indicates that the assumption of normality of the pain refief data is not appropriate.

An outlier in Drug B is obvious.

The results of data in Appendix A is displayed in Table 4.15

Table 4.15: Time of Relief for Migraine Headache Sufferers
Sample Size F-Test Adaptive Test
(n1, n2, n3) Value p-value σ Score Value p-value τ
(9, 9, 9) 11.91 0.0003 1.089 SH 13.6881 0.0001 0.8788

The selector statistic classified the underlying error distribution of the data as a symmetric and heavy

tailed distribution. The adaptive test reported the less scale parameter (τ) value compared with residual

standard error (σ). Hence, the adaptive test is more efficient than the F -test. However, both models
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Figure 4.1: Time of Relief for Migraine Headache Sufferers

rejected the null hypothesis, H0. Thus, there are differences in mean time for the pain relief. The asymp-

totic relative efficiency (ARE) of the adaptive test over the F -test is about 65.1%

The result of the effect of four catalysts on concentration of a liquid mixture is presented in Table

4.16,

Table 4.16: Effect of Four Catalysts on Liquid Mixture
Sample Size F-Test Adaptive Test
(n1, n2, n3, n4) Value p-value σ Score Value p-value τ
(5, 4, 3, 4) 9.9157 0.0014 1.6971 SM 13.6749 0.0002 2.4666

The selector statistic classified the underlying error distribution of the data in Appendix B as a symmetric

and medium tailed distribution. The F -test performed better than the adaptive test because the residual

standard error (σ = 1.6971) is less than the estimated scale parameter (τ = 2.4666). Both tests however,

rejected the null hypothesis at 5% significance level. As a consequence, the four catalysts do not have the

same mean effect on the concentration. The asymptotic relative efficiency of the F -test over the adaptive

test is about 47.3%.

4.4.2 Repeated Measures ANOVA for One Sample

Repeated measures ANOVA for one sample in respect of small and large samples were considered in this

subsection. In each case, the ANOVA F -test and adaptive test were performed for with and without

outliers. The datasets are displayed in Appendices C and D respectively. Tables 4.17 and 4.18 show the

results of the ANOVA F -test and adaptive test of the pain tolerance measured under four different drugs

administered on four subjects.

From Table 4.17, the total error sum of squares of 83.5 if the dependency is ignored is split into two

components. The part which is due to individual differences (70.25) is removed from the error sum of
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Table 4.17: Repeated Measures ANOVA for Pain Tolerance under Four Differ-
ent Drugs

Source Df SS MS F p-value
Within-subjects Effect
Drug 3 50.25 16.75 11.38 0.002
Residuals 9 13.25 1.472
Between-subject Effects
Residuals 3 70.25 23.42

squares for the drug effect. The residual 13.25 reflects the differences between the four drugs. At 5% or

1% significance level, there is a significant change in pain tolerance under the four different drugs.

The adaptive test for the pain tolerance of the four drugs administered on the four subjects is pre-

sented in Table 4.18.

Table 4.18: Adaptive Test for Pain Tolerance under Four Different Drugs
Method Test Statistics σ or τ p-value Distribution (scores)
Adaptive Test 0.0672 1.3876 0.9981 SL(4),SM(5),SL(4),SL(4)
F -test 11.38 1.2133 0.002 Normal (Not Applicable)

The adaptive scheme displays the structure of the underlying error distributions of the data as Symmetric

and light-tailed for subjects 1, 3 and 4. The structure of the underlying error distribution for subject 2

is a symmetric with medium-tailed distribution, see Table 4.18.

The extract from Twisk (2013)as shown in (Appendix C) was contaminated as follows: Drug 1 for

subject 3 was recorded as 1.1. For drug 2 subject 2, it was recorded as 1.2 and drugs 3 and 4 were recorded

as 50 and 41 for subjects 4 and 3 respectively. The analyses of this data containing the outliers are shown

in Tables 4.19 and 4.20.

Table 4.19: Repeated Measures ANOVA for Pain Tolerance under Four Differ-
ent Drugs with Outliers

Source Df SS MS F p-value
Within-subjects Effect
Drug 3 612.4 204.1 1.025 0.427
Residuals 9 1792.8 199.2
Between-subject Effects
Residuals 3 376.8 125.6

From Tables 4.18 and 4.20, the adaptive tests for both the original data and the one with outliers are

not statistically significant under the null hypothesis H0. However, the p-values changed slightly. On the

other hand, the ANOVA F -test is statistically significant under null hypothesis H0 for the original data

(Table 4.17) but H0 was not rejected in the contaminated data (Table 4.19). This is an indication that

our adaptive scheme is insensitive to outliers. Hence, the adaptive test is robust for size when outliers

are found in the data.
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Table 4.20: Adaptive Test for Pain Tolerance under Four Different Drugs with
Outliers

Method Test Statistics σ or τ p-value Distribution (scores)
Adaptive Test 0.0710 5.2949 0.9978 SL(4),SM(5),SL(4),SL(4)
F -test 1.025 14.11 0.427 Normal (Not Applicable)

The data shown in Appendix D is an example of large sample size for repeated measures ANOVA for

One Sample. The result is displayed in Table 4.21.

Table 4.21: Repeated Measures ANOVA for Fatigue Time
Source Df SS MS F p-value
Within-subjects Effects
Time 4 5900 1474.9 16.48 9.23−08

Residual 36 3221 89.5
Between-subjects Effects
Residual 9 4359 484.3

The ANOVA F -test shown in Table 4.21 indicates the total error sum of squares of 7580 if the dependency

is ignored is split into two components. The part which is due to individual differences (4359) is removed

from the error sum of squares for the time effect. The residual 3221 reflects the differences between the

five-time points.

The result of the adaptive test for the data in Appendix D is displayed in Table 4.22

Table 4.22: Adaptive Test for Fatigue Time
Method Test Statistics τ or σ p-value Distribution (scores)
Adaptive test 2.5121 12.955 0.0146 SM(5),SL(4),SL(4),SL(4), RL(7)
F-test 16.48 9.460 9.23−08 Normal (Not Applicable)

As shown in Table 4.22, the adaptive scheme indicates that the structure of the underlying error dis-

tributions for responses on Minutes 3 is symmetric and medium-tailed (SM), Minutes 6, 9 and 12 are

symmetric and light-tailed (SL). For Minutes 15, it is right-skewed and light-tailed (RL).

From Tables 4.21 and 4.22, and at 5% or 1% significance level, the result is statistically significant. Thus,

H0 is rejected and we conclude that there is significant change in fatigue over time. The asymptotic

relative efficiency of the adaptive test over the F test is about 68.1%.

The data on balance error of fatique time measured over the 15 minutes period (Appendix D) was

contaminated as follows: For Min 3, subjects 6 and 9 were entered as 31 and 50, Min 6 and subject 4

was recorded as 1.8. For Min 9, subjects 1 and 2 were entered as 2.3 and 62. Min 12 had its entries

for subjects 3 and 5 as 3.1 and 2.8. Finally, for Min 15, subjects 6 and 10 were recorded as 6.5 and 5.7

respectively.

The analyses of the contaminated data are displayed in Tables 4.23 and 4.24.

From Tables 4.22 and 4.24, the adaptive tests for both the original data (p − value = 0.0146) and
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Table 4.23: Repeated Measures ANOVA for Fatigue Time with Outliers
Source Df SS MS F p-value
Within-subjects Effects
Time 4 1794 448.6 1.794 0.151
Residual 36 9000 250.0
Between-subjects Effects
Residual 9 2945 327.2

Table 4.24: Adaptive Test for Fatigue Time with Outliers
Method Test Statistics τ or σ p-value Distribution (scores)
Adaptive test 3.1112 8.8959 0.0035 RL(7),RL(7),SL(4),SL(4), RL(7)
F-test 1.794 15.0 0.151 Normal (Not Applicable)

the one with outliers (p − value = 0.0035), the null hypothesis H0 was rejected. However, there is a

slight change in their p-values. On the other hand, the null hypothesis H0, was rejected for the original

data (p − value = 9.23−08) under the ANOVA F -test (see (Table 4.21) but for the contaminated data

(p − value = 0.151), the null hypothsis H0 was not rejected as displayed in Table 4.23. This indicates

that ANOVA F -test is sensitive to outliers. Hence, the adaptive test is robust for size when outliers are

found in the data.

4.4.3 Repeated Measures ANOVA for Multiple Samples

Repeated measures ANOVA for multiple samples were performed on small and large samples. In each of

the examples, the ANOVA F -test and adaptive test were conducted for with and without outliers in this

subsection. Data on small and large samples are shown in Appendices E and F respectively.

Tables 4.25 and 4.26 display the results of the mean depression level for the repeated measures ANOVA

and the adaptive test respectively.

Table 4.25: Repeated-Measures ANOVA for Mean Depression Level
Source Df SS MS F P-value

Within-Subjects
Time 2 1.0 0.50 0.079 0.925

Group:Time 2 1736 868.2 137.079 5.44−09

Residuals 12 76.0 6.3
Betwwen-subject

Group 1 2542 2542 629.0 2.65−07

Residuals 6 24.3 4.05

From Table 4.25, the between groups test indicates that the variable treatment group is significant. Thus,

there is significant difference in mean depression level between groups. The within-subject test as well

indicates that there is a significant interaction effect between treatment group and time, that is, the treat-

ment groups are changing over time but they are changing in different directions. This can be inferred

from figure 2 that one group is increasing in depression level over time while the other group is decreasing

in depression level over time.
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Figure 4.2: Mean Depression Level

From Table 4.26, the adaptive scheme shows that the structure of the underlying error distribution for

Table 4.26: Adaptive Test for Mean Depression Level
Method Test Statistics σ or τ P-value Distribution (scores)
Adaptive Test 9.6009 8.1349 0.0004 SM(5),SL(4),SL(4)
F -test 137.079 2.51 5.44−09 Normal (Not Applicable)

the three-time points is symmetric and medium tailed for Week 1. The structure for the underlyng error

distribution for Weeks 2 and 3 are symmetric and light tailed.

The data in Appendix E was contaminated as follows: For Id 1 Group 1 Week 1, the entry was made

53. For Id 3 Group 1 Week 3 it was recorded as 81. Again, for Id 4, Group 1 Week 3, it was recorded as

51. Similarly, Id 5 Group 2 Week 2, 34 was recorded. Furthermore, Id 6 Group 2 Week 2, it was entered

as 64 and Id 7 Group 2 Week 3 was recorded as 5.1. Finally, Id 8 Group 2 Week 1 was recorded as 23.

The analyses of this data containing outliers are shown in Tables 4.27 and 4.28

Table 4.27: Repeated-Measures ANOVA for Mean Depression Level with Out-
liers

Source Df SS MS F P-value
Within-Subjects
Time 2 185 92.6 0.247 0.785
Gropu:Time 2 1116 557.9 1.49 0.264
Residuals 12 4493 374.4
Betwwen-subject
Group 1 294.7 294.7 0.101 0.335
Residuals 6 1606.5 267.8

From Table 4.27, in the presence of outliers, none of the tests was significant. This shows that ANOVA

F -test is sensitive to outliers because in the original data, interaction effect and group effect were sig-

nificant. As a result ANOVA F -test is not robust for size if a data contains outliers. On the contrary,

the adaptive test (Tables 4.26 and 4.28) maintained non significance for both the original data and the
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Table 4.28: Adaptive Test for Mean Depression Level with Outliers
Method Test Statistics σ or τ P-value Distribution (scores)
Adaptive Test 0.3849 13.7386 0.6852 LL(1),SL(4),SL(4)
F -test 1.490 19.3494 0.2640 Normal (Not Applicable)

contaminted one. Consequently, the adaptive test is robust for size.

The results of repeated measures ANOVA and adaptive test of the data on the pulse rate of partici-

pants during types of exercise (Appendix F) are displayed in Tables 4.29 and 4.30 respectively.

Table 4.29: Repeated Measures ANOVA for Pulse Rate of Participants
Source Df Sum of Squares Mean Squares F P-value
Within Subjects
Time 2 2067 1033.3 23.54 4.45−08

Exercise Type:Time 4 2723 680.8 15.51 1.65−08

Residuls 54 2370 43.9
Between Subjects
Exercise Type 2 8326 4163 27.0 3.62−07

Residuals 27 4163 154

From Table 4.29, the between subject test indicates that the variable exercise type is significant. The

within subject test indicates that there is significant time effect and interaction of time and exercise type

is significant.

Table 4.30: Adaptive Test for Pulse Rate of Participants
Method Test Statistics σ or τ P-value Distribution (Scores)
Adaptive Test 0.0601 11.5127 0.9417 SM(5),SM(5),RM(8)
F -Test 15.51 6.6257 1.65−08 Normal (Not Applicable)

The adaptive test, Table 4.30, indicates that the structure of the underlying error distribution for re-

sponses time 1 and 2 are symmetric and medium-tailed whereas Week 3 is a right-skewed and medium-

tailed.

The data in Appendix F was contaminated as follows: For the exercise type "rest", ID 2 and Time

1 was recorded as 9.0; ID 3 and Time 3, 49 was recorded and ID 7 and Time 2 was entered as 8. For the

exercise type "Walking leisurely" ID 17 and Time 1 the data was recorded as 130; ID 16 and Time 3 was

entered as 98 and ID 14 and Time 2 was recocrded as 69. For the exercise type "Running", ID 21 and

Time 3, ID 26 and Time 2 and ID 27 and Time 1 were recorded as 11, 162 and 10 respectively.

The analyses of the contaminated data with outliers are shown in Tables 4.31 and 4.32 respectively.

From Table 4.31, the interaction of time and exercise type is not significant. This goes to confirm that

ANOVA F -test is not robust in the presence of outliers. From the original data (Table 4.29), all the tests

were significant. However, the adaptive test remained robust for size with outliers in the data.
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Table 4.31: Repeated Measures ANOVA for Pulse Rate of Participants with
Outliers

Source Df Sum of Squares Mean Squares F P-value
Within Subjects
Time 2 2525 1262.5 2.50 0.0916
Exercise Type:Time 4 4288 1071.9 2.122 0.0906
Residuls 54 27275 505.1
Between Subjects
Exercise Type 2 8644 4322 7.668 0.0023
Residuals 27 15219 564

Table 4.32: Adaptive Test for Pulse Rate of Participants with Outliers
Method Test Statistics σ or τ P-value Distribution (Scores)
Adaptive Test 0.0172 10.2645 0.9830 LH(3),SH(6),SH(6)
F -Test 2.122 22.4744 0.0906 Normal (Not Applicable)

4.5 Covariance Structure

The variance-covariance matrices were computed for the mean depression level (W ) and pulse rate of

participants (V ), for data in Appendices E and F respectively. Thus,

W =


3.9821 −5.9107 −15.2679

−5.9107 150.9821 258.3393

−15.2679 258.3393 4705536


and

V =


37.8437 48.7885 60.2851

48.7885 212.1195 233.7609

60.2851 233.7609 356.3230


Four different covariance structures namely; compound symmetry (CS), unstructured (UN), first order

autoregressive (AR(1)) and autoregressive with heterogeneous variance (ARH(1)) are used to determine

the most suitable covariance structure for the data in Appendices E and F.

Four fit statistics; Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), loglikeli-

hood and number of covariance parameters were calculated for each of the covariance structures.

Table 4.33: Covariance Structure for Mean Derpression Level
Covariance No. of Covariance
Structure AIC BIC Loglikelihood Parameters
CS 105.9294 113.0524 −44.9647 8
Un 103.8572 114.5417 −39.9286 12
AR(1) 106.1264 113.2494 −45.0632 8
ARH(1) 108.7845 117.6882 −44.3923 10

From Tables 4.33, the most suitable covariance structure for the mean depression level is the unstructured
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(Un) because it has the minimum AIC value of 103.8572.

Table 4.34: Covariance Structure for Pulse Rate of Participants
Covariance No. of Covariance
structure AIC BIC loglikelihood Parameters
CS 612.8316 639.1706 −295.4158 11
Un 607.7365 643.6532 −288.8682 15
AR(1) 612.1163 638.4553 −295.0582 11
ARH(1) 605.7693 636.8971 −289.8846 13

The best covariance structure for the pulse rate of participants (Appendix F) is an Autoregressive

with heterogeneous variance (ARH(1)) because it has the minimum AIC value of 605.7693.
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CHAPTER FIVE

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS
This chapter presents the summary of the findings of the study, draws conclusions on the study and finally

make some recommendations to address the challenges of the usage of the adaptive scheme by researchers

and data analysts. The focus of this atudy is to find a robust adaptive scheme for Gauss Markov Model.

The adaptive scheme is a non-parametric whereas the Gauss Markov Model is a parametric statistics.

5.1 Summary

The researcher has been able to extend Hogg’s adaptive scheme to the Gauss Markov model. The Guass

Markov model belongs to the general classes of linear models. Several models commonly used in statistics,

according to Monahan (2008), are examples of the general linear model Y = Xβ + e These include, but

not limited to linear regression models and analysis of variance (ANOVA) models. Regression models

generally refer to those for which X is full rank, while ANOVA models refer to those for which X consists

of zeros and ones. Another area of application of Gauss Markov model is the analysis of covariance

(ANCOVA). The asymptotic properties of statistical estimates and tests solely rely on the Central Limit

Theorem, however, sample sizes are often not large as in clinical trials. The ANOVA-F test employs the

assumptions of normality, homogeneity of variance and large sample size of the data.

To overcome the problems of the assumptions of the ANOVA F -test, the adaptive scheme is adopted.

The two dimensional selector statistic S = (Q∗1, Q
∗
2) where Q∗1 and Q∗2 which are respective measures of

skewness and tailweight of the unknown distribtion function was employed for this work. The nine win-

sorised scores proposed by Hettmansperger (1984) as the most appropriate set of rank scores for testing

hypothesis and estimating statistics were used. The usage of the nine winsorised scores accommodated a

wide range of distributions which are either symmetric or asymmetric with varying tailweights as shown

in figure 3.1 and in Table 3.1

The procedures for the adaptive test are as follows

1 The combined ordered residuals are obtained from independent random samples from continuous

distribution function f(t) with some amount of variations denoted by ∆ among the samples, that

is f(t−∆).

2 Adaptation is based on the residuals after an initial fit of the winsorised Wilcoxon scores on the

observed samples has been done.
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3 The nine winsorised scores are incorporated and extended to the HFR test in the context of Gauss

Markov model.

4 Residuals were obtained from an initial R-fit using Wilcoxon scores.

5 The residuals were ordered and their distribution classified by using both Q∗1 and Q∗2.

6 Once the distribution of these residuals is classified, a corresponding score function was selected

based on the scores presented in Table 3.1.

7 After the selection of the score function, the model was refit using this selected score function and

an inference such as estimates of parameters were obtained.

To specify the cut off points for skewness and tailweight the benchmarks for cut-off values proposed by

Al-Shomrani (2003) which are dependent on the sample size for skewness as shown by equation (3.32),

and tail-weight by equations (3.33) and (3.34) were used. The R-package, Rfit by Kloke and Mckean

(2016) was used for the study.

5.2 Conclusions

From the 10,000 simulations for both uncorrelated and correlated error distributions, the structure of

the underlying error distributions were confirmed. Thus, the normal, contaaminated normal and logistic

distributions indicated symmetric and medium-tailed distributions. The other distributions considered

in this study showed either symmetric or asymmetric with varying tailweights.

Again, the simulations from other distributions which have symmetric or asymmetric with vary-

ing tailsweights such as Laplace, Lognormal, Exponential, Weibull, Pareto distributions and mixture of

distribution confirmed the superiority of the Adaptive test over the F -test because the estimated scale

parameters (τs) and (τr) on each occasion reported less value than the residual standard error (σ).

For the real data analyses, the Adaptive test exhibited its robustness in cases where datasets were

contaminated with outliers because the level of significance still remained close to one each other. How-

ever, the F -test displayed some weaknesses in the performance of such data. This results confirms the

study by Hill et al. (1988) when they used lung cancer data to demonstrate the dominance of their adap-

tive procedures over the parametric and rank based procedures when the size of each sample was at least

20.

The study further revealed that the adaptive test is suitable for any type of data irrespective of the

sample size and whether is it sampled from normal or non-normal population. A sample size as low as

15 is suitable for the adaptive test. This claim is evident in the simulation and the application of the
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adaptive scheme.

Finally, the relative efficiency of the two tests indicates that the adaptive test has an urge over a

broad class of distributions as compared to the Gauss Markove model which is a parametric test.

5.3 Recommendations

Based on the findings of the study and conclusions drawn therefrom, the following reccommendations are

made:

1. That adaptive test may be performed alongside the parametric tests and comparative efficiency

will inform a better choice of test.

2. That statisticians, researchers and data analysts are to be encouraged to use adaptive schemes as

an alternative to parametric tests because they are applicable to every data.

3. That adaptive test be extended to cover other research areas such as Aitken Model, time series,

factor analysis, growth curve analysis among others.

4. That the adaptive procedures be included in the common statistical software packages such as

Statistical Package for Social Sciences (SPSS), MINITAB among others.
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APPENDIX A
Three different pain relief drugs were administered on 27 patients suffering from migraine headache and

time of relief in minutes were recorded.

Table 1: Time of Relief for Migraine Headache Sufferers
Drug A Drug B Drug C

4 6 6

5 8 7

4 4 6

3 5 6

2 4 7

4 6 5

3 5 6

4 8 5

4 6 5

Source: Oehlert (2010)
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APPENDIX B
Four catalyts that may affect the concentration of one component in a three-component liquid mixture

are being investigated.

Table 2: Effect of Four Catalysts on Liquid Mixture
1 2 3 4

58.2 56.3 50.1 52.9

57.2 54.5 54.2 49.9

58.4 57.0 55.4 50.0

55.8 55.3 51.7

54.9

Source: Montgomery (2013)
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APPENDIX C
Four different drugs were administered on four subjects to measure their pain tolerance

Table 3: Pain Tolerance
Treatment

Subject Drug 1 Drug 2 Drug 3 Drug 4
1 5 9 6 11

2 7 12 8 9

3 11 12 10 14

4 3 8 5 8

Source: Twisk (2013)
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APPENDIX D
Measurements of balance errors were taken of 10 bicycle riders at five times levels of fatigue. Fatigue is

a within subjects with five levels. Subjects rode for 15 minutes divided into five 3-minute periods for the

purpose of collecting data.

Table 4: Fatigue Time
Time

Subject Min 3 Min 6 Min 9 Min 12 Min 15
1 7 7 23 36 20

2 12 22 26 26 20

3 11 6 9 31 25

4 10 18 16 28 37

5 6 12 9 55 65

6 13 21 30 10 11

7 5 0 2 37 42

8 15 18 22 16 11

9 0 2 0 32 57

10 6 8 27 70 40

Source: Davis (2002)

95

 

  

 

 



APPENDIX E
The data are measurements of depression level assessed under two treatment groups over 3 time periods.

Table 5: Mean Drepression Level
Time

Id Group Week 1 Week 2 Week 3
1 1 35 25 12

2 1 34 22 13

3 1 36 21 18

4 1 35 23 15

5 2 31 43 57

6 2 35 46 58

7 2 37 48 51

8 2 32 45 53

Source: Crowder and Hand (1990)
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APPENDIX F
The dataset consists of people who were randomly assigned to three different types of exercise:,at rest,

walking leisurely and running. Their pulse rate was measured at three different time points during their

assigned exercise at 1 minute, 15 minutess and 30 minutes.

Table 6: Pulse Rate of Participants
Time

Exercise Type ID 1 2 3
At Rest 1 85 85 88

2 90 92 94
3 97 97 14
4 80 82 83
5 91 92 91
6 83 83 83
7 87 88 90
8 92 94 95
9 97 99 96

At Rest 10 100 97 100
Walking Leisurely 11 86 86 84

12 93 103 104
13 90 92 93
14 95 95 100
15 89 96 95
16 84 86 89
17 103 109 90
18 92 96 101
19 97 98 100

Walking Leisurely 20 102 104 103
Running 21 93 98 100

22 98 104 112
23 96 105 99
24 87 132 120
25 94 110 116
26 95 126 143
27 100 126 140
28 103 124 140
29 94 135 130

Running 30 99 111 150

Source:Davis (2002)
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