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Abstract

Fingerprint emerged as an important system within the security agencies, government
offices and court of law in the late 19" century, when it replaced anthropometric
measurements as a more reliable method for identifying persons. No two
fingerprints have ever been found identical in billions of human and automated
computer comparisons. Fingerprint is thus claimed to outperform DNA and all other
human identification systems. However, genetic mutation and effect of certain drugs
have been found to influence changes in some of the fingerprint features but the
extent has not been modeled adequately. This study is aimed at studying these
potential differences from the effects of drugs. In the study, sample data in the form
of patient’s fingerprints are transformed to quantitative data for statistical analysis.
Two statistical approaches Gen Stats analysis and stochastic) are used. For the
stochastic approach, we describe absolute changes in fingerprints as function of selected
drugs and covariates patients’ age and duration of drug use. Fading fingerprint models for
cancer chemotherapy are described as optimal control problems and the maximum
level of toxicity store in the normal cells is represented by Pr(Ax) =1 - [1+ e/][1 + e/~
#4x]1 and this measures the swelling and expansion of the palm and consequently the
peeling of ridges. We also discuss optimal therapies when the controls represent the
effectiveness of chemotherapeutic agents, or, equivalently, when the simplifying
assumption is that drugs act instantaneously. In addition to this, we describe the
intensity of cancer with wi(t) = 2nr,Nog? the level of damage done to DNA and
PCR with fot wi(u)du = 2rir2g?fN(u)udu where drug usage is zero using stochastic
models, based on biological processes predicting future results in
fading fingerprint. We further established that the growth of cancer may be represented
by x = (1-q)8s-(1-r)Br+N((1-q)ps-(1-r)pr)>+4rqpspr> 0, where x is the ratio of
sensitive Killed-cells (S) to the resistant developed cells, R (that is, x = s/r). Thus, left
alone, cancer cells grow exponentially reaching the relative proportions S =XR. This
study has raised important medical issue of drug resistance and the maximum level
of penalty in drug usage beyond the resistant stage. The effect of cancer drug model
discussed here predicted the clinically established dandelion phenomenon and
suggested depleting ridges by cancer drugs. The implication arising from the study
suggests the need to avoid absolute reliance on fingerprint for identification and
financial transactions. Consequently, it is recommended that
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a policy be put in place to monitor and review fingerprint features of cancer
patients, and to incorporate other biometric characteristics (e.g. eye, gait) for
purposes of identification.
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1.0 INTRODUCTION

1. 1 BACKGROUND OF THE STUDY
It has been claimed that the ancient scientist were aware of finger print and used a kind of

fingerprint system thousand years ago. Before that, other anthropometric systems of
identification such as hair color or style, weight or eye color were used, these may change
in time. In earlier civilization, branding, tattooing or even maiming was used to mark and
identify criminals. Although man had been aware of the fact that each individual possessed
a unique set of ridges on the hands, the use of these prints for criminals identification was
not accepted until 1900’s. It was an English assistant commissioner of the Metropolitan
police force, Sir, Edward Henry who invented a standardized means of classifying human
fingerprints which has been used throughout most of the world. The Ghana Police Service
(Criminal Investigation Department), Bureau of National Investigation (BNI), Immigration
Service and many others use fingerprint mostly in identifying people. This enormous
collection is composed of both criminals and civil prints .The civil files include the prints
of both government employees and applicant for national jobs.

The validity of forensic fingerprint evidence has been challenged recently by academics,
judges and the media. While fingerprint identification was an improvement over the
years, the subjective nature of matching, despite a very low error rate has made forensic
practice controversial. Certain specific criticisms are now being leveled against by some
leaders of the forensic community providing an incentive to improve training and
procedures. Glenn Langenburg, who is a Forensic Scientist, Latent Print Examiner for the
Minnesota Bureau of Criminal Apprehension, is such an individual, having written an

article that responds to the most academic critics (www.en.wikipedia.org/wikilFingerprint).

The word reliability and validity have scientific meanings to the scientific community. Reliability
means successive tests bring the same result of an individual fingerprint with time. Validity
means that the results accurately reflect the external criteria (minutiae) being measured. Althaugh
experts are often more comfortable relying on their instincts, this reliance does not always
translate into superior predictive ability due to the effect of cancer drugs. Despite the absence of
objective standards, scientific validation, and adequate statistical studies, a natural question to ask

is how well
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fingerprint examiners actually perform to substantiate consistency of the same individual
fingerprint over time. (www.en.wikipedia.org/wikilFingerprint, 2008).

Experts’ testimony based on fingerprint evidence is delivered in a courtroom by
comparing salient features of a latent print lifted from a crime scene with those taken
from the defendant. A reasonably high degree of match between features is expected to
lead the experts to testify irrefutably that the source of the latent print and the defendant
are one and the same person. For decades, the testimony of forensic fingerprint experts
was almost never excluded from these cases, and on cross examination the foundations
and the basis of this testimony were rarely questioned. Central to establishing an
identity based on fingerprint evidence is the assumption of discernible uniqueness.
Salient features of successive prints of the same individual are observably the same. The
assumption of discernible uniqueness, although lacking sound theoretical and empirical
foundations, allows forensic experts to offer an unquestionable proof towards the
defendants’ guilt (Yongfang Zhu, Sarat, C. Dass, and Anil, K. Jain, 2008). To make
matter worse, forensic experts are usually not questioned on the uncertainty and natural
variations associated with their testimonials.

The fact that sequence of nucleotides in our DNA is as individual as our fingerprint, the
basis of a new method of identification depends on natural conditions. The effect of
DNA damage on replication and how frequently would an observable match between a
pair of prints lead to errors in the identification of individual with time has been
overlooked by experts. Genetic profiling was first used in evidence in the late 1980's to
establish the guilt of a murderer. Since then the technology has been the subject of
intense scrutiny in courts of law and in the media, and the term genetic fingerprint was
soon coined, but patterns on the skin or physical mapping of DNA has nothing to do with
it at all since fingerprint (though unique) is subject to fading due to possible effect of
certain drugs. The first case using genetic fingerprint proved a suspect who had
confessed to a rape and murder was declared innocent based on forensic interpretation.
Two girls had been raped and murdered in the same part of the country, but the crime had
been committed three years apart. Investigators suspected a connection between the two
and soon a suspect was cross examined. The suspect admitted to one of the crimes but

denied being
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involved with the other charge. Forensic scientists were called to analyze the latent fingerprint
lifted at the crime site and the fingerprint of the suspect was equally taken and both analyzed
and compared. Interestingly, the result exonerated the suspect who had initially
admitted to one of these charges. It would soon be revealed that the suspect was a
cancer patient and cancer drug had affected minutiae pattern analysis in his
fingerprint. Blood sample at the scene of the crime were picked and DNA profiling
was later resorted to which showed clearly that both crimes had indeed been
committed by the same suspect (Jenkins et al., 2003). The analogy is the uniqueness of
both set of fingerprint and a DNA profile. The technology of using biometric
fingerprint is particularly good for identifying culprits of violent crimes without
natural variations.

Several works had already been done on fingerprint, among these; some express the

existence of genetic fingerprint, individuality of fingerprint, analysis and comparing

fingerprint with verifying probabilities. None of these studies was able to gear towards

the changing trend in genetic mutation and environmental degradation that influence
genetic physical mapping of the DNA. Yet on consensus tool such fading fingerprint
model has emerged. One of the reasons behind the lack of consensus is that there has
been no systematic, large-scale open on genetic mutation and their statistical
distributions an fingerprint. It is in the light of this problem, that we have taken the pains
to investigate to prove the fading genetic fingerprint.

1.2 STATEMENT OF THE PROBLEM

Cancer drug erases and fades fingerprints, inflammation and blistering removes
fingerprint. Commonly used cancer drug makes patients fingerprint for identification
erases (http:/blogs.discovermagazine.com/discoblog/2009/05/27/cancer). A patient was

recently held by United State of America immigration officials for more than four hours
before he was allowed to enter the country upon investigating to find out that he was not a
treat to security. His doctor, Eng-Huat Tan from Singapore explained that his client, 62-year
old man had head and neck cancer but had responded well to capecitabine to help prevent the
cancer coming back. (http://www.smh.com.au/worldldrug-erase, (2008/04/16)
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Although the drug is commonly used to treat a range of cancers, it however
cause chronic inflammation of the palm over time and this leads to loss of
fingerprint.

(http://www.dailytelegrph.com.aullifestylinews/cancer drug). Although, the effect of certain
drugs has been found to influence changes in some of the fingerprint features, the extent
has not been modeled adequately. This study is however, aimed at studying these potential
differences from the effect of cancer drugs.

The e-zwich operates solely on fingerprint, and it is sensitive to any variation in the already
stored information on fingers. In the process customers are identified with their fingerprints
already stored so as to constantly carry out transaction. It is against the background of
future variation and fading fingerprint that the system is adopted to store information on all
the ten fingers even though, genetically, they contain the some information. Eventually, the
system anticipated variation and fading in fingerprint as a result of external factors such as
dirt and DNA damage, fingers are cleaned before prints are taken but variation and fading
emanating from DNA damage due to effect of cancer drugs still remain unaddressed. |
personally had an interview with a team of e-zwich officials who carried out registration
exercise at the University for Development Studies-Navrongo campus, and it was
confirmed that potential customers are sometimes denied of their own account.

1.3 SIGNIFICANCE OF THE STUDY

(1) The findings of the study are relevant to cancer patients who may have to use fingerprint in
their day to day activities.

(2)The findings of the study are useful to institutions such as Bureau of National
Investigation (BNI), Criminal Investigation Department (CID), Court of Law and other
agencies to combat crime.

(3) This work is equally important to Biometric Passport Officials, National Identification
Authority Officials, Immigration Officials and e-zwich agencies that operate fully on
fingerprint as personal identification.
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1.4 OBJECTIVE OF THE STUDY
An analysis of variation in fingerprint requires the development of appropriate statistical
models on the space of fingerprint variation that are able to represent all aspect of genetic
mutation. Statistical models of fingerprint are essential for a variety of task. For instance,
fading in fingerprint can be viewed as a message produced by a stochastic source and
understanding the statistical regularities of the source is essential for deriving the
necessary algorithms that used short code words for the most frequent changes. In this
work statistical models are essential in at least two main ways; (1) to model and
approximate the distribution of variation scores. (I1) to assess the significance against
chance of fading where chance can be defined in several ways. The problem of
establishing fading estimate based on fingerprint is in contrast to DNA typing error due to
genetic mutation.
The act of acquiring fingerprint impressions as well as conditions of physical finger itself such
as cuts, bruises and distortions as well as biological mutagenic and chemical physiology that
permit fading ridges introduces several errors.
The study objectives may therefore be summarized as:

e To investigate the effect of cancer drugs on changes in patients finger print

e To find the probability of change in ridge pattern among cancer patients

e To estimate and compare the fading rate of major class of drugs used by cancer

patients

2.0 LITERATURE REVIEW

2.1 Introduction

Some people regard fingerprint practice as a closed discipline. Existing works on fingerprint
identification are centered on analysis and individuality.

Perhaps the most analysis method for assessing fingerprint is chromosome walking. In
this case, a starter clone is used as a probe to isolate overlapping clones from human gene.
Hybridizing clones are analyzed and those extending from the original clone are
identified. A more recognized approach was developed by Birkenbihl and Vielmetter
(1997). They hybridized
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filters containing an array of E. coli clone using whole cosmid clones from the array as
probes. The multiplex method used by Evans and Lewis is another adaptation of
chromosome walking to an ordered array of clones. The principle is to hybridize probes
derived from every clone with all others in the clone collection.

Instead of repeatedly rescreening a library, a number of alternative methods for overlap
assembly have been devised. These allow large number of randomly clone picked to be
analyzed and matched. A fingerprint for each clone is produced which can be stored in
the database on computer. The software will then compare the fingerprint of a clone pair
wise with all other clones in the database, looking for similarities. The method used by
Olson et al.; (1997) for creating a Saccharomyces cerevisiae ordered library was to
digest DNA from randomly picked clones with a combination of Eco RI and Hindlll
and separate the fragment by agarose gel electrophoresis. Fragments between 0.4 and
7.5kb in size were entered into the computer using a digitizer and the patterns generated
by each clone compared pair wise with other clones. Coulson et al., (2001) followed a
comparable approach in his work on Caenorhabditis elegans. However, the sensitivity
of the procedure was improved by using the superior resolution of sequencing - style
denaturing polyacrylamide gels and introduced greater automation for data input. He
digested DNA from individual clones with Hindlll and end-labeled with dATP using
reverses transcriptase. After inactivating the enzyme, he performed a second digest with
Sau3A, fractionated the DNA on a 4% denaturing polyacrylamide gel, dried and
autoradiographed the gel. This produced a pattern of perhaps 20 bands on average,
which was sized by comparison with marker track (DNA digested with Sau3A). The
data on the autoradiograph were into the computer using a densitometric scanner. Each
band was then accepted or rejected using interactive image analysis software in order to
exclude artifactual band. As with Olson’s method, each clones compared with each
other clone and the probability of the match being due to chance was calculated. An
automatic contig assembly program can be used where a threshold probability is given.
However, it was recommended that fingerprints are also checked manually using the
calculated probabilities as a guide.

Carrano et al., (1996) described a similar method, but they labeled the ends with
fluorochrom thus allowing detection by an automated DNA sequencing apparatus, and
hence facilitating direct entry of the data into a computer. Sample sequencing is a

novel variation of Coulson’s
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work which has recently been suggested by Brenner and Livak, (2000). Both works by
Carrano and Coulson are limited in that the only information recorded for each band is its
size.

The maximum number of possible bits of information is therefore determined by the
resolution of the gel. Although an automated sequencing machine was used, manual
sequencing with radioactivity can also be used.

Instead of analyzing the patterns produced following restriction enzyme digestion of clones,
Craig et al., (1998) fingerprinted clones by hybridizing short oligonucleotides to an array of
cosmid DNA clone to a filter.

There have been few studies that addressed the problem of fingerprint individuality using
statistical models on fingerprint features. All these studies utilized minutiae features in
fingerprints (both location and direction) to assess individuality. However, the
assumptions made in these studies did not satisfactorily represent the observed variation
of the features. For example, it is known that fingerprint minutiae tend to form clusters
but Pankanti et al., (2000) assumed a uniform distribution on minutiae location and
direction which was then corrected to match empirical results from the database used in
their studies. Another assumption made by Pankanti et al., (2002) is that minutiae
location is distributed independently of the minutiae direction. However, minutiae in
different regions of the fingerprint are observed to be associated with different region-
specific minutiae direction. A minutia is the location of a ridge anomaly in a fingerprint.
Wu, Jin Chu and Michael (2006) worked on nonparametric statistical data analysis of
fingerprint minutiae exchange with two finger fusion. The utility of this method was
demonstrated through analyzing results from minutiae exchange with two finger fusion.
They focused their analysis on high accuracy vendors and the two modes of matching
standard fingerprint templates; native matching where the same vendor generates the
templates and the matcher. They also introduced scenario 1 interoperability where vendor
A’s enrollment is matched to vendor B’s matcher. The study demonstrated the utility of
applying nonparametric inferential statistics to biometric test results. One main advantage
of this approach was that, since there is no underlying distribution model for fingerprint
data, the statistical analysis data could be modeled independently. This method is
applicable on small sizes of samples and when the availability of samples is limited

where the normal distribution cannot be applied. However,
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the statistics invoked in their study were too inferential rather than descriptive. In this way,
properties of the population were inferred from the sample which lack potentially
descriptive insights with focus on individuals in the sample rather than inferred.

Several probabilistic models for developing drug effects on cells exist in the literature.
For example, in one of the early classical work Codman and Goldie, (1983) the tumor
size was analyzed as a stochastic process and the probability no resistance cell was
maximized. More recently, a probabilistic model for the evolution of the drug sensitive
cancer subpopulation from a single mutational cell was formulated and analyzed
numerically Westman et al., (2002). Furthermore, a broad class of models which describe
drug resistance not as a single mutation event, but as a branching process, has been
developed ,for instance ,in Hamevo, Agur, Kimmel and Axelrod, (1991). Corresponding
infinite-dimensional deterministic model have also been formulated and analyzed by
Swierniak et al., (1995). However, due to the high dimensionality, these models often
allow limited analysis. Serwa et al., (2010) worked on fingerprint of children under one
year (Africa Centre Site). She demonstrated the feasibility of fingerprint -based
individual identification for population based research in developing countries.
According to her there is a record linkage between demographic surveillance population’s
database and healthcare facility data based on biometric identification. In her work,
fingerprint of children under one year varied between 94.1% to 96.7% and by age 5,
children fingerprint enrolment rates were comparable to those of the adults.

2.2 Cancer Drug and Effects

The objective of cancer drugs is to kill cancer cells with as little damage to normal cells.
In malignant tumors, it is obvious to see many cancer cells being divided, so that many
cancer drugs are designed to interfere with cell proliferation, often by blocking synthesis
of DNA, RNA or protein. One major class of cancer drugs is that of the alkylating agent.
This kind of drug binds to DNA and chemically modifies it, interfering with replication
and transcription Tripathi, (2008). Chemically, methotrexate, a folic acid antagonist
inhibits the enzyme dihydrofolate reductase and prevents transfer of methyl groups in
biosynthetic reactions, including synthesis of deoxythymidine in DNA. The use of 5-
Fluirouracil serves as an analogue of thymine and prevents DNA synthesis by inhibiting
thymidylate synthetase. A limiting factor
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in cancer drugs is its toxicity to normal tissues. If whole body could be exposed to
12,000 centi-Gray of ionizing radiation, every cancer cell would be killed Tripathi,
(2008). Unfortunately such drugs would also kill the patient. Since the major constituent
of living cells is water, exposure of them to ionizing radiation such as x-ray or v-rays
will result in hydroxyl radical production Tripathi, (2008) OH (hydroxyl) is responsible
for a large part of the damage done to cellular DNA. Single and double strand breaks in
DNA are considered to be very important damaging events. In this case, a predictive
mathematical model for the effect of cancer drugs hypothesis is used to understand
PCR responses to cancer drugs and judge the efficacy of cancer treatment. The
importance of drug efficacies on different abnormal cell population is investigated
through the Kinetics associated with their effect to therapy, results and fading
fingerprint. The model discussed here aims at predicting the clinically established
dandelion phenomenon.

Recent models for cancer therapy are cell-specific and treat the cell cycle as an object
of control. Each cell passes through a sequence of phases from cell birth to cell
division. The starting point is the growth phase Gi after which the cell enters a phase S
(synthesis phase) where DNA synthesis occurs. Then a second growth phase G» takes
place in which the cell prepares for mitosis or phase M. Each of these two daughter
cells can either reenter phase G1 or for some time may simply lie dormant in a separate
phase Go. These distinctions are important since most cancer drugs are active in a
specific of the cell cycle. Drug treatment influences the cell cycle in many ways. The
most fundamental aspect is cell-killing but also blocks other agents from playing
reversal roles. Blocking agents slows down the transition of the cell through the cell
cycle and thus impedes on the tumor’s growth while recruitment agents make cancer

cells leave the dormant stage Go where they are not susceptible to any drug.

3.0 METHODOLOGY

3.1 DATA

3.1.1 Patients selection and Fingerprint Data Collection
Fingerprint data for the study were obtained from cancer patients at Komfo Anokye Teaching

Hospital, Kumasi Ghana. Participation in the test was voluntary. Patient’s medical history
such as the type of drugs used and method of medication were recorded. In addition to this,

patient’s
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age, cancer duration, and drug use duration were recorded. Besides these variables,
patient’s fingerprints were taken and recorded by print A. The second fingerprints were
taken after six months of the first fingerprint and denoted by B. The reason for taken the
second fingerprint after six months interval was to see whether there would be change
(fading) in patients fingerprint as they continue to use the drugs. This is resistance stage
where sensitive cells are killed but resistant cells continue to exist and cancer treatment
beyond this stage increases toxicity in the cells causing fading in ridges.

3.1.2 SAMPLE DATA

The sample data (Figure 1) collected (fingerprints) were scanned and enlarged so that
spaces between ridges were visible. The resulted enlarged sample data was printed out
for measurement. A pair of divider and ruler was used to measure distance between two
successive ridges in the first fingerprint of individual (print A) and the results recorded.
The process was repeated for the second fingerprint of all the patients (print B) to
obtain quantitative data (Table 1).

10
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b »
1 52 5 4 0.096 0.140 melphalan
2 65 8 5 0.090 0.103 5-fluorouracil
3 42 4 3 0.082 0.135 Chlorambucil
4 40 7 4 0.096 0.116 Methotrexate
5 40 5 3 0.090 0.138 Busuphan
6 33 6 3 0.084 0.133 Cyclophosphamid
7 62 6 3 0.092 0.097 Cytosine arabinos
8 50 9 3 0.089 0.105 Cisplatin
9 49 10 4 0.094 0.119 Vinblastine
10 60 9 3 0.099 0.160 Bleomycin
1l 57 7 4 0.101 0.133 Daunorubicin
12 45 5 3 0.097 0.141 Busulfan
13 67 9 6 0.089 0.099 6-mercaptopurine
14 75 8 4 0.095 0.104 Tamoxifen
15 43 5 2.7 0.099 0.142 Procarbazine
16 40 4 1 0.095 0.102 Vincristine
17 75 5 3 0.097 0.136 dicarbazine
18 56 9 7 0.089 0.127 6-thioguanine
19 55 7 2 0.097 0.132 Actinomycin D
20 34 6 3.6 0.104 0.165 Bleomycin
21 32 5 2 0.087 0.098 Mitomycins
22 54 4 3.2 0.097 0.109 Streptonigrin
23 52 7 2l 0.130 0.174 Chlormbucil
24 77 8 4 0.098 0.130 Cisplastin
25 56 5 32 0.110 0.154 Tamoxifen
26 34 4 2.6 0.099 0.154 Adriamycin
27 63 4 2! 0.099 0.164 Methotrexate
28 67 3 1.8 0.094 0.099 Dicarbazine
29 38 4 2 0.093 0.130 Melphalan
30 78 7 3:5 0.120 0.167 bleomycin

TABL 1: Quantitative data derived the fingerprints

The drugs indicated on table 1 are nested into four major classes of cancer drugs.
This is necessary because most of the drugs have different trademark names but
possess the same constituents which perform the same function. Drugs under each
class perform similar function in treating cancer. These classes are Alkylating drugs
which modify DNA, Antimetabolic drugs which interfere with DNA synthesis,

Natural products which serve as antibiotic and Others

12



g UNIVERSITY FOE. DEVELOPMENT STUDIES
o zid,
o

www.udsspace.uds.edu.gh

TABLE 2: Major class of cancer drugs used by patients in the research

NATURAL
KYLATING DRUGS ANTIMETABOLICS PRODUCT(antibiotic) OTHERS
viodify DNA) (Interfering DNA synthesis) doxorubicin(Adriamycin) tamoxifen
hlorambucil 5-fluorouracil daunorubicin cisplatin
lelphalan methotrexate actinomycin D dicarbazineprocarbaz
/clophosphamide cytosine arabinoside mitomycin C procarbazine
usulfan 6-mercaptopurine vinblastine
osfamide 6-thioguanine vincristine
bleomycin

3.1.3 LIMITATIONS
To increase sample size was to increase precision and this involves cost. It was however not
easy to get patients to participate in the test. Some had demanded payment for transportation,

while the time frame or frequency for taking patients fingerprint was not adequate.

4.0 MODELING, APPLICATIONS AND RESULTS

Application and analysis of results

FIGURE 5:Ridge fading measured within six month interval

13
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. The empirical distribution is fitted in the regression model (equations 27, 28).

Y=B, + BT + B2a+ B3A + P4V +Psd + €
Where y= absolute change

T= patients age

a=cancer duration

A= change scores

V=class of drug

d=duration of drug use

4.1.4.1 Results - Y=ﬁ0 + BIT + Bza + B3A o B4V + Bsd *+ &

TABLE 3: Derived table indicating change scores and absolute change from table (1)

Class
of

patient AgeT cancer_dur drugUse_dur changeabs drug

00 N O O A W N -

52
65
42
40
40
33
62
50

© O O O N S~ 00 O

W W W w HHp W0 e b

14

0.459
0.144
0.646
0.217
0.533
0.581
0.054
0.179

AK
ATM
AK
ATM
AK
AK
ATM
oT

1)

Change

O O =) a a0 a O

scores
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9 49 10 4 0.253 NP 1
10 60 9 3 0.516 NP 1
11 57 7 4 0.317 NP 1
12 45 5 3 0.453 AK 1
13 67 9 6 0.112 ATM 0
14 75 8 4 0.095 oT 0
15 43 5 2.7 0.434 oT 1
16 40 4 1 0.074 NP 0
17 75 5 3 0.402 oT 1
18 56 9 7 0.427 ATM 1
19 55 0 2 0.126 NP 0
20 34 6 3.6 0.587 NP 1
21 32 5 2 0.126 NP 0
0
22 54 4 3.2 0.124 NP
23 52 7 3.1 0.338 AK 1
24 77 8 4 0.327 oT 1
25 56 5 3.2 0.4 oT 1
26 34 4 2.6 0.556 NP 1
27 43 4 3 0.056 ATM 1
28 67 3 1.8 0.053 oT 0
29 38 4 2 0.398 AK 1
30 78 7 3.5 0.392 NP 1

GenStat output 1: The model considering all the variables (age, cancer duration, drug use
duration, change scores, drug and change absolute)

**%** Regression Analysis *****

Response variate: change abs

15
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Fitted terms: Constant + AgeT + cancer_dur + change scores +

drug + drugUse_dur

**x Summary of analysis ***

dafs S.S. .S Vit. F Pr.
Regression 7 0.7855 0.11221 10.73 <001
Residual 22 0.2301 0.01046
Total 29 1.0156 0.03502

Percentage variance accounted for 70.1
Standard error of observations is estimated to be 0.102

* MESSAGE: The following units have large standardized

residuals:
Unit Response Residual
9 0.253 -2.04
217 0.056 -2.21

*%* Estimates of parameters ***

estimate s.e. t(22) t Pr
Constant 0.2402 0.0971  2.47 0.022
AgeT -0.00248 0.00183 -1.36 0.189
cancer_dur -0.0085 0.0142 -0.60 0.553
change scores 1 0.2151 0.0471 4.56 <.001
drug ATM -0.2631 0.0735 -3.58 0.002
drug NP -0.0610 0.0559 -1.09 0.287

16
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drug OT -0.0713 0.0661 -1.08 0.292
drugUse_dur 0.0606 0.0284 2.13 0.045

Parameters for factors are differences compared with the
reference level:

Factor Reference level

change scores 0

drug AK

43 RCHECK [RMETHOD=deviance; GRAPHICS=high] residual; normal
44 "General Model."
45 MODEL [DISTRIBUTION=normal; LINK=identity; DISPERSION=*]

change_abs
46 FIT [PRINT=model, summary, correlations, estimates;
CONSTANT=estimate; FPROB=yes; TPROB=yes; \

47 FACT=9] +drugUse_dur

Model checking

17
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change_abs

Standardized residuals

T T T T T T T T
2.0 -1.5 -1.0 0.5 0.0 0.5 1.0 15 20

Normal plot Figure 6: Model checking for all

the variables

4.1.4.2 Results - Y=Bo+B1T+B2A+B3V+B4d+£

Cancer duration removed from model (27), leading to

Y=g + B, T + BoA+ B3V + Bsd + € (2)
Where y=absolute change

T=patients age

A=change scores

V=class of drug used

d=drug use duration

GenStat output 2: Cancer duration removed from genStat output

(1)

*¥*kx** Regression Analysis ****xx

18
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Response variate: change abs

Fitted terms: Constant + AgeT + change scores

drugUse dur

***% Summary of analysis ***

d. f. s.s. m.s. v.r.
Regression 6 0.7817 0.13028 12.81
Residual 23 0.2339 0.01017
Total 29 1.0156 0.03502

Percentage variance accounted for 71.0

Standard error of observations is estimated to be 0.101

* MESSAGE: The following units have

large standardized residuals:

Unit Response Residual

9 0.253 -2.15

27 0.056 -2.13

*** Estimates of parameters *Hx

estimate s.e. t(23)
Constant 0.2294 0.0941 2.44
AgeT -0.00262 0.00179  -1.46
change scores 1 0.2185 0.046 4.73
drug ATM -0.2602 0.0723 -3.60
drug NP -0.0700 0.0532 -1.32
drug OT -0.0748 0.0650 -1.15
drugUse dur 0.0504 0.0226 2.23

19
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F pr.
<.001

t pr.
0.023
0.157
<.001
0.002
0.201
0.262
0.036
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Parameters for factors are differences compared with
the reference level:

Factor Reference level

change scores 0

drug AK

Model checking

20
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change_abs

0.5+

0.0 4

0.5 4

Standardized residuals

204

T T T T T T T T T
2.0 -15 -1.0 05 0.0 05 1.0 15 20

Normal plot

\FIGURE 7: Model checking where cancer duration is removed.

4.1.4.3 Discussion

The kinds of drug used by patients contribute to the fading fingerprint. Given the major
class of drugs used. We classify the data into alkylating, antimetabolic, others, natural
product and estimate the probability of change caused by particular class of drug. It is
clear that, drug effect on fading fingerprint have a more complex structure and their
components are not exactly exchangeable since the individual change probabilities P1 P,
Piwherei=1, 2, ...4 are not identically to probability obtained in the full model.

4.2 STOCHASTIC MODELING OF PROCESSES LEADING TO FADING FINGERPRINTS
We consider a situation where four class active drugs are used by patients. Tumor cells
may be in one of four mutually exclusive states defined by sensitivity to the drugs TI,
TZ, T3 and T4: RO (sensitive to the four class of drugs), R1 (resistant to Tl and
sensitive to T2, T3, T4), R2 (resistant to T2 and sensitive to T1, T3, T4) or R3
(resistant to T3 and sensitive to T1, T2, T4) Let Ri (t) be the number of cells in the ith
compartment at time t. Each compartment is assumed to grow with the kinetics of a

pure birth process with compartment specific rates bi (t)Ri (t),
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i =0, 1, 2, 3. Transitions are assumed to occur between compartments with a constant
probability per division, aik, where i is the index of the originator state and k is the
destination state. Each tumor cell is assumed to obey the log-kill law in its response to
drugs in which the log of the probability of cell survival PD is proportional to the
drug dose, i.e., In (Pp (d«)) = In (P {tumor cell survival}) =-pi dk (3)

where d is the dose of drug Tk , k =1, 2 and pix is the parameter for drug Tk in cells
of typei .

In what follows, we will assume we have available treatment times, tj j =1,...., N
on a scale where t = 0 represents the time the tumor developed (1 cell). The
probability that the tumor is cured at time t is taken to be equivalent to the
probability that there is no tumor cells alive, i.e., P{RO (t) = 0, R1(t) = 0, R2(t) =0,
R3(t) = O}= P{R(t) = O} = WR(t) (s) is the probability generating function
(PGF) of the process R(t) then P{R(t) = O}=¥R(t)(0) (4)
Thus if we can calculate the PGF we can obtain the required probability by
evaluating it at a particular point s = 0 . We can obtain an expression for this PGF by
using the well known relationship that if Yi, i =1, 2, ... are independent identically
distributed integer valued stochastic processes and N is another independent integer
valued process, then the process Z= Y p=1N Yy (5)
Yn has PGF given by WZ(s) = ¥N (WYY (s)) where WN (s) and WY (s) are the PGFs
of N and Y. In particular we have that the PGF after treatment at time t, is given by
the PGF prior to treatment at time t- evaluated at a point given by the PGF of the
effect of treatment on a single cell.

22



www.udsspace.uds.edu.gh

An extract from W. C. Evans (2002) , Pharmaconosy
Figure 2 the chemical structure of folic acid and methotrexate
An example of antimetabolic drug interfering with replication, transcription and DNA

synthesis,

23



:
5
%

www.udsspace.uds.edu.gh

Folic Acid

Tetrahydrofolic Acid

Purines ~ Pyrimidines
_guanine adenine ine thymine uraci

T

Cell Mitosis

An extract from W. C. Evans (2002), Pharmaconosy

Figure 3: pharmacokinetic trajectory of cancer drugs, DNA modification
and RNA damage. The drugs initiate hydroxyl radical (OH) which attack
and generate a whole series of modified purine and pyrimidine bases.

Stochastic model for toxic accumulation in cells

All the four class of drugs are assumed to have unwanted dose dependent toxic effects
on one or more normal systems. This will be summarized in a single variable X which is
equal to the logarithm of the size of the critical normal population which is assumed to
re-populate following a Gompertzian form of growth, i.e., X (t) = Xs - (% - X )e "kt (6)

where s x is the asymptotic size, ki a growth parameter and t is the elapsed time from when the system
was of size X, If the normal system is perturbed, then its re-growth is described by the
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same equation. The anticancer drugs Tk are assumed to perturb the normal system,
indicated by

Ax, following a log-kill law so that Ax = - - Py (7

In attempting to model clinical cancer the important outcome associated with the effect of
chemotherapy on the normal tissue is the occurrence of a toxic event. The toxic event can
represent a variety of situations. As well as the most drastic, death of the patient, it can
also typify a medical outcome such as kidney failure or neurological damage, that the
therapist is trying to avoid. On a more basic level it denotes any outcome that causes the
cessation of treatment. A commonly used model for the probability of the toxic (or
therapeutic) effect, Pt , of single doses of the drugs is the logistic function, i.e.,

Pr(dk) - 1- [1 + e”][1 + 77/ (8)
where f,and B > 0 are constants

We may combine Eqgs. (6) and (7) to provide a formula relating changes in the
level of the normal system from its physiologic value to the probability of a toxic
event, i.e.,

Pr(dx) = 1 -[1+e/[1 + /-1, 9
We assume in Eq. (7) that the determinant of the likelihood of toxicity is only influenced by
the net kill on the normal system of the drug and not by which drug is used. One of the
characteristics of cancer chemotherapy is that normal systems are being repeatedly
perturbed by the ongoing sequential application of therapy and may not return to
their physiologic values during the course of therapy. We may utilize the
parameterization of Eqg. (7) to model this situation as follows. If x(t" ) is the size of the
normal system prior to the administration of a drug dose at time t and x(t) is the size after (as
given in Eqg. (11)), then the probability of a toxic event associated with this dose is given by
Pr(t) = Pr(x(t)= Pr(X(t) — X«) - Pr (X(t") - Xe0)/ (1 - Pr(X(t-) - X))

=1-(1-exp [fo+ B(X= - x(1))I/(1- exp[Bo + B(Xe0 - X(1))])- (10)
Eq. (8) provides an expression for the probability of toxicity conditional on no preceding
toxic event.

Using Bayes theorem we may simply calculate the cumulative probability of a toxic
event, CUMPT (t), from CUMP+ (tj) - CUMP+ (t; ) = Pt (t)[1-CUMPT(tj)] (11)
with the condition CUMPT(tj-) = 0. The toxicity expand the normal causing swelling and
peeling of the ridges.

If no control is applied, the model is simple and cancer cell grows exponentially.
Roughly, sensitive cells grow at a certain rate and this model is constructed on the basis
of turnover process of cells, a stochastic process of genetic mutations, cell fitness
mutation rates, number of stages and many other characteristics affect the original cell of an
individual cell. In this case, for homozygous individuals, two mutations would be required to
initiate the process. Basically, the changes causing DNA damage and PCR decay can be
presented in the form of a successive of the stages since mutations are fixed during cell
replication. It is therefore natural to model gene mutation
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on the basis of a process of cell turnover. Such process can be described by the Markov
chain. The model can be used to compute the probability of the incidence of cancer on
physical mapping of DNA at a particular age t. This will of course be function not only of
the age, but also of the number stages in long term trend analysis. Let Set) be the survival
probability for finger cancer, that is the probability that a randomly chosen finger cell is
free from infection up

to age t. On this note the cell hazard rate then satisfies h(t) = - s:(t) /o(t) and inversely  (12)

S(t) = exp{- h(t))== exp{-fo' h(u)du} (13)
and the probability that finger cells die as a result of turnover is
p(t) = limao[pr{t < x <t +4tlx > t}/At] (14)

For any proposed model, we can adjust the parameters in such a way that h (t) closely resembles
the incidence rates as derived from the observed changes. In this way, it is convincing to
note that a single stage model cannot explain the phenomenon of rising genetic mutation
that impedes DNA repair mechanism. Parameters in this model have biological meaning
and take in values that are in agreement with current knowledge in cancer growth (Tan et
al., 1991). In a two stage model, the normal cells undergo initiation stage that produces an
irreversible change and leads to a growth advantage for initiated cells. The major
protection against cancer may reside in efficiency of DNA repair and successful initiation
may require both DNA alteration and some degree of cell proliferation to allow the change to
be fixed in the DNA .Such cells can either die or by chance undergo a promotion process which
induced the further changes. Dead cells begin when a dead receptor on the doomed cell
plasma membrane receives a signal to die, within seconds enzymes caspases are activated
inside the cell stimulating each other and snipping apart various cells components. These
Killer enzymes demolish the enzymes that replicate and repair DNA which affect
biological reactions such as glycolysis and TCA cycle in cytoplasm and mitochondria
respectively. To model these changes statistically, we refer to Table 4and denote N(t), the
number of normal cells at aget. T(t), The number of stem cells at age t.at the beginning of
replications

N(0) = No and T(o) =T,, the initial number of cells where No = 1.5 x 10%°
(biological constant), n the number of mutations necessary to produce an initiated

cell, g; the number of cell division per year.

26



UNIVERSITY FOR DEVELOPMENT STUDIES

>

“..-»

L
<

www.udsspace.uds.edu.gh

Let ri,r2,r3,... rn, where r = 7 x 10° (biological constant),the mutation rates per cell division
for the n mutation. To show that initiated cells appear in ones organs according to
nonhomogeneous Poisson process with a rate depending on the details of the initiation
process. The cells in the tissues turn over that is they either divide and double or they
simply die. The conceptually simplest method treats the cells as synchronized and
turnover at regular intervals. In reality, the cellular alteration and the interactions
between cell replication are more complex than what goes into this model, but for the
purpose of this model, these complications will not be catered for. Let us treat stem
cells as eternally living cells at each step; they divide with probability of one (certain),
thereby producing a replacement stem cell and one new normal cell. This normal cell
then divides a few times before it eventually dies. At each turning over, half the normal

cells die and are replaced again through the doubling of the remaining cells in the unit.

To relate this process to the age in years t, let us define an additional parameter, the number of
turnovers per year. It is biologically reasonable to assume t = 3, that is three turnovers per
year. It is therefore convincing to show that if N (t), total number of finger normal cells is very
small, and that during a life-span of a human almost more number of divisions takes place.
Mutation becomes fixed in a cell at the time of division. One of the two new cells created
by the doubling process may carry a particular mutation. The mutation rate per division is
equal to the probability that one of the daughter cells carries the mutation and dies within
a few turnovers. These dead cells begin when dead receptor on the doomed cells plasma
membrane receives a signal die within seconds and enzymes caspases are activated. Inside
the cell, stimulating each other and snipping apart various cell components. These killer
enzymes demolish the enzymes that replicate and repair DNA. Caspases also activate
enzymes that chew DNA up into pieces and destroy the cell's ability to adhere to other cells.

Let M(t), denote the number of stem cells carrying a particular mutation that occurs at raterz;,
the expected number of mutated stem cells is given as

riTo +ri(1- r)To +...4r1(1- 1) 1T, (15)
= To [1- (1- r1)* = Torik (16)
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It is mathematically convenient to work with stochastic process in continuous time. This
model can be based on the concept of Markov chains in continuous time. We can describe
the behavior of M (t) by the rule

P[M(t + h) =i + M(t) =i] = T(t)uh + o(h) (17
This expresses the probability that at age t +h mutation has been created at the palm
knowing very well that at age (t), there are i mutated cells which either survive or die.
The term o(h) satisfies o(h) — 0 as

h
h— o, the number of happenings in non-overlapping time interval is independent.

Using the Markov property, this rule can be transformed into equations for the
probabilities

Pi = PIM(t) = M(0)] =0 (18)

The Kolmogorov forward equation

Pj(t) = T(t)uPj -1 (v-TewyuPic) (19)
This implies a differential equation for the generating function @(t,s) = }j "
Pj(t)s!®?) is

0 = uT(t)(s- 1)A(t,s) (20)
ot

Solving this equation under the condition that

@(t=0,s)=1 leads to @(t, s) = exp [ufo' S(u)du(s -1)] (21)

That is M (t) has a Poisson distribution with mean ufo! S(u)du. (Expected number
of cells carrying mutation). If we substitute u = r1q we obtain the same result as in (1)
which gives a mean of Tor1qt, this is a mean step function that steps upward whenever a
new mutated finger cell appears which is different from the original cell.

We can think this process as a homogeneous Poisson process with intensity

w =Torq (22)
If a second mutation were required for initiation and it is introduced in the continuous
time model at rate roq, the rate for the creation of cells having first mutation and
subsequently the

second one would be approximately equal to rz2qfo! To rzqdu = riraqToeg’t (23)
Equation (39) is explained by the fact that all the cells having the first mutation being

created in the interval from 0 to t can mutate at t into a cell carrying both mutations.
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It should be noted that, the details of the computation depend to some extent on
whether this second mutation is at the same clonal site on the second strand or the
whether it is unrelated. Second mutation at the same site motivates strand breakage
in PCR and distorts transcription in protein synthesis. The process of transcription
cannot copy a particular part of the DNA sequence of a chromosome into an RNA
molecule that is one strand of the DNA double helix. Generalizing the above
approach shows that the double mutant finger cells can be modeled as arising from
non-homogeneous Poisson process with mutation intensity function

wi(t) = 2ri2,Nog? (24)

A further generalization of these formulas allows us to take fluctuations in finger pad
ridges, in

this case wi(t) = 2rir2,N(t)g’ (25)
and the number of double mutated PCR at age t follows a Poisson distribution with
expectation

fto)du = 2 wi(t) = 2711202 o' N(u)udu (26)
In general, for n mutations, the rate function has biological constants ri.raN(t)g". In this
case

the function that depends only on the number of mutation required for initiation n = f(n)t™
the

intensity function of this Poisson process is intimately related with the hazard rate for
acquiring the mutations. This follows from the particular form of the survival function in
this special case,

which is equal to (t) = P[I(t) = 0] = exp[-A(t)] = exp [- fo' wi ()du] (27)
It follows from the above model that the hazard rate is hi(t) = 27172N(t)g?t (28)

TABLE 4: BIOLOGICAL CONSTANTS

Mutation
rate per
cell Number
Birth of cell division of cells at
(B) death of cell (6)  (r) time t
9 8.9 7%10°" 15x%
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4.2.1 Clonal expansion

We want to analyze the effect of cancer beyond second mutation.

In the model, we defined C (t), the number of cells in a clonal expansion due to the growth of
an initiated cells created at age a f, the birth rate in the stochastic process controlling the
initiated cells. 6, the death rate of the process controlling the initiated cells.

The mutation at age a gives rise to a subsequent clonal expansion. The simplest model for
such an expansion is a birth and death process with a bigger death rate than the birth rate.
This is a Markov chain with the state C(t) being the number of cells in the clone at time t
>a. To keep things simple, we explain that each cell in the clone divides with birth rate g
and disappears with death rate 6 and act independently of the other cells. In the birth case
an additional cell appears which means that a transition from C(t) to C(t) + 1 occurs. Our
interest here lies in the death case and it is equally useful in the model C(t) changes to C(t)
- 1. The probability for the death transition is

[C(t +h) = C(t) - I/C(t) =c] = coh + O(h) at 6 > (29)
The expected number of cells in the clone dies exponentially E[C(t) = exp(d - p) (t -
a)] for t > a .When ¢ = fthe colony ridges is sure to break and disappear after a finite
time t whereas, for 6 > f, the colony die and eliminated to age t =00 with probability

6 -plo. A

dying colony in this case is eliminated nearly in E[C(t)/C(t) > 0] :(Sés_ﬁL (30)

at this stage, the pseudo genes are also found at specific mutation points and they are
comparable with many olfactory receptors coding. The so-called pseudo genes which form as

a result of frame shift mutation as well as mutations that result in premature stop codon and
lose their functionalities.

Roughly, sensitive cells grow at the rate fs and resistant cells grow at rate fro, or,
more

precisely; R + S = fsS + fiR. (31)

The quotient x = s satisfies a Riccati equation of the form
R
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X =rfr + (1- q)pBs - (1- r)Br) X - qfBsx? (32)
with positive initial condition x (0) > O. Clearly the interval [0,1) is invariant for (48) and this

equation has a unique stable equilibrium in this interval at

x = (1 - q)(Bs-(I-NBr+V((1- 9)Bs — (I-r)f2+4rgpspr >0 (33)

ZFIBr

Thus, left alone, cancer cells grow exponentially reaching the relative proportions S = xR.

5.0 CONCLUSION AND RECOMMENDATIONS

The reliability of the model is assessed using a criteria based on the degree to which the
models are_able to capture the observed changes in the fingerprint images. In fact, forensic
experts and most automatic fingerprint matching systems use minutiae for identification
since these features have been shown to be stable and can be reliably extracted from
points. There are many types of ridge anomalies that occur in fingerprint image, these
include ridge endings, bifurcations, islands, dots, enclosures, bridges, double bifurcations,
trifurcations and many others. However, in this work, consideration has been given to
ridge fading The main reason for this is that, the occurrence of transitional fading of the
other ridge anomalies is relatively rare, and it is easy to constantly detect sharp fading
rates in ridges compare to other minutiae types.

We have presented a general statistical framework, along with several stochastic models for
fading in fingerprint, from which the distribution of change scores and the extreme value
distributions of the families of cancer drugs contributing to the change in patients fingerprint
can be accurately predicted.

In section 2 on stochastic modeling, we have shown the age-dependent risk of a
theoretical model of effect of cancer on DNA and PCR damage incorporating the
familiar notions of multiple stages. It is however assumed that mutation which leads to
gell turnover causes growth advantage where cells either die or proliferate. This breaks
DNA strands and affects bonds in codons of PCR. Under these conditions, the intensity
of cancer and the hazard of acquiring depleted cells can be calculated. We use
biologically reasonable constants of N(t) = 1.5 x 10%° (the total number of cells in the
body). m1 = =2 =0.7 x 107 .q = 3(The number of turnovers per year).
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Once a cell is initiated with mutation, we expect g = 9.0 (the rate of birth of new cells) and & =
8.9 (the rate of death of old cells).

As shown in the model (genStat output 2), there is a probability of change (fading) of
0.0504 as patients use cancer drugs every six months. Ageing did not cause a change in
fingerprint. Drug AK cause greater changed in fingerprint than ATM by 26%, this is
significant at 0.05 a - level. There was no substantial difference between drug AK and
OT, NP in causing changes in fingerprint. The change depended more on the duration of
drug use; the longer the duration, the more the change (fade).On the basis the results from
the study, we strongly recommend that, agencies like Biometric Passport Officials, e-
zwich, Security Officials such as Bureau of National Investigation (BNI), Criminal
Investigation Department (CID) and Court of Law should not solely depend on fingerprint
for personal identification, other (biometric) measures of personal identification should
be used alongside with fingerprint. It is also recommended that e-zwich machines should
make an allowance of 0.0504 (+ standard error) for known cancer patients on cancer
drugs to ensure uninterrupted access to their accounts. Furthermore, a mechanism must be
put in place that allows known cancer patients to renew their Biometric Passport
regularly.
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APPENDIX

**x** Regression Analysis **x*x*x*
Response variate: change abs

Fitted terms: Constant + AgeT + cancer dur + change scores
+ drug + drugUse dur

**% Summary of analysis ***

d.f. S.S. m.s. v.r. F pr.
Regression 7 0.7855 0.11221 10.73 <.001
Residual 22 0.2301 0.01046
Total 29 1.0156 0.03502

Percentage variance accounted for 70.1

Standard error of observations is estimated to be 0.102
* MESSAGE: The following units have large standardized
residuals:

unit Response Residual -
9 0.253 -2.04
27 0.056 -2.21

*** Estimates of parameters **x*

estimate s.e. t(22) t pr.
Constant 0.2402 0.0971 2.47 0.022
AgeT -0.00248 0.00183 -1. 36 0.189
cancer dur -0.0085 0.0142 -0.60 0.553
change scores 1 0.2151 0.0471 4.56 <.001
drug ATM -0.2631 0.0735 -3.58 0.002
drug NP -0.0610 0.0559 -1.09 0.287
drug OT -0.0713 0.0661 -1.08 0.292
drugUse dur 0.0606 0.0284 2.13 0.045
Parameters for factors are differences compared with the reference level:

Factor Reference level
change scores 0
drug AK
41
43 RCHECK [RMETHOD=deviance; GRAPHICS=high] residual; normal
44 "General Model."
45 MODEL [DISTRIBUTION=normal; LINK=identity; DISPERSION=%*]
change abs
46 FIT [PRINT=model, summary,correlations,estimates;
CONSTANT=estimate; FPROB=yes; TPROB=yes; \
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FACT= 9 ] +drugUse_dur
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***** Regression Analysis *****

Response variate: change_abs
Fitted terms: Constant, drugUse_dur

*** gummary of analysis ***

d..£. 8.8 m.s. Vit F P
Regression 1 0.005 0.00469 0LE3  0.721
Residual 28 1.011 0.03610
Total 29 1.016 0.03502

Residual variance exceeds variance of response variate
Standard error of observations is estimated to be 0.190
* MESSAGE: The following units have high leverage:

Unit Response Leverage
13 0.112 0.207
16 0.074 0.164
18 0.427 0.361

*** Estimates of parameters ***

estimate s.e. t(28) ¢t pr.
Constant 0.277 0.104 2.66 0.013
drugUse_dur 0.0107 0.0296 036 0.721

UNIVERSITY FOR DEVELOPMENT STUDIES

*** Correlations between parameter estimates ***

%g\ estimate ref correlations
..'
' Constant 1 1.000
= drugUse_dur 2 -0.943 1.000
1 2

48 "General Model."

49 MODEL [DISTRIBUTION=normal; LINK=identity; DISPERSION=*] change_abs

50 FIT [PRINT=model, summary,correlations,estimates; CONSTANT=estimate;
FPROB=yes; TPROB=yes;\

51 FACT=9] +drugUse_dur
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***%* Regression Analysis *****

Response variate: change_abs
Fitted terms: Constant, drugUse_dur

*** Summary of analysis ***

a.f. s.s. m.s. Tk, F o
Regression 1 0.005 0.00469 013 0721
Residual 28 1.011 0.03610
Total 29 1.016 0.03502

Residual variance exceeds variance of response variate
Standard error of observations is estimated to be 0.190
* MESSAGE: The following units have high leverage:

Unit Response Leverage
13 0.112 0.207
16 0.074 0.164
18 0.427 0.361

*** Estimates of parameters ***

estimate s.e. t(28) t pr.
Constant 0.277 0.104 2.66 0.013
drugUse_dur 0.0107 0.0296 0.36 0.721

*** Correlations between parameter estimates ***

estimate ref correlations

Constant 1 1.000

drugUse_dur 2 -0.943 1.000
1 2

52 "General Model."

53 MODEL [DISTRIBUTION=normal; LINK=identity; DISPERSION=*] change_abs

54 FIT [PRINT=model,summary,correlations,estimates; CONSTANT=estimate;
FPROB=yes; TPROB=yes;\

55 FACT=9] +drugUse_dur
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**%xx% Roegression Analysis *****

Response variate: change_abs
Fitted terms: Constant, drugUse_dur

*x% gummary of analysis ***

d.f: S8 m.s. Vit (BOPE.
Regression 1 0.005 0.00469 0.13 10.721
Residual 28 1.011 0.03610
Total 29 1.016 0.03502

Residual variance exceeds variance of response variate
Standard error of observations is estimated to be 0.190
* MESSAGE: The following units have high leverage:

Unit Response Leverage
13 0.112 0.207
16 0.074 0.164
18 0.427 0.361

*** Estimates of parameters ***

estimate s.e. t(28) t pr.

Constant 0.277 0.104 2.66 0.013

drugUse_dur 0.0107 0.0296 0.36 0.721

‘&-. *** Correlations between parameter estimates ***
1K
%92 estimate ref correlations
Constant i 1.000

drugUse_dur 2 -0.943 1.000
1 2

56 "General Model."

57 MODEL [DISTRIBUTION=normal; LINK=identity; DISPERSION=*] change_abs

58 FIT [PRINT=model,summary,correlations,estimates; CONSTANT=estimate;
FPROB=yes; TPROB=yes;\

59 FACT=9] +drugUse_dur
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***x* Regression Analysis *****

Response variate: change_abs
Fitted terms: Constant, drugUse_dur

*** Summary of analysis ***

da £ s.s. m.s. v.r. F pr.
Regression 1 0.005 0.00469 0.13 10921
Residual 28 1011 0.03610
Total 29 1.016 0.03502

Residual variance exceeds variance of response variate
Standard error of observations is estimated to be 0.190
* MESSAGE: The following units have high leverage:

Unit Response Leverage
13 0.112 0.207
16 0.074 0.164
18 0.427 0.361

*** Estimates of parameters ***

estimate s.e. t(28) t.px.
Constant 0.277 0.104 2.66 0.013
drugUse_dur 0.0107 0.0296 0.36° 0.721

*** Correlations between parameter estimates ***

4&\ estimate ref correlations
..'
- Constant 1 1.000
drugUse_dur 2 -0.943 1.000
1 2

60 "General Model."

61 MODEL [DISTRIBUTION=normal; LINK=identity; DISPERSION=*] change_abs

62 FIT [PRINT=model, summary,correlations,estimates; CONSTANT=estimate;
FPROB=yes; TPROB=yes;\

63 FACT=9] +drugUse_dur
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****x* Regression Analysis *****

Response variate: change_abs
Fitted terms: Constant, drugUse_dur

*** Summary of analysis ***

d.£. 88 m.s. V.E. B Pr.
Regression 1 0.005 0.00469 0:13 0:721
Residual 28 1,013 0.03610
Total 29 1.076 0.03502

Residual variance exceeds variance of response variate
Standard error of observations is estimated to be 0.190
* MESSAGE: The following units have high leverage:

Unit Response Leverage
13 0.112 0.207
16 0.074 0.164
18 0.427 0.361

*** Estimates of parameters ***

estimate s.e. t(28) t pr.
Constant 0.277 0.104 2.66 0.013
drugUse_dur 0.0107 0.0296 g.36 0.721

*** Correlations between parameter estimates ***

estimate ref correlations

Constant 1 1.000

drugUse_dur 2 -0.943 1.000
1 2

64 "General Model."

65 MODEL [DISTRIBUTION=normal; LINK=identity; DISPERSION=*] change_abs

66 FIT [PRINT=model, summary,correlations,estimates; CONSTANT=estimate;
FPROB=yes; TPROB=yes;\

67 FACT=9] +drugUse_dur

43



UNIVERSITY FOR DEVELOPMENT STUDIES

www.udsspace.uds.edu.gh

***x** Regression Analysis ****x

Response variate: change_abs
Fitted terms: Constant, drugUse_dur

*** Summary of analysis ***
Y

d.f. 5.8 m.s. v.r. P pr.
Regression 1 0.005 0.00469 023 0.721
Residual 28 1.011 0.03610
Total 29 1.016 0.03502

Residual variance exceeds variance of response variate
Standard error of observations is estimated to be 0.190
* MESSAGE: The following units have high leverage:

Unit Response Leverage
13 0.112 0.207
16 0.074 0.164
18 0.427 0.361

*** Estimates of parameters ***

estimate s.e. t(28) t pr.
Constant 0.277 0.104 2.66 0.013
drugUse_dur 0.0107 0.0296 0.36 0.721

***x Correlations between parameter estimates ***

estimate ref correlations

Constant 1 1.000

drugUse_dur 2 -0.943 1.000
. 2

68 "General Model."

69 MODEL [DISTRIBUTION=normal; LINK=identity; DISPERSION=*] change_abs

70 FIT [PRINT=model, summary,correlations,estimates; CONSTANT=estimate;
FPROB=yes; TPROB=yes;\

71 FACT=9] +drugUse_dur
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**%¥xx Regression Analysis *****

Response variate: change_abs
Fitted terms: Constant, drugUse_dur

*** Summary of analysis ***

d.f. S.S. m.s. Vir: F pr:
Regression 1 0.005 0.00469 0.13 0.9721
Residual 28 1.011 0.03610
Total 29 1.016 0.03502
Residual variance exceeds variance of response variate
Standard error of observations is estimated to be 0.190
* MESSAGE: The following units have high leverage:
Unit Response Leverage
13 0.112 0.207
16 0.074 0.164
18 0.427 0.361
*** Estimates of parameters ***
estimate s.e. t(28) ¢t pr.
Constant 0.277 0.104 2.66 0.013
drugUse_dur 0.0107 0.0296 0.36 10,721

*** Correlations between parameter estimates ***

estimate ref correlations

Constant 1 1.000

drugUse_dur 2 -0.943 1.000
1 2

72  "General Model."

73 MODEL [DISTRIBUTION=normal; LINK=identity; DISPERSION=*] change_abs

74 FIT [PRINT=model, summary,correlations,estimates; CONSTANT=estimate;
FPROB=yes; TPROB=yes;\

75  FACT=9] AgeT+change_scores+drug+drugUse_dur
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*AAA% Regression Analysis ****xx*

Response variate:

Fitted terms Constant + AgeT + change scores + drug + drugUse dur
*** Summary of analysis ***
d.f. S.s. m.s. v.r. F pr.
Regression 6 0.7817 0.13028 12.81 <.001
Residual 23 0.2339 0.01017
Total 29 1.0156 0.03502

change abs

Percentage variance accounted for 71.0
Standard error of observations is estimated to be 0.101

* MESSAGE: The following units have large standardized residuals:
Unit: Response Residual
9 0.253 -2.15
27 0.056 -2.13
*** Estimates of parameters *xx
estimate s.e. t(23) t pr.
Constant 0.2294 0.0941 2.44 0.023
AgeT -0.00262 0.00179 -1.46 0.157
change scores 1 0.2185 0.0461 4.73 <.001
drug ATM -0.2602 0.0723 -3.60 0.002
drug NP -0.0700 0.0532 -1.32 0.201
drug OT -0.0748 0.0650 -1.15 0.262
drugUse dur 0.0504 0.0226 2.23 0.036
Parameters for factors are differences compared with the reference level:
Factor Reference
changes scores 0
B drug AK
*** Estimates of parameters *xx
estimate s.e. t(22) t pro
Constant 0.2402 0.0971 2.47 0.022
AgeT -0.00248 0.00183 -1.36 0.189
cancer dur -0.0085 0.0142 -0.60 0.553
change scores 1 0.2151 0.0471 4.56 <.001
drug ATM -0.2631 0.0735 -3.58 0.002
drug NP -0.0610 0.0559 -1.09 0.287
drug OT -0.0713 0.0661 -1. 08 0.292
drugUse_ dur 0.0606 0.0284 2.13  0.045
50

*** Correlations between

parameter estimates ***
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estimate

Constant
AgeT

change scores 1

drug ATM
drug NP

drug OT
drugUse dur
1.000
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76 "General Model."

77 MODEL
78 FIT

79 FACT=9]

[DISTRIBUTION=normal;

correlations

1.000

-0.618 1.000
-0.41¢6 0.243 1.000
-0.068 0.001 0.440 1.000

-0.316 -0.147 0.277 0.504 1.000
-0.016 -0.468 0.181 0.457 0.586 1.000
-0.173 -0.445 -0.378 -0.500 0.014 0.102

1 2 3 4 5 6

LINK=identity; DISPERSION=*] change_ abs

[PRINT=model, summary, correlations, estimates;
CONSTANT=estimate;
FPROB=yes ; TPROB=yes;\

change scores+drug+drugUse dur
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***x*x%* Regression Analysis ****xx*

Response variate: change abs
Fitted terms: Constant + change scores + drug + drugUse dur

**% Summary of analysis ***

d.f. s.s. m.s. v.r. F pr.
Regression 5 0.7599 0.15199 14.27 <.001
Residual 24 0.2556 0.01065
Total 29 1.0156 0.03502

Percentage variance accounted for 69.6
Standard error of observations is estimated to be 0.103
* MESSAGE: The following units have large standardized residuals:

Unit Response
Residual

27 0.056 -2.08
' large responses are more variable than small responses

*** Estimates of parameters***

estimate s.e. t(24) t
Constant 0.1444 0.0757 1.91 0.069
change scores 1 0.2349 0.0458 5.13 <
drug ATM -0.2601 0.0740 -3.51 0.002
drug NP -0.0814 0.0538 -1.51 0.144
drug OT -0.1193 0.0588 -2.03 0.054
drugUse dur 0.0357 0.0207 1.73  0.097
Parameters for factors are differences compared with the reference level:

Factor Reference
level change scores 0
drug AK

*** Correlations between parameter estimates ***

estimate ref correlations

Constant 1 1.000

change scores 1 2 -0.349 1.000

drug ATM 3 -0.086 0.453 1.000

drug NP 4 -0.522 0.326 0.509 1.000

drug OT 5 -0.439 0.344 0.518 0.591 1.000
drugUse dur 6 -0.636 -0.310 -0.558 -0.058 -0.134 1.000

1 2 3 4 5 6
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80 "General Model."
81 MODEL [DISTRIBUTION=normal; LINK=identity; DISPERSION=%*] Change_abs

82 FIT
FPROB=yes;

[PRINT=model, summary, correlations,estimates;
TPROB=yes; \

83 FACT=9] change_ scores+drug+drugUse_ dur

49
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83

***x%x% Regression Analysis ***xx*

Response variate: change abs
Fitted terms: Constant + change scores + drug + drugUse dur

**% Summary of analysis **x*

b e s s e n e Auofeer =0 s t e a2 S S e e b TR ASH.e & v m e W LT AR R <3 R
+» «Regression 5 0.7599 0.15199 14.27 <.001

Residual 24 0.2556 0.01065

Total 29 1.0156 0.03502

Percentage variance accounted for 69.6
Standard error of observations is estimated to be 0.103
* MESSAGE: The following units have large standardized residuals:
Unit Response Residual
27 0.056 -2.08
* MESSAGE: The error variance does not appear to be constant:
large responses are more variable than small
responses

*** Estimates of parameters ***

estimate s.e. t(24) t pr.

0.1444 0.0757 1.91 0.069
Constant 0.2349 - 0.0458 5.13 <.001
change scores 1 0.2601 - 0.0740 -3.51 0.002
drug ATM drug NP 0.0814 - 0.0538 -1.51 0.144
drug OT 0.1193 0.0588 -2.03 0.054
drugUse dur 0.0357 0.0207 1.73 0.097

Parameters for factors are differences compared with the reference level:
Factor Reference level
Change scores 0
drug AK

**%* Correlations between parameter estimates ***
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estimate ref
Constant 1
change scores 1 2
drug ATM 3
drug NP 4
drug OT 5
drugUse dur 6

84 RCHECK

88 FACT=9]

correlations

1.000

-0.349 1.000

-0.086 0.453 1.000

-0.522 0.326 0.509 1.000

-0.439 0.344 0.518 0.591 1.000

-0.636 -0.310 -0.558 -0.058 -0.134 1.000
1 2 3 4 5 6

[RMETHOD=deviance; GRAPHICS=high]
85 "General Model."
86 MODEL [DISTRIBUTION=normalj LINK=squarerootj DISPERSION=*] change abs
87 FIT [PRINT=model,summary,correlations,estimates; CONSTANT=estimate;

FPROB=yes; TPROB=yes;\

change scores+drug+drugUse dur
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**%%% Regression Analysis **#*#*x*
Response variate: change_ abs

Link function: Square root
Fitted terms: Constant + change scores + drug + drugUse dur

*** Summary of analysis ***

d.t. S.s. m.s. vV.r. F pro
Regression 5 0.7670 0.15341 14.81 <.001
Residual 24 0.2485 0.01035
Total 29 1.0156 0.03502

Percentage variance accounted for 70.4
Standard error of observations is estimated to be 0.102
* MESSAGE: The following units have large standardized residuals:

Unit Response Residual
9 0.253 -2.14
27 0.056 -2.05

* MESSAGE: The error variance does not appear to be constant:
large responses are more variable than small responses
* MESSAGE: The following units have high leverage:
Unit Response Leverage
18 0.427 0.56

*** Estimates of parameters ***

estimate s.e. t(24) t pr.

0.3529 0.0791 4.46 <.001

Constant -0.2638 0.0567 4.65 <.001
change scores 1 -0.2309 0.0742 -3.11 0.005
drug ATM drug NP -0.0537 0.0416 -1.29 0.209
drug OT -0.0833 0.0477 -1. 75 0.093
drugUse_ dur 0.0268 0.0215 1.24 0.225

Parameters for factors are differences compared with the reference level:
Factor Reference level
change scores 0
drug AK

*** Correlations between parameter estimates ***

estimate ref correlations
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Constant 1 1.000

change scores 1 2 -0.495 1

drug ATM 3 0.155 O

drug NP 4 -0.270 O

drug OT 5 -0.265 O

drugUse dur 6 -0.634 -0.
1

89

"Gener'alModel."

.000
.297
.253
.249

268
2

90 MODEL [DISTRIBUTION=normal; LINK=probit;

91 FIT

FPROB=yes; TPROB=yes,\

92

FACT=:9] change scores+drug+drugUse dur
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1.000
0.380 1.000
0.329 0.454 1.000

-0.602 -0.172 -0.139 1.000

3 4 5

DISPERSION=*] change abs

[PRINT=model, summary, correlations, estimates; CONSTANT=estimate;

6
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***** Regression Analysis **x*xx*

Fitted terms: Constant + change scores + drug + drugUse_ dur

*** Summary of analysis ***

d.f. S.s. m.s. vV.r. F pr.
Regression 5 0.7704 0.15407 15.08 <.001
Residual 24 0.2452 0.01022
Total 29 1.0156 0.03502

Percentage variance accounted for 70.8
Standard error of observations is estimated to be 0.101
* MESSAGE: The following units have large standardized residuals:
Unit Response Residual
9 0.253 -2.18
* MESSAGE: The error variance does not appear to be constant:
large responses are more variable than small responses
MESSAGE: The following units have high leverage:

*

Unit Response Leverage
18 0.427 0.61
27 0.056 0.42

*** Estimates of parameters ***

estimate s.e. t(24) t pr.
Constant -1.168 0.270 -4.32 <.001
change scores ~0.862 0.195 4.41 <.001
1 drug ATM ~0.771 0.245 -3.14 0.004
drug NP ~0.178 0.141 -1.26 0.221
drugOT 0.276 0.159 -1.74 0.095
drugUse dur 0.0903 0.0713 1.27 0.217

Parameters for factors are differences compared with the reference level:
Factor Reference level
changes scores 0
B drug AK
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*** Correlations between parameter estimates

estimate ref correlations
Constant 1 1.000
change scores 1 2 -0.527 1.000
drug ATM 3 0.159 0.254
drug NP 4 -0.276 0.242
drug OT 5 -0.270 0.232
drugUse dur 6 -0.618 -0.246
1 2

93 "General Model."

94 MODEL [DISTRIBUTION=normal; LINK=probit;
95 FIT [PRINT=model, summary, correlations,estimatesi CONSTANT=estimate;

FPROB=yes; TPROB=yes;\

96 FACT=:9] change_ scores+drug+drugUse dur
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* % K

1.000

0.394 1.000

0.343 0.476 1.000

-0.605 -0.176 -0.140 1.000
3 4 5 6

DISPERSION=*] change abs
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**x%* Regression Analysis *****
Response variate: change_abs

Link function: Probit
Fitted terms: Constant + change_scores + drug + drugUse_dur

*** gummary of analysis ***

(s 1% 2 S.8. m.s. v.r. F pr.
Regression 5 0.7704 0.15407 15.08 <.001
Residual 24 0.2452 0.01022
Total 29 1.0156 0.03502

Percentage variance accounted for 70.8
Standard error of observations is estimated to be 0.101
* MESSAGE: The following units have large standardized residuals:
Unit Response Residual
9 0:253 -2.18
* MESSAGE: The error variance does not appear to be constant:
large responses are more variable than small responses
* MESSAGE: The following units have high leverage:

Unit Response Leverage
18 0.427 0.61
27 0.056 0.42

*** Estimates of parameters ***

estimate s.e. t(24) t pr.
Constant -1.168 0.270 -4.32 <.001
change_scores 1 0.862 0.195 4.41 <.001
drug ATM -0.771 0.245 -3.14 0.004
drug NP -0.178 0.141 -1.26 0.221
drug OT -0.276 0.159 -1.74 0.095
drugUse_dur 0.0903 0.0713 127 105219

Parameters for factors are differences compared with the reference level:
Factor Reference level
change_scores 0
drug AK

*** Correlations between parameter estimates ***

estimate ref correlations

Constant 1 1.000

change_scores 1 2 -0.527 1.000

drug ATM 3 0.159 0.254 1.000

drug NP 4 -0.276 0.242 0.394 1.000

drug OT 5 -0.270 0.232 0.343 0.476 1.000
drugUse_dur 6 -0.618 -0.246 -0.605 -0.176 -0.140 1.000
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